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ABSTRACT

Context. Extremely large telescopes are overwhelmingly equipped with pyramid wavefront sensors (PyWFS) over the more widely
used Shack–Hartmann wavefront sensor to perform their single-conjugate adaptive optics (SCAO) mode. The PyWFS, a sensor based
on Fourier filtering, has proven to be highly successful in many astronomy applications. However, this sensor exhibits non-linear
behaviours that lead to a reduction of the sensitivity of the instrument when working with non-zero residual wavefronts. This so-called
optical gains (OG) effect, degrades the closed-loop performance of SCAO systems and prevents accurate correction of non-common
path aberrations (NCPA).
Aims. In this paper, we aim to compute the OG using a fast and agile strategy to control PyWFS measurements in adaptive optics
closed-loop systems.
Methods. Using a novel theoretical description of PyWFS, which is based on a convolutional model, we are able to analytically predict
the behaviour of the PyWFS in closed-loop operation. This model enables us to explore the impact of residual wavefront errors on
particular aspects such as sensitivity and associated OG. The proposed method relies on the knowledge of the residual wavefront
statistics and enables automatic estimation of the current OG. End-to-end numerical simulations are used to validate our predictions
and test the relevance of our approach.
Results. We demonstrate, using on non-invasive strategy, that our method provides an accurate estimation of the OG. The model
itself only requires adaptive optics telemetry data to derive statistical information on atmospheric turbulence. Furthermore, we show
that by only using an estimation of the current Fried parameter r0 and the basic system-level characteristics, OGs can be estimated
with an accuracy of less than 10%. Finally, we highlight the importance of OG estimation in the case of NCPA compensation. The
proposed method is applied to the PyWFS. However, it remains valid for any wavefront sensor based on Fourier filtering subject from
OG variations.

Key words. instrumentation: adaptive optics – atmospheric effects

1. Introduction

The pyramid wavefront sensor (PyWFS) is an optical device
used to perform wavefront sensing, which was first proposed
in 1996 (Ragazzoni 1996). Inspired by the Foucault knife test,
the PyWFS is a pupil plane wavefront sensor (WFS) performing
optical Fourier filtering thanks to a glass pyramid located in the
focal plane (see Fig. 1). This pyramid splits the electromagnetic
(EM) field into four beams, each producing four different filtered
images of the entrance pupil. This filtering operation converts
phase information at the entrance pupil into amplitude informa-
tion at a pupil plane where a quadratic sensor is used to record
the signal. The PyWFS usually includes an additional optical
device called a modulation mirror. This mirror moves the point
spread function (PSF) around the apex of the pyramid, which
allows for an increase in the linearity range of the device at the
expense of sensitivity.

The PyWFS displays higher sensitivity than the Shack–
Hartmann wavefront sensor (SHWFS) and is therefore a key

element for present and future adaptive optics (AO) systems.
As an example, this device will be used to perform the
single-conjugate adaptive optics (SCAO) mode of all Euro-
pean extremely large telescope (ELT) first light instruments
(Neichel et al. 2016; Davies et al. 2018; Hippler et al. 2019).
Unfortunately, the PyWFS exhibits non-linear behaviours and
the relationship between the produced signal and the incom-
ing wavefront is not as straightforward as with the SHWFS.
The complexity and the limited knowledge on the nature of
the PyWFS measurements has led to extensive studies of this
device (Vérinaud 2004; Guyon 2005; Korkiakoski et al. 2007;
Hutterer et al. 2019) in order to analytically describe its lin-
ear response. However, it is possible to describe the PyWFS
as a convolutional system that can be fully characterised by
the knowledge of its impulse response, as is widely done for
many physical systems. The advantages of such a convolutional
description are numerous: it allows for a fast numerical compu-
tation of the response of a sensor to a given input phase and
gives the frequency-dependent sensitivity through the transfer
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Fig. 1. Diagram of PyWFS, Fourier filtering WFS. A pyramidal mask
is placed at a focal plane to achieve optical filtering. The output signal
I(φ) shows a relationship to the entrance phase φ.

Fig. 2. Panel a: shape of the pyramid mask – arg(m). Panel b: modula-
tion function – w. Panel c: pupil shape – Ip.

function of the system. A first step in that direction was pro-
posed by Hutterer et al. (2019), but the model suffers from strong
approximations; for example, the PyWFS is described as two
rooftop masks and some terms are neglected to simplify calcu-
lations. To the best of our knowledge, the most complete study
to date of the PyWFS as a convolutional system has been pro-
posed by Fauvarque et al. (2019). In this model, the PyWFS is
simply described by its three main properties: the shape of the
pyramid mask m, the modulation function w, and the entrance
pupil geometry Ip (see Fig. 2). According to this description, the
impulse response of the system is given by the following equa-
tion:

IR = 2Im( ¯̂m(m̂ ? ŵIp)), (1)

where Im is the imaginary part,̂ the Fourier transform operator,
and ? the convolution symbol.

Now that the PyWFS has captured the interest of AO scien-
tists, one of its major limitations needs to be handled, namely its
strong non-linear behaviour which leads to a spatial frequency-
dependent loss of sensitivity during on-sky operations. This loss
of sensitivity can be captured in a quantity called optical gains
(OG) (Korkiakoski et al. 2008; Deo et al. 2019a). Tracking the
OG during on-sky operations has therefore become one of the
key priorities to fully control PyWFS measurements.

Optical gains originating from non-linear behaviours have
already been recognised in other WFSs, such as the quad-
cells SHWFS (Véran & Herriot 2000) or the Zernike WFS
(Vigan et al. 2019). The main impact of OG in closed-loop oper-
ation is to introduce an error in the wavefront reconstruction.
This error becomes predominant in the case of bad seeing condi-
tions or when pointing at extended objects. There are new robust
strategies available for on-the-fly optimisation of the loop gains
to mitigate the reconstruction error impacted by OGs (Deo et al.
2019b). However, these techniques do not give direct access to
the actual OG values (see Sect. 4). In fact, knowledge of OG
is essential for non-common path aberrations (NCPA) correc-
tion, which is emerging as a critical step in wavefront control for
systems based on PyWFS (Esposito et al. 2015). Knowledge of

OG is also a key issue in PSF reconstruction, where accurate
analysis of loop telemetry data is paramount. The objective of
this paper is to present a new strategy based on a physical
description of the PyWFS to quickly and accurately compute the
OGs independently from temporal loop gains.

In Sect. 2, we present the definition of the OG and ways to
better understand the physical nature of OG, which are gener-
ated by residual phases on the PyWFS. In Sect. 3, we show that
it is possible to use the convolutional model to accurately com-
pute OG, provided there is some statistical information on the
shape of the residual phases. Finally, in the last section of this
paper, we demonstrate the superiority of our method for NCPA
compensation.

2. Definition of optical gains and application to
PyWFS in presence of residual phases

2.1. Interaction matrix as a linear model of the PyWFS

The WFS can be described by a matrix that fully encodes the
linear behaviour of the system. This so-called interaction matrix
(IM) is computed through a calibration process by recording the
slopes of the linear responses of the WFS to a set of incoming
phases φi. Combined, these wavefronts represent the basis of the
phase space we want to control. For each mode, the slopes of the
linear response δIcalib(φi) (Fig. 3) can be computed through the
following operation, often referred to as “push-pull”:

δIcalib(φi) =
Icalib(aφi) − Icalib(−aφi)

2a
, (2)

where Icalib is the recorded intensity on the WFS detector. A
reference signal, corresponding to a flat wavefront in the pupil
plane, is also subtracted from this value. In this paper, we use
the full-frame definition for the PyWFS signal, however this
work can easily and straightforwardly be applied to the slope-
like definition of the PyWFS measurements. In the previous
equation, a represents the amplitude of the mode used for cali-
bration. The quantity a should be as small as possible in order
to stay within the linear regime of the sensor. But in reality,
we want it to be large enough to ensure a satisfactory signal-
to-noise ratio, while at the same time staying within the linearity
regime. This maximisation of signal-to-noise ratio during cal-
ibration can be helped by using optimal calibration strategies,
such as the Hadamard approach (Meimon et al. 2015). The IM
computed during the calibration process IMcalib is then the con-
catenation the slopes recorded for all modes, that is

IMcalib = (δIcalib(φ1), . . . , δIcalib(φi), . . . , δIcalib(φN)). (3)

In the well-known inverse problems framework, this calibra-
tion step is actually a way to compute the linear forward operator
of our system, associating the incoming wavefront with pyramid
measurements.

2.2. Optical gains: An offset between calibration regime and
on-sky regime

The IMcalib is computed in a specific regime that we call the cal-
ibration regime. The calibration is usually done using a point-
like source around a flat wavefront (no reference phase) and for
a given modulation radius.

During operation, which we call the on-sky regime, the WFS
differs inevitably from the calibration regime, if nothing else
because we cannot reach the perfect diffraction limit of the tele-
scope. Because of the non-linear nature of the PyWFS, this leads
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Fig. 3. Sketch of the PyWFS response curve for a given mode φi. The
push-pull method around a null-phase consists in computing the slope
of this curve for a = 0.

to a change in the behaviour of the sensor. It is possible to
account for these non-linearities by considering the PyWFS as
a sensor with a varying linear behaviour that depends on the cur-
rent sensing regime. We therefore hypothesise that the behaviour
of the sensor in the on-sky regime can be described by an IM that
we call IMonSky. In that case, the linear behaviour has to be mea-
sured again for an accurate description of the direct problem, that
is

δIonSky(φi) =
IonSky(aφi) − IonSky(−aφi)

2a
· (4)

When the PyWFS is working around a non-null reference
phase, we have the following relationship:

IonSky(aφi) = Icalib(aφi + φres) (5)

because of the non-linear behaviour of the PyWFS, we have
Icalib(aφi + φres) , Icalib(aφi) + Icalib(φres) and therefore

δIonSky(φi) =
IonSky(aφi) − IonSky(−aφi)

2a

=
Icalib(aφi + φres) − Icalib(−aφi + φres)

2a
, δIcalib(φi), (6)

which naturally leads to offsets between IMcalib and IMonSky.
We define the optical transfer matrix Topt as the transfer

matrix describing the offsets between the on-sky regime and
the calibration regime. This matrix is a square matrix of size
Nmodes × Nmodes, where

IMonSky = IMcalib · Topt. (7)

To obtain the correct linear description of the sensor in a
given sensing regime, we therefore need to adjust the IM com-
puted during calibration by the optical transfer matrix.

From the equation above, we can write the exact definition
of the optical transfer matrix as follows:

Topt = IM†calib · IMonSky. (8)

2.3. Diagonal approximation and OG definition in the PyWFS
measurement space

The diagonal approximation can strongly simplify the computa-
tion of Topt. This approximation consists in assuming that Topt is
a diagonal matrix (Deo et al. 2019a), meaning there is no cross-
talk between modes when we are switching from the calibration
regime to the on-sky (or sensing) regime. In other words, the
slope of the linear behaviour for each mode φi is increased or
reduced by a scalar factor G(φi) called the modal OG.

In the case of the diagonal approximation, we can define the
modal OG G(φi) without having to use the pseudo-inverse IM†calib
(which depends on the condition number): we propose the use
of the scalar product 〈·|·〉 defined in the measurement space to
compare δIonSky(φi) and δIcalib(φi) for each mode φi as follows:

G(φi) =
〈δIonSky(φi)|δIcalib(φi)〉
〈δIcalib(φi)|δIcalib(φi)〉

· (9)

The expression 〈δIonSky(φi)|δIcalib(φi)〉 represents the projec-
tion of the measurement in the sensing regime onto the mea-
surement in the calibration regime and 〈δIcalib(φi)|δIcalib(φi)〉 is
a normalisation term. The definition of OG given in this work
differs slightly from those previously given in the literature
(Korkiakoski et al. 2008; Deo et al. 2019a), and has the advan-
tage of being independent of the reconstructor. This is a descrip-
tion in measurement space only. An equivalent formulation of
Eq. (9) in terms of matrices is the following:

Gopt =
diag(tIMonSky · IMcalib)
diag(tIMcalib · IMcalib)

, (10)

where Gopt is a vector containing all the G(φi) for i ∈ [1,Nmodes].

2.4. Impact of residual phases on the PyWFS impulse
response

The offset experienced by IMcalib changes at each measurement
because φres is a time-varying quantity. That is to say that IMonSky
is changing at every iteration, depending on the content of φres.
Although it seems hard to determine the state of IMonSky at each
instant, we can find a way to compute the averaged state of the
sensing regime 〈IMonSky〉t, which gathers 〈δIonSky(φi)〉t for each
mode. This averaged state is written as

〈IMonSky〉t = (〈δIonSky(φ1)〉t, . . . ,
〈δIonSky(φi)〉t, . . . , 〈δIonSky(φN)〉t). (11)

In this regard, we rely on the convolutional formalism of
the PyWFS proposed by Fauvarque et al. (2019). Within the
framework of this model, it is possible to compute an analytic
function to take into account the impact of residual phases on
PyWFS measurements. The sensing regime is then described
by a PyWFS for which the modulation function (see Eq. (1))
is changed according to this formula:

w← w ?
̂e−

1
2 Dφres , (12)

where Dφres is the residual phase structure function. This equa-
tion provides a fundamental insight into PyWFS measurements
in the presence of residual phases. It was well-known that resid-
ual phases act as an extra modulation that lowers the sensitivity
of the pyramid. We are now able to quantify this loss: the impact
depends on residual phases statistics through the structure func-
tion, and therefore through the power spectral density (PSD). It
is then possible to define its new impulse response in the aver-
aged sensing regime assuming isotropy and stationarity of the
residual phases as follows:

IRonSky = 2Im( ¯̂m(m̂ ? ŵIpe−
1
2 Dφres )). (13)

We note that the modulation function is the only quantity
affected here. This means that the impact of residual phases
can be described as a collection of incoherent tip-tilt offsets
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during one measurement cycle. Changing from an apparently
coherent offset to an incoherent offset comes from the time
averaging operation. This is very well understood in the image
formation field through the derivation of the atmospheric trans-
fer function Roddier (1981). By averaging over time, we can
derive an analytic formulation for the long-exposure seeing lim-
ited PSF, which cannot be fully described using a coherent phase
aberration in the pupil plane.

In this section, we presented a new measurement space based
definition for the OG. We also explained how they naturally
emerge from PyWFS non-linearities when working with offsets
between calibration and sensing regimes. In the following part,
we propose a new method based on the convolutional model to
perform a fast and accurate computation of the OG.

3. New strategy to compute PyWFS modal optical
gains through the convolutive model

3.1. Convolutional formalism: A path to optical gains
computation

In case of OG introduced by residual phase, the diagonal approx-
imation ensures that the knowledge of the diagonal elements of
Gopt is sufficient to compute IMonSky. The expression of G(φi)
given Eq. (9) can be rewritten within the convolutional model
using the impulse responses of the calibration regime and the
sensing regime as follows:

Gconv(φi) =
〈IRonSky ? φi|IRcalib ? φi〉

〈IRcalib ? φi|IRcalib ? φi〉
· (14)

We now have the means to compute the modal OG by know-
ing the following system parameters: the shape of the mask
m, the modulation function w, the shape of the pupil Ip, and
the residual phase structure function Dφres . In order to identify
whether the convolutional model used here is sufficiently accu-
rate to provide a good estimation of the modal OG (i.e. whether
Gconv(φi) is a good estimate of G(φi) or not), we compared
the predictions of the model with end-to-end simulations. The
results of this study are presented in the next section.

3.2. Convolutional model versus end-to-end simulations

The end-to-end simulations were performed via the OOMAO
Matlab toolbox (Conan & Correia 2014), considering a 8 m
class telescope. The resolution in the pupil diameter is 90 pix-
els across. We used a Karhunen-Loève basis composed of 400
modes to compute all our interaction matrices and OG. The
wavefront sensing was carried out in the visible (λ = 550 nm).

Sensitivity curves

We used the convolutional model to compute the well-known
sensitivity curves of the PyWFS where the sensor behaves as a
slope sensor for the frequencies lower than the modulation radius
and as a phase sensor for the frequency above. For the chosen
system configuration, we present results for two different modu-
lation radii in Fig. 4. For each mode, the sensitivity is given by

s(φi) = ||δIcalib(φi)||2 =
√
〈δIcalib(φi)|δIcalib(φi)〉. (15)

We note a small offset between the model and the end-to-
end simulations for the low-order modes. This can be explained

Fig. 4. Well-known pyramid sensitivity curves. Left: modulation radius
rmod = 2λ/D. Right: modulation radius rmod = 5λ/D.

by the hypothesis of the sliding pupil used in the deriva-
tion of the convolutional model. This issue was presented in
Fauvarque et al. (2019).

Modal optical gains

We carried out the study by computing modal OG through end-
to-end simulations in multiple system configurations. We then
compared those OG results to those predicted through the convo-
lutional model. We suppose that we know the turbulence statis-
tics. In other words, we have access to the PSD or the structure
function of the residual phases. We focus on how to get this data
in a practical way later in this paper.

End-to-end simulations. We proceeded in the following
way: Given a PSD, we generated 20 decorrelated phases. We
then computed the interaction matrices IMonSky around each of
these phases (using a push-pull method) and we used Eq. (10)
to compute the OG. The averaged values for each different PSD
chosen are presented Figs. 5 and 6; the shaded areas represent the
maximum and minimum values found for the OG for 20 phase
realisations.

Convolutional model. We used the same PSD used for the
end-to-end simulations to compute the IRonSky Eq. (13) and we
retrieved the OG thanks to Eq. (14).

We can define two main PSD configurations around which
we can compute the OG

– Full turbulence OG: in this case, the PyWFS works in open
loop and wavefront sensing is done on a seeing-limited EM
field at the apex of the pyramid. In the vast majority of sys-
tems, this is the case for the first loop iteration and before
the loop is closed. After a few closed-loop iterations, the EM
field seen by the pyramid is no longer seeing-limited because
we are in closed-loop operation. We then reach the second
configuration described below. Tracking and compensating
the OG in the full turbulence can be interesting when the
system has convergence issues under strong turbulence or
when we want to close the loop using low modulation radii.
The results of the comparison for this configuration are given
Fig. 5: we note the strong agreement between the convolu-
tional model and the end-to-end simulations.

– Residual phases OG: the AO loop is closed and the OG are
introduced by the imperfect wavefront correction. This case
is the most interesting because it can allow us to enhance
the closed-loop performance. For this setting, the results are
given Fig. 6: we still have a good match between our model
and the end-to-end simulations.

By testing our model for various system configurations (multiple
modulation radii, multiple r0, and open- or closed-loop residual
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Fig. 5. Computed OG on full turbulence screens for multiple r0. The
convolutional model fits well with the OG computed by E2E simula-
tions. The shaded area represents the maximum and minimum values
found for the OG for 20 phase realisations. Top: rmod = 3λ/D. Bottom:
rmod = 5λ/D.

phases) we demonstrated that the convolutional model can be
used to predict the OG with sufficient accuracy to remain in their
statistical variability range. It therefore provides a fast and agile
way to track OG, provided we have knowledge of the residual
PSD. In the next section, we hence focus on how to get this infor-
mation in a practical way.

3.3. Obtaining the residual PSD

We propose to obtain the residual PSD from the telemetry data.
It is a non-invasive method that is already deeply investigated
in the PSF reconstruction field (Beltramo-Martin et al. 2019).
We note that the residual phase PSD can be split into two parts
(Rigaut et al. 1998): the corrected frequencies (area A Fig. 7)
and the uncorrected frequencies (area B Fig. 7). These two areas
are separated by a deformable mirror (DM) cut-off frequency,
which depends on the position and number of actuators. The
PSD estimation process works in the following two steps.
(1) By recording the integrated commands sent to the DM, we

can assess the shape of the turbulence. In other words, we
are able to estimate the Fried parameter r0 and therefore
have an estimation of the shape of the PSD outside the
correction zone. The estimation of r0 thanks to telemetry
data is usually not perfectly accurate and the Fried param-
eter is often overestimated. However, it has been shown that
an AO system can be characterised well to correct for this
offset (Fétick et al. 2019).

(2) Recording the residual commands provide information on
the residual PSD inside the correction area. This method
is not ideal, because all the commands sent to the DM are
already tainted by the OG problem. It is possible to over-
come this issue using models describing the analytical PSD
inside the correction area, provided a simple set of parame-
ters describing the system (Rigaut et al. 1998; Correia et al.
2020).

Fig. 6. Closed-loop residual phases OG. Number of actuators in the
pupil: 20. Top: rmod = 3λ/D. Bottom: rmod = 5λ/D.

Fig. 7. Left: example of a residual PSD for a 40 × 40 actuators system
with a Cartesian geometry. In the frequency space, the correction zone
is the area labelled A: it is a square with each side of nact = 40/D in
m−1. The B area represents the space of uncorrected frequencies. Right:
radial cut of the PSD in log scale.

The next step is to understand what level of accuracy is
required when computing the residual phase PSD using teleme-
try data combined with an analytical model of our system. Using
the convolutional model, we propose a brief study to analyse the
contribution of the different parts of residual PSD on the OG
morphology. As we mentioned earlier, we can split the contri-
bution of the residual phases into two parts: the fitting PSD and
the PSD inside the correction zone. It is therefore interesting to
study the OG for each of these contributors.

For that purpose we chose two system configurations: an
8 m telescope given a r0 = 15 cm with either 20 actuators
(NAOS-like configuration on the VLT) or 40 actuators within the
same pupil diameter (SPHERE-like configuration on the VLT:
Beuzit et al. 2019). We used the typical residual PSD of these
systems to compute the OG thanks to the convolutional model.
In Fig. 8, we show the results for which the OG are computed
for the full PSD, for the fitting part of the PSD and for the
PSD inside the correction area only. For these chosen configu-
rations, it is clear that OG gains are dominated by the energy
which lies in the fitting PSD, even for the high-contrast configu-
ration (40 × 40 actuators in the pupil) where the residual energy
is equally distributed between the corrected and the uncorrected
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Fig. 8. Contribution of the corrected and uncorrected part of a closed-
loop PSD (r0 = 15 cm) to the OG. Left: for 20 actuators in the pupil
– NAOS configuration. Right: for 40 actuators in the pupil – SPHERE
configuration.

Fig. 9. Maximum acceptable error (in percent) on the estimation of r0
to ensure an error on the computed OG under ±10% for two system
configurations.

zone (Fig. 8). Therefore the previous statement often tends to be
verified (all the more because we are considering residual phases
at the wavefront sensing wavelengths). Yet, it is clear that for a
very noisy AO system, the fitting error could be overcome by the
error inside the correction zone. In that case, the error on the OG
computation is constrained by the estimation of the residual PSD
inside the correction zone. Nevertheless, we can conclude that in
the vast majority of the observations and for present and future
AO systems (the E-ELT will also be in a fitting-error-limited
AO configuration), the OG morphology is mainly constrained
by the Fried parameter r0, and that the knowledge of this param-
eter only would suffice to derive a sufficiently accurate model
of the OG. Thus, estimating r0 during closed-loop operation is a
crucial step for PyWFS OG tracking. To assess the accuracy on
r0 that needs to reached, we probe what impact an error in the
estimation of r0 has on the computation of OG in Fig. 9. In this
plot, and for both configurations studied, we present the maximal
acceptable error on the estimation of r0 to maintain an error on
computed OG below ±10%. To retrieve OG with an error below
±10%, we see that we need to be more accurate for bad seeing
conditions and for AO systems with less DM actuators in the
pupil. Overall, the values presented in this figure show that we
do not need an incredibly high precision on the Fried parameter
to accurately compute the OG using the presented method.

4. Applying the convolutional model to NCPA
correction

The aim of this section is to demonstrate the importance of
estimating OGs for the correct control of the AO system by

Fig. 10. Schematic view of NCPA correction in an AO system.

focussing on the specific issue of NCPA correction. The NCPA
appear in AO systems when the aberrations between the WFS
path and science path are different. In that case, if nothing is
done, the AO loop converges towards a flat wavefront on the
WFS and the NCPA remain uncorrected on the science camera.
This effect can be mitigated by using a non-null wavefront ref-
erence target on the WFS, corresponding to the NCPA (Fig. 10).
To do so, we propose to proceed with the following three cali-
bration steps:
1. Determination of the NCPA wavefront (using techniques

such as phase diversity, for instance Blanc et al. 2003).
2. Computation of the IMcalib around the NCPA wavefront.

Because NCPA are not a zero-mean stationary wavefront,
they cannot be described by the convolutional model through
a structure function as is stated Eq. (13). Furthermore, the
diagonal approximation (Sect. 2.3) is not necessarily veri-
fied in the case of NCPA. Hence, it is better to calibrate the
WFS as close as possible to its working point: the NCPA
wavefront.

3. Computation of the WFS response to the NCPA wavefront
Icalib(φNCPA).

Subsequently, the reference WFS intensities correspond to the
NCPA. Given a residual phase φres, the signal to be reconstructed
is then Icalib(φres) − Icalib(φNCPA). However, using this strategy
for PyWFS in presence of residual phase OG is unfortunately
problematic and can lead to critical loop instabilities.

4.1. NCPA catastrophe

For a WFS working around its reference position, the signal to be
reconstructed is Icalib(φres)−Icalib(φNCPA). In the case of a classical
integral controller, the commands sent to the DM at each frame
t is written as

c(t) = c(t−1)−Gtemp · IM
†

calib · [Icalib(φres(t))− Icalib(φNCPA)], (16)

where Gtemp is a diagonal matrix, ideally constituted of the opti-
mised temporal modal gains of the loop. This equation works for
a perfectly linear WFS. As previously presented in this paper, the
PyWFS exhibits OG. Therefore, the on-sky PyWFS measure-
ments are written as

PyWFS : φ→ IonSky(φ); (17)

thus, the Eq. (16) becomes
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Fig. 11. Schematic view of the AO closed loop in presence of com-
pensated NCPA. The feedback loop can be otpimized by computing the
quantity Gloop without disentangling Gtemp from Gopt. However, to prop-
erly compensate for the NCPA in the forward loop, the value Gopt is
needed.

c(t) = c(t − 1) −Gtemp · IM
†

onSky · [IonSky(φres(t)) − IonSky(φNCPA)],

(18)

which gives in the OG diagonal approximation

c(t) = c(t−1)−Gtemp·
IM†calib

Gopt
·[IonSky(φres(t))−IonSky(φNCPA)], (19)

where Gloop = Gtemp/Gopt is therefore a diagonal matrix used
to apply different gains on each of the controlled modes. As
we mentioned in the introduction, very efficient methods are
available that can optimise this matrix (Deo et al. 2019b), but
without differentiating between Gtemp and Gopt. However, it is
important to note in this equation that the intensity to be removed
is IonSky(φNCPA) and not Icalib(φNCPA) (see Fig. 11). These two
quantities are linked through the following equation:

IonSky(φNCPA) = IMonSky · φNCPA

IonSky(φNCPA) = IMcalib ·Gopt · IM
†

calib · Icalib(φNCPA). (20)

We see from this equation that we need to get Gopt to be able
to properly compensate for the NCPA.

We wondered what would happens if we were just to use
Icalib(φNCPA) in Eq. (20). To answer this question, we performed
end-to-end simulations with the same parameters as before, that
is to say for an 8 m telescope with 400 controlled KL modes
and a Fried parameter r0 = 15 cm. We chose the H band to be
the wavelength of the science path. Because NCPA are usually
composed low-order modes, we chose the following arbitrary
distribution for the NCPA: a combination of the modes KL5 to
KL25, following a f −2 law (see Fig. 12).

We ran several closed-loop simulations while increasing the
NCPA amplitudes, and we recorded the Strehl ratio over 16 s
of closed-loop integration. The results are given Fig. 15. The
dashed line shows the impact of increasing NCPA in the case in
which we did not try to compensate for them. When we tried to
compensate the NCPA by applying reference intensities on the
PyWFS without compensating for the OG, we observed a degra-
dation of performance (Fig. 13). This is not surprising: when
subtracting the NCPA reference intensities to the PyWFS mea-
surements, the mode φNCPA,i is reconstructed as

φ̃NCPA,i = IM†onSky · Icalib(φNCPA,i) =
φNCPA,i

gopt(φNCPA,i)
, (21)

Fig. 12. NCPA distribution over a modal basis. NCPA phase chosen
for our simulations is a linear combination of 20 low-order KL modes
following a f −2 law in rms amplitude.

Fig. 13. Strehl ratio for increasing NCPA amplitude, in the case of no
NCPA compensation and of no OG compensation on the NCPA ref-
erence intensities. For NCPA amplitudes that are too while when the
reference intensities are not updated with OG, the loop diverges, which
we call the NCPA catastrophe. The static aberrations of the two config-
urations denoted by a red circle are plotted Fig. 14.

where gopt(φNCPA,i) < 1 is the OG associated with the mode
φNCPA,i, and so we have

φ̃NCPA,i > φNCPA,i. (22)

This emphasises the fact that if we do not compensate for
OG, the reference intensities produce an excess of NCPA pro-
portional to the OG in the loop. This effect is shown Fig. 14 for
two cases highlighted by red circles Fig. 15.

When the amplitude of the NCPA is sufficiently high, pro-
ducing too much NCPA creates additional OG that adds to
those already generated by the residual phases. By lowering the
OG, this leads to an increase of NCPA correction according to
Eq. (22). The increase in NCPA correction significantly changes
the OG and leads to ever higher NCPA correction levels. This
makes the loop diverge, which we label the NCPA catastrophe.
We can clearly see this effect in our simulations starting from
130 nm rms and above of NCPA (Fig. 15).

4.2. NCPA compensation using the convolutional model

If we assume the residual phase PSD a known quantity, we can
use the convolutional model to compute the OG and to update
the reference intensities according to Eq. (20). By doing so, we
obtain the upper curve in Fig. 15. Performance is significantly
improved, but there is still a built up of static aberrations during
the closed-loop operation, preventing the system from maintain-
ing its maximum Strehl ratio irrespective of NCPA amplitude
(which would correspond to a flat curve Fig. 15). This can be
explained by two phenomena:
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Fig. 14. Static aberrations in the AO loop in the case of no OG compen-
sation on the NCPA reference intensities. Left: for NCPA of 70 nm rms.
Right: for NCPA of 120 nm rms.

Fig. 15. Strehl ratio for increasing NCPA amplitude in the case of OG
compensation on the NCPA reference intensities, compared to the previ-
ous cases presented before. The performance is increased and the NCPA
catastrophe avoided. Nonetheless, a noticeable impact on performance
is visible as the NCPA amplitude is increased.

– The way the OG has been defined corresponds to an average
state of the system (Eq. (11)). At each frame, the current OG
can be higher or lower than the averaged value, introducing
an error on the NCPA reference intensities. The ideal strategy
would be to have the means to estimate the OG at each frame.

– The convolutional model characterises the offset between
PyWFS measurements when the calibrating around a null-
phase and when in the presence of residual phases. But
it does not take in account the presence of NCPA in the
shape of the computed OG. Therefore, with higher NCPA
amplitudes the error on the OG computed with the con-
volutional model is increased. This explains why perfor-
mance is decreased with increasing NCPA amplitudes in
Fig. 15. Further analysis of this problem is beyond the scope
of this paper, but we are currently working on a solution
that requires further analytical developments on the convo-
lutional model.

This section highlights the importance of estimating the PyWFS
OG for NCPA compensation in closed-loop operation. The OG
estimation based on the convolutional model has proven to
be efficient for typical NCPA amplitudes (below 100 nm rms)
encountered in AO systems. However, handling stronger NCPA
amplitudes will require further analytical developments to take
into account the modification of OG by the NCPA themselves.

5. Conclusions

The work presented in this paper offers a new method for
computing the PyWFS OG. Our approach relies on a physical

description of the WFS through a convolutional model, which
allows us to analytically compute the impact of residual phases
on PyWFS measurements. We have demonstrated the accuracy
of this method by comparing results to end-to-end simulations
for multiple system configurations.

The presented method requires knowledge of the residual
phase statistical characteristics to compute the OG. We presented
a practical implementation to estimate residual phase statistics
using AO telemetry data in a similar to what is done for PSF
reconstruction. We showed that the most important aspect is the
knowledge of the turbulence strength through the Fried parame-
ter r0. We also demonstrated that from this r0 parameter alone,
a good approximation of the OG could be achieved. In other
words, any AO system using a pyramid WFS and capable of
providing an on-line estimate of r0 could benefit from estimating
the OG using the method we presented in this paper.

Finally, we demonstrated that OG play a crucial part when
trying to compensate NCPA with a PyWFS. To avoid what we
have labelled the NCPA catastrophe, proper handling of the OG
is mandatory. We proposed a way to mitigate the impact of OG
on NCPA by computing them using the method we presented in
this paper. This work can also be applied to any type of WFS
based on Fourier filtering and provides a new insight into the
understanding of OG in Fourier-filtering WFS and how to man-
age these gains.
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