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We extend a higher-order sum rule proved by B. Simon to matrix valued measures on the unit circle and their matrix Verblunsky coefficients.

Introduction

A probability measure µ on the unit circle T with infinite support is characterized by its Verblunsky coefficients (α j (µ)) j≥0 , elemnts in the interior of the unit disc. They are associated with the Szegő recursion of orthogonal polynomials in L 2 (T, dµ). A sum rule is an identity between an entropy-like functional of this measure and a functional of the sequence of its Verblunsky coefficients (for short, we say "V-coefficients" in the sequel). The most famous is Szegő's theorem.

Theorem 1.1. Let dµ = w(θ) dθ 2π + dµ s be the Lebesgue decomposition of a probability measure on T and let (α n ) n≥0 its V-coefficients. Then where both members can be simultaneously finite or -∞.

In his book [START_REF] Simon | Orthogonal polynomials on the unit circle. Part 1: Classical theory[END_REF], B. Simon proved the following statement (higher-order Szegő theorem).

Theorem 1.2 ([7] Th. 2.8.1). Let dµ = w(θ) dθ 2π + dµ s be a probability measure on T and let (α n ) n≥0 its V-coefficients. Then

2π 0 (1 -cos θ) log w(θ) dθ 2π = 1 2 (1 -|1 + α 0 | 2 ) - 1 2 ∞ 0 |α k+1 -α k | 2 + ∞ 0 log 1 -|α k | 2 + |α k | 2 , (1.2) 
where both members can be simultaneously finite or -∞.

Actually this formula may be written in terms of entropies. For probability measures ν and µ on T, let K(ν|µ) denote the Kullback-Leibler divergence or relative entropy of ν with respect to µ:

K(ν | µ) =    T log dν dµ dν
if ν is absolutely continuous with respect to µ, ∞ otherwise.

(1.3) Usually, µ is the reference measure. Here the spectral side will involve the reversed Kullback-Leibler divergence, where ν is the reference measure and µ is the argument. In this case, we have that

K(ν | µ) is finite if and only if 2π 0 log w(θ) dν(θ) > -∞, (1.4) 
where dµ = w(θ)dν(θ) + dµ s is the Lebesgue decomposition of µ with respect to ν. If we denote

dλ 0 (θ) = dθ 2π , dλ 1 (θ) = (1 -cos θ) dθ 2π (1.5) 
the sum rule (1.1) may be written

K (λ 0 | µ) = - ∞ 0 log 1 -|α k | 2 , (1.6) 
and the sum rule (1.2) may be written

K (λ 1 | µ) = K(λ 1 | λ 0 ) + Re α 0 + |α 0 | 2 2 + 1 2 ∞ 0 |α k+1 -α k | 2 - ∞ 0 log 1 -|α k | 2 + |α k | 2 (1.7) with K(λ 1 | λ 0 ) = 2π 0 (1 -cos θ) log(1 -cos θ) dθ 2π = 1 -log 2 .
In (1.7) both sides may be infinite simultaneously, and they are finite if and only if

k α 4 k + |α k+1 -α k | 2 < ∞ . (1.8)
Actually, it is easy to include (1.7) and (1.6) into a family of sum rules depending on a parameter g such that |g| ≤ 1. Let

dλ g (θ) = (1 -g cos θ) dλ 0 (θ) (1.9)
(called one single nontrivial moment in [START_REF] Simon | Orthogonal polynomials on the unit circle. Part 1: Classical theory[END_REF] p. 86). Combining (1.7) and Szgő's formula, we get, as mentioned in [START_REF] Gamboa | Sum rules and large deviations for spectral measures on the unit circle[END_REF] Cor. 5.4 :

K(λ g | µ) = K(λ g [ λ 0 ) + g Re α 0 + |α 0 | 2 2 + 1 2 ∞ 1 |α k -α k-1 | 2 + ∞ 0 -log(1 -|α k | 2 ) -g|α k | 2 , (1.10) 
where

K(λ g | λ 0 ) = (1 -g cos θ) log(1 -g cos θ) dθ 2π = 1 -1 -g 2 + log 1 + 1 -g 2 2 .
(1.11)

It may be called GW sum rule, since λ g is the equilibrium measure in a random matrix model due to Gross and Witten ([6]).

For g = 0, we recover (1.1) formula and when g = 1, we recover (1.7).

Simon's proof of Theorem 1.2 (see Sect. 2.8 in [START_REF] Simon | Orthogonal polynomials on the unit circle. Part 1: Classical theory[END_REF]) was based on the use of the Szegő function

D(z) = exp 2π 0 e iθ + z e iθ -z log w(θ) dθ 4π ,
the asymptotics of the orthogonal polynomial and Szegő's theorem. Later on, Simon gave another proof of this theorem in Sect. 2.8 of [START_REF] Simon | Szegő's theorem and its descendants[END_REF]. The new proof uses a relative Szegő function and a step-by-step sum rule provided by the coefficient stripping.

In a series of papers, Gamboa et al. tackled sum rules on the real line and on the unit circle1 , on a probabilistic way, using large deviations techniques. The main argument is the uniqueness of the rate function when the large deviations of a random measure are considered under two different encodings. In particular, in [START_REF] Gamboa | Sum rules and large deviations for spectral measures on the unit circle[END_REF], they (re)proved Szegő's theorem as a sum rule, stated a new sum rule for the Hua-Pickrell measure, and asked for a possible probabilistic proof of the higher-order sum rule quoted above. Shortly after, Simon et al. [START_REF] Breuer | Large deviations and the Lukic conjecture[END_REF] gave that proof.

It turns out that probabilistic tools are robust enough to be extended to matrix measures, which allowed Gamboa et al. to give a probabilistic proof of the famous matrix Szegő's theorem of Delsarte et al. [START_REF] Delsarte | Orthogonal polynomial matrices on the unit circle[END_REF] involving matrix V-coefficients. With the notations of the following section, this theorem says that if dµ = w(θ)dλ 0 + dµ s is a non-trivial matrix-measure, then

2 2π 0 log det w(θ)dλ 0 (θ) = ∞ 0 log det(1 -α k α † k ) .
(1.12)

In [START_REF] Gamboa | Sum rules and large deviations for spectral measures on the unit circle[END_REF] the authors proved also a matrix version of the Hua-Pickrell sum rule and conjectured a matrix version of the GW sum rule (1.10).

These considerations open the way to two challenges: analytical proof and probabilistic proof. The second way seems accessible by combining the machinery of [START_REF] Gamboa | Sum rules and large deviations for spectral measures on the unit circle[END_REF] and of [START_REF] Breuer | Large deviations and the Lukic conjecture[END_REF], i.e. a large deviation for a random measure encoded by its V-coefficients, but it seems more natural to begin with the first way, which will be done in this note. Of course, a possible issue comes from the non-commutativity of the product of matrices, but as usual, the story ends well.

We present the notations and main results in Sect. 2.1. Theorem 2.2 is a matrix-version of (1.10) and Prop. 2.3 is a gem i.e. a condition of finiteness of the entropy. In Sect. 3, we give the proof of the first result, involving the coefficient stripping method and a limiting argument. In Sect. 4 we give the proof of the gem. Finally Sect. 5 is devoted to the proofs of intermediate results.

Notations and main result

Notations

Let us begin with some introductory elements on matrix measures. For a more detailed exposition, see [START_REF] Damanik | The analytic theory of matrix orthogonal polynomials[END_REF] Sect. 1, [START_REF] Derevyagin | Szegő's theorem for matrix orthogonal polynomials[END_REF] Sect. 4, [START_REF] Gamboa | Sum rules and large deviations for spectral measures on the unit circle[END_REF] Sect. 6.

Let p > 1 be an integer and let M p be the set of complex p × p matrix measures µ on T which are Hermitian, nonnegative and normalized by µ(T) = 1 (the p × p identity matrix). A matrix measure is called quasi-scalar if it may be wriiten 1 • σ with σ a probability measure on T. A p × p matrix polynomial is a polynomial with coefficients in C p×p . Given a measure µ ∈ M p , we define two inner products on the space of p × p matrix polynomials by setting

f, g R = f (e iθ ) † dµ(θ)g(e iθ ) f, g L = g(e iθ )dµ(θ)f (e iθ ) † .
A sequence of matrix polynomials (ϕ j ) is called right-orthonormal if, and only if,

ϕ i , ϕ j R = δ ij 1 . A matrix measure is called non-trivial if tr f, f R > 0
for every non-zero polynomial f . We define the right monic matrix orthogonal polynomials Φ R n by applying the block Gram-Schmidt algorithm to the sequence {1, z1, z 2 1, . . . }. In other words, Φ R k is the unique matrix polynomial Φ R k (z) = z k 1+ lower order terms, such that z j 1, Φ R k R = 0 for j = 0, . . . , k -1. The normalized orthogonal polynomials are defined by

ϕ R 0 = 1 , ϕ R k = Φ R k κ R k .
Here the sequence of p × p matrices (κ R k ) satisfies, for all k, the condition κ R k -1 κ R k+1 > 0 p and is such that the sequence (ϕ R k ) is orthonormal. We define the sequence of left-orthonormal polynomials (ϕ L k ) in the same way except that the above condition is replaced by κ L k+1 κ L k -1 > 0. The matrix Szegő recursion is then

zϕ L k -ρ L k ϕ L k+1 = α † k (ϕ R k ) * (2.1) zϕ R k -ϕ R k+1 ρ R k = (ϕ L k ) * α † k , (2.2) 
where for all k ∈ N 0 ,

• α k belongs to B p , the closed unit ball of C p×p defined by

B p := {M ∈ C p×p : M M † ≤ 1} , (2.3) 
• ρ R k and ρ L k are the so-called defect matrices defined by

ρ R k := 1 -α k α † k 1/2 , ρ L k = 1 -α † k α k 1/2 , (2.4) 
• for a matrix polynomial P with degree k, the reversed polynomial P * is defined by

P * (z) := z k P (1/z) † .
Verblunsky's theorem establishes a one-to one correspondance between nontrivial (normalized) matrix measures on T and sequences of elements in the interior of B p (Theorem 3.12 in [START_REF] Damanik | The analytic theory of matrix orthogonal polynomials[END_REF]).

In an alternative way, these V-coefficients may be introduced as matrix Schur coefficients as follows. Let F be the Caratheodory (or Herglotz) transform of µ defined by:

F (z) = e iθ + z e iθ -z dµ(θ) , z ∈ D = {z : |z| < 1} ,
and f the Schur transform defined by:

f (z) = z -1 (F (z) -1)(F (z) + 1) -1 ,
which is equivalent to

F (z) = (1 + zf (z))(1 -zf (z)) -1 . (2.5)
The Schur recursion is defined as follows. At step 0 we set

α 0 = f (0) ,
which gives the first V-coefficient. We define the defect matrices (right and left) by

ρ R 0 = (1 -α 0 α † 0 ) 1/2 , ρ L 0 = (1 -α † 0 α 0 ) 1/2 , (2.6) 
and then, at step 1 we set

Sf := f 1 = z -1 (ρ R 0 ) -1 (f (z) -α 0 ) 1 -α † 0 f (z) -1 ρ L 0 (2.7)
and the second V-coefficient is

α 1 = f 1 (0) .
The other coefficients are defined with the same algorithm

f k+1 = Sf k , α k+1 = f k+1 (0), ... .
The following theorem gives the connection between F and the absolutely continuous part of µ.

Theorem 2.1 ([2] Prop. 3.16). For z ∈ D, we have Re F (z) = (1 -zf (z) † ) -1 (1 -|z| 2 f (z) † f (z))(1 -zf (z)) -1 .
(2.8)

and the non-tangential boundary values Re F (e iθ ) and f (e iθ ) exist for a.e. θ.

If µ is a normalized matrix measure with Lebesgue decomposition

dµ(θ) = w(θ)dλ 0 (θ) + dµ s (θ)
(where w is a p × p matrix), then for a.e. θ w(θ) = Re F (e iθ ) , and for a.e. θ, det w(θ) = 0 if and only if f (e iθ ) † f (e iθ ) < 1.

Main result

When Σ = 1 • σ is a pseudo-scalar measure and dµ(θ) = h(θ)dσ(θ) + dµ s (θ), we define the relative entropy

K(Σ | µ) = - T log det h(θ)dσ(θ) .
(2.9)

We will consider two reference measures:

dΛ 0 (θ) = 1 • dλ 0 (θ) , dΛ g (θ) = 1 • dλ g (θ) . (2.10)
Our main result is the following.

Theorem 2.2. For |g| ≤ 1, let dµ(θ) = w(θ)dλ 0 (θ) + dµ s (θ) be a non-trivial matrix measure, then

2π 0 (1 -g cos θ) log det w(θ)dλ 0 (θ) = ∞ 0 log det(1 -α k α † k ) -gT (α 0 , α 1 , • • • ) (2.11) with T (α 0 , α 1 , • • • ) := Re tr (α 0 - ∞ 0 α k α † k+1 ) , (2.12) 
or in an equivalent form

K(Λ g | µ) = K(λ g | λ 0 ) - ∞ 0 log det(1 -α k α † k ) + gT (α 0 , α 1 , • • • ) . (2.13)
In (2.13), both sides, which are nonnegative, may be simultaneously infinite.

It is exactly Conjecture 6.11 1. in [START_REF] Gamboa | Sum rules and large deviations for spectral measures on the unit circle[END_REF]. For g = 0, we recover of course the matrix Szegő formula.

The right hand side may also be written

T (α 0 , α 1 , • • • ) = Re tr α 0 + 1 2 tr α 0 α † 0 + 1 2 ∞ 0 tr (α k -α k+1 )(α † k -α † k+1 ) - ∞ 0 tr α k α † k . (2.14) 
According to the definition of B. Simon [START_REF] Simon | Szegő's theorem and its descendants[END_REF], the gems are equivalent conditions for the finiteness of entropies. Like in Corollary 5.4 in [START_REF] Gamboa | Sum rules and large deviations for spectral measures on the unit circle[END_REF], we have the following result.

Proposition 2.3.

1. If |g| < 1, K(Λ g | µ) < ∞ ⇐⇒ k tr α k α † k < ∞ (2.15) 2. K(Λ 1 |µ) < ∞ ⇐⇒ k tr (α k α † k ) 2 + k tr (α k+1 -α k )(α † k+1 -α † k ) < ∞ (2.16) K(Λ -1 |µ) < ∞ ⇐⇒ k tr (α k α † k ) 2 + k tr (α k+1 + α k )(α † k+1 + α † k ) < ∞ .
(2.17)

Proof of Theorem 2.2

We need a preliminary remark to reduce the case g < 0 to the case g > 0.

Lemma 3.1 (Simon [7] 3.2.6 and [8] 9.5.28). If µ is a non-trivial matrix measure and μ is defined by

dμ(θ) = dµ(π + θ) if θ ∈ [0, π] dµ(θ -π) if θ ∈ [π, 2π] then α k (μ) = (-1) k+1 α k (µ) , (k ≥ 0) . (3.1) 
If g = -γ with γ > 0, we have,

(1g cos θ) log det w(θ)dλ 0 (θ) = (1 -γ cos θ) log det w(θ)dλ 0 (θ) ,

where w (resp. w) is the a.c. part of µ (resp. μ).

If we take for granted the result for γ, we get

(1 -γ cos θ) log det w(θ)dλ 0 (θ) = = ∞ 0 log det(1 -α k (μ)α † k )(μ)) -γT (α 0 (μ), α 1 (μ), • • • )
but, it is straightforward to see that from (2.12) and (3.1)

T (α 0 (µ), α 1 (µ), • • • ) = -T (α 0 (μ), α 1 (μ), • • • ) (3.2)
so that (2.11) holds true.

From now on, in this section we assume 0 ≤ g ≤ 1.

If µ is a probability measure on T with V-coefficients (α j (µ)) j≥0 and if N is some positive integer, we denote by µ N the measure whose V-coefficients are shifted:

α j (µ N ) = α j+N (µ) , j ≥ 0 .
When µ has a density w with respect to Λ 0 , we denote by w N the density of µ N .

The key point is the following "recursion" theorem, matrix version of Theorem 2.8.2 in [START_REF] Simon | Szegő's theorem and its descendants[END_REF], whose proof is postpone to Sect. 5. Theorem 3.2. If det w = 0 a.e., we have

log det w(θ)w 1 (θ) -1 dλ g (θ) = log det(1 -α 0 α † 0 ) -g Re tr (α 0 -α 1 -α 1 α 0 †) . (3.3)
This implies that det w 1 = 0 a.e. and then we may iterate. We get, for

N > 1 log det w(θ)w N (θ) -1 dλ g (θ) = G N (µ) (3.4)
where

G N (µ) = -g Re tr (α N -α 0 ) + g N -1 0 Re tr α k α † k+1 + N -1 0 log det(1 -α k α † k ) (3.5)
In terms of entropy, we have the equivalent form of (3.3):

K(Λ g | µ N ) -K(Λ g | µ) = G N (µ) . (3.6)
To look for a limit when N → ∞, we need a careful study of G N (µ) . We have

G N (µ) = -g Re tr (α N -α 0 ) + g 2 tr (α N α † N -α 0 α † 0 ) - N -1 0 A k , (3.7) 
with

A k := -log det(1 -α k α † k ) -g tr α k α † k + g 2 tr (α k+1 -α k )(α † k+1 -α k ) † . (3.8)
For αα † < 1, we have

-log det(1 -αα † ) = tr αα † + 1 2 tr(αα † ) 2 + R(α) , with R(α) > 0 , R(α) = o(tr (αα † ) 2 ) . (3.9) 
This yields

A k ≥ (1 -g)tr α k α † k + 1 2 tr (α k α † k ) 2 + g 2 tr (α k+1 -α k )(α † k+1 -α † k ) . (3.10)
In particular, A k ≥ 0 for every k (remind that we have assumed g ≥ 0), which gives

S N (µ) := N -1 0 A k ↑ S ∞ (µ) = ∞ 0 A k ≤ ∞ ,
(this argument of monotonicity is like in Simon [9] Prop. 2.8.6. The identity (2.13) will be the result of two inequalities.

A) The first one uses the Bernstein-Szegő approximation of µ. We know, from Theorem 3.9 in [START_REF] Damanik | The analytic theory of matrix orthogonal polynomials[END_REF], for every θ and every integer k, ϕ R k (e iθ ) is invertible and from Theorem 3.11 of the same article that the measure

dµ (N ) (θ) = ϕ N -1 (e iθ )ϕ N -1 (e iθ ) † -1 dλ 0 (θ) (3.11) satisfies α j (µ (N ) ) = α j (µ) if 0 ≤ j ≤ N -1 0 if j ≥ N . (3.12) 
We have (µ (N ) ) N = Λ 0 . We may apply (3.6) with µ = µ (N ) , which gives

K(Λ g | Λ 0 ) -K(Λ g | µ (N ) ) = G N (µ (N ) ) = g Re tr α 0 - g 2 tr α 0 α † 0 -S N (µ) .
Since µ (N ) converges weakly to µ, the lower semicontinuity of K(Λ g | •) gives

K(Λ g | Λ 0 ) -K(Λ g | µ) ≥ K(Λ g | Λ 0 ) -lim inf N K(Λ g | µ (N ) ) ≥ g Re tr α 0 - g 2 tr α 0 α † 0 -S ∞ (µ) ≥ -∞ . (3.13) B) If K(Λ g | µ) = ∞ the inequality K(Λ g | Λ 0 ) -K(Λ g | µ) ≤ g Re tr α 0 - g 2 tr α 0 α † 0 -S ∞ (µ) (3.14) is trivial. If K(Λ g | µ)
< ∞, then det w(θ) > 0 a.e. and then from (3.6) we have det w N (θ) > 0 a.s. too. We want to let N → ∞ in (3.6) in order to get (3.14). To begin with, let us prove that lim

N α N (µ) = 0 . (3.15) From (3.6) we deduce 
G N (µ) ≤ K(Λ g | µ) < ∞ ,
and then, since

-p ≤ -Re tr α N + 1 2 tr α N α † N ≤ 3p 2 (p is the dimension) we have S ∞ (µ) < ∞.
Let us split the study into two cases:

1. if 0 ≤ g < 1, S ∞ (µ) < ∞ implies k tr α k α † k < ∞ (3.16) hence (3.15) holds true. 2. if g = 1, we have k tr (α k α † k ) 2 + tr (α k+1 -α k )(α † k+1 -α k ) † < ∞ (3.17)
which in particular implies that (3.15) holds true.

This result has consequences for both sides of (3.6). On the one hand, since for every j lim

N α j (µ N ) = lim N α N +j (µ) → 0 ,
the sequence (µ N ) converges weakly to Λ 0 , so using again the semicontinuity, we get

K(Λ g | Λ 0 ) -K(Λ g | µ) ≤ lim inf N K(Λ g | µ N ) -K(Λ g | µ) .
On the other hand, from (3.7)

lim G N (µ) = g Re tr α 0 - g 2 tr α 0 α † 0 -gS ∞ (µ) . (3.18)
and then (3.14) holds true also in this case. Gathering (3.13) and (3.14) ends the proof of (2.13) hence (2.11) when 0 ≤ g ≤ 1.

Proof of Proposition 2.3

We consider only the case 0 ≤ g ≤ 1, since for -1 < g < 0 the reduction from g < 0 to γ > 0 as in the beginning of Sect. 3 leads directly to the result.

We already saw in the above section, that when K(Λ g | µ) < ∞ and 0 ≤ g ≤ 1, the good conditions are fulfilled.

Conversely, we consider three cases. If 0 ≤ g < 1 and (3.16) is fulfilled, then

- k log det α k α † k < ∞ and since tr (α k+1 -α k )(α † k+1 -α k ) † ≤ 2(tr α k α † k + tr α k+1 α † k+1
) , the expression T (α 0 , α 1 , • • • ) in (2.14) is well defined and finite, so is the left hand side of (2.13) and then K(Λ g | µ) is finite.

If g = 1, condition (3.17), jointly with (3.9) entails that

∞ 0 -log det(1 -α k α † k ) -tr α k α † k + 1 2 tr(α k -α k+1 )(α † k -α † k+1 ) < ∞
and then gathering (2.13) and (2.14) show that K(Λ g | µ) is finite.

Proofs of intermediate results

Proof of Theorem 3.2

To compute the LHS of (3.3) we need the values of the Fourier coefficients :

e ikθ log det w(θ)w 1 (θ) -1 dθ 2π for k = -1, 0, 1 .
The strategy is to approach log det w(θ)w 1 (θ) -1 by a function of z = re iθ , sufficiently smooth to apply Cauchy's formula. In view of Theorem 2.1, it is natural to approximate w(θ)(w 1 (θ)) -1 by Re F (z)(Re F 1 (z)) -1 with z = re iθ . We define the auxiliary matrix function:

D 0 (z) := (1 -zf (z)) -1 (1 -zf 1 (z)) ρ L 0 -1 1 -f (z)α † 0 . (5.1)
We need the following formula whose proof is postponed in Sect. 5.2.

Lemma 5.1.

det Re F (z) (Re F 1 (z)) -1 = det(D 0 (z)D 0 (z) † ) det(1 -|z| 2 f (z) † f (z)) det(1 -f (z) † f (z)) . (5.2) 
From Theorem 2.1, for a.e. θ we have lim

r↑1 det Re F (re iθ ) Re F 1 (re iθ )) -1 = det w(θw 1 (θ) -1 lim r↑1 det(1 -|r| 2 f (re iθ ) † f (re iθ )) det(1 -f (re iθ ) † f (re iθ )) = 1 , so that, det(w(θ)w 1 (θ) -1 ) = lim r↑1 det(D 0 (re iθ )D 0 (re iθ ) † ) ,
and the remaining part of the proof is based on the study of det(D 0 (z)D 0 (z) † ). Some properties of D 0 are collected in the following lemma, whose proof is also in Sect. 5.2. 

Let us compute h(0) and h (0). As |z| → 0,

det(1 -zf (z)) = 1 -z(tr α 0 ) + O(z 2 ) , det(1 -zf 1 (z)) = 1 -z(tr α 1 ) + O(z 2 ) (5.6)
Now, formula (2.7) can be inverted into

f (z) = (ρ R 0 ) -1 (α 0 + zf 1 (z)) 1 + zα † 0 f 1 (z) -1 ρ L 0 , (5.7) 
which gives the expansion

f (z) = (ρ R 0 ) -1 α 0 + z(1 -α 0 α † 0 )f 1 (z) + O(z 2 ) ρ L 0 = α 0 + z(ρ R 0 α 1 ρ L 0 ) + O(z 2 ) ,
Now, we use (2.6) and

(ρ R 0 ) -2 = n≥0 (α 0 α † 0 ) n , (ρ L 0 ) -2 = n≥0 (α † 0 α 0 ) n
(α 0 is a contraction). Expanding the RHS of (5.10) and cancelling terms gives

1 -f † α 0 (ρ L 0 ) -2 1 -α † 0 f -(f † -α † 0 )(ρ R 0 ) -2 (f -α 0 ) = 1 -f † f so that 1 -|z| 2 f † 1 f 1 = ρ L 0 1 -f † α 0 -1 1 -f † f 1 -f α † 0 -1 ρ L 0 .
(5.11)

Plugging into (5.9) yields

Re

F 1 = (1 -zf † 1 ) -1 ρ L 0 1 -f (z) † α 0 -1 1 -f (z) † f (z) 1 -f (z)α † 0 -1 ρ L 0 (1 -zf 1 ) -1
and 

(Re F ) (Re F 1 ) -1 = (1 -zf † ) -1 (1 -|z| 2 f † f )(1 -zf ) -1 × (1 -zf 1 ) ρ L 0 -1 1 -f α † 0 1 -f † f -1 1 -f † α 0 ρ L 0 -1 (1 -zf † 1 ) = (1 -zf † ) -1 (1 -|z| 2 f † f )D 0 1 -f † f -1 D † 0 (1 -zf † ) .

log 1 -

 1 |α k | 2 . (1.1)

Lemma 5 . 2 . 1 -

 521 The function det D 0 is analytic in D and non-vanishing. Moreoverh := 2 log det D 0 ∈ H 2 (D) .(5.3)Since h ∈ H 2 (D) ⊂ H 1 (D), we have e -iθ h(e iθ ) dθ 2π = h (0) , h(e iθ ) dθ 2π = h(0) , e iθ h(e iθ ) g cos θ) Re h(e iθ )dλ 0 (θ) = Re h(0) -g 2 Re h (0) .

2 ,

 2 Then, taking determinants det (Re F ) (Re F 1 )-1 = det(D 0 D † 0 ) det(1 -|z| 2 f † f ) det(1 -f † f ) ,ends the proof.5.3. Proof of Lemma 5.2We repeat here the argument of Theorem 2.6.2 in[START_REF] Simon | Szegő's theorem and its descendants[END_REF] for the sake of completeness. For z ∈ D we have f (z)f † (z) < 1 , hence analyticity and non-vanishing are straightforward. Moreover, since |ζ| < 1 implies | arg(1 -ζ)| < π/2, we conclude from (5.1) and (5.3) that| Im h| < 3π/2 . Since |h| 2 -2(Im h) 2 is harmonic we have |h| 2 dλ 0 -2 (Im h) 2 dλ 0 = |h(0)| 2 -2 (Im h(0))and since h(0) = log det(1 -α 0 α † 0 ) < 0, we get |h(re iθ )| 2 dλ 0 (θ) iθ )| 2 dλ 0 (θ) < ∞ .

See references in[START_REF] Gamboa | Sum rules and large deviations for spectral measures on the unit circle[END_REF].

We use † for matrix adjoint, keeping the notation * for reversed polynomials.

so that

Gathering (5.1), (5.6) and (5.8) and using det ρ R 0 = det ρ L 0 we get

Coming back to the definition of h, we get

and from (5.5)

Proof of Lemma 5.1

To simplify, we omit the variable z if unnecessary. Applying (2.8) to F 1

Re

(5.9) so we need an expression of 1 -|z| 2 f 1 f † 1 as a function of f . From (2.7) we get

ρ L 0 which, with the help of the trivial identity

(5.10)