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ABSTRACT

Context. Extremely Large Telescopes have chosen the Pyramid wavefront sensor (PyWFS) over the more widely used Shack-Hartmann WaveFront
Sensor (SHWFS) to perform their Single Conjugate Adaptive Optics (SCAO) mode. The PyWFS is a Fourier-filtering based sensor, which has
proven to be strongly efficient for astronomical purposes. However, it shows non-linearity behaviors that lead to a reduction of its sensitivity when
working around a non-null phase. This effect, called Optical Gains (OG), degrades the performance of the closed loop and prevents accurate
correction of Non-Common-Path Aberrations (NCPA).
Aims. We aim at computing these so-called OG with a fast and agile technique in order to control the PyWFS measurements for adaptive optics
closed-loop systems.
Methods. Thanks to a new theoretical description of the PyFWS, which uses a convolutional model to describe the sensor, we analytically predict
the behavior of the PyWFS in closed-loop operation. This model allows us to explore the impact of residual phases on the properties of the PyFWS
measurements in terms of sensitivity, and associated OG. The proposed method relies on the knowledge of the residual phase statistics and allows
to automatically estimate the current OG. End-to-End numerical simulations are used to validate our predictions and test the relevance of our
approach.
Results. We show that an accurate estimation of the OGs is possible by only using the AO telemetry data to derive statistical information of
the turbulence. The method is then fully non-invasive. We further show that by only having an estimation of the current Fried parameter r0 and
the basic system characteristics, OGs can be estimated within 10% accuracy. The proposed method applies to Pyramid WFS, but also to any
Fourier-Filtering WFS suffering from OG variations.

Key words. Adaptive Optics – Pyramid Wavefront Sensor – Optical Gains – Convolutional Model

1. Introduction

The PyWFS is an optical device used to perform wavefront sens-
ing proposed for the first time in 1996 (Ragazzoni 1996). In-
spired by the Foucault knife test, the PyWFS is a pupil plane
wavefront sensor performing optical Fourier filtering thanks to
a glass pyramid located at the focal plane (see figure 1). This
pyramid splits the electromagnetic (EM) field in four beams pro-
ducing four different filtered images of the entrance pupil. This
filtering operation allows the conversion of phase information
at the entrance pupil into amplitude at a pupil plane where a
quadratic sensor is used to record the signal. The PyWFS usually
includes an additional optical module called a modulation mir-
ror, which, by moving the Point-Spread Function (PSF) around
the tip of the pyramid, allows to increase the linearity range of
the device at the expense of its sensitivity.

This wavefront sensor shows higher sensitivity than the
SHWFS and is therefore a key element for present and future AO
systems (Neichel et al. 2016; Davies et al. 2018). Its complexity
and the limited knowledge on the nature of the PyWFS measure-
ments led to extensive studies of this device (Vérinaud 2004;
Guyon 2005; Hutterer et al. 2018). One of the most complete
study of this wavefront sensor is a model describing the sensor
as a convolutional system described by its three main properties
(Fauvarque et al. 2019): the shape of the pyramid mask m, the
modulation function w, and the entrance pupil geometry Ip (see
figure 2). This model is called the convolutional model, and al-

Fig. 1. The PyWFS is a Fourier filtering wavefront sensor. A pyrami-
dal mask is placed at a focal plane in order to achieve optical filtering.
The intensities I(φ) recorded on the detector show a relationship to the
entrance phase φ.

lows one to compute a simple quantity which fully describes the
behaviour of the sensor: its impulse response given equation 1.

IR = 2Im( ¯̂m(m̂ ? ŵIp)) (1)

wherê is the Fourier transform operator and ? the convolu-
tion symbol.

Now that the PyWFS has captured the interest of AO sci-
entists, one of its major limitations needs to be handled: its
strong non-linear behaviour which leads to a spatial frequency-
dependent loss of sensitivity during on-sky operations. This loss
of sensitivity can be encoded in a quantity called Optical Gains
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Fig. 2. a: arg(m) - shape of the pyramid mask. b: w - modulation func-
tion. c: Ip - pupil shape.

(OG) (Korkiakoski et al. 2008). Tracking these OG during on-
sky operations has therefore become one of the key priorities to
fully control PyWFS measurements. The spatial error due to OG
can be dominated by other terms in the error budget, but it be-
comes predominant in case of bad seeing conditions and/or when
pointing at extended objects. In closed loop operation, OG and
temporal gains can be merged so there is only one global gain to
optimize for each mode. There are now new and robust strategies
that can make possible such an optimization (Deo et al. 2019) but
they don’t allow to disentangle OG from the loop temporal gains.
However, the knowledge of OG alone is still crucial for Non-
Common Path Aberrations (NCPA) handling which is emerging
as a critical step in wavefront control for PyWFS based systems
(Esposito et al. 2015). It is also a key issue in order to properly
analyze loop telemetry data for PSF reconstruction. The objec-
tive of this paper is to present a new strategy based on a physi-
cal description of the PyWFS to compute quickly and accurately
these OG, independently from the loop temporal gains.

In section 2, we propose to present a clear definition of the
OG and how we can better understand the nature of OG which
are generated by residual phases on the PyWFS. In section 3,
we then show that it is possible to use the convolutional model
approach to accurately compute OG, providing we have some
statistical knowledge of the shape of the residual phases.

2. Definition of Optical Gains and application to
PyWFS in presence of residual phases

2.1. The interaction matrix approach as a linear model of the
PyWFS

The wavefront sensor is described by a matrix which fully en-
codes the linear behaviour of the system. This so-called Inter-
action Matrix (IM) is computed through a calibration process
by recording the slopes of the linear responses of the wavefront
sensor to a set of phases φi which forms a basis of the phase
space we want to control. For each mode, the slope of the lin-
ear response δIcalib(φi) can be computed through the following
operation, called "push-pull" operation:

δIcalib(φi) =
Icalib(aφi) − Icalib(−aφi)

2a
(2)

where Icalib is the intensities recorded on the wavefront sen-
sor camera and a is the amplitude of the mode used for calibra-
tion. This amplitude a should be as small as possible in order
to stay within the linear regime. But in reality, we want it to be
large enough so the signal-to-noise ratio of the measurement is
satisfactory while staying in the linearity zone. This maximiza-
tion of signal-to-noise ratio during calibration can be helped by
using optimal calibration strategies, such as the Hadamard ap-
proach (Meimon et al. 2015). The interaction matrix computed
during the calibration process IMcalib is then the concatenation

the slopes recorded for all modes.

IMcalib = (δIcalib(φ1), ..., δIcalib(φi), ..., δIcalib(φN)) (3)

In the well-known inverse problems framework, this calibra-
tion step is actually a way to compute the linear forward oper-
ator of our system, linking the phase to the pyramid measure-
ments.

Fig. 3. Sketch of the PyWFS response curve for a given mode φi. The
push-pull method around a null-phase consists in computing the slope
of this curve for a = 0.

2.2. The Optical Gains: an offset between calibration regime
and sensing regime

IMcalib is computed in a specific regime that we call the calibra-
tion regime. The framework used for the rest of the paper is the
following: we suppose the calibration is done with a point-like
source around a flat wavefront (no reference phase) and for a
given modulation radius.

During operation - which we call the sensing regime - the
wavefront sensor differs inevitably from the calibration regime,
if nothing else because we can’t reach the perfect diffraction
limit of the telescope. Because of the non-linear nature of the
PyWFS, this leads to a change in the behaviour of the sensor.
These non-linearities can be handled by considering the PyWFS
as a sensor with a varying linear behaviour which depend on the
sensing regime. We therefore make the hypothesis that the sen-
sor’s behaviour in the sensing regime can be described by an IM
that we call IMsensing and in that case the linear behaviour has to
be measured again to have the accurate description of the direct
problem.

δIsensing(φi) =
Isensing(aφi) − Isensing(−aφi)

2a
(4)

When the PyWFS is working around a non-null reference
phase, we have the following relationship:

Isensing(aφi) = Icalib(aφi + φre f ) (5)

because of PyWFS non-linear behaviour, we have Icalib(aφi +
φre f ) , Icalib(aφi) + Icalib(φre f ) and therefore:

δIsensing(φi) =
Isensing(aφi) − Isensing(−aφi)

2a

=
Icalib(aφi + φre f ) − Icalib(−aφi + φre f )

2a
, δIcalib(φi) (6)

which naturally leads to offsets between IMcalib and IMsensing.
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We define the optical transfer matrix Topt as the transfer
matrix describing the offsets between the sensing regime and the
calibration regime. This matrix is a square matrix of size Nmodes
x Nmodes.

IMsensing = IMcalib.Topt (7)

In order to obtain the correct linear description of our sensor
for a given sensing regime, we therefore need to correct the
interaction matrix computed during calibration by the optical
transfer matrix.

From the equation above, we can write the exact definition
of the optical transfer matrix:

Topt = IM†calib.IMsensing (8)

2.3. Diagonal approximation and OG definition in the PyWFS
measurement space

An approximation can strongly simplify the computation of
Topt: the diagonal approximation. This approximation consists
in assuming that Topt is a diagonal matrix (Deo et al. 2019).
That is to say there is no cross-talk between modes when we are
switching from the calibration regime to the sensing regime. In
other words, the slope of the linear behaviour for each mode φi
is increased or reduced by a scalar factor G(φi) called the modal
OG.

In the case of the diagonal approximation, we can define
the modal OG G(φi) without having to use the pseudo inverse
IM†calib (which depends on the conditioning): we propose to use
the usual scalar product 〈·|·〉 defined in the measurement space to
compare δIsensing(φi) and δIcalib(φi) for each mode φi.

G(φi) =
〈δIsensing(φi)|δIcalib(φi)〉
〈δIcalib(φi)|δIcalib(φi)〉

(9)

〈δIsensing(φi)|δIcalib(φi)〉 represents the projection of the mea-
surement in the sensing regime onto the measurement in the cali-
bration regime and 〈δIcalib(φi)|δIcalib(φi)〉 is a normalization term.
The definition of OG given here differs slightly from the ones
previously given in the literature (Korkiakoski et al. 2008; Deo
et al. 2019) and has the advantage of being independent of the re-
constructor: this is a description in the measurement space only.
An equivalent formulation of equation 9 in terms of matrices is
the following:

Gopt =
diag(tIMsensing.IMcalib)
diag(tIMcalib.IMcalib)

(10)

where Gopt is a vector containing all the G(φi) for i ∈
[1,Nmodes].

2.4. Optical Gains induced by residual phases

In this subsection, we aim at understanding the nature of OG
induced by residual phases. We can describe residual phases
φresidual as an offset point around which we estimate the different
modes φi. However, we still consider a calibration done with a
point-like source with a flat wavefront. We can therefore write:

Isensing(aφi) = Icalib(aφi + φresidual) (11)

Besides, this offset point changes at each measurement because
φresidual is a dynamic quantity. That is to say that IMsensing is
changing at each iteration, depending on the shape of φresidual.
Although it seems hard to determine the state of IMsensing at each
instant, we can find a way to compute the averaged state of the
sensing regime < IMsensing >t which gathers < δIsensing(φi) >t for
each mode.

< IMsensing >t= (< δIsensing(φ1) >t, ...,

< δIsensing(φi) >t, ..., < δIsensing(φN) >t) (12)

In this regard, we rely on the convolutional formalism of the
PyWFS proposed by Fauvarque et al. (2019). Within the frame-
work of this model, it is possible to compute an analytic formula
to take into account the impact of residual phases on the Py-
WFS measurements: the sensing regime is then described by a
PyWFS for which the modulation function (see equation 1) is
changed according to this formula:

w← w ?
̂e−

1
2 Dφres (13)

This equation gives a fundamental insight on PyWFS mea-
surements in presence of residual phases: it was well-known that
residual phases act as an extra modulation that lowers the pyra-
mid sensitivity. We now know how to quantify this loss: the
impact depends on residual phases statistics through the struc-
ture function, and therefore through the Power Spectral Density
(PSD) of the residual phases. It is then possible to define its
new impulse response in the averaged sensing regime assuming
isotropy and stationarity of the residual phases:

IRsensing = 2Im( ¯̂m(m̂ ? ŵIpe−
1
2 Dφres )) (14)

The reader must notice that in this equation, the modulation
function is the only quantity that is affected. This means that
the impact of residual phases can be described as a collection of
tip-tilt offsets during one measurement: the residual phase OG
are thus depicted as a sort of incoherent offsets. Going from an
apparently coherent offset to an incoherent offset in the nature of
these OG comes from the time averaging operation. This in fact
is very well understood in the image formation field through the
derivation of the transfer function of the atmosphere Roddier
(1981): by averaging over time, we can find an analytic formula
for a long-exposure seeing limited PSF, which can not be only
described by a coherent phase aberration in the pupil plane.

In this section, we have exposed a new measurement space
based definition of OG and explained how they naturally emerge
from PyWFS non-linearities when working with offset between
calibration and sensing regime. In the following part, we propose
a new method based on the convolutional model to perform a fast
and accurate computation of these OG.

3. A new strategy to compute PyWFS modal Optical
Gains through the convolutive model

3.1. Convolutional formalism: a path to optical Gains
computation

In case of OG due to residual phases, the diagonal approxima-
tion ensures that the knowledge of the diagonal elements of Gopt
is enough to compute IMsensing. The expression of G(φi) given
equation 9 can be written within the convolutional model using
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the impulse responses of the calibration regime and the sensing
regime:

Gconv(φi) =
〈IRsensing ? φi|IRcalib ? φi〉

〈IRcalib ? φi|IRcalib ? φi〉
(15)

Thus, we have a way to compute the modal OG thanks to the
convolutional model, knowing the following system parameters:
the shape of the mask m, the modulation function w, the pupil
shape Ip, and the structure function of the residual phases Dφres .
In order to identify whether the convolutional model used here
is accurate enough to allow a good estimation of the modal OG
- i.e whether Gconv(φi) is close to G(φi) or not - we compared
the predictions of the model with End-to-End simulations. The
results of this study are presented in the next section.

3.2. Convolutional model versus End-to-End simulations

The End-to-End simulations are performed using the OOMAO
Matlab toolbox (Conan & Correia 2014), considering a 8 m
class telescope. The resolution in the pupil diameter is 90 pixels.
We use a Karhunen-Loève basis of 400 modes on which we com-
pute all our interaction matrices and OG. The wavefront sensing
is done in the visible (λ = 550 nm).

Sensitivity curves

We use the convolutional model to retrieve the well-known sen-
sitivity curves of the PyWFS where the sensor behaves as a slope
sensor for the frequencies lower than the modulation radius and
as a phase sensor for the frequency above it. For the chosen sys-
tem configuration, we present figure 4 results for two different
modulation radii. We remind the reader that for each mode, the
sensitivity is given by:

s(φi) = ||δIcalib(φi)||2 =
√
〈δIcalib(φi)|δIcalib(φi)〉 (16)

We note a small offset between the model and the end-to-end
simulations for the low-order modes. This can be explained by
the hypothesis of the sliding pupil used for the derivation of the
convolutional model. This issue was tackled in Fauvarque et al.
(2019).
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Fig. 4. The well-known pyramid sensitivity curves. Left: Modulation
radius rmod = 2λ/D. Right: Modulation radius rmod = 5λ/D.

Modal Optical Gains

We carry out the study by computing modal OG through End-to-
End simulations in different system configurations and we then

compare to the ones predicted through the convolutional model.
We suppose here that we know the statistics of the turbulence.
In other words, we have access to the PSD (Power Spectral
Density) or the structure function of the residual phases. We will
focus on how to get this data in a practical way later in this paper.

End-to-End simulations - We proceed in the following way:
given a PSD, we generate 20 decorrelated phases. We then
compute the interaction matrices IMsensing around each of these
phases (using a push-pull method) and we use the formula 10
to compute the OG. The averaged values for each different PSD
chosen are presented figure 5 and figure 6 (the shaded areas rep-
resent the maximum and minimum values found for the OG for
20 phase realisations).
Convolutional Model - We use exploit the same PSD used for
the End-to-End simulations to compute the IRsensing equation 14
and we retrieve the OG thanks to equation 15.

We can define two main PSD configurations around which
we can compute the OG:

– The full turbulence OG: in that case, the PyWFS works in
open-loop and the wavefront sensing is done on a seeing-
limited EM field at the tip of the pyramid. In the vast ma-
jority of systems, this case is verified at the very first itera-
tions when we close the loop. After a few closed-loop itera-
tions, the EM field seen by the pyramid is no longer seeing-
limited because we are in closed-loop operation. We then fall
in the second configuration described below. Tracking and
compensating the OG in this case can be interesting when
the system has trouble to bootstrap on a strong turbulence or
when we want to close the loop for lower modulation radii.
The results of the comparison for this configuration are given
figure 5: we note the strong agreement between the convolu-
tional model and the End-to-End simulations.

– The residual phases OG: the Adaptive Optic loop is closed
and the OG are due to imperfect correction of the wavefront.
This case is the most interesting one because it can allow
us to enhance the closed-loop performance. For this setting,
the results are given figure 6: we still have a strong match
between our model and the End-to-End simulations.

By testing our model for different system configurations (dif-
ferent modulation radii, different r0, open or closed loop residual
phases) we have demonstrated that the convolutional model can
be used to predict the OG with sufficient accuracy to remain in
their statistical variability range. It therefore provides a fast and
agile way to track OG, providing knowledge of the residual PSD.
In the next section, we hence focus on how to get this data in a
practical way.

3.3. How to get the residual PSD?

We suggest here to obtain the residual PSD from the telemetry
data. It is a non-invasive method which is already deeply inves-
tigated in the PSF reconstruction field (Beltramo-Martin et al.
2019). To achieve this goal, we generally also rely on the com-
mands sent to the DM. The process works in two steps:

– If we record the integrated commands sent to the DM, we
can assess the shape of the turbulence: we will be able to get
the Fried parameter r0 and therefore have an estimation of
the PSD shape outside the correction zone. The estimation
of r0 thanks to the telemetry is usually not perfectly accurate
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Fig. 5. OG computed on full turbulence screens for different r0. The
convolutional model fits well with the OG computed by E2E simula-
tions. The shaded area represents the maximum and minimum values
found for the OG for 20 phase realisations. The modulation radius is
rmod = 3λ/D.
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Fig. 6. OG for closed loop residual phases. Number of actuators in the
pupil: 20. Top: rmod = 3λ/D. Bottom: rmod = 5λ/D.

and the Fried parameter is often overestimated. However, it
has been shown that an AO system can be well characterized
in order to correct for this offset (Fétick et al. 2019).

– Checking the residual commands will give us an information
on the residual PSD inside the correction zone. This method
is not ideal, because all the commands sent to the DM are al-
ready tainted by the OG problem. This problem can be over-
come by using models describing the analytical PSD inside
the correction zone, providing a simple set of parameters de-
scribing the system (Rigaut et al. 1998).

We therefore need to know what level of accuracy is required
when computing the residual phases PSD through telemetry
data and with the help of an analytical model of our system.
Using the convolutional model, we propose a brief study to
analyse the contribution of the different parts of residual PSD
on the OG morphology. As we mentioned earlier, we can
split the contribution of the residual phases into two parts: the
fitting PSD and the PSD inside correction zone. It is therefore
interesting to study the OG for each of these contributors.

For that purpose we choose two system configurations: a
8m telescope given a r0 = 15 cm with either 20 actuators
(NAOS configuration on the VLT) or 40 actuators within the
same pupil diameter (SPHERE configuration on the VLT: Beuzit
et al. (2019)). We use a typical residual PSD of these systems to
compute the OG thanks to the convolutional model. Figure 7,
we show results when the OG are computed for the full PSD, for
the fitting part of the PSD and for the PSD inside the correction
area only. It is clear that OG gains are dominated by the energy
which lies in the fitting PSD, even for the high-contrast configu-
ration (40 × 40 actuators in the pupil). We can conclude that the
OG morphology is mainly constrained by the Fried parameter r0,
and that the knowledge of this parameter only would be enough
to derive a sufficiently accurate model of the OG. Thus, estimat-
ing r0 during closed-loop operation is a crucial step for PyWFS
OG tracking. In order to assess the accuracy on r0 we need to
reach, we probe the impact of an error in the estimation of r0 on
the OG computation in figure 8. In this plot, we can see for both
configurations studied what is the maximal error that can be tol-
erated on the estimation of r0 in order to maintain the error on
OG under ±10%. In order to stay under ±10% error on the OG,
we see that we need to be more accurate for bad seeing regimes
and for cases with less actuators in the pupil. Overall, the values
presented in this figure show that we don’t need an unreachable
precision on the Fried parameter to accurately compute the OG
using the presented method.
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Fig. 7. Contribution of the corrected and non-corrected part of a closed
loop PSD (r0 = 15 cm) to the OG. Left: For 20 actuators in the pupil
- NAOS configuration. Right: For 40 actuators in the pupil - SPHERE
configuration.

4. Conclusions

The work presented here proposes a new method to compute
PyWFS OG. Our technique relies on a physical description of
the wavefront sensor through a convolutional model, which al-
lows to analytically compute the impact of residual phases on
PyWFS measurements. We demonstrated the accuracy of this
method through a comparison with End-to-End simulations for
different system configurations.
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Fig. 8. Maximum acceptable error (in percent) on the estimation of r0
to ensure an error on the computed OG under ±10% for two system
configurations.

Our method requires the knowledge of the residual phases
statistical characteristics to compute the OG. We presented
here a practical solution to estimate the statistics of the residual
phases using the telemetry data of the AO loop, as it is done in
the PSF reconstruction field. We showed that the most important
piece of information is the knowledge of the turbulence strength
through the Fried parameter r0. We also showed that from
this r0 parameter alone, a good approximation of the OG
could be done. In other words, any AO-pyramid system that
would provide an online estimation of r0 could benefit from an
estimation of its OG. This work can also be applied to any kind
of Fourier-filtering wavefront sensor and provides a new insight
on Fourier Filtering WFS OG and how to manage them.
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