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Abstract: This article aims to show that TRUST thermal unmixing, providing intra-pixel information1

of material abundances and their temperatures, allows a better description of the urban thermography,2

which not only supplies land surface temperatures at better resolutions but also allows to link them to3

specific materials. Moreover, this article presents an improved version of TRUST, called TRUST-DNS4

(Day and Night Synergy), which takes advantage of daytime and nighttime acquisitions to improve5

the unmixing performances. Both TRUST and TRUST-DNS are applied on airborne thermal images6

of Madrid city center obtained during the DESIREX campaign 2008, initially at 4m resolution and7

undersampled to 8m resolution. This undersampling allows to use the 4m ground classification done8

during the DESIREX campaign as reference for the abundance retrieval study. Thus, this article aims at9

showing the applicability of TRUST thermal unmixing on a highly challenging study case: the analysis10

of a heterogeneous urban environment with airborne multispectral (8 thermal bands) images at 8m11

resolution. In this study, seven different endmembers (natural and manmade materials) are considered as12

composing the Madrid city center, and TRUST and TRUST-DNS are used to recover intra-pixel abundance13

and temperature maps at 8m resolution for each endmember.14

Keywords: Thermal unmixing; TRUST; Urban environment; Airborne remote sensing; LST15

1. Introduction16

Global warming influences every region of the world. Its effects have been visible for a long time: ice17

loss in the poles with the consequent increase of the sea level, extreme meteorological conditions with an18

increase in rainfalls but also more frequent droughts, increase in the frequency and intensity of heat waves19

[1] etc. Europe is already suffering the impacts of climate change. Both the center and the south of the20

continent present heat waves, forest fires and droughts more frequently than in the past. Furthermore, the21

european urban regions, where 80% of europeans live, are exposed to extremely strong heat waves which22

appear more and more frequently [1].23

Urban environments are suffering sharper increases of their temperatures compared to rural areas.24

This is known as Urban Heat Island (UHI) effect [2], which has been well documented for a large number25

of cities across the world [2]. Multiple agents causing UHI have been detected, such as: human activity,26

population growth, land cover modification and, of course, global warming [2]. Moreover, UHI has been27

identified as producing air pollution increase, population health issues and to alter the energy consumption28

needs. Heat waves in Europe are more and more frequent and intense. This summer (2019) the heat29

waves in France produced temperatures of 45o C, 4.5o C higher than the heat waves of 2003 which have30
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been estimated to kill around 70000 people in Europe [3]. Solutions to stop this increase of heat waves31

frequencies and intensities are required, and these must cover urban planning. In order of measures to be32

adapted to face the problem, a good understanding of the sources, causes and dynamics of urban warming33

is needed.34

Usually, UHI makes reference to the air temperature difference between rural and urban areas[4].35

However, air temperature data covering a large spatial area are unusual due to the location (in space) of36

the measures [5,6]. Airborne remote sensing, covering large areas usually including both urban and rural37

areas around, allows to study the Surface Urban Heat Island (SUHI) effect, defined as the Land Surface38

Temperature (LST) difference between rural and urban areas [7]. Although SUHI is dominated by different39

physics than UHI, they have been shown to be correlated, especially during night [7].40

However, even if airborne remote sensing provides high spatial resolution images (some of meters),41

higher resolutions are sometimes needed to analyse the correlation between LST and urban materials,42

allowing to identify sources and wells of SUHI. For this kind of analysis looking at linking LST to a given43

material, and then to identify which kind of materials leads to the occurrence of SUHI, thermal unmixing44

methods can be extremely efficient [8–10]. This kind of methods provides abundance and temperature45

maps, for a given number of scene materials (previously defined) and from a given thermal radiance image.46

Then, they allow to understand how the different materials behave in function of their sun exposure, their47

location, or the moment of the day (if several images at different acquisition times are available) among48

other factors [8–10].49

Initially, reflective-thermal approaches were developed [8]. These methodologies were based on two50

steps: 1) the estimation of intra-pixel material abundances by using radiances from the reflective domain51

together with classical reflective unmixing methods [8,11], and 2) the estimation of intra-pixel temperatures52

by using thermal radiances and these previously obtained intra-pixel abundances. However, the need of53

bands in the reflective domain avoids nighttime application, where SUHI and UHI are more correlated,54

but also where reflective radiances are not available. In addition, to perform future high-spatial resolution55

studies in cities, Unmanned Aerial Vehicles (UAVs) appear as ideal [12], and having only thermal bands56

can allow to reduce UAV mission costs.57

Currently, different thermal unmixing approaches using only Thermal InfraRed (TIR) bands exist.58

Thus among the first developed methodologies, the Temperature and Emissivity Separation using Spectral59

Mixture Analysis (TESSMA) supposes homogeneous intra-pixel temperatures [13] and is hence not60

perfectly adapted to thermal unmixing [14]. On the other hand, classical spectral unmixing methods, such61

as Fully Constrained Linear Square Unmixing (FCLSU) [11], can be applied on the thermal domain by62

considering the couple of temperature and emissivity spectra to define a given material [15]. However,63

this approach considers the temperature of a given material to be constant across the image. Emissivity64

based unmixing method grounds on the application of classical spectral linear unmixing methods on the65

emissivity spectra to obtain the intra-pixel abundances to next estimate the intra-pixel temperatures by66

considering the black body law of a composed flat surface [9]. The main issue of this method is that it67

does not consider material temperature differences when estimating the abundances, and then it looses a68

principal source of TIR information during unmixing. Finally, among the most advanced methods, Thermal69

Remote sensing Unmixing for Subpixel Temperature (TRUST) allows to jointly estimate the intra-pixel70

abundances and temperatures by minimizing the radiance reconstructed error [10]. This method also71

allows intra-pixel temperature variations and variations in the material temperatures across the image.72

The best performances of TRUST over other thermal unmixing methods have been already shown for73

simple scenarios such as roofs composed of three materials, for high spatial resolutions of about 1m, and74

for hyperspectral imagery with more than 30 thermal bands [10,15].75

This article aims at illustrating the applicability of TRUST on highly heterogenous urban environment76

multispectral (8 bands) images at 8m resolution. With this purpose, Airborne Hyperspectral Scanner77
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(AHS) imagery from Madrid city center acquired during the DESIREX 2008 campaign [7] is used. Showing78

the relatively high performances of TRUST on this extremely challenging case where the spatial resolution79

and the number of bands are degraded, and where the studied scene is the city center of Madrid, opens80

the door to a large number of applications for this methodology. In addition, TRUST performances have81

been studied on both daytime and nighttime images of Madrid city center. Finally a new method, called82

TRUST Day and Night Synergy (TRUST-DNS), based on TRUST, has been developed to take advantage83

of the combination of daytime and nighttime images. It has been shown that TRUST-DNS improves the84

performances of TRUST.85

This article is structured in 6 sections. In section 2 the DESIREX data used in this study is exposed.86

Then, in section 3 TRUST and its improved version TRUST-DNS are presented. In section 4, first, the pure87

material emissivity spectra and temperatures are defined, second, a calibration of TRUST and TRUST-DNS88

is performed to apply them on Madrid city center AHS images and finally the abundances and temperature89

retrieval performances of TRUST-DNS and TRUST on day and night images are compared. These results90

are discussed in section 5. The article finishes in section 6 with some conclusions and perspectives.91

2. DESIREX 2008 Dataset92

2.1. Data description93

Water fountain

Roof 
Concrete Park

Building

Lake
Docks

Figure 1. AHS image of Madrid city center from the 4th of July. RGB colours have been composed with
AHS reflective bands 7, 4 and 1. The red square delimits the studied area. Colour dots indicate the position
of the pixels used to define pure materials in the TRUST methodology, see section 3.
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During the DESIREX 2008 experiment campaign over the city of Madrid, airborne hyperspectral94

scanner (AHS) data was acquired with a 4m spatial resolution over 80 spectral channels (0.443–13.4 µm)95

at several dates from 25th of June to 4th of July (summer) [7,16,17], see figure 1. From these 80 spectral96

channels, 10 are in the thermal domain (8.2–13.4 µm), see table 1. Together with these aircraft hyperspectral97

images, atmospheric characterizations were performed each day. On one hand, temperature profiles from98

ground level to 25 km altitude, and atmospheric water vapor content were measured with soundings99

several times a day at three different locations. On the other hand, relative humidity and air temperature100

evolution were measured in 6 fixed masts located in rural, urban-medium and urban-dense spots. These101

atmospheric characterizations are used to correct the aircraft images from atmospheric effects.102

Table 1. Spectral configuration of thermal AHS bands

AHS band Wavelength center FWHM

Band 71 8180 nm 370 nm

Band 72 8660 nm 390 nm

Band 73 9150 nm 410 nm

Band 74 9600 nm 430 nm

Band 75 10070 nm 420 nm

Band 76 10590 nm 550 nm

Band 77 11180 nm 560 nm

Band 78 11780 nm 560 nm

Band 79 12350 nm 480 nm

Band 80 12930 nm 490 nm

In addition, spectral reflectivity and emissivity of 12 urban surfaces were also measured during103

this campaign. This measures are used to perform a supervised land cover classification on the daytime104

aircraft image from the 4th of July, where the Maximum likelihood was used as a decision rule and 13105

different training classes were defined (12 materials plus shadows). The classification was performed106

using at-sensor radiance measures from the 80 spectral bands of the AHS sensor at 4m resolution [18].107

However, even if in urban environments 4m pixels are frequently composed of several materials, no mixed108

pixel class is allowed in this classification. In this paper, we focus on two images acquired during this date,109

one day-time (11:32) and one night-time (22:14). The complete description of the dataset can be found in110

the DESIREX 2008 final report [7].111

Finally, due to water absorption bands above 12000 nm [19], AHS bands 79 and 80 are not used in this112

article. In addition, the emissivity spectra of a large number of materials exhibit similar signatures at these113

wavelengths, rendering bands 79 and 80 not adapted to materials discrimination. Although [19] suggests114

to not use band 71, because of water absorption band below 8000 nm, due to the low performances115

when applying the method without band 71, it is kept in this study. The importance of band 71 when116

discriminating emissivity spectra of different materials is explained by the stronger signatures of these117

spectra at 8µm.118

2.2. Scene description119

Figures 2 a) and b) show, respectively, the zoomed RGB image of the studied area (day radiance image120

on 4th of July) and the corresponding classification map, both at 4m resolution. The scene contains a part121

of the Retiro park, mainly composed of vegetation and water (artificial lake), and the very heterogeneous122
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urban fabric located at the north-west of the park. In addition, some bare soil areas, a building with a roof123

made of red bricks and the lake docks are found in the park, a very particular building with a concrete124

roof is at the west of the park and a water fountain (“Cibeles”) can be found in the west end of the image,125

see figure 1. In the scene, 6 classes of impervious materials are found and classified such as: Impervious126

road, Other road, Roofs with red bricks, Roofs asphalt, Roofs concrete, Roofs metal. In addition, two127

types of vegetation appear in the Retiro park, and also two types of water are discriminated (lakes and128

swimming-pools). Since, no mixed pixel class was allowed in the DESIREX classification, it is expected to129

have mixed pixels considered as pure ones, even at 4m resolution.130

In the following, for the TRUST unmixing, we consider only one type of vegetation and one type131

of water since the emissivity spectra of both couples of vegetation and water are indistinguishable.132

Furthermore, since TES does not provide good descriptions of metallic surface temperatures and133

emissivities, only 5 impervious materials are considered: roads made of asphalt, roofs made of asphalt,134

other roads, roofs made of cement and roofs made of red bricks. However, while pixels initially classified135

within the two water and the two vegetation classes are now merged in only one water and one vegetation136

classes, pixels classified as “Roofs made of metal” maintain its status in the classification, but they are not137

considered when TRUST performances are analysed. Then, in the studied area a total of 7 materials are138

considered.139

Thus, this Madrid city center scene is used to illustrate the application of the presented methodology140

along the article. For this purpose, both the classification and the radiance images are undersampled to141

8m resolution in order to have a reference at 4m, see figure 2 c) and d). This undersampled classification142

produces a new class (mixed pixels) in the classification map at 8m resolution. Pixels at 8m are considered143

mixed in the new classification if the four 4m-pixels composing them do not belong to the same class.144

4m

a) Red-Green-Blue

8m

c)

b) Classification

d)

Water
Vegetation

Imperv Road
Other Road

Red Bricks
Roofs Asphalt

Roofs Concrete
Mixed Pixel

Figure 2. Left) RGB AHS images of Madrid city center at 4m (a) and 8m (c) resolutions. Right) DESIREX
classification map at 4m resolution (b) and undersampled classification map at 8m (d).
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3. Methodology145

The proposed methodology, called TRUST-DNS, is an improvement of TRUST method, developed146

by Cubero Castan et al. 2015 [10], by taking advantage of Day-Night synergy, see figure 3. This section147

explains the different steps of TRUST-DNS in analogy with [10] for TRUST and indicating the main148

differences between TRUST and TRUST-DNS.149

Selection
of pure

pixels and
estimation

of their
temperature

and
emissivity

Unmixed
temperatures

estimation
Rλ

BOA

εm, Tm

First
minimization

on
abundances

Tm

Tm

Sm

Sm

Joint Estimation of Temperature
and abundances for each materials combination

Second
minimization on

reconstruction
error

DDay/Night
T (Sm, Tm)

DDNS(Sm, Tm) = DDay
T + DNight

T
DT

Final TRUST-DNS product: Tm, Sm

Choice of the better materials
combination taking into account

day and night information

TRUST

TRUST-DNS

Final TRUST product: Tm, Sm

Comparison

Figure 3. TRUST-DNS methodology diagram.

3.1. Radiative Transfer Equations150

Considering a thermal image with N spectral bands, the Bottom of Atmosphere (BOA) radiance of a151

given pixel at a given wavelength λ is:152

Rλ
BOA,meas =

Rλ
sens − Rλ

atm,↑
τλ

atm,↑
(1)

where Rλ
sens is the at sensor level measured radiance, Rλ

atm,↑ is the atmospheric upwelling radiance and153

τλ
atm,↑ is the upwelling transmittance.154

On the other hand, for a flat-ground-scene, the resulting BOA radiance for a mixed pixel can be155

expressed as a linear mixture of radiances:156

Rλ
BOA =

M

∑
i=1

(
ελ

i · Bλ(Ti) + (1− ελ
i ) · Rλ

atm,↓

)
Si (2)

where M is the number of materials composing the pixel, ελ
i is the emissivity of material i at wavelength λ,157

Ti is the mean temperature of material i in the pixel and Bλ(T) is the Planck law at temperature T, Rλ
atm,↓ is158

the atmospheric downwelling radiance, and Si is the abundance of material i in the pixel. The abundance159

of material i in a pixel is defined as the fraction of the pixel covered by i. Thus for any pixel, the sum of the160

abundances of the materials composing it is normalized to one, ∑M
i=1 Si = 1.161

3.2. Selection of pure pixels and estimation of their temperature and emissivity162

Pure pixels are manually selected using the classification map build from the 4th of July images at 4m163

resolution during the DESIREX 2008 campaign, see figure 1. From homogeneous areas on the classification164

map, five pixels far enough from the borders are selected to represent each pure material or endmember.165

Avoiding pixels from the borders of the homogeneous areas allows to reduce errors due to misregistration166
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between the classification map and the AHS (day and night) images, as well as errors due to classification167

accuracy (at these resolutions, interfaces between homogeneous areas are considered to be mixed, even if168

the classification ignores this possibility).169

Thermal and Emissivity Separation (TES) method [10,20] is used on each pure pixel to obtain its170

temperature and emissivities. TES needs atmospheric correction but contrary to other methodologies such171

as Split-Window or Mono-Window methods, it allows to estimate both the temperature and emissivities172

of the pixel. TES is based on a three-step approach: Normalized Emissivity Method (NEM), Ratio, and173

Maximum and Minimum Difference (MMD) [20].174

The mean temperature Ti and emissivities ελ
i of each endmember are then defined as the mean of the175

temperatures and emissivities measured for the five pixels identifying each material. Hence, this choice is176

extremely important since, even if the five selected pixels characterizing a material are pure, 3D structures177

and shadows (abundant in cities) can alter the obtained temperatures and spectra. Thus, the pure pixel178

selection should be considered as strongly influencing the methodology performances.179

3.3. Joint Estimation of Temperatures and Abundances180

Given a mixed pixel made of M materials, TRUST allows the joint estimation of temperatures and181

abundances from an iterative process (material emissivities are considered to be well defined from pure182

pixels and to remain constant in the image). TRUST has been already tested with a maximal value of183

M = 2 and M = 3, i.e. allowing combinations of until two and three materials per pixel [15]. Thus,184

Cubero-Castan 2014 shows that TRUST performances are higher allowing sets of until 2 materials per185

pixel (M = 2) [15].186

Then, the iterative process starts by estimating the abundances for any possible set of materials with187

the minimization of the reconstruction error of the BOA radiance:188

D(S) =

√√√√ 1
N

N

∑
λ=1

(
Rλ

BOA,meas − Rλ
BOA(S, T)

)2
(3)

where S are the abundances of the set of materials composing the mixed pixel, T = T + ∆T are the189

temperature of the materials in the pixel defined as the mean temperature of the material plus ∆T, whose190

estimation depends on S. For this first iteration abundance estimation ∆T = 0.191

Then, once the abundance Si of each material within the pixel is known, only one hypothesis is192

required to estimate the temperatures in the mixed pixel: the temperature of every material composing193

the pixel is close to the corresponding mean temperature of the material. In order for this hypothesis to194

be correct, it is preferable to work on small images, since the material temperatures can strongly vary195

between far locations. Thus, this hypothesis allows to linearize the black body law Bλ(Ti) around the196

mean temperature Ti. Then, following the first-order Taylor series approximation of eq.(2), the centered197

radiance is:198

∆Rλ1
...

∆RλN

 =


AT1

λ1
· · · ATM

λ1
...

. . .
...

AT1
λN

· · · ATM
λN


 ∆T1

...
∆TM

 ≡ ∆R = A · ∆T (4)

with the centered radiance ∆Rλj = R
λj
BOA(Ti)− R

λj
BOA(Ti), ∆Ti = Ti − Ti and ATi

λj
= εi · Si · ∂Bλj (T)

∂T |Ti
. The199

number of bands N defines the number of equations and the number of materials per pixel M defines the200
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number of unknowns. So, for the system of equations to be determined N should be greater or equal than201

M.202

Finally, the linear unbiased estimator minimizing the variance of the estimation is [21]:203

∆T = (At · C−1 ·A)−1 ·At · C−1 · ∆R (5)

where C is the noise covariance matrix.204

Once ∆T is estimated, eq.(3) is newly minimized, with T = T + ∆T, to find S. Thus for each possible205

combination of pure materials composing the mixed pixel, this iterative process aims at estimating the206

abundances and temperatures minimizing eq.(3).207

A second minimization is needed to distinguish which combination of materials (among the tested208

sets) composes the mixed pixel. With this purpose a new cost function is introduced:209

DT(S) = D(S) + γ

√√√√ 1
M
·

M

∑
i=1

(∆Ti)2 (6)

where γ is an hyperparameter weighting the significance of ∆T in the minimization. The choice of γ is210

very important, since small values will give more significance to emissivity differences, while for high211

values the methodology will look mainly for material combinations with ∆T ≈ 0.212

Thus, TRUST selects the set of materials minimizing DT(S) with the optimal temperatures and213

abundances minimizing D(S) as the one composing the mixed pixel.214

3.4. Day and Night Synergy: TRUST-DNS215

In oder to take advantage of possible synergies between day and night images, the above TRUST216

methodology has been slightly modified. TRUST is applied separately on day and night images with217

normalized cost functions:218

Dj(S) =

√√√√ 1
N

N

∑
λ=1

(
Rλ

BOA,meas − Rλ
BOA(S, T)

Rλ
BOA,meas

)2

with j ≡ Day or Night (7)

Dj
T(S) = Dj(S) + γ

√√√√ 1
M
·

M

∑
i=1

(
∆Ti

Ti
)2 with j ≡ Day or Night (8)

where DDay and DNight are estimated for each pixel on the same combinations of materials. Finally, the set219

of materials composing the mixed pixel is defined as the one minimizing DDNS = DDay
T (S) + DNight

T (S).220

The normalization of the cost functions is needed to give the same weight to the information coming221

from day and night images independently of their radiance and temperatures absolute values. Abundances222

and temperatures are allowed to vary for the same mixed pixel between day and night. This is expected for223

temperatures but not for abundances which are supposed to remain constant. However, due to possible224

registration errors and viewing angles discrepancies, we decided to not impose the same abundances to225

the day and night mixed pixels.226

3.5. Evaluation criteria227

The performances of TRUST-DNS for retrieving abundances in a given scene are evaluated differently228

for the mixed (δSmixed) and the pure (δSpure) pixels composing the scene [15]. Thus for pure pixels, the229

abundance error of material m is evaluated on pixels where Sm = 1 by looking at the unmixed value of230
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Sm. On the other hand for mixed pixels composed of a materials combination, the abundance of materials231

which are not within this combination must be Si = 0, and then the abundance error is estimated by232

looking at the unmixed values Si of materials which are not in the combination. For temperature retrieval233

performances (δT), mixed and pure pixels are not discriminated.234

δSpure =

√
∑m ∑k pure m(Sk,m − Ŝk,m)2

N
(9)

δSmixed =

√
∑m ∑k mixed without m(Ŝk,m)2

N
(10)

δT =

√
∑k
[
Tk − (∑m Ŝk,m(T̂k,m)4)1/4

]2
N

(11)

where k sums over the pixels and m over the materials in each pixel, and N is the total number of pixels235

taken into account. Ŝ (T̂) indicates the estimated unmixed abundance (temperature), while S (T) indicates236

the reference abundance (temperature). For abundances, the used reference is the classification at 4m237

from which a reference abundance map at 8m is generated. The ratio between the classification and238

the abundance map resolutions (4m and 8m respectively) leads to limitations in the abundance retrieval239

performances study, since the reference map only presents very discretized abundances (0%, 25%, 50%,240

75% and 100%). For temperatures, the reference is the TES measured temperature at 8m.241

4. Results242

This section compares the performances of TRUST-DNS and TRUST applied separately on day243

and night images, when estimating abundances and temperatures over a heterogeneous urban scene.244

The chosen urban scene, Madrid city center, is considered to be mainly composed of 7 materials. The245

mean temperatures (Tm) and emissivities (εm) of each one of these materials are defined as the mean of246

5 manually chosen pixels (see figure 1). For the unmixing, each pixel in the scene is considered to be247

composed of no more than 2 materials. This choice allows to reduce computation time and also to reduce248

errors in unmixing [15]. Since TRUST has been shown to outperform other thermal unmixing techniques249

before [10,15], this work focuses on comparisons between TRUST applied on day and night images and250

TRUST-DNS.251

4.1. Characterization of endmembers252

Figures 4 a) and b) show the endmembers emissivities obtained with TES on day and night images253

respectively. Every spectra present emissivity values between 0.86 and 0.98. Moreover, for any pure254

material, differences are found between day and night emissivity spectra, with a tendency, mainly for255

lower wavelengths (<9.7 µm), to overestimate day emissivities compared to night ones. These differences256

are at most of 2% of emissivity.257
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Figure 4. Emissivity spectra of pure materials found in the studied area, obtained with TES over day (a)
and night (b) images.

Table 2 shows the endmembers mean temperature for day and night. As expected, day temperatures258

are higher, and more important contrasts between day and night temperatures are found for impervious259

materials such as Asphalt, Concrete and Red bricks than for natural materials such as water or vegetation.260

The obtained temperatures are within the expected range for sun exposed materials during summer with261

day temperatures between 25 and 50 oC and night temperatures between 18 and 25 oC.262

Table 2. Mean temperatures (Tm) of pure materials found in the studied area with TES over day and night
images.

Material Day mean temperature (K) Night mean temperature (K)

Water 301 300

Vegetation 306 298

Roads Asphalt 324 305

Other Roads 315 300

Red bricks 323 296

Roofs Asphalt 331 293

Roofs Concrete 323 297

4.2. Study on the choice of γ263

As explained in section 3.3, two terms are minimized in TRUST (TRUST-DNS). In the second one, the264

γ hyperparameter, which weights the importance of the temperature difference (∆T) in the minimization,265

is introduced. In order to find the best value for γ a previous study should be performed. Based on [15] a266

set of γ values, from γ = 10−4 to γ = 1, is tested for TRUST applied on the day and night images separately267

and for TRUST-DNS. The analysis of unmixing performances in function of γ is based on abundance268
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errors from eq.(9) and eq.(10), which measure the pixel fraction difference between the classification and269

the unmixing results, and temperature error from eq.(11), which measures the temperature difference270

in K between the unmixed temperature map and the TES temperatures at 8m of resolution, see figure 5.271

In every case, abundance errors for pure pixels obtained with eq.(9) are between 0.4 and 0.8 and their272

minimal values are smaller for TRUST-DNS. Mixed pixel errors obtained with eq.(10) are around 0.2 and273

0.3 and their minimal values are similar for TRUST and TRUST-DNS. Moreover TRUST-DNS appears less274

influenced by the choice of γ. On the other hand, temperature errors are around 0.3 and 0.6 K with similar275

minimal values for TRUST and TRUST-DNS on day but better performances of TRUST-DNS on night.276

Newly as for abundance errors, TRUST-DNS temperature errors are less influenced by the choice of γ.277

The choice of the best γ is done separately for the different studied cases. While for TRUST on the day278

image γ = 0.01 (log(γ) = −4.6) minimizes the errors, for TRUST on night the best choice is γ = 0.005279

(log(γ) = −5.3), and for TRUST-DNS γ = 0.5 (log(γ) = −0.69) is chosen for both day and night images.280

In the following sections, only results with these γ values are shown. Then, for TRUST on the day image281

δSmixed = 0.25 and δSpure = 0.48 of the pixel fraction, while δT = 0.39 K. For TRUST on the night image282

δSmixed = 0.24, δSpure = 0.48 of the pixel fraction and δT = 0.33 K. Finally, for TRUST-DNS on both day283

and night image δSmixed = 0.24 and δSpure = 0.43 of the pixel fraction while for daytime δT = 0.40 K and284

for nighttime δT = 0.29 K.285
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Figure 5. Abundance errors on pure pixels δSpure (a), on mixed pixels δSmixed (b), and temperature errors
δT (c). All the three in function of the logarithm of the hyperparameter γ, and for TRUST on day image,
TRUST on night image, TRUST-DNS on day image and TRUST-DNS on night image.

4.3. Abundances retrieval286

Figures 6, 7, 8 and 9 show the abundances retrieved for each material together with the DESIREX287

classification at 8m. Figure 6 shows the abundances retrieved with TRUST on the day image, figure 7 with288

TRUST on the night image, figure 8 with TRUST-DNS on the day image and figure 9 with TRUST-DNS on289

night.290

Thus, TRUST on day image (figure 6) allows to recover some pure regions of water pixels as well as291

pure regions of vegetation, roads with asphalt, other roads and red bricks pixels which are in agreement292

with the pure regions of the classification. Trees and the water fountain in the avenues, as well as the lake293

docks, the building and some soil surfaces in the park are also found. However, pixels with water are294

found everywhere in the image, maybe due to shadow effects. In addition, mixed pixels are also found in295

agreement with the DESIREX classification. TRUST on night (figure 7) shows worst performances when296
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finding water: no pure pixels are found in the park lake, and the water fountain is lost. In addition, other297

roads pure pixels are also lost, and vegetation pixels in the avenues appear as mixed ones. TRUST-DNS298

allows to reduce noise and to find more pure pixels both on day and night images (figures 8 and 9). Thus,299

the lake and its docks are perfectly defined, as well as the park vegetation, its small soil surfaces and300

its building, and the water fountain in the avenues. In addition, mixed pixel regions are found at the301

interfaces of pure regions: between the park and the avenues around, in the limits of the lake docks and302

also in the borders of the park building. Only some small differences are found between TRUST-DNS303

day and night, as expected since for both the materials composing a given pixel are the same. With every304

method and image, a square roof of concrete is found. Visually it is possible to verify the existence of this305

roof. However, in the DESIREX classification it was misclassified and confused with other roads material.306

Also in any case, the material Roofs asphalt appears as negligeable. Only tens of pixels are identified to307

contain this material, and they are scattered in the right hand side of the image. In general, TRUST and308

especially TRUST-DNS, recovers the mixed and pure areas found on the DESIREX classification.309
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Figure 6. TRUST day abundances map at 8m for each considered material together with the DESIREX
classification undersampled at 8m.
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Figure 7. TRUST night abundances map at 8m for each considered material together with the DESIREX
classification undersampled at 8m.
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Figure 8. TRUST-DNS day abundances map at 8m for each considered material together with the DESIREX
classification undersampled at 8m.
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Figure 9. TRUST-DNS night abundances map at 8m for each considered material together with the DESIREX
classification undersampled at 8m.

4.4. Temperature retrieval310

Figures 10, 11, 12 and 13 show the temperatures retrieved for each material together with the TES311

temperature at 8m. Hence, TRUST applied on thermal images allows to link urban materials to LSTs312

without needing a previous land cover classification. Figure 10 shows the temperatures retrieved with313

TRUST on the day image, figure 11 with TRUST on the night image, figure 12 with TRUST-DNS on314

the day image and figure 13 with TRUST-DNS on night. For both day temperature images (figures 10315

and 12), and for both pure and mixed pixels, impervious materials roads asphalt and red bricks present316

the highest temperatures, and natural materials such as water, vegetation and soil (other roads) present317

lower temperatures. Thus, showing that manmade materials lead to an increase of LST during day318

which is mitigated by vegetation or water. TRUST and TRUST-DNS exhibit similar performances for319
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day image temperature retrieval. On the other hand, for both night images Roads Asphalt presents the320

highest temperatures, followed by water and soil, and with roofs and vegetation exhibiting the lowest321

temperatures. Then during night, the canyon structure drives the LST spatial distribrution, with roofs322

being cooler and roads being hoter. In addition, vegetation and soil does not seem to lead to cool LSTs.323

TRUST-DNS on night present less noisy results than TRUST, maybe because of the better performances in324

abundance retrieval.325
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Figure 10. TRUST day temperatures map at 8m for each considered material together with the TES
temperature at 8m.
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Figure 11. TRUST night temperatures map at 8m for each considered material together with the TES
temperature at 8m.
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Figure 12. TRUST-DNS day temperatures map at 8m for each considered material together with the TES
temperature at 8m.
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Figure 13. TRUST-DNS night temperatures map at 8m for each considered material together with the TES
temperature at 8m.

5. Discussion326

This article shows the potentiality of TRUST and TRUST-DNS to perform high spatial resolution327

studies of urban LSTs. Moreover, TRUST and TRUST-DNS allow to link manmade and natural materials328

to different temperature behaviors, and then appear as powerful tools for the characterization and329

understanding of SUHIs at high spatial resolution. In addition, several methodological aspects of TRUST330

(TRUST-DNS) can be tuned to improve its performances in function of the city structural and material331

characteristics. It is also important to take into account that in this study only 8 thermal spectral bands332

were used, while in previous TRUST studies no less than 32 bands were used. Of course, the more spectral333

bands there are, the better the performance [15], and so this study places the methodology at the limits of334

its applicability.335

Endmembers definition in the thermal domain336

The ideal number of endmembers defined to unmix a given scene strongly depends on the scene and337

the image resolution. Thus, the number of pure materials should increase when the scene heterogeneity338
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and/or the image resolution increase. However, considering too many pure materials leads to a decrease339

in unmixing performances, since the number of possible material combinations increases exponentially340

with the number of endmembers, inducing innacuracies in the minimization of the radiance reconstruction.341

Having a previous classification at a slightly better resolution than the initial one (in this case the previous342

classification at 4m and the radiance images at 8m), allows to recognise the number of endmembers343

which is adapted to the scene and resolution. Furthermore since DESIREX classification was done with344

80 reflective and thermal bands and we have only 8, we decided to slightly decrease the number of pure345

materials defined in the DESIREX classification. Thus, from the two water and two vegetation classes, only346

one is retained to define each class. In addition, since TES presents low performances on metallic materials347

[20], ”Roofs made of metal” class is not used.348

Furthermore, different methodologies can be used to define the emissivity spectra and mean349

temperature of endmembers. In this work, and based on [10,15], five pure pixels in the image are manually350

selected to define each pure material. Indeed, as recommended by [7,10,19] TES algorithm is used on both351

day and night images to obtain the emissivity spectra and temperature of each manually selected pixel.352

However, emissivity differences between day and night pixels are found, see figure 4. These differences353

are lower or equal to 2% of emissivity, which is within the range of the TES emissivity retrieval accuracy354

(1.5% was found in Gillespie et al. 1998 [20] and 3% in Oltra-Carrio 2013 [19]). Small co-registration errors355

and or viewing angles differences between day and night images can also explain these small differences356

between day and night pure material spectra. In addition, atmospheric reflective contribution, which is357

more important during day, can be misestimated, influencing the emissivity characterization. A slight358

trend to small values at short wavelengths is also observed, especially for night emissivities. This may359

be partially explained by the 8 µm band to be slightly influenced by water absorption bands below 8 µm.360

Atmospheric water vapour content during 4th of July acquisitions was 1.5 g cm−2 during day and 2.5361

g cm−2 during night [7].362

TRUST and TRUST-DNS performances363

TRUST-DNS appears as more stable than TRUST when dealing with γ variations. In addition,364

the study on the choice of γ showing the global unmixing errors compared to DESIREX classification365

for abundances and TES at 8m for temperatures, illustrates that once the most performant γ is chosen,366

TRUST-DNS performs better than TRUST on both abundance and temperature retrieval.367

However, these results should be analyzed carefully. On the one hand, the 4m classification used as368

reference for the material abundances study does not include a mixed pixel class, even if at this resolution369

in urban environments mixed pixels appear. Then, having the DESIREX classification as reference induces370

inaccuracies, mainly in the pure pixel abundance errors. This effect is observed in figure 5, where pure371

pixel abundance errors are double compared to those of mixed pixels, i.e. TRUST correctly finds mixed372

pixels where the classification considers pure ones, leading to an increase in the pure pixels abundance373

errors. Hence, having a higher resolution classification of the studied area as reference would allow to374

go deeper in this study. Another option to advance in this study is to perform a new 4m classification375

with a likelihood threshold in the Maximum likelihood criteria, to consider mixed pixels. On the other hand,376

the resolution ratio between the classification used as reference and the unmixed image, being only of377

two, limits the abundance error quantification, since reference abundances are restricted to few discretized378

values (0%, 25%, 50%, 75% and 100% of the pixel) while TRUST (TRUST-DNS) abundances can take any379

value in [0%, 100%] range. However, greater ratios such as the 16m/4m one are not intended for the380

moment, since TRUST performances were strongly degraded when it was applied on lower resolution381

images (TRUST applied on 16m resolution images of Madrid city center was tested within the framework382

of this work).383
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Thus, even if it is difficult to know which abundance map is better, since no accurate information is384

available (reference at 4m), TRUST-DNS seems to better delineate urban objects such as streets, buildings,385

the park lake or vegetated areas. Thus, TRUST-DNS improves abundance retrieval performances on both386

day and night, especially on night. In addition, TRUST on day images performs better than TRUST on387

night. Both results indicating that day thermal contrast helps to unmix urban areas. Thus, day information388

helps to improve night unmixing when using TRUST-DNS.389

Finally, for the temperature performances study, we have decided to compare pixel by pixel the 8m390

LST obtained directly with the TES method to the aggregation (with the Wien’s law) of the unmixed391

LSTs, also at 8m, but with intra-pixel information. This choice grounds on two main issues: 1) the spatial392

distribution of materials within a 8m pixel is not known and then comparing 8m unmixed LSTs to 4m393

LSTs from TES is not direct, and 2) comparing pixel by pixel 8m unmixed LSTs with 4m LSTs from TES for394

each material within the pixel leads to errors containing contributions from abundance and temperature395

retrieval errors. So, this choice allows to dissociate temperature retrieval errors from abundance ones.396

Relationship between LST and materials397

Analysing the sign of the correlation coefficient between the abundance of a given endmember and the398

TES 8m LST allows to characterize the impact of this endmember on the urban LST: negative correlations399

indicate that the endmember mainly cools the area, while on the other hand positive correlations indicate400

that the endmember mainly heats the area.401

Then, this study allows to link urban elements such as: roofs with red bricks, roofs with concrete or402

roofs with asphalt, with high daytime temperatures and low nighttime ones, showing the low thermal403

inertia of these materials, see figures 8 and 12 for daytime analysis and figures 9 and 13 for nighttime404

analysis. Thus, the correlation coefficient between the TRUST-DNS material abundance and the TES 8m405

LST for these materials during daytime is respectively : R = 0.76, R = 0.29 and R = 0.42, while during406

nighttime it is: R = −0.43 R = −0.68 R = −0.47. On the other hand natural elements such as: water,407

vegetation and other roads (mainly bare soil) tend to cool the area, in particular during the day (see figures408

8 and 12), with negative daytime and nighttime correlations coefficients of R = −0.91, R = −0.78 and409

R = −0.35 during daytime and R = −0.28, R = −0.35 and R = −0.18 during nighttime. The endmember410

appearing as contributing to an increase of urban LSTs both during daytime and nighttime is “Roads of411

Asphalt” with R = 0.33 during daytime (see figures 8 and 12) and R = 0.39 during nighttime (see figures 9412

and 13).413

6. Conclusions414

In this article, TRUST unmixing method has been applied on DESIREX 2008 daytime and nighttime415

images of Madrid city center. In addition, a new version of TRUST, called TRUST-DNS for Day and Night416

Synergy, has been developed to take advantage of available day and night images. Thus, from initial 4m417

radiance images, 8m ones have been generated by aggregation. This allows to use the DESIREX 2008418

classification map at 4m resolution as a reference for the abundance retrieval study. Even if endmembers419

selection has been based on the existing DESIREX classification, the definition of their mean temperature420

and emissivity spectra was done by visually choosing 5 pixels (at 8 m resolution) per material and421

by applying TES algorithm on these pixels. This endmembers characterization can be applied on any422

image without needing previous information and it was also the one chosen in Cubero-Castan et al.423

2014 [15]. It has been shown that both TRUST and TRUST-DNS can be applied on 8-band airborne images424

of urban environments at 8m resolution. Thus, these methods provide subpixel material abundances425

and temperatures which are in agreement respectively with the DESIREX classification and the TES426

temperature retrieval algorithm directly applied on 8m radiance images. In addition, it has been shown427

that TRUST-DNS better delineates urban objects such as streets or buildings and that their unmixed428
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temperatures outperform those from TRUST. This can be understood since day and night synergies are429

exploited. Hence, this paper shows the applicability of TRUST and TRUST-DNS on a challenging study430

case (highly heterogeneous image at 8m resolution with 8 thermal bands), compared to those previously431

studied on Cubero-Castan works [9,10,15].432

The use of an airborne campaign with higher resolution images should be envisaged in order to433

discriminate the main source of errors in the abundance retrieval performances among: 1) non accurate434

classification not considering mixed pixels at 4m or 2) TRUST inaccuracies. Having higher than 4m435

resolution initial images will allow to increase the accuracy of the classification and to increase the436

ratio between the undersampled unmixed images and the reference. Thus, the analysis of the TRUST437

performances should be more precise. In addition, the main perspective of this work is the improvement of438

TRUST-DNS to be applied on urban environments at degraded resolutions (tens of meters). Cubero-Castan439

et al. 2015 [10] showed that the TRUST performances strongly decrease when 3 pure materials are440

considered in a pixel. Then, in these highly heterogeneus environments, where several pure materials441

(more than two) are found in pixels with sizes between 100 and 1000 m2, TRUST is expected to provide442

lower performances. Nevertheless, coupling day and night images may provide supplementary constraints443

helping to unmix with a higher number of endmembers allowed in each pixel.444
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