Zhenyu Bai
email: zhenyu.bai@irit.fr

Hugues Cassé
email: hugues.casse@irit.fr

Marianne De Michiel
email: marianne.de-michiel@irit.fr

Thomas Carle
email: thomas.carle@irit.fr

Christine Rochange
email: christine.rochange@irit.fr

Improving the Performance of WCET Analysis in the Presence of Variable Latencies

Keywords: static WCET analysis, pipeline analysis, variable latencies, timing anomalies ACM

Due to the dynamic behaviour of acceleration mechanisms such as caches and branch predictors, static Worst-Case Execution Time () analysis methods tend to scale poorly to modern hardware architectures. As a result, a tradeo must be made between the duration and the precision of the analysis, leading to an overestimation of the bounds. This in turn reduces the schedulability and resource usage of the system. In this paper we present a new data structure to speed up the analysis: the eXecution Decision Diagram (), which is an ad-hoc extension of Binary Decision Diagrams tailored for analysis problems. We show how s can be used to represent eciently execution states and durations of instruction sequencesn a modern hardware platform. We demonstrate on realistic applications how the use of an substantially increases the scalability of analysis.

Introduction

In order to guarantee the correct execution of hard real-time applications, both scheduling and schedulability analysis techniques must consider safe upper bounds on the possible execution durations of tasks or runnables, which are referred to as Worst-Case Execution Times (). Various approaches have been developed to derive such bounds [START_REF] Wilhelm | The worst-case execution-time problem-overview of methods and survey of tools[END_REF]. Those based on static analysis techniques aim at computing guaranteed upper bounds, provided their knowledge of the underlying hardware platform is correct. However, it is also desirable to have as-tight-as-possible bounds since overestimations may lead to over-dimensioning the system. Besides, the duration of the analysis is sometimes a concern, so a tradeo between precision and analysis time must be found.

Instead of considering end-to-end execution paths, which would be far too complex, static analysis splits the code of a task (or runnable) into short instruction sequences and derives its global from the individual s of the sequences. The most common approach is the Implicit Path Enumeration Technique () [START_REF] Li | Performance analysis of embedded software using implicit path enumeration[END_REF] which consists in four steps:

1. path analysis -scans the application code to isolate instruction sequences and to derive some execution properties such as loop bounds or infeasible paths 2. history-based hardware analysis -captures the behavior of mechanisms such as caches, and branch predictors, 3. local timing analysis -computes the individual of instruction sequences 4. global timing analysis -determines the for the whole task using an Integer Linear Program () that maximises the execution time over all the possible execution paths.

Several methods have been proposed to estimate the of a sequence of assembly-level instruction sequences taking into account the processor pipeline and the hardware accelerator components: some are based on abstract interpretation techniques [START_REF] Thesing | Safe and precise WCET determination by abstract interpretation of pipeline models[END_REF] while others use Execution Graphs () that capture the timing semantics of a sequence of instructions as they go through the processor pipeline [START_REF] Rochange | A context-parameterized model for static analysis of execution times[END_REF] [START_REF] Li | Modeling out-of-order processors for wcet analysis[END_REF]. In this paper, we focus on the approach developed in [START_REF] Rochange | A context-parameterized model for static analysis of execution times[END_REF] but we believe that our ideas can be applied to the other approaches.

Motivation. One diculty when determining the of an instruction sequence (step 3 in the process described above) arises when the latency of an operation can have several values. For example, the time needed to fetch an instruction depends on whether it hits or misses in the instruction cache. Similarly, the execution latency of an instruction may be variable: a memory load may hit or miss in the data cache, the calculation time of a multiplication may depend on the operand values, etc. As for branches, the delay to start fetching the target instruction depends on the branch prediction. These latencies result from preliminary analyses performed in step 2. Whenever several latency values have been found possible (e.g. when the cache analysis was not able to classify an access as AlwaysHit nor AlwaysMiss), one might be tempted to consider the largest value as the worst case. However, it has been shown that processors, in particular modern processors that implement advanced mechanisms to enhance the average performance, often exhibit so-called timing anomalies: a local worst-case latency does not necessarily lead to a global [START_REF] Reineke | A denition and classication of timing anomalies[END_REF]. In other words, considering all unclassied accesses to the cache as cache misses might underestimate the . As a consequence, the only safe approach is to consider all the possible latencies for each node and edge, and then all the possible values and all their possible combinations. Unfortunately, this might lead to consider many cases: for example, an instruction sequence with 10 variable-latency instructions would have to to be analysed 1024 times, assuming that each instruction has only two possible latency values. This would sensibly lengthen the analysis, while, as mentioned before, the analysis time can be a concern. Note that in some cases, we have even observed that the combinatorial complexity of the analysis made it intractable. Besides, we have found out that, in practice, many combinations nally lead to the same value. This is mainly due to the pipeline hiding some local delays. This observation guided us to a new approach that reduces the analysis time by exploiting the fact that several latency combinations produce the same .

Contribution.

In this paper we present an ecient solution to estimate the of instruction sequences in the presence of variable latencies. The main idea is to factorize the evaluation of an for various node latencies. By embedding inside our time representation the occurrences of events and their eects on the sequence latency, we are able to benet from the latency absorbing properties of the pipeline and to speed up the analysis. Our approach is based on a renement of Binary Decision Diagrams () [START_REF] Andersen | An introduction to binary decision diagrams[END_REF][START_REF] Minato | Shared binary decision diagram with attributed edges for ecient boolean function manipulation[END_REF] that we call eXecution Decision Diagram (). We prove that using is functionally equivalent to the existing evaluation method that analyzes exhaustively all conguration of events, and we report experimental results showing that this new approach signicantly improves the scalability of the analysis.

Outline. Section 2 provides background information on the analysis of sequences of instructions. Section 3 introduces an initial implementation of s, which is enhanced in Section 4. Experimental results are reported and discussed in Section 5. Section 6 reviews related work and Section 7 concludes the paper and discusses plans for future work.

Background

This section presents the fundamental concepts used to compute the worst-case duration of instruction sequences. This encompasses the program representation, the method to compute the execution time and the support to take the behaviour of the underlying hardware into account.

Control Flow Graph

The set of machine instructions is denoted I and the set of sequences of instructions I ⇤ . A program is represented using Control Flow Graphs () ⌧ = h+ , ⇢ , ni, where:

• + 2 I ⇤ is the set of basic blocks (). A is a sequence of instructions from I such that the control ow can (a) enter the only through its rst instruction and (b) leave the only through its last instruction1 , • ⇢ ⇢ + ⇥ + is the set of edges representing the execution ow between s, • n 2 + is a unique without predecessor that represents the entry point of the program.

We consider that ⌧ is connected: there exists a path from n to each vertex of + . An edge of ⇢ , from 0 to 1, is denoted 0 ! 1.

Execution Graphs

Let us consider an <-stage pipelined processor. The set of its pipeline stages is denoted by (= [(Each vertex E is assigned a latency _ E 2 N that represents the time spent by the instruction in the pipeline stage. We denote by U 2 + the rst vertex of the rst instruction, [1 /(1], and by l the last vertex of the last instruction,

[= /(<].
Edges ⇢ ⇢ + ⇥ + represent timing dependencies: pipeline stages must be traversed in the architectural order, instructions are fetched in the program order , some instruction pairs exhibit data dependencies, instructions must wait for a free slot before being inserted into a buer, etc. An edge E ! F 2 ⇢ can be solid or dotted: a solid edge means that F can only start after the end of E while a dotted edge means that F can start at the same time as E but not earlier. Dotted edges can express superscalarity, e.g. two instructions being decoded at the same cycle but not out of order. The nature of an edge is represented by

X E!F = 0 if E ! F is dotted, X E!F = 1 otherwise. Note that an cannot contain any cycle.
The ready time of a vertex F 2 + is denoted by d F and is computed as follows:

d U = 0 8F < U, d F = max E!F 2⇢ d E + X E!F ⇥ _ E (1
)
This computation is repeated for each vertex following a topological ordering of the graph. At the end, the time spent by the in the pipeline could be computed by:

C = d l + _ l
Note that this calculus assumes that the pipeline is empty when the block starts its execution, so that instructions cannot be delayed by earlier instructions that might occupy hardware resources (pipeline stages, functional units, buer slots, etc.) or create further dependencies. In [START_REF] Rochange | A context-parameterized model for static analysis of execution times[END_REF], a node has several ready times related to the time at which each resource is released by earlier instructions. Given that these additional times are computed exactly the same way as in Equation 1, we omit them in this paper for the sake of simplicity.

Furthermore, the computation of a 's execution time as presented above would be pessimistic since it does not account for the overlapping execution of successive basic blocks in the pipeline. To enhance accuracy, it is recommended to build an execution graph for each edge 0 ! 1 2 ⇢ , including the instructions of both s 0 and 1 in sequence. It is then possible to derive an execution time C 0!1 for each predecessor of 1 in the . This time is computed as the delay between the processing of the last instruction of 0 in the last pipeline stage (denoted by e l) and the processing of the last instruction of 1 in the last pipeline stage (l):

C 0!1 = d l + _ l (d e l + _ e l)

Events

An event represents any occurrence of a variable node processing time. This encompasses the eect of hardware accelerators like caches or branch predictors but also variablelatency instructions such as multiplications and divisions, the execution time of which often depends on the operand values. An event 4 2 E is a tuple h 8 , (9 , C 4 , G 4 i where:

• 8 2 I is the instruction impacted by the event,

• (9 2 (is the pipeline stage in which the event occurs,

• C 4 2 N is the cost of the event (in cycles) that is applied to node [8 /(9] if the event is active. • G 4 is an expression that represents an upper bound on the number of occurrences of the event in the ILP formulation used to derive the [START_REF] Li | Performance analysis of embedded software using implicit path enumeration[END_REF].

Note that when an node may have several (more than two) dierent latency values, there will be as many events attached to it. Figure 1 shows an example that represents the execution of two short s in sequence, 0 and 1, in a 5-stage (FE -fetch, DE -decode, EX -execute, ME -memory, WBwrite-back) in-order pipeline. Basic block 0 spans from 0 to 4 and 1 is only made of instruction 5 . Instructions are shown on the left of the , each facing the vertices that represent its traversal of the pipeline. Pipeline stages are shown on the upper row. Events related to the instruction (resp. data) cache behaviour are labeled by ⇠ G (resp. ⇡⇠ G). They are attached to vertices that stand for an instruction fetch or a memory data access when a cache miss is possible (as found by cache analysis).

of a in the presence of events

As explained in the introduction, computing the of a basic block by assuming that all the events actually occur (and then systematically accounting for their cost) would be unsafe because of potential timing anomalies [START_REF] Lundqvist | Timing anomalies in dynamically scheduled microprocessors[END_REF][START_REF] Reineke | A denition and classication of timing anomalies[END_REF]. As a consequence, we must compute the execution time for every possible combination of events.

We denote by E the set of events potentially occurring during the execution of a sequence of two s and by |E| its cardinality. A conguration of events, W 2 : E ! {0, 1}, is a function indicating whether an event 4 2 E is active (W (4) = 1) or not (W (4) = 0). For each conguration W 2 , the latencies of vertices must be adjusted to reect the additional delays due to active events.

Assuming that all events are independent, the has to be recomputed as many as

| | = 2 | E | times
We denote by) : ! N, the domain representing a time for each conguration of events. This time may have several possible values and can be expressed as a function C ⇤ 2) that returns a dierent value for each conguration in .

Let _ E (W) denote the latency of vertex E in conguration W. It is the sum of costs of the events attached to E that are active in W. The computation of the can now be reformulated as:

d ⇤ U (W) = 0 8F < U, d ⇤ F (W) = max E!F 2⇢ d ⇤ E (W) + X E!F ⇥ _ E (W) (2)

Example

Let us consider the in Figure 1 and assume that the cost of every event is 10 cycles (latency to access the main memory (5) add r3, r3, #4

⇠ 0 ⇠ 0 ⇠ 0 ⇠ 1 ⇠ 1 ⇠ 1 ⇡⇠ 2 ⇡⇠ 2 ⇡⇠ 2 ⇡⇠ 3 ⇡⇠ 3 ⇡⇠ 3
through the cache) while the default latency of every node is 1 cycle. If E E represents the set of events of E that are attached to an node E, we have:

_ E (W) = max(1, ' 4 2E E 10.W (4))
The analysis starts with:

• d ⇤ [0 / ⇢] (W) = 0 • _ [0 / ⇢] (W) = max(1, 10.W (⇠ 0)) • d ⇤ [0 /⇡⇢] (W) = d ⇤ [0 / ⇢] (W)+_ [0 / ⇢] (W) = max(1, 10.W (⇠ 0)) • ... • d ⇤ [2 /⇢-] (W) = 3 + max(1, 10.W (⇠ 0)) • d ⇤ [2 /"⇢] (W) = 4 + max(1, 10.W (⇠ 0)) • ... • d ⇤ [3 /⇡⇢] (W) = 3 + max(1, 10.W (⇠ 0
)) When a vertex, such as [3 /⇢-], has multiple predecessors, Equation 2 introduces a <0G that can sometimes be simplied:

d ⇤ [3 /⇢-] (W) = <0G (4 + <0G (1, 10W (⇠ 0)), 3 + <0G (1, 10W (⇠ 0)), 4 + <0G (1, 10W (⇠ 0)) + <0G (1, 10W (⇡⇠ 2)) = 4 + <0G (1, 10W (⇠ 0)) + <0G (1, 10W (⇡⇠ 2)) = 6 + 9W (⇠ 0) + 9W (⇡⇠ 2)
However this is not always possible. For example:

d ⇤ [4 /⇢-] (W) = <0G (4 + <0G (1, 10W (⇠ 0) + <0G (1, 10W (⇡⇠ 2)), 3 + <0G (1, 10W (⇠ 0)) + <0G (1, 10W (⇠ 1)) 4 + <0G (1, 10W (⇠ 0)) + <0G (1, 10W (⇡⇠ 2)) = 4 + <0G (1, 10W (⇠ 0)) + <0G (<0G (1, 10W (⇠ 1)), 1 + <0G (1, 10W (⇡⇠ 2))) = 7 + 9W (⇠ 0) + <0G (8W (⇠ 1), 9W (⇡⇠ 2))
In practice, computing the block's execution time for the 2 4 possible event congurations leads to less than 2 4 dierent results. This is due to the structure of the pipeline that enables a partial absorption of vertex latencies: the timing variability induced by an event in one part of the pipeline can be compensated by another event in another part of the pipeline, resulting in the same overall execution time regardless of the occurrence or not of the rst event. In our model this absorption is expressed by the <0G function in Equation 1.

The computation of d ⇤ [3 /⇢-] (W) was shortened using integer arithmetic properties. Implementing it as-is would require the use of symbolic calculus that (a) is time-costly and (b) does not guarantee minimal representation. As an alternative, we introduce a data structure, named Execution Decision Diagram (), that:

• is equivalent to the symbolic representation;

• takes advantage of possible simplications due to the pipeline structure; • can be easily imported into the formulation of the global computation, i.e. that can be used as) .

Execution Decision Diagrams

An eXecution Decision Diagram () is a data structure that represents a set of times induced by dierent possible congurations of events. In other terms, s are a compact representation of the) domain, enabling simplication of expressions derived in the analysis of an . Unlike symbolic calculus, s are specialized to perform eciently the operations that we need: the maximum and the addition.

Denitions

An can be seen as a Binary Decision Diagram [START_REF] Andersen | An introduction to binary decision diagrams[END_REF] in which variables are replaced by events and Boolean leaves by possible times. A (4, 5 , 5) represents alternative times depending on the occurrence of event 4: 5 if event 4 is active and 5 otherwise. A (:) represents a constant time : 2 Z. The path from the top node to a (:) determines the conguration of events that results in the leaf time.

Example. The following

s represent d ⇤ [3 /⇢-] and d ⇤ [4 /⇢-]
from the example in Section 2.5. Events are represented in circles and solid (resp. dashed) edges correspond to the activation (resp. inactivation) of events. It is worth noting that ⇠ 1 is dominated by ⇡⇠ 2 when the latter is active: when

W (⇡⇠ 2) = 1 in d ⇤ [4 /⇢-] , 1+<0G (1, 10W (⇡⇠ 2) is always greater than <0G (1, 10W (⇠ 1)
). This property is exploited in the by removing ⇠ 1 nodes from the right-side sub-of node ⇡⇠ 2 . Although the same property is veried in the corresponding symbolic representation, it cannot be used to simplify the expression.

⇡⇠ 2 ⇠ 0 ⇠ 0 6 15 24
d [3 /⇢-] = ⇡⇠ 2 d [4 /⇢-] = ⇠ 1 ⇠ 0 ⇠ 0 ⇠ 0 7 16 15 24 25
Instantiation. The basic use of an is to evaluate a time, given a particular conguration of events. In this sense. Based on the structure of the , we dene the instantiation for a conguration W 2 as:

Denition 3.2. 85 2 , W 2 , 5 [W] = 8 > > > < > > > : : 85 5 = (:) 6 [W] 8 5 5 = (4, 6, 6) ^¬ W (4) 6 [W] 8 5 5 = (4, 6, 6) ^W (4)
The instantiation determines the leaf that corresponds to a particular conguration. When a leaf is reached, the result is the leaf value. For any other node, the alternative that matches the conguration is selected and the search continues down in the . Note that the node for an event is replaced by one of its sub-s when both alternatives are equal.

Canonicity

We now present the properties that ensure the canonicity of s.

Order. As for s, an order on the events is necessary to enforce a canonical representation. This order can also have a signicant impact on the performance of analysis. For now, we consider that there is a total order on E denoted by : 84

1 , 4 2 2 E, 4 1 4 2 _ 4 2 4 1 .
This order is used in the to structure the chain of nodes. 84 1 < 4 2 2 E with 4 1 4 2 , the nodes built on 4 1 in the must be deeper than the nodes built on 4 2 . To enforce that the leaves be at the deepest level, we dene 4 ? , satisfying 84 2 E\ {4 ? }, 4 ? 4. To simplify the notation, we dene the function 4EC : ! E s.t. 4EC ((4, 6, 6)) = 4 and 4EC ((:)) = 4 ? . The method that we use to nd such an order is further discussed in Section 4.3.

To ensure that the events of nodes are ordered, we dene an invariant $A34A (5) with 5 2 :

Denition 3.3. 85 2 , $A34A (5) = 8 > > > < > > > : > 8 5 5 = (:) (4EC (6) 4) ^(4EC (6) 4) ^$A34A (6) ^$A34A (6) 8 5 5 = (4, 6, 6)
Compactness. Similarly we impose an invariant property ⇠><? (5) with 5 2 to ensure the compactness of s: no node with the same sub-on each side should exist. Canonicity. By combining the invariants for compactness and event ordering, the canonicity invariant ⇠0=(5) with 5 2 is dened by: Denition 3.5. 85 2 , ⇠0=(5) = ⇠><? (5) ^$A34A (5)

operators

Based on the algorithms proposed in [START_REF] Andersen | An introduction to binary decision diagrams[END_REF] for s, we dene two operators that are required for the computation of s: ⌦ and to implement respectively the addition and the maximum in the calculation. In fact, both operators can be derived from the operations in) using a common method described below. Denition 3.6. Any binary operation on Z, : Z ⇥ Z ! Z, can be extended to an binary operation : ⇥ ! with the following denition:

85 1 , 5 2 2 , 5 1 5 2 = 8 > < > : (: 1 : 2) if 5 1 = (: 1) ^52 = (: 2)(a) 6 1 6 2 if 5 1 = (4, 6 1 , 6 1) ^52 = (4, 6 2 , 6 2) ^61 6 2 = 6 1 6 2 (b) 5 1 6 2 if 5 2 = (4 2 , 6 2 , 6 2) ^(4EC (5 1) 4 2) ^((5 1 6 2) = (5 1 6 2)) (c) 6 1 5 2 if 5 1 = (4 1 , 6 1 , 6 1) ^(4EC (5 2) 4 1) ^((6 1 5 2) = (6 1 5 2)) (d) (4, 6 1 6 2 , 6 1 6 2) if 5 1 = (4, 6 1 , 6 1) ^52 = (4, 6 2 , 6 2) (e) (4 2 , 5 1 6 2 , 5 1 6 2) if 5 2 = (4 2 , 6 2 , 6 2) ^4EC (5 1) 4 2 (f) (4 1 , 5 2 6 1 , 5 2 6 1) if 5 1 = (4 1 , 6 1 , 6 1) ^4EC (5 2) 4 1 (g)
The extension consists in combining s according to their nature. If two leaves are added, the result is a leaf which value is the application of on both leaves values (a). If two nodes with the same event are combined, the operation is propagated equally on each side of the node (b) and (e). If the events are dierent, the operation is propagated according to the order of events (c), (d), (f) and (g). Particularly, applying the operation to an leaf and a node propagates the operation along the children of the node.

It is also worth noting that properties (b), (c) and (d) guarantee that the compactness invariant ⇠><? is respected by , and properties (e), (f), (e) and (g) guarantee that the events ordering invariant $A34A is also respected by , meaning that applying to two canonical s produces a canonical .

Using Denition 3.6, we dene operator ⌦ by replacing by the addition and operator by replacing by the maximum operation. As we just noted, it means that both ⌦ and preserve the canonicity of s.

Using an in analysis

Equation 2 can be transported in the framework with a straight eect: the computation of the for all congurations only requires one pass over the . and ⌦ are naturally used but we also need to dene the equivalent of _ E , E 2 + . Denition 3.7. We rst dene _ # 4 : E ! , converting to an an event 4 that has a cost of : 4 when active and 0 when inactive.

_ # 4 = (4, (0)
, (: 4)) _ E , the time spent in an node for a particular conguration, can be now represented by _ # E . Denition 3.8. If node E undergoes a set of events E E , _ # E is expressed by:

_ # E = (_ E) ⌦ Ã 4 2E E _ # 4
The time spent in a stage is the default time spent in the stage plus the sum of all possible event costs.

Equation 2 is rewritten as:

d # U = (0) 8F 2 + , d # F = E!F 2⇢ d # E ⌦ (X E!F ⇥ _ # E) (3)
with d # F 2 . An d # E is associated to each node, representing the ready time for all possible event congurations for this node.

The multiplication by X E!F is in fact a selection operation simply implemented as :

• 5 ⇥ X E!F = 5 if X E!F = 1 • 5 ⇥ X E!F = (0) if X E!F = 0
Finally, we compute the execution time of 1 preceded by 0:

C # 0!1 = d # l ↵ d # e l .
Operator ↵ is dened according to Denition 3.6 with the minus (-) operator as .

The procedure to apply in is similar to the procedure to obtain the symbolic representation shown in Figure 1, by replacing + and <0G by ⌦ and . The benet of over) in this calculation stems in the mix of events handling and of the minimization of representation based on the Compactness property.

Equivalence between and)

Lemma 3.9. Consider an operation : Z ⇥ Z ! Z and its derivative on , : ⇥ ! . The following property holds:

85 1 , 5 2 2 , 8W 2 , (5 1 5 2) [W] = 5 [W] 1 5 [W] 2
Proof. The proof of Lemma 3.9 makes an induction on the structure of an from the leaves to the root. As an is implemented as a Directed Acyclic Graph, a node may have several predecessors and the induction requires to nd back the relevant predecessor corresponding to the path induced by conguration W. Let c W 6 (5) be a function that returns the predecessor of 6 in 5 along the path induced by the conguration W, or ? if 6 is not on the path of 5 along W. It is dened by: 85 , 6 2 , 8W 2

c W 6 (5) = 8 > > > > > > > > > > < > > > > > > > > > > : 5 if (5 = (4, 6, _) ^W (4) = 0) _ (5 = (4, _, 6) ^W (4) = 1) _ 5 = 6 c W 6 (⌘) if 5 = (4, ⌘, ⌘) ^W (4) = 0 c W 6 (⌘) if 5 = (4, ⌘, ⌘) ^W (4) = 1 ? else
Initial case: Consider the initial case with 6 1 = (5

[W]
1) and 6 2 = (5

[W]
2): ((5

[W] 1) (5 [W] 2)) [W] = (5 [W] 1 5 [W] 2) [W] = 5 [W] 1 5 [W] 2
Induction case: Let 6 1 and 6 2 be, respectively, the sub-s of 5 1 and 5 2 along the path induced by W. Let us assume that

(6 1 6 2) [W] = 6 [W] 1 6 [W]
2 . The proof is completed if 6 1 = 5 1 and 6 2 = 5 2 . Otherwise we have dierent ways to perform the induction. Disregarding the initial case, c

[W] 6 always results in a node denoted (4, 6, _) if W (4) = 0, and (4, _, 6) otherwise.

1. if 4EC (c

W 6 1 (5 1)) = 4EC (c W 6 2 (5 2)) = 4 and W (4) = 0 then (c W 6 1 (5 1) c W 6 2 (5 2)) [W] = ((4, 6 1 , _) (4, 6 2 , _)) [W] = (4, 6 1 6 2 , _) [W] = (6 1 6 2) [W] = 6 [W] 1 6 [W] 2 = c W 6 1 (5 1) [W] c W 6 2 (5 2) [W] 2. if 4EC (c W 6 1 (5 1)) = 4EC (c W 6 2 (5 2
)) = 4 and W (4) = 1: similar to (1) using the right-side sub-s in place of 6 1 and Proof. The demonstration is straightforward considering that both and) are structures embedding the wellknown semi-ring hZ, <0G, +i. ⇤

6 2 3. if 4EC (c W 6 1 (5 1)) 4EC (c W 6 2 (5 2)) and W (4EC (c W 6 2 (5 2))) = 0 then c W 6 2 (5 2) = (4 2 , 6 2 , _) (c W 6 1 (5 1) c W 6 2 (5 2)) [W] = (c W 6 1 (5 1) (4 2 , 6 2 , ⌘)) [W] = (4, c W 6 1 (5 1) 6 2 , c W 6 1 (5 1) ⌘) [W] = (c W 6 1 (5 1) 6 2) [W] = c W 6 1 (5 1) [W] 6 [W] 2 = c W 6 1 (5 1) [W] c W 6 2 (5 2) [W]
To show that and) are equivalent, we dene function : !) ensuring that the semi-rings h, , ⌦i and h)(, <0G, +i are isomorphic. Proposition 3.12. : !) and its inverse 1 form an isomorphism between semi-rings (h, , ⌦i and h), <0G, +i), i.e. : 85 1 , 5 2 2 ,

• (5

1 5 2) = max((5 1), (5 2)) • (5 1 ⌦ 5 2) = (5 1) + (5 2) • is bijective Proof. is bijective because we can exhibit 1 :) ! as: 8C 2) , 1 (C) = … W 2 `W = (C (W)) with: `W 8 (:) = 8 > > > < > > > : (:) if 8 = 0 (4 8 , (0), `W 8 1 (:)) if W (4 8) = 1 (4 8 , `W 8 1 (:), (0)) else This ensures (a) that 8W 2 , [1 (C)] [W] = C (W) and (b) that 85 2 , 1 ((5)) = 5 because of the canonicity condition. 8W 2 , [(5 1 5 2)] (W) = (5 1 5 2) [W]
= max(5

[W] 1 , 5 [W]
2) (by Lemma 3.9) = max([(5 1)] (W), [(52)] (W))

The proof of [(5 1 ⌦ 5 2)] (W) = [(5 1)] (W) + [(52)] (W) can be derived similarly. ⇤

Since and its inverse 1 form an isomorphism between h, , ⌦i and h), <0G, +i, the computations on an with) and are equivalent. The following section presents additional enhancements to improve the eciency of s.

Enhancing the performances of

In the previous section, we have formally dened the s, and adapted the basic operations on the introduced in [START_REF] Andersen | An introduction to binary decision diagrams[END_REF]. This algorithm is designed to be general but ⌦ and also support specic optimizations that are exposed in this section. First, we present a cutting technique that allows to stop the recursive application of as soon as a particular condition is satised. We then show how memoization can be used to compactly store the tree structure of an and to prevent redundant calculi in the computation of the ⌦ and operators. Finally, we discuss the impact of event ordering on the performance of s.

Cutting the computation of

According to Def. 3.6, any operator on an performs a recursive descent in the tree structure and applies the operands to each leaf. However, when 5 1 5 2 = 5 1 , 5 1 can directly be returned as the result of the operator application without having to propagate the recursion further on 5 1 and 5 2 , thus cutting the computation.

85 1 , 5 2 2 , 5 1 5 2 = 5 1 i 8W 2 , 5 [W] 1 5 [W] 2 (4)
This condition requires examining all the congurations to perform the cut, but a simple yet stronger condition is:

85 1 , 5 2 2 , 5 1 5 2 = 5 1 i <8= # (5 1) > <0G # (5 2) (5)
with <0G # , <8= # : ! Z dened as follows:

Denition 4.1. 85 2 , <8= # (5) = (<8=(<8= # (6), min # (6)) if 5 = (4, 6, 6) : if 5 = (:) <0G # (5) = (<0G (<0G # (6), <0G # (6)) if 5 = (4, 6, 6) : if 5 = (:)
Since the denitions of <0G # and <8= # are recursive, we can associate a pair (<8=, <0G) to each node representing the minimum and maximum leaf time. This pair can be simply built during the construction of the , and allows testing the condition of Equation 5 conveniently at each step of computation without going recursively down to the leaves. Once the cut condition is satised, we can stop the computation right away and take the strict superior operand. To do so, we insert the two following rules into Denition 3.6 between rule (a) and rule (b), only for operator .

5 1 5 2 = (5 1 if <8= # (5 1) <0G # (5 2) (a') 5 2 if <8= # (5 2) > <0G # (5 1) (a") (6)

Memoization

Memoization is the key for the performance of s. We use two types of memoization:

• A Uniqueness table is used to store each instance of to ensure its canonicity (compactness and events ordering).

• An Operation table stores the results of operations performed on the sub-trees during the recursive calls implementing and ⌦.

The Uniqueness table is implemented as a hash table to store all created nodes and leaves. Explicitly, it maps a node or a leaf to a unique instance. When creating new nodes or leaves, we check if a corresponding instance exists: if so, the formerly-created instance is re-used and hence kept unique. Considering the nature of an (and the underlying pipeline), the used in the calculation of one are likely to be unrelated to s of a dierent . Hence, we use one Uniqueness table per .

The operators and ⌦ are applied recursively on the subs. Since the corresponding to one node could be close to the of its predecessors, the partial results (e.g. the result of recursive call to sub-s) are often similar. Hence, we use two global maps (one per operator) to record those results and check if they could be re-used upon a subsequent operation application.

As observed in the calculation of , the events are likely to compensate themselves leading to an important re-use. In this context, the use of Uniqueness table and of the Operation table is critical in order to speed up the computations.

Events ordering

As explained in the denition of , an order on the events is necessary to dene a canonical . However, such an order is not unique. As for s, the chosen order has a signicant impact on performance. Yet determining the best order for a has been proven to be very complex [START_REF] Meinel | On the complexity of constructing optimal ordered binary decision diagrams[END_REF]. Fortunately, we are able to propose a heuristic order. It is based on (a) the topological order of the rst occurrence of an event in and (b) the indices associated to events to solve the case when two events are applied to the same node.

More precisely, let two events 4 : 1 and 4 : 2 arising on nodes [8 1 /(9 1] and [8 2 /(9 2] respectively. 4 : 1 4 : 2 holds i the triple h8 1 , 9 1 , : 1 i is smaller than h8 2 , 9 2 , : 2 i in the lexicographic order.

As the analysis is performed in topological order, an event 4 arising on a node E is usually smaller than any event arising inside the 5 of predecessors of E. Thus, the performed computation, 5 ⌦ (4, (0), (: 4)), results in (4, 5 , 5 ⌦ (: 4)): 5 is re-used as-is in the resulting , almost halving the amount of computation to perform.

Evaluation

We now present the experiments performed to evaluate the eciency of s. We used OTAWA, a framework dedicated to static analysis [START_REF] Ballabriga | OTAWA: an open toolbox for adaptive WCET analysis[END_REF], that includes analysis engines able to identify events (e.g. cache and branch prediction analyses). We have implemented the approach and compared it to the approach currently existing in OTAWA, referred to as Etime, which consists in analysing each once for each possible event conguration. We rst compare the two approaches; then we evaluate the number of nodes and leaves in s as a function of the number of events attached to the analysed basic blocks. 1. Target hardware architecture details

Simple

Experimental framework

We considered 81% of the TACLe benchmark suite [START_REF] Falk | Taclebench: A benchmark collection to support worst-case execution time research[END_REF]. The remaining 19% had to be discarded due to restrictions imposed by the current version of OTAWA analyses.

We modeled two in-order pipelined architectures: one representative of simple embedded processors and a more complex Tricore Aurix-like one. They cover both ends of processor families typically used in embedded systems andA2 will provide an insight into the inuence of the pipeline complexity on the computation performances. Table 1 provides a more detailed specication of both architectures. The simple architecture is composed of a classical 5-stage in-order scalar pipeline able to fetch at most 1 instruction per cycle, and whose execution stage is able to process one instruction at a time. The complex architecture is 3-way superscalar: it can fetch and process at most 3 independent instructions per cycle, thanks to a larger fetch queue, and to the presence of three separate functional units composing the execution stage.

All the xperiments were performed on a server composed of 8 Intel Xeon E25 cores (@2.4GHz) sharing 32GB of RAM. Our implementation of is single-threaded but multiple experiments were executed in parallel.

All details about the experiment are available on Zenodo2 .

Split threshold. The exhaustive Etime algorithm computation capacity is limited by its exponential complexity. We have observed that it generally performs a analysis in a reasonable time if the number of events in the is less than 15 (thereafter called split threshold). To reduce the analysis time when a contains too many events, the is split according to the split threshold. We suspect that this technique introduces additional imprecision since it does not consider the overlap of s inside the pipeline at the split boundaries. However, a complete and sound investigation on this topic would take too much room and is out of the scope of this paper. A rst benet of s is that the limit on the number of events is pushed signicantly further: they are able to support up to 136 events on most of the TACLe benchmarks, allowing to cover 99% of their s without split. Only rijndael_enc and gsm_dec, that contain s with more than 300 events, require the split threshold to be set to 120 events for the simple architecture and to 100 for the complex architecture. This suggests that we could, in the future, use an adaptive splitting policy instead of a xed threshold.

Analysis Time

Figures 2a and 2b plot the analysis time of the Etime and approaches. The x-axis represents the benchmarks ordered by their analysis time using Etime, which provides a raw experimental estimation of their complexity.(Etime being an exhaustive computation) The y-axis shows the analysis time in logarithmic scale. For both analyses, the split threshold is set to 15 to t the limitations of Etime. The red line plots the increasing analysis time of Etime across the set of benchmarks and the blue bars show the corresponding analysis time.

The Etime analysis duration follows an exponential pattern over the set of benchmarks and reaches 7 minutes in the worst cases. In the meantime, the analysis time using remains lower than one second in almost all cases. Yet, as the Etime is exhaustive, its execution time is exponential with respect to the number of events in the BB but the split threshold set to 15 restrains the exponential blowup. Whatever, the execution time depends mainly on the total number of events of the benchmark and the number of block containing more than 15 events.The most time consuming benchmarks, rijndael_enc and statemate, are also the ones that have the most of events in total, and have blocks containing the most of events. This observation applies well to most benchmarks but more details can be found in published experiment data.A4

As the analysis time for Etime grows steadily, no pattern emerges for the analysis time using .his is particularly striking with one benchmark in Figure 2a that has a very low analysis time (< 1ms): it is reported as 0 ms because of the precision of the measurement service of the host operating system. A small set of benchmarks (9 for the simple architecture and 10 for the complex one) exhibit a slightly worse analysis time with s than with Etime, but this overhead is too small to be representative, in particular because it falls within the precision margin of the experimental platform.

Compactness

The idea of compactness comes from the observation that the amount of possible execution times of a is generally much less than the theoretical upper bound 2 | E | with |E| events involved in the . To conrm that this phenomenon frequently occurs, we measure the number of leaves with respect to |E|. In order to allow large numbers of events, the split threshold is set to 100. Figures 3a and3b show the results for both the simple and complex architectures. Each dot represents the number of leaves (vertical axis with logarithmic scale) as a function of its number of events (horizontal axis). We also plot the 2 | E | line (red line) as reference. When the number of events grows, the gap between the theoretical upper bound and the actual number of leaves widens, as the number of leaves does clearly not follow an exponential growth. This validates our initial assumption. The benets of the approach stem from the absorption eect of the processor pipeline. However, the impact of this phenomenon on depends on the benchmark and on the target architecture and is therefore dicult to estimate without a complete computation of the . Hence, we statistically quantify the impact of absorption on the size of the nal , which is strongly correlated to the analysis time of s. We consider a split threshold of 100, which allows the analysis to nish in a few minutes. Figures 4a and4b show the number of nodes and leaves (vertical axis) of the nal s with respect to the number of events (horizontal axis). The nal is obtained at the end of an analysis to represent all the possible execution times of the . The theoretical upper bound on the amount of nodes in the is 2 | E |+1 1, and is plotted as reference (red line). This bound is reached whenever there is no absorption of events in the pipeline. Experimental results conrm that the number of nodes is much less than the theoretical upper bound, which means that the simplications often occur.

The two previous experiments show similar results for the analysis of both architectures. Yet, the cloud of dots is thicker for the complex architecture meaning there is more variability for the size of s. This reects the increase of Instruction Level Parallelism induced by superscalar architectures which allow more variable patterns of instruction execution inside the pipeline.

Related Work

The precise estimation of the execution time of basic blocks is crucial in the static analysis of a task's . The two main challenges come from pipelined execution and variable instruction latencies.

Beside ad-hoc algorithms dedicated to specic pipelines [START_REF] Holsti | Worst-case execution time analysis for digital signal processors[END_REF][START_REF] Holsti | Status of the Bound-T WCET tool[END_REF][START_REF] Kirner | The wcet analysis tool calcwcet167[END_REF], a simulator-based approach was proposed by Engblom et al. [START_REF] Engblom | Processor Pipelines and and Static Worst-Case Execution Time Analysis[END_REF][START_REF] Engblom | Pipeline timing analysis using a tracedriven simulator[END_REF]. Although it takes into account the overlapping of blocks in the pipeline, time events are added as-is to the nal time (a) inducing an overestimation and (b) preventing the support for timing anomalies. Healy et al. in [START_REF] Healy | Bounding Pipeline and Instruction Cache Performance[END_REF] compute the by deriving a pipeline diagram for each block representing the traversal of the stages by each instruction, and by composing these diagrams. The time events are taken into account by modifying the content of the diagram, that in turn produces an impact on the next block diagrams. Unfortunately, this method can only be applied to very simple microprocessors.

A rst kind of generic method to compute basic block execution times was proposed by Kassem et al. in [START_REF] Kassem | Simulator generation using an automaton based pipeline model for timing analysis[END_REF]. It uses automata to represent the dierent states of the pipeline. Transition between states are triggered by a mix of events recording the instruction execution phases and other hardware eects. Cassez et al. in [START_REF] Béchennec | Computation of WCET using program slicing and real-time model-checking[END_REF][START_REF] Cassez | Timed automata for modelling caches and pipelines[END_REF] use a similar approach but hardware analysis and calculation are integrated into a timed model checker, which prevents the exhaustive building of all pipeline states. Yet, although these methods speed up the traversal of states, they often result in huge automata. . Another successful approach makes use of Abstract Interpretation to compute the reachable pipeline states and to bound the inherent state blowup by abstraction. This approach developed by Thesing et al. in [START_REF] Langenbach | Pipeline modeling for timing analysis[END_REF][START_REF] Thesing | Safe and precise WCET determination by abstract interpretation of pipeline models[END_REF] is implemented in the aiT toolsuite and has been succesfully used on real micro-architectures and applications. Timing events are managed by duplicating the code blocks in so-called Abstract Pipeline State Graphs [START_REF] Stein | ILP-based path analysis on abstract pipeline state graphs[END_REF] to track the multiple event latencies. To our knowledge, there is no published report on the impact of the event-related latency variability on the (empirical) complexity and duration of the analysis.

Basically used to optimize Boolean functions, BDDs have been successfully used to avoid explicit computation in symbolic model checking [START_REF] Burch | Symbolic model checking: 1020 States and beyond[END_REF]. In a dierent context, Wilhelm et al. proposed to use BDDs to compact the pipeline state representation to perform abstract interpretation for pipeline analysis. [START_REF] Wilhelm | Ecient Analysis of Pipeline Models for WCET Computation[END_REF]C1, C2, C3

Conclusion

This paper introduces the data structure which is an adaptation of the structure to the particular problem of computation in the presence of variable latencies. It shows that the use of s to compute and to represent execution times speed up the analysis of the s of basic blocks. The increase in performance comes from the exploitation of the latency absorbing properties of microprocessor pipelines. Moreover, we proved that this improvement comes at no cost with respect to the precision of the analysis. We also showed that using s signicantly reduces the empirical complexity of the analysis compared to the existing Etime method, allowing analysis to be performed on larger and more complex applications. Experimentally, the analysis time was reduced to less than 1 second for all analyzed benchmarks from the TACLe suite (for a split threshold of 15), while the Etime method can take up to 7 minutes. Moreover, by observing the number of nodes and leaves in the s, we conrmed our initial assumption that the pipeline mechanisms hide some execution latencies and can be eciently accounted for by the structure. Our results show the eciency of factoring nodes that yield the same execution time, compared to an exhaustive computation which becomes intractable as soon as a basic block has more than 15 events.

As future work, we plan to extend the applicability of s to other models of architectures, like out-of-order pipelines,C5 and to further increase their performances. First, although s signicantly speed up the analysis of s possible execution times, the number of execution times for a complete application may still be too large for the the ILP resolution. A method must be found to reduce the number of variables in the ILP system, while at the same time not increasing too much the pessimism of the estimated . This issue is already addressed in the original Etime approach but the easy-to-handle structure of s might open new ways to tighten the precision of the .C4 Another research perspective is to introduce relationships between events, to model more complex behaviors of the architectures. For example, a memory access resulting in a Miss in a L1 cache could later cause a Miss in a L2 cache. In our current model both Misses would be represented as separate events, even though the Miss in L2 cannot occur if there is no miss in L1. Taking into account the existing correlation between the two events in this example could reduce the size of the corresponding , thus allowing the practical analysis of more complex architectures.

Figure 1 . 4 (1) 2 (2)

 14122 Figure 1. An decorated with events FE DE EX ME WB (0) add r3, r0, #4 (1) add r1, r0, r1, lsl #2 (2) ldr r2, [r3] (3) cmp r2, ip (4) ldrgt ip, [r3]

Denition 3 . 1 .

 31 An is dened recursively by: = (:) | (4, 5 , 5) with : 2 Z, 4 2 E and 5 , 5 2 .

Denition 3 . 4 .> 8 5 5 =

 3485 85 2 , ⇠><?(5) = ((:) (6 < 6) ^⇠><? (6) ^⇠><? (6) 8 5 5 = (4, 6, 6)

2 2

 22 (5 2)) and W (4EC (c W 6 2 (5 2))) = 1: similar to (3) using the right-side sub-s 5. else 4EC (c (5 2)): same as (3) and (4) swapping 6 1 and 6 2 (immediate if and are commutative). ⇤ Proposition 3.10. The domains h, , ⌦i and h), <0G, +i are semi-rings.

Denition 3. 11 . 2 ,

 112 85 8W 2 , [(5)] (W) = 5[W]

 (a) Simple architecture (b) Complex architecture

Figure 2 .

 2 Figure 2. Analysis time

Figure 3 .

 3 Figure 3. Number of leaves of resulting with respect to the number of Events

 (a) Simple architecture (b) Complex architecture

Figure 4 .

 4 Figure 4. Number of nodes of resulting with respect to the number of Events

 ✓ ⇥(are pairs [8 /(9] representing the processing of instruction 8 in stage (9 .

1 , (2 , ..., (<]. The execution of 0 2 + that consists in the sequence of instructions = [1 , 2 , ..., =], 8 2 I on that processor can be represented by an Execution Graph ()

[START_REF] Rochange | A context-parameterized model for static analysis of execution times[END_REF]

.

An Execution Graph () is a graph (+ , ⇢) whose vertices +

It is not mandatory to have maximal s although this is likely to improve the precision of the results.

hps://zenodo.org/record/3756621/files/LCTES.tar?download=1