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Abstract
Due to the dynamic behaviour of acceleration mechanisms
such as caches and branch predictors, static Worst-Case Ex-
ecution Time (����) analysis methods tend to scale poorly
to modern hardware architectures. As a result, a tradeo�
must be made between the duration and the precision of the
analysis, leading to an overestimation of the ���� bounds.
This in turn reduces the schedulability and resource usage
of the system. In this paper we present a new data structure
to speed up the analysis: the eXecution Decision Diagram
(���), which is an ad-hoc extension of Binary Decision Dia-
grams tailored for ���� analysis problems. We show how
���s can be used to represent e�ciently execution states
and durations of instruction sequencesn a modern hardware
platform. We demonstrate on realistic applications how the
use of an ��� substantially increases the scalability of ����
analysis.

Keywords: static WCET analysis, pipeline analysis, variable
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1 Introduction
In order to guarantee the correct execution of hard real-time
applications, both scheduling and schedulability analysis
techniques must consider safe upper bounds on the possi-
ble execution durations of tasks or runnables, which are
referred to asWorst-Case Execution Times (����). Various
approaches have been developed to derive such bounds [24].
Those based on static analysis techniques aim at computing
guaranteed upper bounds, provided their knowledge of the
underlying hardware platform is correct. However, it is also
desirable to have as-tight-as-possible ���� bounds since
overestimations may lead to over-dimensioning the system.
Besides, the duration of the analysis is sometimes a concern,
so a tradeo� between precision and analysis time must be
found.

Instead of considering end-to-end execution paths, which
would be far too complex, static ���� analysis splits the
code of a task (or runnable) into short instruction sequences
and derives its global ���� from the individual ����s of
the sequences. The most common approach is the Implicit
Path Enumeration Technique (����) [16] which consists in
four steps:

1. path analysis – scans the application code to isolate
instruction sequences and to derive some execution
properties such as loop bounds or infeasible paths

2. history-based hardware analysis – captures the behav-
ior of mechanisms such as caches, and branch predic-
tors,

3. local timing analysis – computes the individual ����
of instruction sequences

4. global timing analysis – determines the ���� for the
whole task using an Integer Linear Program (���) that
maximises the execution time over all the possible
execution paths.

Several methods have been proposed to estimate the����
of a sequence of assembly-level instruction sequences taking
into account the processor pipeline and the hardware acceler-
ator components: some are based on abstract interpretation
techniques [23] while others use Execution Graphs (��) that
capture the timing semantics of a sequence of instructions
as they go through the processor pipeline [21][15]. In this
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paper, we focus on the approach developed in [21] but we
believe that our ideas can be applied to the other approaches.

Motivation. One di�culty when determining the ����
of an instruction sequence (step 3 in the process described
above) arises when the latency of an operation can have
several values. For example, the time needed to fetch an in-
struction depends on whether it hits or misses in the instruc-
tion cache. Similarly, the execution latency of an instruction
may be variable: a memory load may hit or miss in the data
cache, the calculation time of a multiplication may depend
on the operand values, etc. As for branches, the delay to
start fetching the target instruction depends on the branch
prediction. These latencies result from preliminary analyses
performed in step 2. Whenever several latency values have
been found possible (e.g. when the cache analysis was not
able to classify an access as AlwaysHit nor AlwaysMiss), one
might be tempted to consider the largest value as the worst
case. However, it has been shown that processors, in particu-
lar modern processors that implement advancedmechanisms
to enhance the average performance, often exhibit so-called
timing anomalies: a local worst-case latency does not neces-
sarily lead to a global���� [20]. In other words, considering
all unclassi�ed accesses to the cache as cache misses might
underestimate the ����. As a consequence, the only safe
approach is to consider all the possible latencies for each
�� node and edge, and then all the possible values and all
their possible combinations. Unfortunately, this might lead
to consider many cases: for example, an instruction sequence
with 10 variable-latency instructions would have to to be
analysed 1024 times, assuming that each instruction has only
two possible latency values. This would sensibly lengthen
the analysis, while, as mentioned before, the analysis time
can be a concern. Note that in some cases, we have even
observed that the combinatorial complexity of the analy-
sis made it intractable. Besides, we have found out that, in
practice, many combinations �nally lead to the same value.
This is mainly due to the pipeline hiding some local delays.
This observation guided us to a new approach that reduces
the analysis time by exploiting the fact that several latency
combinations produce the same ����.

Contribution. In this paper we present an e�cient solu-
tion to estimate the ���� of instruction sequences in the
presence of variable latencies. The main idea is to factor-
ize the evaluation of an �� for various node latencies. By
embedding inside our time representation the occurrences
of events and their e�ects on the sequence latency, we are
able to bene�t from the latency absorbing properties of the
pipeline and to speed up the analysis. Our approach is based
on a re�nement of Binary Decision Diagrams (���) [1, 19]
that we call eXecution Decision Diagram (���). We prove that
using ��� is functionally equivalent to the existing �� eval-
uation method that analyzes exhaustively all con�guration
of events, and we report experimental results showing that

this new approach signi�cantly improves the scalability of
the ���� analysis.

Outline. Section 2 provides background information on
the ���� analysis of sequences of instructions. Section 3
introduces an initial implementation of ���s, which is en-
hanced in Section 4. Experimental results are reported and
discussed in Section 5. Section 6 reviews related work and
Section 7 concludes the paper and discusses plans for future
work.

2 Background
This section presents the fundamental concepts used to com-
pute the worst-case duration of instruction sequences. This
encompasses the program representation, the method to
compute the execution time and the support to take the
behaviour of the underlying hardware into account.

2.1 Control Flow Graph
The set of machine instructions is denoted I and the set of
sequences of instructions I⇤. A program is represented using
Control Flow Graphs (���) ⌧ = h+���, ⇢���, ni, where:

• +��� 2 I⇤ is the set of basic blocks (��). A �� is a se-
quence of instructions from I such that the control �ow
can (a) enter the �� only through its �rst instruction
and (b) leave the �� only through its last instruction1,

• ⇢��� ⇢ +��� ⇥+��� is the set of edges representing the
execution �ow between ��s,

• n 2 +��� is a unique �� without predecessor that rep-
resents the entry point of the program.

We consider that⌧ is connected: there exists a path from n
to each vertex of +���. An edge of ⇢���, from �� 0 to �� 1, is
denoted 0 ! 1.

2.2 Execution Graphs
Let us consider an<-stage pipelined processor. The set of
its pipeline stages is denoted by ( = [(1, (2, ..., (<]. The
execution of �� 0 2 +��� that consists in the sequence of
instructions � = [�1, �2, ..., �=], �8 2 I on that processor can
be represented by an Execution Graph (��) [21].

An Execution Graph (��) is a graph (+��, ⇢��) whose ver-
tices+�� ✓ � ⇥( are pairs [�8/( 9 ] representing the processing
of instruction �8 in stage ( 9 .
Each vertex E is assigned a latency _E 2 N that repre-

sents the time spent by the instruction in the pipeline stage.
We denote by U 2 +�� the �rst vertex of the �rst instruc-
tion, [�1/(1], and by l the last vertex of the last instruction,
[�=/(<].
Edges ⇢�� ⇢ +�� ⇥ +�� represent timing dependencies:

pipeline stages must be traversed in the architectural order,

1It is not mandatory to have maximal ��s although this is likely to improve
the precision of the results.
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instructions are fetched in the program order , some instruc-
tion pairs exhibit data dependencies, instructions must wait
for a free slot before being inserted into a bu�er, etc. An edge
E ! F 2 ⇢�� can be solid or dotted: a solid edge means that
F can only start after the end of E while a dotted edge means
thatF can start at the same time as E but not earlier. Dotted
edges can express superscalarity, e.g. two instructions being
decoded at the same cycle but not out of order. The nature
of an edge is represented by XE!F = 0 if E ! F is dotted,
XE!F = 1 otherwise. Note that an �� cannot contain any
cycle.
The ready time of a vertexF 2 +�� is denoted by dF and

is computed as follows:
dU = 0

8F < U, dF = max
E!F2⇢��

dE + XE!F ⇥ _E
(1)

This computation is repeated for each vertex following a
topological ordering of the graph. At the end, the time spent
by the �� in the pipeline could be computed by:

C = dl + _l

Note that this calculus assumes that the pipeline is empty
when the block starts its execution, so that instructions can-
not be delayed by earlier instructions that might occupy
hardware resources (pipeline stages, functional units, bu�er
slots, etc.) or create further dependencies. In [21], a node has
several ready times related to the time at which each resource
is released by earlier instructions. Given that these additional
times are computed exactly the same way as in Equation 1,
we omit them in this paper for the sake of simplicity.

Furthermore, the computation of a ��’s execution time
as presented above would be pessimistic since it does not
account for the overlapping execution of successive basic
blocks in the pipeline. To enhance accuracy, it is recom-
mended to build an execution graph for each edge 0 ! 1 2
⇢���, including the instructions of both ��s 0 and 1 in se-
quence. It is then possible to derive an execution time C0!1

for each predecessor of 1 in the ���. This time is computed
as the delay between the processing of the last instruction of
0 in the last pipeline stage (denoted by el) and the processing
of the last instruction of 1 in the last pipeline stage (l):

C0!1 = dl + _l � (del + _el )
2.3 Events
An event represents any occurrence of a variable �� node
processing time. This encompasses the e�ect of hardware ac-
celerators like caches or branch predictors but also variable-
latency instructions such as multiplications and divisions,
the execution time of which often depends on the operand
values.

An event 4 2 E is a tuple h�8 , ( 9 , C4 , G4i where:
• �8 2 I is the instruction impacted by the event,
• ( 9 2 ( is the pipeline stage in which the event occurs,

• C4 2 N is the cost of the event (in cycles) that is applied
to �� node [�8/( 9 ] if the event is active.

• G4 is an expression that represents an upper bound
on the number of occurrences of the event in the ILP
formulation used to derive the ���� [16].

Note that when an �� node may have several (more than
two) di�erent latency values, there will be as many events
attached to it.

Figure 1 shows an example �� that represents the execu-
tion of two short ��s in sequence, 0 and 1, in a 5-stage (FE
– fetch, DE – decode, EX – execute, ME – memory, WB –
write-back) in-order pipeline. Basic block 0 spans from �0
to �4 and 1 is only made of instruction �5. Instructions are
shown on the left of the ��, each facing the vertices that
represent its traversal of the pipeline. Pipeline stages are
shown on the upper row. Events related to the instruction
(resp. data) cache behaviour are labeled by �⇠G (resp. ⇡⇠G ).
They are attached to vertices that stand for an instruction
fetch or a memory data access when a cache miss is possible
(as found by cache analysis).

2.4 ���� of a �� in the presence of events
As explained in the introduction, computing the ���� of a
basic block by assuming that all the events actually occur
(and then systematically accounting for their cost) would be
unsafe because of potential timing anomalies [17, 20]. As a
consequence, we must compute the �� execution time for
every possible combination of events.
We denote by E the set of events potentially occurring

during the execution of a sequence of two ��s and by |E |
its cardinality. A con�guration of events, W 2 � : E ! {0, 1},
is a function indicating whether an event 4 2 E is active
(W (4) = 1) or not (W (4) = 0). For each con�guration W 2 �,
the latencies of �� vertices must be adjusted to re�ect the
additional delays due to active events.
Assuming that all events are independent, the �� has to

be recomputed as many as |� | = 2 |E | times
We denote by ) : � ! N, the domain representing a time

for each con�guration of events. This time may have several
possible values and can be expressed as a function C⇤ 2 )
that returns a di�erent value for each con�guration in �.
Let _E (W) denote the latency of �� vertex E in con�gu-

ration W . It is the sum of costs of the events attached to E
that are active in W . The computation of the �� can now be
reformulated as:

d⇤U (W) = 0
8F < U, d⇤F (W) = max

E!F2⇢��
d⇤E (W) + XE!F ⇥ _E (W) (2)

2.5 Example
Let us consider the �� in Figure 1 and assume that the cost of
every event is 10 cycles (latency to access the main memory
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Figure 1. An �� decorated with events
FE DE EX ME WB

(0) add r3, r0, #4

(1) add r1, r0, r1, lsl #2

(2) ldr r2, [r3]

(3) cmp r2, ip

(4) ldrgt ip, [r3]

(5) add r3, r3, #4

�⇠0�⇠0�⇠0

�⇠1�⇠1�⇠1

⇡⇠2⇡⇠2⇡⇠2

⇡⇠3⇡⇠3⇡⇠3

through the cache) while the default latency of every ��
node is 1 cycle. If EE represents the set of events of E that
are attached to an �� node E , we have:

_E (W) = max(1,
’
42EE

10.W (4))

The analysis starts with:
• d⇤[�0/�⇢ ] (W) = 0
• _ [�0/�⇢ ] (W) = max(1, 10.W (�⇠0))
• d⇤[�0/⇡⇢ ] (W) = d⇤[�0/�⇢ ] (W)+_ [�0/�⇢ ] (W) = max(1, 10.W (�⇠0))
• ...
• d⇤[�2/⇢- ] (W) = 3 +max(1, 10.W (�⇠0))
• d⇤[�2/"⇢ ] (W) = 4 +max(1, 10.W (�⇠0))
• ...
• d⇤[�3/⇡⇢ ] (W) = 3 +max(1, 10.W (�⇠0))

When a vertex, such as [�3/⇢- ], has multiple predecessors,
Equation 2 introduces a<0G that can sometimes be simpli-
�ed:
d⇤[�3/⇢- ] (W) =<0G (4 +<0G (1, 10W (�⇠0)), 3 +<0G (1, 10W (�⇠0)),

4 +<0G (1, 10W (�⇠0)) +<0G (1, 10W (⇡⇠2))
= 4 +<0G (1, 10W (�⇠0)) +<0G (1, 10W (⇡⇠2))
= 6 + 9W (�⇠0) + 9W (⇡⇠2)

However this is not always possible. For example:
d⇤[�4/⇢- ] (W) =<0G (4 +<0G (1, 10W (�⇠0) +<0G (1, 10W (⇡⇠2)),

3 +<0G (1, 10W (�⇠0)) +<0G (1, 10W (�⇠1))
4 +<0G (1, 10W (�⇠0)) +<0G (1, 10W (⇡⇠2))

= 4 +<0G (1, 10W (�⇠0))
+<0G (<0G (1, 10W (�⇠1)), 1 +<0G (1, 10W (⇡⇠2)))
= 7 + 9W (�⇠0) +<0G (8W (�⇠1), 9W (⇡⇠2))

In practice, computing the block’s execution time for the
24 possible event con�gurations leads to less than 24 di�er-
ent results. This is due to the structure of the pipeline that
enables a partial absorption of vertex latencies: the timing
variability induced by an event in one part of the pipeline
can be compensated by another event in another part of
the pipeline, resulting in the same overall execution time

regardless of the occurrence or not of the �rst event. In our
model this absorption is expressed by the<0G function in
Equation 1.
The computation of d⇤[�3/⇢- ] (W) was shortened using in-

teger arithmetic properties. Implementing it as-is would re-
quire the use of symbolic calculus that (a) is time-costly and
(b) does not guarantee minimal representation. As an alterna-
tive, we introduce a data structure, named Execution Decision
Diagram (���), that:

• is equivalent to the symbolic representation;
• takes advantage of possible simpli�cations due to the
pipeline structure;

• can be easily imported into the ��� formulation of the
global ���� computation, i.e. that can be used as ) .

3 Execution Decision Diagrams
An eXecution Decision Diagram (���) is a data structure
that represents a set of times induced by di�erent possible
con�gurations of events. In other terms, ���s are a compact
representation of the ) domain, enabling simpli�cation of
expressions derived in the analysis of an ��. Unlike sym-
bolic calculus, ���s are specialized to perform e�ciently the
operations that we need: the maximum and the addition.

3.1 De�nitions
An ��� can be seen as a Binary Decision Diagram [1] in
which variables are replaced by events and Boolean leaves
by possible times.

De�nition 3.1. An ��� is de�ned recursively by:

��� = ����(:) | ����(4, 5 , 5 )

with : 2 Z, 4 2 E and 5 , 5 2 ���.

A ����(4, 5 , 5 ) represents alternative times depending on
the occurrence of event 4: 5 if event 4 is active and 5 other-
wise. A ����(:) represents a constant time : 2 Z. The path
from the top node to a ����(:) determines the con�guration
of events that results in the leaf time.

Example. The following ���s represent d⇤[�3/⇢- ] and d
⇤
[�4/⇢- ]

from the example in Section 2.5. Events are represented in
circles and solid (resp. dashed) edges correspond to the acti-
vation (resp. inactivation) of events. It is worth noting that
�⇠1 is dominated by ⇡⇠2 when the latter is active: when
W (⇡⇠2) = 1 in d⇤[�4/⇢- ] , 1+<0G (1, 10W (⇡⇠2) is always greater
than<0G (1, 10W (�⇠1)). This property is exploited in the ���
by removing �⇠1 nodes from the right-side sub-��� of node
⇡⇠2. Although the same property is veri�ed in the corre-
sponding symbolic representation, it cannot be used to sim-
plify the expression.
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⇡⇠2

�⇠0 �⇠0

6 15 24

d [�3/⇢- ] = ⇡⇠2d [�4/⇢- ] =

�⇠1

�⇠0 �⇠0 �⇠0

7 16 15 24 25

Instantiation. The basic use of an ��� is to evaluate a
time, given a particular con�guration of events. In this sense.
Based on the structure of the ���, we de�ne the instantiation
for a con�guration W 2 � as:

De�nition 3.2. 85 2 ���,W 2 �,

5 [W ] =

8>>><
>>>:

: 8 5 5 = ����(:)
6 [W ] 8 5 5 = ����(4,6,6) ^ ¬ W (4)
6 [W ] 8 5 5 = ����(4,6,6) ^ W (4)

The instantiation determines the leaf that corresponds to
a particular con�guration. When a leaf is reached, the result
is the leaf value. For any other node, the alternative that
matches the con�guration is selected and the search contin-
ues down in the ���. Note that the ��� node for an event is
replaced by one of its sub-���s when both alternatives are
equal.

3.2 ��� Canonicity
We now present the properties that ensure the canonicity of
���s.

Order. As for ���s, an order on the events is necessary to
enforce a canonical representation. This order can also have
a signi�cant impact on the performance of ��� analysis. For
now, we consider that there is a total order on E denoted by
�: 841, 42 2 E, 41 � 42 _ 42 � 41.
This order is used in the ��� to structure the chain of

nodes. 841 < 42 2 E with 41 � 42, the nodes built on 41 in the
��� must be deeper than the nodes built on 42. To enforce
that the leaves be at the deepest level, we de�ne 4?, satisfying
84 2 E\ {4?}, 4? � 4 . To simplify the notation, we de�ne
the function 4EC : ��� ! E s.t. 4EC (����(4,6,6)) = 4 and
4EC (����(:)) = 4?. The method that we use to �nd such an
order is further discussed in Section 4.3.
To ensure that the events of ��� nodes are ordered, we

de�ne an invariant $A34A (5 ) with 5 2 ��� :

De�nition 3.3. 85 2 ���, $A34A (5 ) =
8>>><
>>>:

> 8 5 5 = ����(:)
(4EC (6) � 4) ^ (4EC (6) � 4)
^ $A34A (6) ^$A34A (6) 8 5 5 = ����(4,6,6)

Compactness. Similarly we impose an invariant property
⇠><? (5 ) with 5 2 ��� to ensure the compactness of ���s:
no node with the same sub-��� on each side should exist.

De�nition 3.4. 85 2 ���, ⇠><? (5 ) =(
> 8 5 5 = ����(:)
(6 < 6) ^⇠><? (6) ^⇠><? (6) 8 5 5 = ����(4,6,6)

Canonicity. By combining the invariants for compact-
ness and event ordering, the canonicity invariant ⇠0=(5 )
with 5 2 ��� is de�ned by:

De�nition 3.5. 85 2 ���, ⇠0=(5 ) = ⇠><? (5 )^$A34A (5 )

3.3 ��� operators
Based on the algorithms proposed in [1] for ���s, we de�ne
two ��� operators that are required for the computation
of ��s: ⌦ and � to implement respectively the addition and
the maximum in the �� calculation. In fact, both operators
can be derived from the �� operations in ) using a common
method described below.

De�nition 3.6. Any binary operation on Z,� : Z⇥Z! Z,
can be extended to an ��� binary operation � : ���⇥��� !
��� with the following de�nition:

851, 52 2 ���, 51 � 52 =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

����(:1 � :2) if 51 = ����(:1) ^ 52 = ����(:2)(a)
61 � 62 if 51 = ����(4,61,61)

^52 = ����(4,62,62)
^61 � 62 = 61 � 62 (b)

51 � 62 if 52 = ����(42,62,62)
^(4EC (51) � 42)
^((51 � 62) = (51 � 62)) (c)

61 � 52 if 51 = ����(41,61,61)
^(4EC (52) � 41)
^((61 � 52) = (61 � 52)) (d)

����(4,61 � 62,61 � 62) if 51 = ����(4,61,61)
^52 = ����(4,62,62) (e)

����(42, 51 � 62, 51 � 62) if 52 = ����(42,62,62)
^4EC (51) � 42 (f)

����(41, 52 � 61, 52 � 61) if 51 = ����(41,61,61)
^4EC (52) � 41 (g)

The extension consists in combining ���s according to
their nature. If two leaves are added, the result is a leaf which
value is the application of� on both leaves values (a). If two
nodes with the same event are combined, the operation is
propagated equally on each side of the node (b) and (e). If
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the events are di�erent, the operation is propagated accord-
ing to the order of events (c), (d), (f) and (g). Particularly,
applying the operation to an ��� leaf and a node propagates
the operation along the children of the node.

It is also worth noting that properties (b), (c) and (d) guar-
antee that the compactness invariant⇠><? is respected by �,
and properties (e), (f), (e) and (g) guarantee that the events
ordering invariant $A34A is also respected by �, meaning
that applying � to two canonical ���s produces a canonical
���.

Using De�nition 3.6, we de�ne operator ⌦ by replacing
� by the addition and operator � by replacing � by the
maximum operation. As we just noted, it means that both ⌦
and � preserve the canonicity of ���s.

3.4 Using an ��� in �� analysis
Equation 2 can be transported in the ��� framework with
a straight e�ect: the computation of the �� for all con�g-
urations only requires one pass over the ��. � and ⌦ are
naturally used but we also need to de�ne the ��� equivalent
of _E , E 2 +��.

De�nition 3.7. We �rst de�ne _#4 : E ! ���, converting
to an ��� an event 4 that has a cost of :4 when active and 0
when inactive.

_#4 = ����(4, ����(0), ����(:4 ))
_E , the time spent in an �� node for a particular con�gu-

ration, can be now represented by _#E .

De�nition 3.8. If node E undergoes a set of events EE , _#E
is expressed by:

_#E = ����(_E) ⌦
Ã
42EE

_#4

The time spent in a stage is the default time spent in the
stage plus the sum of all possible event costs.

Equation 2 is rewritten as:

d#U = ����(0)
8F 2 +��, d

#
F =

 
E!F2⇢��

d#E ⌦ (XE!F ⇥ _#E) (3)

with d#F 2 ���. An d#E is associated to each �� node, repre-
senting the ready time for all possible event con�gurations
for this node.

The multiplication by XE!F is in fact a selection operation
simply implemented as :

• 5 ⇥ XE!F = 5 if XE!F = 1
• 5 ⇥ XE!F = ����(0) if XE!F = 0

Finally, we compute the execution time of �� 1 preceded
by 0: C#0!1 = d#l ↵ d#el . Operator ↵ is de�ned according to
De�nition 3.6 with the minus (-) operator as �.

The procedure to apply ��� in �� is similar to the proce-
dure to obtain the symbolic representation shown in Figure 1,

by replacing + and<0G by ⌦ and �. The bene�t of ��� over
) in this calculation stems in the mix of events handling
and of the minimization of ��� representation based on the
Compactness property.

3.5 Equivalence between ��� and )
Lemma 3.9. Consider an operation � : Z ⇥ Z ! Z and its
derivative on ���, � : ��� ⇥ ��� ! ���. The following
property holds:
851, 52 2 ���,8W 2 �, (51 � 52) [W ] = 5 [W ]

1 � 5 [W ]
2

Proof. The proof of Lemma 3.9 makes an induction on the
structure of an ��� from the leaves to the root. As an ��� is
implemented as a Directed Acyclic Graph, a node may have
several predecessors and the induction requires to �nd back
the relevant predecessor corresponding to the path induced
by con�guration W .
Let cW6 (5 ) be a function that returns the predecessor of 6

in 5 along the path induced by the con�guration W , or ? if 6
is not on the path of 5 along W . It is de�ned by:
85 ,6 2 ���,8W 2 �

cW6 (5 ) =

8>>>>>>>>>><
>>>>>>>>>>:

5 if (5 = ����(4,6, _) ^ W (4) = 0)
_ (5 = ����(4, _,6) ^ W (4) = 1)
_ 5 = 6

cW6 (⌘) if 5 = ����(4,⌘,⌘) ^ W (4) = 0
cW6 (⌘) if 5 = ����(4,⌘,⌘) ^ W (4) = 1
? else

Initial case: Consider the initial case with 61 = ����(5 [W ]
1 )

and 62 = ����(5 [W ]
2 ):

(����(5 [W ]
1 ) � ����(5 [W ]

2 )) [W ] = ����(5 [W ]
1 � 5 [W ]

2 ) [W ]

= 5 [W ]
1 � 5 [W ]

2

Induction case: Let 61 and 62 be, respectively, the sub-���s
of 51 and 52 along the path induced by W . Let us assume that
(61 � 62) [W ] = 6 [W ]

1 � 6 [W ]
2 . The proof is completed if 61 = 51

and62 = 52. Otherwise we have di�erent ways to perform the
induction. Disregarding the initial case, c [W ]

6 always results
in a node denoted ����(4,6, _) if W (4) = 0, and ����(4, _,6)
otherwise.

1. if 4EC (cW61 (51)) = 4EC (cW62 (52)) = 4 and W (4) = 0 then

(cW61 (51) � cW62 (52)) [W ] = (����(4,61, _) � ����(4,62, _)) [W ]

= ����(4,61 � 62, _) [W ]

= (61 � 62) [W ]

= 6 [W ]
1 � 6 [W ]

2

= cW61 (51) [W ] � cW62 (52) [W ]

2. if 4EC (cW61 (51)) = 4EC (cW62 (52)) = 4 and W (4) = 1: similar
to (1) using the right-side sub-���s in place of 61 and
62
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3. if 4EC (cW61 (51)) � 4EC (cW62 (52)) and W (4EC (c
W
62 (52))) = 0

then cW62 (52) = ����(42,62, _)

(cW61 (51) � cW62 (52)) [W ] = (cW61 (51) � ����(42,62,⌘)) [W ]

= ����(4, cW61 (51) � 62, c
W
61 (51) � ⌘) [W ]

= (cW61 (51) � 62) [W ]

= cW61 (51) [W ] � 6 [W ]
2

= cW61 (51) [W ] � cW62 (52) [W ]

4. if 4EC (cW61 (51)) � 4EC (cW62 (52)) and W (4EC (c
W
62 (52))) = 1:

similar to (3) using the right-side sub-���s
5. else 4EC (cW61 (51)) � 4EC (cW62 (52)): same as (3) and (4)

swapping 61 and 62 (immediate if � and � are com-
mutative).

⇤

Proposition 3.10. The domains h���, �, ⌦i and h) ,<0G, +i
are semi-rings.

Proof. The demonstration is straightforward considering
that both ��� and ) are structures embedding the well-
known semi-ring hZ,<0G, +i. ⇤

To show that ��� and) are equivalent, we de�ne function
� : ��� ! ) ensuring that the semi-rings h���, �, ⌦i and
h)(,<0G, +i are isomorphic.

De�nition 3.11.
85 2 ���,8W 2 �, [� (5 )] (W) = 5 [W ]

Proposition 3.12. � : ��� ! ) and its inverse ��1 form an
isomorphism between semi-rings (h���, �, ⌦i and h) ,<0G, +i),
i.e. : 851, 52 2 ���,

• � (51 � 52) = max(� (51), � (52))
• � (51 ⌦ 52) = � (51) + � (52)
• � is bijective

Proof. � is bijective because we can exhibit ��1 : ) ! ���
as: 8C 2 ) , ��1 (C) =

…
W 2� `

W
= (C (W)) with:

`W8 (:) =
8>>><
>>>:

����(:) if 8 = 0
����(48 , ����(0), `W8�1 (:)) if W (48 ) = 1
����(48 , `W8�1 (:), ����(0)) else

This ensures (a) that 8W 2 �, [��1 (C)] [W ] = C (W) and (b)
that 85 2 ���, ��1 (� (5 )) = 5 because of the canonicity
condition.

8W 2 �,

[� (51 � 52)] (W) = (51 � 52) [W ]

= max(5 [W ]
1 , 5 [W ]

2 ) (by Lemma 3.9)
= max( [� (51)] (W), [� (52)] (W))

The proof of [� (51 ⌦ 52)] (W) = [� (51)] (W) + [� (52)] (W) can
be derived similarly. ⇤

Since � and its inverse ��1 form an isomorphism between
h���, �, ⌦i and h) ,<0G, +i, the computations on an ��with
) and ��� are equivalent. The following section presents
additional enhancements to improve the e�ciency of ���s.

4 Enhancing the performances of ���
In the previous section, we have formally de�ned the ���s,
and adapted the basic operations on the ��� introduced in
[1]. This algorithm is designed to be general but ⌦ and �
also support speci�c optimizations that are exposed in this
section. First, we present a cutting technique that allows to
stop the recursive application of � as soon as a particular
condition is satis�ed. We then show how memoization can
be used to compactly store the tree structure of an ��� and
to prevent redundant calculi in the computation of the ⌦ and
� operators. Finally, we discuss the impact of event ordering
on the performance of ���s.

4.1 Cutting the computation of �
According to Def. 3.6, any operator on an ��� performs
a recursive descent in the tree structure and applies the
operands to each leaf. However, when 51 � 52 = 51, 51 can
directly be returned as the result of the operator application
without having to propagate the recursion further on 51 and
52, thus cutting the computation.

851, 52 2 ���, 51 � 52 = 51 i� 8W 2 �, 5 [W ]
1 � 5 [W ]

2 (4)

This condition requires examining all the con�gurations
to perform the cut, but a simple yet stronger condition is:

851, 52 2 ���, 51 � 52 = 51 i�<8=# (51) > <0G# (52) (5)

with<0G#,<8=# : ��� ! Z de�ned as follows:

De�nition 4.1. 85 2 ���,

<8=# (5 ) =
(
<8=(<8=# (6),min# (6)) if 5 = ����(4,6,6)
: if 5 = ����(:)

<0G# (5 ) =
(
<0G (<0G# (6),<0G# (6)) if 5 = ����(4,6,6)
: if 5 = ����(:)

Since the de�nitions of<0G# and<8=# are recursive, we
can associate a pair (<8=,<0G) to each node representing the
minimum and maximum leaf time. This pair can be simply
built during the construction of the ���, and allows testing
the condition of Equation 5 conveniently at each step of com-
putation without going recursively down to the leaves. Once
the cut condition is satis�ed, we can stop the computation
right away and take the strict superior operand. To do so, we
insert the two following rules into De�nition 3.6 between
rule (a) and rule (b), only for operator �.

51 � 52 =

(
51 if<8=# (51) � <0G# (52) (a’)
52 if<8=# (52) > <0G# (51) (a”)

(6)
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4.2 Memoization
Memoization is the key for the performance of ���s. We use
two types of memoization:

• A Uniqueness table is used to store each instance of
��� to ensure its canonicity (compactness and events
ordering).

• An Operation table stores the results of operations
performed on the ��� sub-trees during the recursive
calls implementing � and ⌦.

The Uniqueness table is implemented as a hash table to
store all created nodes and leaves. Explicitly, it maps a node
or a leaf to a unique instance. When creating new nodes
or leaves, we check if a corresponding instance exists: if
so, the formerly-created instance is re-used and hence kept
unique. Considering the nature of an �� (and the underlying
pipeline), the ��� used in the calculation of one �� are likely
to be unrelated to ���s of a di�erent ��. Hence, we use one
Uniqueness table per ��.

The operators � and ⌦ are applied recursively on the sub-
���s. Since the ��� corresponding to one �� node could be
close to the ��� of its predecessors, the partial results (e.g. the
result of recursive call to sub-���s) are often similar. Hence,
we use two global maps (one per operator) to record those
results and check if they could be re-used upon a subsequent
operation application.

As observed in the calculation of ��, the events are likely
to compensate themselves leading to an important re-use. In
this context, the use of Uniqueness table and of the Operation
table is critical in order to speed up the computations.

4.3 Events ordering
As explained in the de�nition of ���, an order � on the
events is necessary to de�ne a canonical ���. However, such
an order is not unique. As for ���s, the chosen order has
a signi�cant impact on performance. Yet determining the
best order for a ��� has been proven to be very complex
[18]. Fortunately, we are able to propose a heuristic order. It
is based on (a) the topological order of the �rst occurrence
of an event in �� and (b) the indices associated to events to
solve the case when two events are applied to the same node.
More precisely, let two events 4:1 and 4:2 arising on ��

nodes [�81/( 91 ] and [�82/( 92 ] respectively. 4:1 � 4:2 holds i�
the triple h81, 91,:1i is smaller than h82, 92,:2i in the lexico-
graphic order.
As the �� analysis is performed in topological order, an

event 4 arising on a node E is usually smaller than any event
arising inside the ��� 5 of predecessors of E . Thus, the per-
formed computation, 5 ⌦����(4, ����(0), ����(:4 )), results
in ����(4, 5 , 5 ⌦����(:4 )): 5 is re-used as-is in the resulting
���, almost halving the amount of computation to perform.

5 Evaluation
We now present the experiments performed to evaluate the
e�ciency of ���s. We used OTAWA, a framework dedicated
to static ���� analysis [2], that includes analysis engines
able to identify events (e.g. cache and branch prediction anal-
yses).We have implemented the ��� approach and compared
it to the approach currently existing in OTAWA, referred to
as Etime, which consists in analysing each �� once for each
possible event con�guration. We �rst compare the two ap-
proaches; then we evaluate the number of nodes and leaves
in ���s as a function of the number of events attached to
the analysed basic blocks.

Simple Complex
5 stages 4 stages

FE, DE, EX, MEM, WB FE, DE, EX, WB
no fetch queue fetch queue width = 3

1 instruction/cycle 3 instructions/cycle
(3-ways superscalar)

1 Execution Stage 1 ALU, 1 FPU, 1 MU
branch prediction: yes

2-way 16KB LRU instruction cache
2-way 8KB LRU data cache

Table 1. Target hardware architecture details

5.1 Experimental framework
We considered 81% of the TACLe benchmark suite [8]. The re-
maining 19% had to be discarded due to restrictions imposed
by the current version of OTAWA analyses.
We modeled two in-order pipelined architectures: one

representative of simple embedded processors and a more
complex Tricore Aurix-like one. They cover both ends of pro-
cessor families typically used in embedded systems andA2
will provide an insight into the in�uence of the pipeline
complexity on the ��� computation performances. Table 1
provides a more detailed speci�cation of both architectures.
The simple architecture is composed of a classical 5-stage
in-order scalar pipeline able to fetch at most 1 instruction
per cycle, and whose execution stage is able to process one
instruction at a time. The complex architecture is 3-way su-
perscalar: it can fetch and process at most 3 independent
instructions per cycle, thanks to a larger fetch queue, and to
the presence of three separate functional units composing
the execution stage.

All the xperiments were performed on a server composed
of 8 Intel Xeon E25 cores (@2.4GHz) sharing 32GB of RAM.
Our implementation of ��� is single-threaded but multiple
experiments were executed in parallel.

All details about the experiment are available on Zenodo2.

Split threshold. The exhaustive Etime algorithm compu-
tation capacity is limited by its exponential complexity. We
have observed that it generally performs a �� analysis in
2h�ps://zenodo.org/record/3756621/files/LCTES.tar?download=1
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(a) Simple architecture (b) Complex architecture

Figure 2. Analysis time

a reasonable time if the number of events in the �� is less
than 15 (thereafter called split threshold). To reduce the anal-
ysis time when a �� contains too many events, the �� is
split according to the split threshold. We suspect that this
technique introduces additional imprecision since it does
not consider the overlap of ��s inside the pipeline at the
split boundaries. However, a complete and sound investiga-
tion on this topic would take too much room and is out of
the scope of this paper. A �rst bene�t of ���s is that the
limit on the number of events is pushed signi�cantly further:
they are able to support up to 136 events on most of the
TACLe benchmarks, allowing to cover 99% of their ��s with-
out split. Only rijndael_enc and gsm_dec, that contain ��s
with more than 300 events, require the split threshold to be
set to 120 events for the simple architecture and to 100 for
the complex architecture. This suggests that we could, in
the future, use an adaptive splitting policy instead of a �xed
threshold.

5.2 Analysis Time
Figures 2a and 2b plot the analysis time of the Etime and ���
approaches. The x-axis represents the benchmarks ordered
by their analysis time using Etime, which provides a raw
experimental estimation of their complexity.(Etime being
an exhaustive computation) The y-axis shows the analysis
time in logarithmic scale. For both analyses, the split thresh-
old is set to 15 to �t the limitations of Etime. The red line
plots the increasing analysis time of Etime across the set of
benchmarks and the blue bars show the corresponding ���
analysis time.
The Etime analysis duration follows an exponential pat-

tern over the set of benchmarks and reaches 7 minutes in
the worst cases. In the meantime, the analysis time using

��� remains lower than one second in almost all cases. Yet,
as the Etime is exhaustive, its execution time is exponen-
tial with respect to the number of events in the BB but the
split threshold set to 15 restrains the exponential blowup.
Whatever, the execution time depends mainly on the total
number of events of the benchmark and the number of block
containing more than 15 events.The most time consuming
benchmarks, rijndael_enc and statemate, are also the ones
that have the most of events in total, and have blocks con-
taining the most of events. This observation applies well to
most benchmarks but more details can be found in published
experiment data.A4
As the analysis time for Etime grows steadily, no pattern

emerges for the analysis time using ���.his is particularly
striking with one benchmark in Figure 2a that has a very low
analysis time (< 1ms): it is reported as 0 ms because of the
precision of the measurement service of the host operating
system. A small set of benchmarks (9 for the simple archi-
tecture and 10 for the complex one) exhibit a slightly worse
analysis time with ���s than with Etime, but this overhead
is too small to be representative, in particular because it falls
within the precision margin of the experimental platform.

5.3 ��� Compactness
The idea of compactness comes from the observation that
the amount of possible execution times of a �� is generally
much less than the theoretical upper bound 2 |E | with |E |
events involved in the ��. To con�rm that this phenomenon
frequently occurs, we measure the number of leaves with
respect to |E |. In order to allow large numbers of events, the
split threshold is set to 100. Figures 3a and 3b show the re-
sults for both the simple and complex architectures. Each dot
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(a) Simple architecture (b) Complex architecture

Figure 3. Number of leaves of resulting ��� with respect to the number of Events

(a) Simple architecture (b) Complex architecture

Figure 4. Number of nodes of resulting ��� with respect to the number of Events

represents the number of leaves (vertical axis with logarith-
mic scale) as a function of its number of events (horizontal
axis). We also plot the 2 |E | line (red line) as reference. When
the number of events grows, the gap between the theoretical
upper bound and the actual number of leaves widens, as
the number of leaves does clearly not follow an exponential
growth. This validates our initial assumption.
The bene�ts of the ��� approach stem from the absorp-

tion e�ect of the processor pipeline. However, the impact of
this phenomenon on ��� depends on the benchmark and on
the target architecture and is therefore di�cult to estimate
without a complete computation of the ��. Hence, we statis-
tically quantify the impact of absorption on the size of the
�nal ���, which is strongly correlated to the analysis time
of ���s. We consider a split threshold of 100, which allows
the analysis to �nish in a few minutes. Figures 4a and 4b

show the number of nodes and leaves (vertical axis) of the
�nal ���s with respect to the number of events (horizontal
axis). The �nal ��� is obtained at the end of an �� analysis
to represent all the possible execution times of the ��. The
theoretical upper bound on the amount of nodes in the ���
is 2 |E |+1�1, and is plotted as reference (red line). This bound
is reached whenever there is no absorption of events in the
pipeline. Experimental results con�rm that the number of
nodes is much less than the theoretical upper bound, which
means that the simpli�cations often occur.
The two previous experiments show similar results for

the analysis of both architectures. Yet, the cloud of dots is
thicker for the complex architecture meaning there is more
variability for the size of ���s. This re�ects the increase of
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Instruction Level Parallelism induced by superscalar archi-
tectures which allow more variable patterns of instruction
execution inside the pipeline.

6 Related Work
The precise estimation of the execution time of basic blocks
is crucial in the static analysis of a task’s ����. The two
main challenges come from pipelined execution and variable
instruction latencies.
Beside ad-hoc algorithms dedicated to speci�c pipelines

[10, 11, 13], a simulator-based approach was proposed by
Engblom et al. [6, 7]. Although it takes into account the
overlapping of blocks in the pipeline, time events are added
as-is to the �nal time (a) inducing an overestimation and
(b) preventing the support for timing anomalies. Healy et
al. in [9] compute the ���� by deriving a pipeline diagram
for each block representing the traversal of the stages by
each instruction, and by composing these diagrams. The time
events are taken into account by modifying the content of the
diagram, that in turn produces an impact on the next block
diagrams. Unfortunately, this method can only be applied to
very simple microprocessors.

A �rst kind of generic method to compute basic block
execution times was proposed by Kassem et al. in [12]. It
uses automata to represent the di�erent states of the pipeline.
Transition between states are triggered by a mix of events
recording the instruction execution phases and other hard-
ware e�ects. Cassez et al. in [3, 5] use a similar approach
but hardware analysis and ���� calculation are integrated
into a timed model checker, which prevents the exhaustive
building of all pipeline states. Yet, although these methods
speed up the traversal of states, they often result in huge
automata. .
Another successful approach makes use of Abstract In-

terpretation to compute the reachable pipeline states and
to bound the inherent state blowup by abstraction. This
approach developed by Thesing et al. in [14, 23] is imple-
mented in the aiT toolsuite and has been succesfully used
on real micro-architectures and applications. Timing events
are managed by duplicating the code blocks in so-called Ab-
stract Pipeline State Graphs [22] to track the multiple event
latencies. To our knowledge, there is no published report
on the impact of the event-related latency variability on the
(empirical) complexity and duration of the analysis.

Basically used to optimize Boolean functions, BDDs have
been successfully used to avoid explicit computation in sym-
bolic model checking [4]. In a di�erent context, Wilhelm et
al. proposed to use BDDs to compact the pipeline state rep-
resentation to perform abstract interpretation for pipeline
analysis.[25]C1, C2, C3

7 Conclusion
This paper introduces the ��� data structure which is an
adaptation of the ��� structure to the particular problem
of ���� computation in the presence of variable latencies.
It shows that the use of ���s to compute and to represent
execution times speed up the analysis of the ����s of basic
blocks. The increase in performance comes from the exploita-
tion of the latency absorbing properties of microprocessor
pipelines. Moreover, we proved that this improvement comes
at no cost with respect to the precision of the analysis. We
also showed that using ���s signi�cantly reduces the em-
pirical complexity of the analysis compared to the existing
Etime method, allowing ���� analysis to be performed on
larger and more complex applications. Experimentally, the
analysis time was reduced to less than 1 second for all ana-
lyzed benchmarks from the TACLe suite (for a split threshold
of 15), while the Etime method can take up to 7 minutes.
Moreover, by observing the number of nodes and leaves
in the ���s, we con�rmed our initial assumption that the
pipeline mechanisms hide some execution latencies and can
be e�ciently accounted for by the ��� structure. Our results
show the e�ciency of factoring nodes that yield the same ex-
ecution time, compared to an exhaustive computation which
becomes intractable as soon as a basic block has more than
15 events.

As future work, we plan to extend the applicability of ���s
to othermodels of architectures, like out-of-order pipelines,C5
and to further increase their performances. First, although
���s signi�cantly speed up the analysis of ��s possible exe-
cution times, the number of execution times for a complete
application may still be too large for the the ���� ILP res-
olution. A method must be found to reduce the number of
variables in the ILP system, while at the same time not in-
creasing toomuch the pessimism of the estimated����. This
issue is already addressed in the original Etime approach but
the easy-to-handle structure of ���s might open new ways
to tighten the precision of the ����.C4 Another research
perspective is to introduce relationships between events, to
model more complex behaviors of the architectures. For ex-
ample, a memory access resulting in a Miss in a L1 cache
could later cause a Miss in a L2 cache. In our current model
both Misses would be represented as separate events, even
though the Miss in L2 cannot occur if there is no miss in
L1. Taking into account the existing correlation between
the two events in this example could reduce the size of the
corresponding ���, thus allowing the practical analysis of
more complex architectures.
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