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KORN AND POINCARÉ-KORN INEQUALITIES

FOR FUNCTIONS WITH A SMALL JUMP SET

FILIPPO CAGNETTI, ANTONIN CHAMBOLLE, AND LUCIA SCARDIA

Abstract. In this paper we prove a regularity and rigidity result for displace-
ments in GSBDp, for every p > 1 and any dimension n ≥ 2. We show that

a displacement in GSBDp with a small jump set coincides with a W 1,p func-

tion, up to a small set whose perimeter and volume are controlled by the size
of the jump. This generalises to higher dimension a result of Conti, Focardi

and Iurlano. A consequence of this is that such displacements satisfy, up to a

small set, Poincaré-Korn and Korn inequalities. As an application, we deduce
an approximation result which implies the existence of the approximate gra-

dient for displacements in GSBDp.

doi: 10.1007/s00208-021-02210-w

1. Introduction

The modelling and analysis of fracture in the linearised elasticity framework re-
lies on a good understanding of the space BD of functions of bounded deformation.
These are vector-valued functions u in L1, whose symmetric (distributional) gradi-
ent Eu is a bounded Radon measure. Over the years, the fine properties of functions
in BD, and in the subspace SBD of special functions of bounded deformation (cor-
responding to the case where Eu has no Cantor part) have been better understood,
and the relation between BD, SBD and the space BV of functions of bounded
variation has been studied in detail (see e.g., [3, 5, 17], and [22] for the space of
generalised functions of bounded deformation). For a function u ∈ SBD(Ω), Eu
admits the decomposition

Eu = e(u)Ln + [u]� νuHn−1 Ju, (1.1)

where e(u) is the absolutely continuous part of Eu with respect to the Lebesgue
measure Ln, Ju the jump set of u, [u] the jump of u, νu the normal to Ju and
[u] � νu denotes the symmetric tensor product of u and νu. The decomposition
(1.1) has a clear physical meaning: e(u) represents the elastic part of the strain,
and Ju the crack set. It is therefore natural that a model of (brittle) fracture, in
the linearised setting, would involve an energy of the type∫

Ω

|e(u)|2dx+Hn−1(Ju), (1.2)

called the Griffith’s energy, of which the Mumford-Shah energy in SBV is the scalar
counterpart. The energy (1.2) is in fact well defined in the larger space GSBD(Ω)
of generalised special functions of bounded deformation, which has been introduced
by Dal Maso in [22], and is essentially designed to contain all the displacements
for which the energy is finite (see Section 2 for the definition). Moreover, GSBD
is the natural space for (1.2), where one can prove compactness and existence of
minimisers under physical assumptions (see, e.g., [12, 13, 15]).

A key difficulty posed by the energy (1.2), compared to scalar models based on
functions of bounded variation, is the lack of control on the skew-symmetric part
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2 KORN INEQUALITY IN GSBDP

(Du − DuT )/2 of the distributional gradient of u. The classical tool providing a
relation between the full gradient and its symmetric part is the Korn inequality.

In this paper we prove Korn and Poincaré-Korn inequalities in GSBDp(Ω), the
space of functions u ∈ GSBD(Ω) for which e(u) ∈ Lp(Ω) and Hn−1(Ju) < +∞,
for every dimension n ≥ 2 and any p > 1. More precisely, we have the following
(see Theorem 4.5).

Theorem 1.1. Let n ∈ N with n ≥ 2, p ∈ (1,∞), and let Ω ⊂ Rn be a bounded,
open and connected Lipschitz set. Then, there exists c = c(n, p,Ω) > 0 with the
following property. For any u ∈ GSBDp(Ω), there exist a set of finite perimeter
ω ⊂ Ω with Hn−1(∂∗ω) ≤ cHn−1(Ju), and an infinitesimal rigid motion a (namely
an affine function a, with e(a) = 0), such that∫

Ω\ω
|∇u−∇a|pdx ≤ c(n, p,Ω)

∫
Ω

|e(u)|pdx. (1.3)

Moreover, there exists c = c(n, p, q,Ω) > 0 such that

‖u− a‖Lq(Ω\ω) ≤ c(n, p, q,Ω)‖e(u)‖Lp(Ω), (1.4)

with q ≤ p∗ if p < n, q <∞ if p = n, and q ≤ ∞ for p > n.

Clearly, the volume of ω is also controlled by Hn−1(Ju), thanks to the isoperimetric
inequality, see Remark 3.4 below.

This result is the generalisation, in dimension n ≥ 2, of the two-dimensional
result in [16] (see also [27]). Theorem 1.1 ensures that e(u) controls u − a and its
approximate gradient outside an exceptional set, and not in the whole set Ω. This
is in contrast with the classical Korn and Poincaré-Korn inequalities for functions
u ∈ W 1,p(Ω;Rn), with p > 1, which state that there exists an infinitesimal rigid
motion a such that

‖Du−Da‖Lp(Ω) ≤ c(n, p,Ω)‖Eu‖Lp(Ω), (1.5)

and that, thanks to the Poincaré inequality and Sobolev embeddings,

‖u− a‖Lq(Ω) ≤ c(n, p, q,Ω)‖Eu‖Lp(Ω), (1.6)

where q depends on n and p (and q = p∗ for p < n).
Results like (1.5) and (1.6) are clearly out of reach in (G)SBD, even for functions

u with a small jump set. This is due to the possible presence of small regions of Ω
that can be completely (or almost completely) disconnected from the domain, and
where u would not necessarily be close to the infinitesimal rigid motion that achieves
the smallest distance from u in the majority of the domain. Hence, in general, for
a function u ∈ (G)SBD(Ω), e(u) cannot control u− a or its approximate gradient
in the whole domain Ω, and a result like Theorem 1.1 is the best possible.

The Korn and Poincaré-Korn inequalities in Theorem 1.1 are a corollary of the
result below (see Theorem 4.1 and Remark 4.3), which is the main result of this
paper.

Theorem 1.2. Let n ∈ N with n ≥ 2, p ∈ (1,∞), and let Ω ⊂ Rn be a bounded
and open Lipschitz set. Then, there exists c = c(n, p,Ω) > 0 with the following
property. For any u ∈ GSBDp(Ω), there exists a set of finite perimeter ω ⊂ Ω
with Hn−1(∂∗ω) ≤ cHn−1(Ju) and v ∈ W 1,p(Ω;Rn), such that u = v in Ω \ ω
and

∫
Ω
|e(v)|pdx ≤ c

∫
Ω
|e(u)|pdx. If in addition u is bounded, then ‖v‖L∞(Ω) ≤

‖u‖L∞(Ω).

In Theorem 1.2, we prove ‘almost’ Sobolev regularity for functions in GSBDp.
More precisely we show that, given a function u ∈ GSBDp(Ω), we can replace it
with a function v ∈W 1,p(Ω;Rn) outside an exceptional set ω ⊂ Ω, whose perimeter
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is controlled by Hn−1(Ju). Moreover, u and v have a comparable Griffith’s energy
in the whole of Ω. We observe that the conclusion of Theorem 1.2 is non-trivial
only when the measure of the jump set Ju is ‘small’ as else one could take ω = Ω
and v = 0 (see also Remark 4.2). The proof of Theorem 1.2 is done by regularising
u at several scales, by means of the auxiliary results Lemma 3.1 and Theorem 3.2.

We now illustrate the idea of the proof. As a first step, we cover the domain
Ω with a family of disjoint cubes q whose size reduces towards the boundary. The
cubes in the partition are then classified into ‘good’ and ‘bad’, depending on whether
the amount of Ju they contain is smaller or larger than a given threshold. The
construction is done so that all the cubes in the covering of Ω are ‘good’, up to a
small neighbourhood of ∂Ω. In this neighbourhood, the ‘bad’ cubes are cut away
from the domain by connecting them to ∂Ω by means of truncated cones. In this
way what remains is still a Lipschitz set (with the same Lipschitz constant as Ω).
Moreover, in each ‘bad’ cube, by definition, the perimeter of the cone is comparable
to the perimeter of the cube, and hence is bounded by the measure of the jump set
of u in it.

Hence it is sufficient to deal with good cubes. For each of the good cubes q
we apply the auxiliary regularity result Theorem 3.2. This ensures that, given a
function ũ ∈ GSBDp(q), we can wipe out its jump set Jũ away from the boundary
of q, up to a small expense in terms of the Griffith’s energy, provided Hn−1(Jũ) is
sufficiently smaller than the perimeter of q. This ‘smallness’ condition is exactly
what enters in the definition of ‘good’ cubes. Applying Theorem 3.2 to ũ := u|q in
every ‘good’ cube q, we obtain a Sobolev regularisation ṽq of u|q and an exceptional
set ω̃q with controlled perimeter, such that ṽq = u outside ω̃q. The function v in
the statement of Theorem 1.2 is then obtained by patching together the functions
ṽq on all the good cubes. The set ω where v needs not coincide with u, is then
defined as the union of the exceptional sets ω̃q of the good cubes, together with the
truncated cones relative to the bad cubes.

To conclude, we sketch the proof of Theorem 3.2, which is strongly inspired by
its two-dimensional version [16], by Conti, Focardi and Iurlano, and involves an
iterative regularisation procedure. Starting with w0 = ũ, we construct a sequence
(wk), where wk+1 is obtained by covering a large part of Jwk with a family of
disjoint balls, and by replacing wk in each ball of the covering with a smoother
function, provided by Lemma 3.1. The pointwise limit ṽ of the sequence (wk) has
Sobolev regularity in a smaller ball, and satisfies ũ = ṽ outside an exceptional set
ω̃, which is defined as the union of the coverings of each step.

1.1. Comparison with previous results. The foundations of the function spaces
SBD and GSBD were laid down in the papers [3, 5], and [22]. Several research av-
enues have stemmed from them: the derivation of regularity properties for functions
in (G)SBDp, and in particular of minimisers of the Griffith’s energy, in the spirit of
the celebrated result [23] by De Giorgi, Carriero and Leaci for the Mumford-Shah
energy (see [17, 10, 12, 13, 4, 15]); of Korn and Poincaré-Korn inequalities with
various degrees of generality ([9, 26, 27, 28]); of approximation and density results
([7, 11, 18, 19, 20, 29]); of integral representation for functionals in (G)SBDp [16].

Our results are in between two of these avenues: we prove Sobolev regularity
for functions in GSBDp, for every p > 1 and in every dimension n ≥ 2, outside
an exceptional set (see Theorem 1.2) and, as a direct corollary, we obtain a Korn
inequality, and a Poincaré-Korn inequality with sharp exponent (see Theorem 1.1),
again outside an exceptional set.

Our work has a number of points of contact with previous results, but also a
number of differences. In [9] the authors prove a Poincaré-Korn inequality like (1.4)
for every n ≥ 2 and every p ≥ 1 by means of a slicing argument. Unlike our case,
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however, they obtain (1.4) with q = p(1∗), rather than q = p∗ (which is optimal
only for p = 1), and no estimate for the gradient of u is provided. Moreover, the
exceptional set ω is controlled by the jump set of Ju only in volume, while we also
control its perimeter. A Poincaré-Korn inequality like (1.4) is proved also in [26],
for n = 2 and p = 2, with an exceptional set ω whose structure is very simple, and
can be related to the measure of Ju. This objective is further pursued in [28], where
the author proves a Poincaré-Korn inequality in GSBD2, up to an exceptional set
with both perimeter and area bounded by (powers of) the measure of Ju, for n ≥ 2.
The L2-norm of e(u), however, only controls the distance of u from a rigid motion
in the weaker norm q = 2(1∗); additionally, one can obtain an L∞ bound for such
a distance, but the L2-norm of e(u) has to be weighted with a negative power of
the measure of Ju.

The first proofs of a Korn inequality like (1.3), in the (G)SBD context, are
due to [27] and [16]. In [27] the proof is done in dimension n = 2 and for p = 2.
Moreover, the distance of ∇u from a skew-symmetric matrix is estimated in a lower
Lq-norm, with q ∈ [1, 2). On the other hand, the exceptional set is estimated, both
in perimeter and in area, with the measure of Ju, and the integrability of u is
improved to the sharp exponent, with consequent improvement of the Poincaré-
Korn inequality. The two-dimensionality of the result is due to an approximation
step, done in [26], that is only proved in the planar setting. Also the result in [16]
is only proved for n = 2, and again this is due to a ‘regularisation’ step being done
by means of a two-dimensional construction. Their approach, like ours, is based on
first proving Sobolev regularity outside an exceptional set, and then deducing Korn
and Poincaré-Korn inequalities as direct corollaries. Also in [16], like in our result,
the exceptional set is bounded in perimeter in terms of Ju, and the Poincaré-Korn
inequality is proved with the sharp exponent for every p > 1.

In conclusion, our contribution is two-fold. On the one hand our result lifts the
restriction to dimension n = 2 of the regularisation step from GSBDp to W 1,p,
up to an exceptional set, which is now valid for every n ≥ 2 and every p > 1. In
addition, the exceptional set we provide is bounded both in perimeter and in area
with the measure of the jump set of the function. As a consequence, we can deduce
the Korn and Poincaré-Korn inequalities up to the sharp exponent for every n ≥ 2
and p > 1, since the regularisation step is not reliant on a planar construction.

1.2. Conclusion and perspectives. The main result in this work, asserting the
‘almost’ Sobolev regularity of GSBDp-functions with a small jump set, has some
nontrivial consequences which are of independent interest, and which we present
here. First of all, we obtain a Korn and a Poincaré-Korn inequality with sharp
exponents outside an exceptional set, which is controlled in perimeter and volume
by the jump set of the function (Theorem 4.5). We also prove an approximation
result (Theorem 5.1) in the spirit of [11, Theorem 3.1]. Theorem 5.1 implies, in
particular, the existence of the approximate gradient ∇u for functions in GSBDp

(Corollary 5.2). Note that the existence of ∇u for functions in GSBD2 had already
been obtained in [28], as a consequence of the embeddingGSBD2(Ω) ⊂ (GBV (Ω))n

(see [28, Theorem 2.9]), for n ≥ 2.
In analogy with [16], our result has been recently used to obtain an integral

representation result for functionals in GSBDp in higher dimension, see [21].
Moreover, the ‘almost’ Sobolev regularity of GSBDp-functions with a small

jump set, Theorem 1.2, is one of the main ingredients of the extension result
[6]; additionally, the Korn-Poincaré inequality (Theorem 4.5) and the approxi-
mation result (Theorem 5.1) have been used in [14] to prove compactness and
lower-semicontinuity for nonhomogeneous Griffith-like energies.
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2. Notation

We introduce now some notation that will be used throughout the paper.

(a) Ln denotes the Lebesgue measure on Rn and Hn−1 the (n−1)-dimensional
Hausdorff measure on Rn.

(b) e1, . . . , en is the canonical basis of Rn; | · | denotes the absolute value in R
or the Euclidean norm in Rn, depending on the context, and · denotes the
Euclidean scalar product. We set Sn−1 := {x ∈ Rn : |x| = 1}. We denote
with Rn×nsym the set of symmetric n× n matrices.

(c) For x ∈ Rn and ρ > 0 we define the ball:

Bρ(x) := {y ∈ Rn : |y − x| < ρ}.
(d) For x ∈ Rn, e ∈ Sn−1, and ρ > 0, we define the cylinder:

C(x, e, h, ρ) := {y ∈ Rn : |(y − x) · e| < h, |(y − x)− ((y − x) · e)e| < ρ}.
(e) For y ∈ Rn and ξ ∈ Sn−1, we set:

Πξ
y := {x ∈ Rn : (x− y) · ξ = 0},

and use the shorthand Πξ = Πξ
0.

(f) For a, b ∈ Rn, we denote with a⊗ b ∈ Rn×n the tensor product of a and b,
namely the matrix with (a⊗ b)ij = aibj for every i, j = 1, . . . , n. Moreover,
we denote the symmetrised tensor product as a� b := (a⊗ b+ b⊗ a)/2 ∈
Rn×nsym , where Rn×nsym stands for the set of symmetric matrices in Rn.

(g) R is the set of infinitesimal rigid motions in Rn, namely a ∈ R if and only
if a : x 7→ Ax+ b, with A ∈ Rn×n skew-symmetric, and b ∈ Rn.

(h) For every t ∈ [0, 1] and every Ln-measurable set E ⊂ Rn we denote with
E(t) the set of all points where E has density t, namely

E(t) :=

{
x ∈ Rn : lim

ρ↓0

Ln(E ∩Bρ(x))

Ln(Bρ(x))
= t

}
.

(i) An Ln-measurable and bounded set E ⊂ Rn is a set of finite perimeter if its
characteristic function χE is a function of bounded variation. The reduced
boundary of E, denoted with ∂∗E is the set of points x ∈ supp |DχE | where
a generalised normal νE is defined.

(j) For Ω ⊂ Rn measurable, Mb(Ω;Rm) denotes the space of bounded Radon
measures with values in Rm, for m ≥ 1. Moreover, for m = 1, we denote
with M+

b (Ω) the sub-class of positive measures.
(k) For k ∈ N, γk ∈ R denotes the k-dimensional Lebesgue measure of the unit

ball in Rk. With this notation, we have Hn−1(Sn−1) = nγn.

Let Ω ⊂ Rn be an open set. We now introduce the functional spaces we will work
with in this paper. We first recall the definition of the space GBD of generalised
functions with bounded deformation, which is due to Dal Maso [22] and relies on
slicing. Given an Ln-measurable function u : Ω→ Rn, we say that u ∈ GBD(Ω) if
there exists λu ∈M+

b (Ω) such that the following is true for every ξ ∈ Sn−1:

• For every τ ∈ C1(R) with − 1
2 ≤ τ ≤

1
2 and 0 ≤ τ ′ ≤ 1

Dξ

(
τ(u · ξ)

)
= D

(
τ(u · ξ)

)
· ξ ∈Mb(Ω);

• For every Borel set B ⊂ Ω∣∣Dξ

(
τ(u · ξ)

)∣∣(B) ≤ λu(B).

We say that u ∈ GSBD(Ω) if in addition ûξy(t) ∈ SBVloc(Ωξy) for every ξ ∈ Sn−1

and for Hn−1-a.e. y ∈ Πξ, where Ωξy := {t ∈ R : y + tξ ∈ Ω} and, for t ∈ Ωξy,

ûξy(t) := u(y + tξ) · ξ denotes the slice of u in the direction ξ. In [22] it is shown
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that, given a function u ∈ GSBD(Ω), one can define an ‘approximate symmetrised
gradient’ e(u) ∈ L1(Ω;Rn×nsym ) as well as an (Hn−1, n−1)-countably rectifiable jump
set Ju, which both coincide with the standard definitions [3] if u ∈ BD(Ω). Finally,
we recall the definition of the space GSBDp, namely

GSBDp(Ω) := {u ∈ GSBD(Ω) : e(u) ∈ Lp(Ω;Rn×nsym ),Hn−1(Ju) < +∞}.

3. How to wipe out small jump sets

The following Lemma is a variant of [10, Theorem 3], which can be proved by
adapting the arguments to the case of a ball. This result ensures that a GSBDp-
function with a small jump set in the unit ball can be regularised away from the
boundary, up to a small cost in Griffith’s energy.

Lemma 3.1. Let n ∈ N with n ≥ 2, and let p ∈ (1,∞). There exist δ̄, c, s positive
constants, depending only on n and p, with the following property. For every u ∈
GSBDp(B1) with δ := Hn−1(Ju)1/n ≤ δ̄, there exists ũ ∈ GSBDp(B1) and R ∈
(1−

√
δ, 1) such that

(1) ũ ∈ C∞(B1−
√
δ), ũ = u in B1 \ BR, and Hn−1(Ju ∩ ∂BR) = Hn−1(Jũ ∩

∂BR) = 0;

(2) Hn−1(Jũ \ Ju) ≤ c
√
δHn−1(Ju ∩ (B1 \B1−

√
δ));

(3) it holds ∫
B1

|e(ũ)|pdx ≤ (1 + cδs)

∫
B1

|e(u)|pdx;

(4) if in addition u is bounded, then one can ensure ‖ũ‖L∞(B1) ≤ ‖u‖L∞(B1).

The last point follows from Remark 6 and Lemma A.1 in [8], which can be used
when building the function ũ in the construction of [10, Theorem 3].

The following theorem is an extension in dimension n ≥ 2 of a planar result
of Conti, Focardi and Iurlano [16]. Our proof is strongly inspired by theirs and
involves an iterative regularisation procedure and a covering argument. Essentially,
it shows that a GSBDp-function with a small jump set coincides, outside a small
neighbourhood of the jump set, with a function that has Sobolev regularity away
from the boundary. Moreover, the energy of the regularised function can be made
arbitrarily close to the energy of the original function.

Theorem 3.2. Let n ∈ N with n ≥ 2, and let p ∈ (1,∞). Given ε > 0 and
σ ∈ (0, 1), there exist C = C(n, p, ε) > 0 and τ = τ(n, p, ε, σ) > 0 with the
following property. For every ρ > 0 and u ∈ GSBDp(Bρ) with Hn−1(Ju) ≤ τρn−1,
there exists w ∈ GSBDp(Bρ) and a set of finite perimeter ω ⊂ Bρ, such that w = u
in Bρ \ ω, Hn−1(∂∗ω) ≤ CHn−1(Ju), w ∈W 1,p(B(1−σ)ρ;Rn), and∫

Bρ

|e(w)|pdx ≤ (1 + ε)

∫
Bρ

|e(u)|pdx, Hn−1(Jw) ≤ Hn−1(Ju). (3.1)

Moreover if u is bounded, one can ensure ‖w‖L∞(Bρ) ≤ ‖u‖L∞(Bρ).

Remark 3.3. A careful inspection of the proof shows that

lim
σ→0+

τ(n, p, ε, σ) = lim
ε→0+

τ(n, p, ε, σ) = 0,

and

lim
ε→0+

C(n, p, ε) = +∞.

Remark 3.4. Note that also the volume of ω is controlled by the measure of the jump
set Ju of u. Indeed, the isoperimetric inequality ensures that (Ln(ω))(n−1)/n ≤
CHn−1(Ju) (possibly changing the constant C). In addition, since ω ⊂ Bρ, we have
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(Ln(ω))1/n ≤ γ
1/n
n ρ. Multiplying these two inequalities we obtain that Ln(ω) ≤

C ρHn−1(Ju).

Proof. Choose ε > 0 and σ ∈ (0, 1), and let ρ > 0 and u ∈ GSBDp(Bρ). We start
by assuming that

Hn−1(Ju) ≤ τρn−1,

for a τ > 0 to be determined later (see (3.27)).
The function w in the thesis of the theorem will be obtained as the pointwise

limit of a sequence (wk)k≥0, constructed iteratively starting from w0 = u, and by
progressively “wiping out” parts of the jump of u, at the expense of a controlled
increase of the Lp norm of the approximate symmetric gradient. We split the proof
into several steps.

Step 1: Iterative construction of (wk)k≥0. We will now build a sequence of functions
(wk)k≥0 ⊂ GSBDp(Bρ) by induction.
Step 1.1: Base case. Let δ̄ = δ̄(n, p) be the constant given by Lemma 3.1. By
possibly reducing its value, we assume in addition that γn−1 > δ̄n (see notation (k)
in Section 2). Let also α = α(n, p, ε) ∈ (0, 1) be a constant to be determined later
(see (3.28)). We set w0 := u, η0 := (αδ̄)n, ρ0 := ρ and

s0 :=
1

ρ

(
Hn−1(Ju)

η0

) 1
n−1

. (3.2)

Note that by assumption s0 ≤ (τ/η0)1/(n−1). In order for the iteration to converge,
we will need s0 to be sufficiently small, hence the τ in the statement. We also
observe that, by the definition of s0, we have

Hn−1(Jw0 ∩Bρ0) = Hn−1(Ju ∩Bρ) = η0(ρ0s0)n−1.

Step 1.2: Induction step. Let k ≥ 0, and suppose we are given wk ∈ GSBDp(Bρ),
sk ∈ (0, 1), ρk ≤ ρ and ηk ≤ δ̄n which satisfy

Hn−1(Jwk ∩Bρk) ≤ ηk(skρk)n−1, (3.3)

as it is the case for k = 0. We will build wk+1, ηk+1, sk+1 and ρk+1 (explicitly
given at the end of the step) such that (3.3) is satisfied for k+1. We will divide the
proof of the induction step into further substeps.

Our strategy is the following. We construct a function wk+1 whose jump set is
(in measure) not larger than the one of the function wk. To do so, we cover a large
part of Jwk in the smaller ball B(1−sk)ρk (subsequently defined as Bρk+1

) with a
family of disjoint balls, and we wipe out a significant part of the jump set of wk in
each ball of the covering.

Step 1.2a: Construction of the covering. We claim that for Hn−1-a.e. x ∈ Jwk ∩
B(1−sk)ρk there exists rx ∈ (0, skρk] such that{

Hn−1(Jwk ∩Brx(x)) = ηkr
n−1
x

Hn−1(Jwk ∩Br(x)) ≥ ηkrn−1 for r ≤ rx.
(3.4)

Indeed, if x is a point of rectifiability of Jwk ∩B(1−sk)ρk and we define

φ(r) :=
Hn−1(Jwk ∩Br(x))

rn−1
, r ∈ (0, skρk],

then we have limr→0+ φ(r) = γn−1 > ηk (since γn−1 > δ̄n). Moreover, since
Bskρk(x) ⊂ Bρk , from (3.3) it follows that φ(skρk) ≤ ηk. Therefore, we have that
rx := inf{r ∈ (0, skρk) : φ(r) ≤ ηk} > 0. As φ is lower semicontinuous one has



8 KORN INEQUALITY IN GSBDP

φ(rx) ≤ ηk, and as it is left-continuous, one has φ(rx) ≥ ηk. This shows (3.4). By
construction, observe also that

Hn−1(Jwk ∩ ∂Brx(x)) = 0. (3.5)

By the Besicovitch Covering Theorem (see, for instance, [2, Theorem 2.17]) there
exists a positive integer ξ(n), depending only on n, with the following property:
There exist ξ(n) countable families of such closed balls (Br

x`
i

(x`i)), i ≥ 1 and

` = 1, . . . , ξ(n), with Br
x`
i

(x`i) ∩Brx`
j

(x`j) = Ø for i 6= j, and such that

Hn−1

(
(Jwk ∩B(1−sk)ρk) \

(
ξ(n)⋃
`=1

⋃
i≥1

Br
x`
i

(
x`i
)))

= 0.

Let us choose ¯̀∈ {1, . . . , ξ(n)} such that

Hn−1

(
(Jwk ∩B(1−sk)ρk) ∩

(⋃
i≥1

Br
x

¯̀
i

(
x

¯̀
i

)))
is maximal. Then one has∑

i≥1

Hn−1

(
Jwk ∩Brx¯̀

i

(
x

¯̀
i

))
≥ Hn−1

(
(Jwk ∩B(1−sk)ρk) ∩

(⋃
i≥1

Br
x

¯̀
i

(
x

¯̀
i

)))

≥ 1

ξ(n)
Hn−1(Jwk ∩B(1−sk)ρk). (3.6)

In what follows we denote, to simplify, Bi := Br
x

¯̀
i

(
x

¯̀
i

)
, xi := x

¯̀
i , ri := rx¯̀

i
.

Step 1.2b: Definition of wk+1. We define wk+1 in two different ways, depending on
whether the amount of the jump set of wk in the annulus Bρk \ B(1−sk)ρk is large
or not. We first let

θ :=
2ξ(n)

1 + 2ξ(n)
∈
(

2
3 , 1
)
. (3.7)

In the case

Hn−1(Jwk ∩B(1−sk)ρk) ≤ θHn−1(Jwk ∩Bρk), (3.8)

we let wk+1 := wk. If instead we have the reverse inequality in (3.8), and conse-
quently

Hn−1(Jwk ∩ (Bρk \B(1−sk)ρk)) ≤ (1− θ)Hn−1(Jwk ∩Bρk), (3.9)

we then define wk+1 as

wk+1(x) :=

{
wk(x) if x ∈ Bρ \

(⋃
i≥1Bi

)
,

w̃k,i(x) if x ∈ Bi for some i ∈ N,

where w̃k,i ∈ GSBDp(Bi) denotes the function obtained by applying Lemma 3.1,
after suitable translation and rescaling, to the restriction of wk in each ball Bi
for every i ≥ 1. Note that in this case the value of δ, by definition of the balls

Bi (namely by (3.4)), is given by η
1/n
k , and η

1/n
k ≤ δ̄ by the assumption of the

induction step.

Step 1.2c: Proof of the induction step. In case (3.8) is satisfied, we have wk+1 =
wk ∈ GSBDp(Bρ), so that

Hn−1(Jwk+1
) = Hn−1(Jwk), (3.10)

and, by using (3.8) and (3.3),

Hn−1(Jwk+1
∩B(1−sk)ρk) ≤ θηk(skρk)n−1. (3.11)
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We now assume that (3.9) holds. By Property (1) of Lemma 3.1 we have wk+1 ∈
GSBDp(Bρ). Moreover, let Rk,i ∈ (1−η1/(2n)

k , 1) be the radius given by Lemma 3.1
and corresponding to w̃k,i. Setting B′i := B

(1−η1/(2n)
k )ri

(xi) and B′′i := BRk,iri(xi),

we have in particular that wk+1 ∈ C∞(B′i), wk+1 = wk in Bi \B′′i , and Hn−1(Jwk ∩
∂B′′i ) = Hn−1(Jwk+1

∩ ∂B′′i ) = 0.
Property (2) of Lemma 3.1 provides a control on the (possible) additional jump

of wk+1 in each Bi (note that this additional jump can only be in B′′i \ B′i by
Property (1)):

Hn−1((Jwk+1
\ Jwk) ∩Bi) = Hn−1((Jwk+1

\ Jwk) ∩ (B′′i \B′i))

≤ cη
1

2n

k H
n−1(Jwk ∩ (Bi \B′i)). (3.12)

Here c depends only on n and p. We now estimate the jump of wk+1 in each Bi.
By property (1) of Lemma 3.1 and by (3.12)

Hn−1(Jwk+1
∩Bi) = Hn−1(Jwk+1

∩ (Bi \B′i))
≤ Hn−1((Jwk+1

\ Jwk) ∩ (B′′i \B′i)) +Hn−1(Jwk ∩ (Bi \B′i))

≤
(
1 + cη

1
2n

k

)
Hn−1(Jwk ∩ (Bi \B′i)). (3.13)

For the last term in (3.13) we have the bound

Hn−1(Jwk ∩ (Bi \B′i)) = Hn−1(Jwk ∩Bi)−Hn−1(Jwk ∩B′i)

≤ ηkrn−1
i − ηk

(
(1− η

1
2n

k )ri
)n−1

=
(
1−

(
1− η

1
2n

k

)n−1)Hn−1(Jwk ∩Bi),

where we have used properties (3.4) and (3.5) for the radii of the balls of the
covering. Hence from (3.13) we have

Hn−1(Jwk+1
∩Bi) ≤

(
1 + cη

1
2n

k

)(
1−

(
1− η

1
2n

k )n−1
)
Hn−1(Jwk ∩Bi

)
.

Possibly reducing δ̄, we may assume that

(
1 + cη

1
2n

k

) (
1−

(
1− η

1
2n

k

)n−1
)
≤
(

1 + c
√
δ̄
)(

1−
(

1−
√
δ̄
)n−1

)
≤ 1

2
,

so that

Hn−1(Jwk+1
∩Bi) ≤

1

2
Hn−1(Jwk ∩Bi). (3.14)

Note that (3.14) and (3.5) imply immediately that

Hn−1(Jwk+1
) ≤ Hn−1(Jwk). (3.15)

In addition, by (3.14) and (3.5) one has

Hn−1(Jwk+1
∩Bρk)−Hn−1(Jwk ∩Bρk)

≤
∑
i≥1

(
Hn−1(Jwk+1

∩Bi)−Hn−1(Jwk ∩Bi)
)

≤ −1

2

∑
i≥1

Hn−1(Jwk ∩Bi) ≤ −
1

2ξ(n)
Hn−1(Jwk ∩B(1−sk)ρk), (3.16)
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where the last inequality follows from (3.6). We deduce from (3.16) and (3.9) that

Hn−1(Jwk+1
∩Bρk) ≤

(
1− 1

2ξ(n)

)
Hn−1(Jwk ∩Bρk)

+
1

2ξ(n)
Hn−1(Jwk ∩ (Bρk \B(1−sk)ρk))

≤
(

1− θ

2ξ(n)

)
Hn−1(Jwk ∩Bρk).

Hence, using the value (3.7) of θ, we obtain that

Hn−1(Jwk+1
∩B(1−sk)ρk) ≤ θHn−1(Jwk ∩Bρk) ≤ θηk(skρk)n−1, (3.17)

where in the last inequality we used (3.3). In conclusion, whether (3.8) be satisfied
or not, one has that, by (3.10) and (3.15),

Hn−1(Jwk+1
) ≤ Hn−1(Jwk), (3.18)

and that, by (3.11) and (3.17),

Hn−1(Jwk+1
∩B(1−sk)ρk) ≤ θHn−1(Jwk ∩Bρk) ≤ θηk(skρk)n−1. (3.19)

We now define λ := (θ/(1− s0)n−1)1/n; recalling the definition (3.2) of s0, one can

ensure that λ ≤ 2n
√
θ < 1 by choosing τ small enough, namely, by requiring that

τ ≤ η0

(
1− θ

1
2(n−1)

)n−1
= (αδ̄)n

(
1− θ

1
2(n−1)

)n−1
, (3.20)

which depends on n, p, α. Then, letting ρk+1 := (1 − sk)ρk, ηk+1 := ληk, sk+1 :=
λsk, we deduce from (3.19) that

Hn−1(Jwk+1
∩Bρk+1

) ≤ ηk+1(sk+1ρk+1)n−1,

which is (3.3) at step k + 1.

Step 2: Convergence of (wk)k≥0. We now start the construction of the exceptional
set ω given in the statement. To this aim, for every k ≥ 0 we introduce the set
ωk in the following way. If (3.8) is satisfied we let ωk := Ø, and if not, we let
ωk :=

⋃
i≥1Bi (note that ωk ⊆ Bρk). In both cases {wk 6= wk+1} ⊂ ωk and we can

estimate the perimeter of ωk, thanks to (3.3) and (3.4), as

Hn−1(∂∗ωk) ≤ nγn
∑
i≥1

rn−1
i =

nγn
ηk

∑
i≥1

Hn−1(Jwk ∩Bi)

≤ nγn
ηk
Hn−1(Jwk ∩Bρk) ≤ nγn(skρk)n−1, (3.21)

where nγn = Hn−1(Sn−1) (see notation (k) in Section 2).
We now estimate the Lp-norm of e(wk+1) in terms of the norm of e(wk). Again,

this bound is trivial if (3.8) is satisfied. If not, thanks to point (3) in Lemma 3.1,
we have that in each Bi of the construction∫

Bi

|e(wk+1)|pdx ≤
(

1 + cη
s
n

k

)∫
Bi

|e(wk)|pdx (3.22)

for each i ≥ 1. As a consequence, by the definition of wk+1, also∫
Bρ

|e(wk+1)|pdx ≤
(

1 + cη
s
n

k

)∫
Bρ

|e(wk)|pdx. (3.23)

Repeating the construction for all k ≥ 1 we obtain sequences (wk)k≥0, (sk)k≥0,
(ηk)k≥0, (ρk)k≥0 and (ωk)k≥0 with:

ηk = λk(αδ̄)n, sk = λks0, ρk = ρ

k−1∏
`=0

(1− λ`s0). (3.24)
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Since (ρk)k is decreasing, there exists ρ′ := limk→∞ ρk. We claim that ρ′ is
bounded away from zero. Indeed, using that (1− ts0) ≥ (1− s0)t for t ∈ (0, 1) and
s0 < 1

ρ′ = ρ

∞∏
`=0

(1− λ`s0) ≥ ρ
∞∏
`=0

(1− s0)λ
`

= ρ(1− s0)
1

1−λ ≥ ρ(1− s0)
1

1− 2n√
θ , (3.25)

since λ ≤ 2n
√
θ.

Now we set, for any ` ≥ 0, ω̃` :=
⋃
k≥` ωk. Then, thanks to (3.21) and to (3.24),

Hn−1(∂∗ω̃`) ≤
∑
k≥`

Hn−1(∂∗ωk) ≤ nγn
∑
k≥`

(skρk)n−1

≤ nγn(s`ρ`)
n−1

∑
k≥`

(λk−`)n−1 ≤ nγn(s`ρ`)
n−1 1

1− λn−1
, (3.26)

where we have used the fact that ρk ≤ ρ` for k ≥ `. Then, since ρ` → ρ′ and
s` → 0 as ` → ∞, it follows that Hn−1(∂∗ω̃`) → 0 as ` → ∞. Hence by the
isoperimetric inequality we also have that Ln(ω̃`)→ 0 as `→∞. Since, for k ≥ `,
wk = w` outside ω̃`, we conclude that, as k → ∞, wk converges Ln-a.e. in Bρ to
some function w. We also note that, for every k ≥ 0, by (3.23) and (3.24),∫
Bρ

|e(wk)|pdx ≤
k−1∏
i=0

(
1 + cη

s
n
i

)∫
Bρ

|e(u)|pdx ≤
∞∏
i=0

(
1 + c(αδ̄)sλ

is
n

) ∫
Bρ

|e(u)|pdx.

Using 1 + t ≤ et, we estimate
∞∏
i=0

(
1 + c(αδ̄)sλ

is
n

)
≤ exp

(
c(αδ̄)s

∑
i≥0

(
λ
s
n

)i)
= exp

(
c(αδ̄)s

1

1− λ s
n

)
,

so that ∫
Bρ

|e(wk)|pdx ≤ exp
(
c(αδ̄)s

1

1− λ s
n

)∫
Bρ

|e(u)|pdx.

Moreover, thanks to (3.18), for every k ≥ 0 we have that Hn−1(Jwk) ≤ Hn−1(Ju).
Then, thanks to [22, Theorem 11.3] (see also [12]) it follows that w ∈ GSBDp(Bρ),

Hn−1(Jw) ≤ lim inf
k→∞

Hn−1(Jwk) ≤ Hn−1(Ju),

and∫
Bρ

|e(w)|pdx ≤ lim inf
k→∞

∫
Bρ

|e(wk)|pdx ≤ exp
(
c(αδ̄)s

1

1− λ s
n

)∫
Bρ

|e(u)|pdx.

Passing to the limit in (3.3) we have that Hn−1(Jw ∩ Bρ′) = 0, from which it
follows that w ∈ W 1,p(Bρ′ ;Rn), thanks to Korn’s inequality. Note that by (3.24)
ρ′ ≤ ρ, and ρ′ → ρ as Hn−1(Ju) → 0, thanks to (3.25) (and by the definition of
s0). Clearly, using (3.25) and choosing τ small enough we can ensure

ρ ≥ ρ(1− s0)
1

1− 2n√
θ ≥ ρ(1− σ).

This holds, for instance, for

τ := η0(1− 2n
√
θ)n−1σn−1, (3.27)

which also satisfies (3.20). Here we used that (1− 2n
√
θ)σ ≤ 1− (1−σ)1− 2n√

θ. Note
that τ = τ(n, p, α, σ). With this choice we obtain that w ∈W 1,p(Bρ(1−σ);Rn).

Setting ω := ω̃0, by construction we have that w = u in Bρ \ω. In addition, from
(3.26) we have that Hn−1(∂∗ω) ≤ nγn(s0ρ)n−1/(1− λn−1). By our choice (3.2) of
s0, this implies

Hn−1(∂∗ω) ≤ nγn
(αδ̄)n(1− λn−1)

Hn−1(Ju).
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Using the fact that λ ≤ 2n
√
θ we finally obtain the estimates∫

Bρ

|e(w)|pdx ≤ exp

(
c(αδ̄)s

1− θ
s

2n2

)∫
Bρ

|e(u)|pdx,

Hn−1(∂∗ω) ≤ nγn

(αδ̄)n(1− θ n−1
2n )
Hn−1(Ju).

Now we choose α = α(n, p, ε) ∈ (0, 1) such that

exp

(
c(αδ̄)s

1− θ
s

2n2

)
≤ (1 + ε). (3.28)

Note that now τ = τ(n, p, ε, σ). Correspondingly, we define

C = C(n, p, ε) :=
nγn

(αδ̄)n(1− θ n−1
2n )

as the constant in the statement of the theorem, and this concludes the proof. �

Remark 3.5. From (3.22), it is easy to show that in fact one can refine (3.1) to∫
ω

|e(w)|pdx ≤ (1 + ε)

∫
ω

|e(u)|pdx.

In addition, one sees that C ∼ ε−n/s, where s is the exponent in Property (3) of
Lemma 3.1.

Remark 3.6. It is easy to show (by modifying the proof or, in fact, using the theorem
itself) a variant of Theorem 3.2 where Bρ is replaced with a cube (−ρ, ρ)n.

We can easily deduce that [16, Corollary 3.3] also holds in higher dimension. We
repeat the statement here for the reader’s convenience.

Corollary 3.7. Under the same assumptions and notation of Theorem 3.2, there
exists an infinitesimal rigid motion a ∈ R such that∫

B(1−σ)ρ\ω
|∇u−∇a|pdx ≤ c(n, p)

∫
Bρ

|e(u)|pdx,

and ∫
B(1−σ)ρ\ω

|u− a|pdx ≤ c(n, p)ρp
∫
Bρ

|e(u)|pdx.

4. Regularity and rigidity in a general domain

The main result of this section is the following regularity result.

Theorem 4.1. Let n ∈ N with n ≥ 2, p ∈ (1,∞), and let Ω ⊂ Rn be a bounded
and open Lipschitz set. There exists c = c(n, p,Ω) > 0 such that, for any u ∈
GSBDp(Ω), there is a set of finite perimeter ω ⊂ Ω with Hn−1(∂∗ω) ≤ cHn−1(Ju)
and v ∈W 1,p(Ω;Rn) such that u = v in Ω \ ω and

∫
Ω
|e(v)|pdx ≤ c

∫
Ω
|e(u)|pdx. If

in addition u is bounded, then ‖v‖L∞(Ω) ≤ ‖u‖L∞(Ω). The constant c is invariant
under uniform scalings of the domain.

Remark 4.2. Note that the conclusion of Theorem 4.1 is non-trivial only when the
measure of the jump set Ju is small, since otherwise one can simply take ω := Ω
and v := 0 (see the proof of Theorem 4.1 for more details).

Remark 4.3. A careful inspection of the proof of Theorem 4.1 shows that the con-
stant c = c(n, p,Ω) depends on Ω via the triple (N, r, L) defined as follows:

(i) for every x ∈ ∂Ω there exists e(x) ∈ Sn−1 such that ∂Ω∩C(x, e(x), 4Lr, 2r)
is the graph of an L-Lipschitz function defined on the (n− 1)-dimensional

ball {y ∈ Π
e(x)
x : |(y − x)− ((y − x) · e(x))e(x)| < 2r};
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(ii) there exist N points x1, . . . , xN ∈ ∂Ω such that ∂Ω ⊂
⋃N
i=1Br(xi) and

Br/5(x1), . . . , Br/5(xN ) are mutually disjoint.

Note that property (i) follows from the fact that Ω is a Lipschitz domain, while
the existence of N satisfying property (ii) is shown in the proof of Theorem 4.1.
Moreover, N satisfies the estimate

Nγn−1 (r/5)
n−1 ≤ Hn−1(∂Ω) ≤ Nγn−1r

n−1
√

1 + L2.

For the proof of Theorem 4.1 we will use the following lemma.

Lemma 4.4. Let n ∈ N with n ≥ 2, p ∈ (1,∞), and let D ⊂ Rn be a bounded,
open and connected Lipschitz set. Let α ∈ (0, 1). There exist c > 0 depending only
on D, α and p, such that for any w ∈ W 1,p(D;Rn) and any Lebesgue measurable
set E ⊂ D with Ln(E) ≥ αLn(D), one has∫

D

|w − aE |pdx ≤ c
∫
D

|e(w)|pdx,

where

aE := arg min
a∈R

∫
E

|w − a|pdx. (4.1)

Proof. Such a lemma is standard and easily proved by contradiction. Suppose that
for every k ∈ N there exist a function wk ∈W 1,p(D;Rn) and a Lebesgue measurable
set Ek ⊂ D with Ln(Ek) ≥ αLn(D) such that∫

D

|wk − aEk |pdx > k

∫
D

|e(wk)|pdx, (4.2)

where aEk is as in (4.1). Setting

uk :=
wk − aEk

‖wk − aEk‖Lp(D;Rn)
,

we have that, by the definition of aEk , uk satisfies∫
Ek

|uk|pdx ≤
∫
Ek

|uk − a|pdx ∀ a ∈ R. (4.3)

Moreover, by (4.2),

‖uk‖Lp(D;Rn) = 1, ‖e(uk)‖p
Lp(D;Rn×nsym )

<
1

k
, (4.4)

so that by the classical Korn inequality

‖uk‖W 1,p(D;Rn) ≤ C
(
‖uk‖Lp(D;Rn) + ‖e(uk)‖Lp(D;Rn×nsym )

)
≤ 2C,

for some constant C = C(n, p,D) > 0. Hence, there exists u ∈ W 1,p(D;Rn) such
that, up to subsequences, uk ⇀ u weakly in W 1,p(D;Rn) as k → +∞ (and strongly
in Lp(D;Rn)). Note that, up to subsequences, the characteristic functions χEk of
Ek converge weakly∗ in L∞(D) to some function φ ∈ L∞(D) with 0 ≤ φ ≤ 1 and
such that

αLn(D) ≤
∫
D

φdx. (4.5)

Therefore, passing to the limit in (4.3) and (4.4), we have that e(u) = 0 in D and∫
D

|u|pφdx ≤
∫
D

|u− a|pφdx ∀ a ∈ R, ‖u‖Lp(D;Rn) = 1. (4.6)
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Since e(u) = 0 in D, by the classical Poincaré-Korn inequality (see, e.g., (1.6)) we
deduce that there exists a ∈ R such that u = a in D. Choosing a = a in (4.6) we
then have ∫

D

|a|pφdx = 0.

Since a ∈ R and taking into account (4.5) it follows that a = 0 and hence u = 0.
This is however incompatible with ‖u‖Lp(D;Rn) = 1. �

Proof of Theorem 4.1. It is enough to prove the result in the caseHn−1(Ju) ≤ c̄, for
some constant c̄ > 0 to be determined later on (see (4.9)). Indeed, if Hn−1(Ju) > c̄,
we can simply set ω := Ω and v := 0, which clearly satisfy the required bounds,
since Hn−1(∂∗ω) ≤ (Hn−1(∂∗Ω)/c̄)Hn−1(Ju).

We divide the proof into several steps.

Step 1: We introduce a finite open cover {C0, C1, . . . , CN} of Ω. Since Ω is Lipschitz
and bounded (see [1, Section 4.9]), there exist r > 0 such that for every x ∈ ∂Ω,
there exists e(x) ∈ Sn−1 such that ∂Ω∩C(x, e(x), 4Lr, 2r) (see (d) in the Notation
Section) is the graph of an L-Lipschitz function defined on the (n− 1)-dimensional

ball {y ∈ Π
e(x)
x : |(y − x) − ((y − x) · e(x))e(x)| < 2r}. Setting L̃ := max{1, L},

by possibly reducing r we still have that ∂Ω ∩ C(x, e(x), 4L̃r, 2r) is the graph of

an L̃-Lipschitz function for every x ∈ ∂Ω. Consider now the family of open balls
{Br/5(x)}x∈∂Ω. By Vitali’s Covering Theorem [24, Section 1.5.1], there exist N ∈ N
and {x1, . . . , xN} ⊂ ∂Ω such that the family {Br/5(xi)}i=1,...,N is composed of
mutually disjoint balls and

∂Ω ⊂
⋃
x∈∂Ω

Br/5(x) ⊂
N⋃
i=1

Br(xi). (4.7)

In the following, we will use the shorthand Ci := C(xi, e(xi), 4L̃r, 2r) for every
i = 1, . . . , N . Note that Br(xi) ⊂ B2r(xi) ⊂ Ci and that dist(∂Ci, Br(xi)) = r for
every i = 1, . . . , N . Moreover, from (4.7) it follows that{

x ∈ Ω : dist(x, ∂Ω) ≤ r

6

}
⊂
{
x ∈ Ω : dist(x, ∂Ω) <

r

5

}
⊂

N⋃
i=1

Br(xi). (4.8)

Setting

C̃0 :=
{
x ∈ Ω : dist(x, ∂Ω) >

r

6

}
, C0 :=

{
x ∈ Ω : dist(x, ∂Ω) >

r

8

}
,

thanks to (4.8) it follows that Ω ⊂ C̃0 ∪
(⋃N

i=1Br(xi)
)
⊂
⋃N
i=0 Ci.

Step 2: We show that, at any given point of Ω, the maximal number of overlapping
sets in the covering {C0, C1, . . . , CN} only depends on L and n. To this aim, it will
be enough to prove the statement for the sets C1, . . . , CN . Let z ∈ Ω, and let

A(z) :=
{
x ∈ {x1, . . . , xN} : z ∈ C(x, e(x), 4L̃r, 2r)

}
.

Our goal is to show that the cardinality of A(z) is bounded by a number that only
depends on n and L. Note that, if z is ‘far’ from ∂Ω, it can be A(z) = Ø, but in
this case there is nothing to prove. Since the diameter of each cylinder is given by

4r
√

1 + 4L̃2, we have

|z − x| < 4r
√

1 + 4L̃2 for every x ∈ A(z).

Therefore,

A(z) ⊂ B
4r
√

1+4L̃2
(z).
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Recalling that the family {Br/5(xi)}i=1,...,N is composed of mutually disjoint balls,
for every i ∈ {1, . . . , N} with i 6= j we have |xi − xj | > 2r/5. Then, the cardinality
of A(z) is bounded by the maximum number of disjoint balls of radius r/5 which

can intersect a ball of radius 4r
√

1 + 4L̃2, that we denote with κ. By scaling, one
can check that κ does not depend on r, but only on L̃ (i.e. on L) and on the
dimension n.

Step 3: We show that it is enough to prove the theorem in the set Ci ∩Ω, for every
i ∈ {0, 1 . . . , N}. We introduce a partition of unity of Ω subordinate to the open

covering {C̃0, Br(x1), . . . , Br(xN )}, namely maps φ0 ∈ C∞c (C̃0, [0, 1]), and φi ∈
C∞c (Br(xi), [0, 1]) for i = 1, . . . , N , with

∑N
i=0 φi = 1 in Ω (see, e.g. [30, Definition

A.13]). Note that this is also a partition of unity of Ω subordinate to the open
covering {Ci}, for i = 0, . . . , N . Moreover, by construction dist(suppφ0, ∂C0) >
r/24, while dist(suppφi, ∂Ci) ≥ r for i = 1, . . . , N . Assuming that for every i we
can find a function vi and a set ωi satisfying the thesis of the theorem in Ci ∩ Ω,

then v =
∑N
i=0

(
φi|Ci∩Ω

)
vi and ω =

⋃N
i=0 ωi satisfy the claim in Ω.

Step 4: We fix i ∈ {0, 1, . . . , N} and prove the theorem in Ci ∩ Ω. Let i ∈
{0, 1, . . . , N}. Our construction will be simpler in the case i = 0 and, when neces-
sary, we will explicitly point this out in the proof. If i 6= 0, without loss of generality
we can assume that Ci = C(0, en, 4L̃r, 2r), with en being the n-th coordinate unit

vector, and that Ω ∩ Ci = {x = (x′, xn) ∈ Ci : xn < g(x′)} for a given L̃-Lipschitz
function g defined on the ((n− 1)-dimensional) ball centred at 0 and of radius r in
Πen

0 , with g(0) = 0.
We now build vi and ωi for the set Ci ∩ Ω. Let δ > 0, and let Ci denote the

union of all the n-dimensional cubes q ∈ {z + (0, δ]n : z ∈ δZn} with q ⊂ Ci.
Since dist(suppφi, ∂Ci) > r/24, we can assume that δ is small enough so that
suppφi ⊂ Ci. Note that the choice of δ/r depends only on n.

Then we build recursively the set Q of dyadic cubes of edge size δ2−k, k ≥ 0,
which refine towards the boundary ∂Ω, as follows. As a first step, we denote with
Q0 the set of cubes q ∈ {z+(0, δ]n : z ∈ δZn}, q ⊂ Ci∩Ω, such that dist(q, ∂Ω) > δ.
Then, for k ≥ 1, having built Q` for ` < k, we define Qk as the set of all the smaller
cubes q ∈ {z + (0, δ2−k]n : z ∈ δ2−kZn}, q ⊂ Ci ∩Ω, such that dist(q, ∂Ω) > δ2−k,
and q does not intersect cubes of

⋃
`<k

⋃
q̂∈Q` q̂. Note that, if i = 0, we can assume

that all the cubes in C0 belong to the family Q0 (by e.g. choosing δ < r/8).
Finally, we let Q :=

⋃∞
k=0Qk; note that

⋃
q∈Q q = Ci∩Ω ⊂ Ci∩Ω covers entirely

suppφi∩Ω. Now, for each q ∈ Q, let q′ and q′′ denote cubes concentric with q, and
with edge size 10% and 20% longer, respectively. Then the cubes q′′ (as well as q′),
for q ∈ Q, form a sort of Whitney covering of Ci ∩Ω, at least covering suppφi ∩Ω.
Moreover, since for every k ≥ 0 any q ∈ Qk satisfies dist(q, ∂Ω) > δ2−k, clearly also
q′, q′′ ⊂ Ω. Note that, for fixed k ≥ 0, an enlarged cube q′′ of some cube q ∈ Qk
can only intersect cubes belonging to Qk, Qk+1 and, if k ≥ 1, Qk−1.

Next, we choose the constant c̄ = c̄(Ω) introduced at the start of the proof to be

c̄ := τ(δ/2)n−1, (4.9)

where τ is given by Theorem 3.2 (or, more precisely, by the version of Theorem 3.2
for a cube, following Remark 3.6), corresponding to σ = 1/12 and ε = 1. Hence,
by the initial assumption Hn−1(Ju) ≤ c̄ we have

Hn−1(Ju) ≤ τ(δ/2)n−1.

Then, by applying Theorem 3.2 (with ε = 1) to u ∈ GSBDp(q′′), for each q ∈ Q0,
we find a function wq ∈ GSBDp(q′′) and a set of finite perimeter ωq ⊂ q′′ such that
wq = u in q′′ \ωq,

∫
q′′
|e(wq)|pdx ≤ C

∫
q′′
|e(u)|pdx, Hn−1(∂∗ωq) ≤ CHn−1(Ju∩ q′′)

and wq ∈W 1,p(q′;Rn), where C = C(n, p).
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For smaller cubes q ∈ Qk, k ≥ 1, we proceed as follows: if Hn−1(Ju ∩ q′′) ≤
τ(δ/2k+1)n−1, we say that q is “good”, we apply Theorem 3.2 to the restriction of
u to q′′, and find wq and ωq as in the case k = 0 (note that all the cubes in Q0 are
“good” and that, in particular, C0 is made of “good” cubes). In conclusion, for q
“good”, we find a function wq ∈ GSBDp(q′′) and a set of finite perimeter ωq ⊂ q′′
such that wq = u in q′′ \ ωq and

wq ∈W 1,p(q′;Rn), (4.10)∫
q′′
|e(wq)|pdx ≤ C

∫
q′′
|e(u)|pdx, (4.11)

Hn−1(∂∗ωq) ≤ CHn−1(Ju ∩ q′′), (4.12)

where C = C(n, p). If instead Hn−1(Ju ∩ q′′) > τ(δ/2k+1)n−1, we say that q is
“bad” and we define

ω̃q := Ω ∩ (q + {x = (x′, xn) : xn > 2L̃|x′|}),

namely we connect q with ∂Ω via a sort of truncated cone with an opening con-
trolled by the Lipschitz constant L of Ω. Scaling arguments (and the fact that
dist(q, ∂Ω) ≤ δ2−k+1) show that Hn−1(∂∗ω̃q) ≤ c(δ2−k)n−1 where the constant
c = c(n,L) depends only on L and the dimension. It follows that in this case,
namely for q “bad”,

Hn−1(∂∗ω̃q) ≤ c(n,L)
2n−1

τ
Hn−1(Ju ∩ q′′). (4.13)

We let ω̃ :=
⋃
q∈Qb ω̃q, G := (

⋃
q∈Q q) \ ω̃, and ω̂ :=

⋃
q∈Qg (ωq ∩ q′), where

we denoted with Qb,Qg ⊂ Q the “bad” and “good” cubes in Q, respectively. By

construction, there exists a (2L̃)-Lipschitz function f such that G is the subgraph
of f , with g − 2δ ≤ f ≤ g. Moreover, for some constant c (depending on L, n and
τ), and using that the cubes q′′ have finite overlap, one has, by (4.12) and (4.13),

Hn−1(∂∗ωi) ≤ Hn−1(∂∗ω̃) +Hn−1(∂∗ω̂) ≤ cHn−1(Ju ∩ (Ci ∩ Ω)), (4.14)

where we set ωi := ω̃ ∪ ω̂.
We now construct a regularised function vi as a convex combination of the

functions wq relative to “good” cubes q ∈ Qg only. More precisely, let ψ ∈
C∞c ((0, 1.1)n; [0, 1]) be a smooth cut-off function with ψ = 1 on [0, 1]n. For any
k ≥ 0 and any q ∈ Qg ∩ Qk with centre cq, we define the translated and rescaled
version of ψq, ψq(x) := ψ((x − cq)/(δ2−k)) ∈ C∞c (q′; [0, 1]), so that ψq = 1 on q.
Finally, we define the ‘normalised’ cut-off function ϕq(x) := ψq(x)/(

∑
q̂∈Qg ψq̂(x))

for x ∈ ∪q∈Qgq.
We then let, for x ∈ ∪q∈Qgq, ṽi(x) :=

∑
q∈Qg wq(x)ϕq(x). First of all, we extend

ṽi|G from G to Ci∩Ω. This can be done, for instance, by following the procedure in
[31, Lemma 4], since G is a special Lipschitz set (according to [31, property (49)])
and ṽi|G ∈ W 1,p(G;Rn), as each wq belongs to W 1,p(q′;Rn) for q ∈ Qg, by (4.10).

We denote this extension by vi. Then vi ∈W 1,p(Ci ∩ Ω;Rn), vi = ṽi in G, and by
[31, property (50)] we have that∫

Ci∩Ω

|e(vi)|pdx ≤ c
∫
G

|e(ṽi)|pdx ≤ c
∫
∪q∈Qg q

|e(ṽi)|pdx, (4.15)

where the constant c depends only on the dimension n, on p, and on the Lipschitz
constant of G (namely of f), which is 2L̃, hence c = c(n, p, L).

Moreover, vi = u in (Ci ∩ Ω) \ ωi. Indeed, ṽi|G = u in G \ ω̂ by construction,
vi = ṽi in G, and G = (Ci ∩ Ω) \ ω̃.
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To conclude the proof of this step, it remains to show that∫
Ci∩Ω

|e(vi)|pdx ≤ c
∫
Ci∩Ω

|e(u)|pdx, (4.16)

for some c = c(n, p, L). By (4.15), it is sufficient to show that
∫
∪q∈Qg q

|e(ṽi)|pdx ≤
c
∫
Ci∩Ω

|e(u)|pdx. By the definition of ṽi, one has

e(ṽi) =
∑
q∈Qg

(
e(wq)ϕq + wq �∇ϕq

)
. (4.17)

We need therefore to estimate the Lp norm of
∑
q∈Qg wq �∇ϕq in terms of the Lp

norm of e(u), since the other term in the sum satisfies the bound by (4.11). Notice
that as

∑
q ϕq ≡ 1 in ∪q∈Qgq, we have that

∑
q∇ϕq = 0 in ∪q∈Qgq (where here

and in what follows the sums run on cubes in Qg). Then, if we fix q ∈ Qg and
x ∈ q′ ∩ (∪q̂∈Qg q̂), we have∑

q̂

wq̂(x)�∇ϕq̂(x) =
∑
q̂

wq̂(x)�∇ϕq̂(x)− wq(x)�
∑
q̂

∇ϕq̂(x)

=
∑
q̂

(wq̂(x)− wq(x))�∇ϕq̂(x)

=
∑

q̂:q′∩q̂′ 6=Ø

(wq̂(x)− wq(x))�∇ϕq̂(x). (4.18)

Note that the last equality in (4.18) follows since the only terms in the sum that
have a non-zero contribution are the ones corresponding to cubes q̂ such that q̂′

intersects q′, whose number is bounded by 2n.
Now we observe that, if q′ ∩ q̂′ 6= Ø, then there are two cases: either q and q̂ are

of the same size, or, alternatively, the edge length of one is twice the edge length
of the other one. In either case

Ln(q′ ∩ q̂′) ≥ β1 max{Ln(q′),Ln(q̂′)},
where β1 = β1(n) > 0 is an explicit constant depending only on the dimension.
Now, to fix the ideas, assume that q ∈ Qk and q̂ ∈ Qk+1; then, by Remark 3.4 and
(4.12) (where we recall that C = C(n, p)), and since q, q̂ ∈ Qg,

Ln(ωq ∪ ωq̂) ≤ Cδ2−k
(
Hn−1(Ju ∩ q′′) +Hn−1(Ju ∩ q̂′′)

)
≤ c(n, p) τ

(
δ

2k+1

)n
≤ c(n, p) τLn(q′ ∩ q̂′),

where c(n, p) denotes possibly different constants. Therefore, for every q, q̂ ∈ Qg
with q′ ∩ q̂′ 6= Ø,

Ln(ωq ∪ ωq̂) ≤ c(n, p)τLn(q′ ∩ q̂′).
Hence, up to possibly reducing τ , we have that

Ln((q′ ∩ q̂′) \ (ωq ∪ ωq̂)) ≥ β2Ln(q′ ∩ q̂′) ≥ β1β2 max{Ln(q′),Ln(q̂′)},
for some β2 > 0 depending on n and p.

We now apply Lemma 4.4 to wq in q′ and to wq̂ in q̂′, with E = (q′∩ q̂′)\(ωq∪ωq̂)
and α = β1β2. Note that the constant c in the lemma scales with the size of the
domain; more precisely, for a dyadic cube q′ with side length `′, c = c(n, α, p)(`′)p,
with c(n, α, p) being the constant for the unit cube in Rn. Then∫

q′
|wq − aq|pdx ≤ c(`′)p

∫
q′
|e(wq)|pdx, (4.19)∫

q̂′
|wq̂ − aq̂|pdx ≤ c(ˆ̀′)p

∫
q̂′
|e(wq̂)|pdx, (4.20)
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and

aq := arg min
a∈R

∫
E

|wq − a|pdx, aq̂ := arg min
a∈R

∫
E

|wq̂ − a|pdx.

On the other hand, since wq = wq̂ = u in E, we have that aq = aq̂ = a, and hence,
thanks to (4.19)-(4.20) and (4.11),∫

q′∩q̂′
|wq − wq̂|pdx ≤ c(p)

∫
q′∩q̂′

|wq − a|pdx+ c(p)

∫
q′∩q̂′

|wq̂ − a|pdx

≤ c(n, p)
(

(`′)p
∫
q′
|e(wq)|pdx+ (ˆ̀′)p

∫
q̂′
|e(wq̂)|pdx

)
≤ c(n, p) `p

(∫
q′′
|e(u)|pdx+

∫
q̂′′
|e(u)|pdx

)
.

In conclusion, for a given q ∈ Qg, by (4.17), (4.18), (4.11) and the previous
estimate, ∫

q

|e(ṽi)|pdx ≤ c
∑

q̂:q′∩q̂′ 6=Ø

∫
q∩q̂′
|e(wq̂)|pdx

+ c
∑

q̂:q′∩q̂′ 6=Ø

‖∇ϕq̂‖pL∞(q̂′)

∫
q∩q̂′
|wq − wq̂|pdx

≤ c
∑

q̂:q′∩q̂′ 6=Ø

∫
q̂′′
|e(u)|pdx,

with c = c(n, p), where we have used the fact that ‖∇ϕq̂‖L∞(q̂′) ≤ c/ˆ̀. Using that
the cubes q′′ have finite overlap, we have∫

∪q∈Qg q
|e(ṽi)|pdx ≤ c

∫
Ci∩Ω

|e(u)|pdx,

and, by (4.15) we obtain (4.16). We have then proved the estimates∫
Ci∩Ω

|e(vi)|pdx ≤ ci
∫
Ci∩Ω

|e(u)|pdx, Hn−1(∂∗ωi) ≤ ciHn−1(Ju ∩ (Ci ∩ Ω)),

where ci = ci(n, p, L) is the maximum of the two constants in (4.14) and (4.16).

Step 5: Conclusion. Recalling that v =
∑N
i=0

(
φi|Ci∩Ω

)
vi =

∑N
i=0

(
φi|Ci∩Ω

)
vi and

ω =
⋃N
i=0 ωi (see Step 3), and that the number of Ci’s intersecting at every point

of Ω is at most κ+ 1 (see Step 2), the statement holds true by setting

c(n, p,Ω) := (κ+ 1) max {c0, c1, . . . , cN , c̃} ,

where c̃ = Hn−1(∂∗Ω)/c̄.
Note that, since Hn−1(∂∗Ω) can be estimated in terms of the parameters N , r

and L introduced in Step 1, we have that c(n, p,Ω) = c(n, p, r,N,L).
�

An immediate consequence of Theorem 4.1 is the Korn’s inequality below, whose
proof is a direct adaptation of [16, Corollary 3.3].

Theorem 4.5. Under the same assumptions and notation of Theorem 4.1, and
under the additional requirement that Ω is connected, there exists an affine function
a ∈ R such that ∫

Ω\ω
|∇u−∇a|pdx ≤ c(n, p,Ω)

∫
Ω

|e(u)|pdx. (4.21)
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Moreover, (∫
Ω\ω
|u− a|qdx

) 1
q

≤ c(n, p, q,Ω)

(∫
Ω

|e(u)|pdx
) 1
p

, (4.22)

where q ≤ p∗ if p < n, q <∞ if p = n, and q ≤ ∞ for p > n.

Proof. Let v ∈W 1,p(Ω;Rn) be given by Theorem 4.1. By Korn’s inequality applied
to v, there exists A ∈ Rn×nskw such that∫

Ω

|∇v −A|pdx ≤ c(n, p,Ω)

∫
Ω

|e(v)|pdx;

moreover, by applying Poincaré’s inequality to the function x 7→ v(x) − Ax, there
exists b ∈ Rn such that∫

Ω

|v(x)−Ax− b|pdx ≤ c(n, p,Ω)

∫
Ω

|∇v −A|pdx. (4.23)

We now define a(x) := Ax + b; then a ∈ R. Since ∇v = ∇u Ln-a.e. on {v = u},
we have that∫

Ω\ω
|∇u−∇a|pdx =

∫
Ω\ω
|∇v −∇a|pdx

≤ c(n, p,Ω)

∫
Ω

|e(v)|pdx ≤ c̃(n, p,Ω)

∫
Ω

|e(u)|pdx,

where the last inequality follows by Theorem 4.1. This proves (4.21). Moreover,
we can improve the norm on the left-hand side of (4.23) to the exponent q of the
Sobolev embedding of W 1,p into Lq. Then, since v = u in Ω \ ω, we have that∫

Ω\ω
|u− a|qdx =

∫
Ω\ω
|v − a|qdx

≤ c(n, p, q,Ω)

∫
Ω

|e(v)|pdx ≤ c̃(n, p, q,Ω)

∫
Ω

|e(u)|pdx,

which proves the estimate (4.22). Note that, if p < n, we can take q = p∗, and that
if p > n we can estimate v − a in the Hölder seminorm C0,α, with α = 1− n

p . �

5. An approximation result

In this last section, as an application, we show an approximation result in the
spirit of [11, Theorem 3.1].

Theorem 5.1. Let n ∈ N with n ≥ 2, p ∈ (1,∞), and let Ω ⊂ Rn be a bounded
open set of finite perimeter. Let ε > 0. Then, for any u ∈ GSBDp(Ω), there exist

• a closed set Γ, finite union of disjoint (n − 1)-dimensional C1 manifolds
with C1 boundary;
• a set ω̃, finite union of cubes;
• a set of finite perimeter ω̂;

such that
Hn−1(Ju4Γ) +Hn−1(∂∗ω̃) +Hn−1(∂∗ω̂) < ε. (5.1)

Moreover, there exists a function w ∈ GSBDp(Ω)∩W 1,p(Ω\ (Γ∪ ω̃);Rn) such that
{w 6= u} ⊂ ω̃ ∪ ω̂, ∫

Ω\ω̃
|e(w)|p dx ≤ (1 + ε)

∫
Ω

|e(u)|pdx,

and
Hn−1(Γ ∩ {w± 6= u±}) < ε,

where w± and u± denote the traces of w and u on the two sides of Γ.
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Corollary 5.2. Under the same assumptions and notation of Theorem 5.1, for
u ∈ GSBDp(Ω) the approximate gradient ∇u exists Ln-a.e. in Ω.

Proof of Corollary 5.2. Let k ∈ N, and let ω̃k, ω̂k and wk be as in Theorem 5.1,
for ε = 1

k . Since wk ∈ GSBDp(Ω) ∩W 1,p(Ω \ (Γ ∪ ω̃k);Rn), we have in particular
that ∇wk exists Ln-a.e. in Ω \ ω̃k. Moreover, as u = wk in Ω \ (ω̃k ∪ ω̂k), it follows
that ∇u exists Ln-a.e. in Ω \ (ω̃k ∪ ω̂k) (note that ω̃k is a finite union of cubes, and
hence its boundary is Ln-negligible). By repeating this argument for every k ∈ N
we have that ∇u exists Ln-a.e. in Ω \ ω, where

ω :=
⋂
k∈N

(ω̃k ∪ ω̂k).

Since by (5.1) and Remark 3.4 we have that Ln(ω̃k ∪ ω̂k) ≤ C( 1
k )n/(n−1) for every

k ∈ N, where C = C(n), it follows that Ln(ω) = 0. Hence we can conclude that
∇u exists Ln-a.e. in Ω. �

Note that in the case p = 2 the result in Corollary 5.2 has been obtained in [28],
as a consequence of the embedding GSBD2(Ω) ⊂ (GBV (Ω))n (see [28, Theorem
2.9]), for n ≥ 2.

Theorem 5.1 will follow as a special case of the following technical proposition.

Proposition 5.3. Let n ∈ N with n ≥ 2, and p ∈ (1,∞). Let u ∈ GSBDp(Rn) and
let J be a countably (Hn−1, n− 1) rectifiable set with Ju ⊂ J and Hn−1(J) < +∞.
Let ε > 0. Then there exist

• a closed set Γ, finite union of disjoint (n − 1)-dimensional C1 manifolds
with C1 boundary;

• a set ω̃, finite union of cubes;
• a set of finite perimeter ω̂;
• a function w ∈ GSBDp(Rn), with w ∈ W 1,p(BR(0) \ (Γ ∪ ω̃);Rn) for any
R > 0;

such that w = u Ln-a.e. in Rn \ (ω̃ ∪ ω̂), and

Hn−1(J4Γ) ≤ ε ,∫
Rn\ω̃

|e(w)|pdx ≤ (1 + ε)

∫
Rn
|e(u)|pdx ,

Hn−1(∂∗ω̃) +Hn−1(∂∗ω̂) ≤ ε .

Moreover, u±(x) = w±(x) for Hn−1-a.e. x ∈ Γ \ (ω̃ ∪ ω̂(1) ∪ ∂∗ω̂), and Hn−1(Γ ∩
{w± 6= u±}) < ε, where we used (h) in Section 2.

We recall that, for u ∈ GSBD(Rn), the set Ju is countably (Hn−1, n−1) rectifi-
able [22, Section 6] (see [25, Section 3.2.14] for the definition), so that the assump-
tion Ju ⊂ J is not restrictive.

Theorem 5.1 is deduced from Proposition 5.3 in the following way. Let Ω ⊂ Rn
and u ∈ GSBDp(Ω) as in the assumptions of Theorem 5.1, and let ũ denote the
extension of u to Rn obtained by setting ũ := 0 outside Ω. Then ũ ∈ GSBDp(Rn),
and by applying Proposition 5.3 to ũ and J = Jũ we obtain the claim.

Proof of Proposition 5.3. Let u, J and ε be as in the statement, and let ρ > 0 and
α > 0 be constants to be determined later. We split the proof into several steps.
Step 1: Covering the jump set . Since J is countably (Hn−1, n − 1) rectifiable and
Hn−1(J) < +∞, by [25, Theorem 3.2.29] there exists a countable family (Mk)k∈N
of C1 hypersurfaces such that

Hn−1

(
J \

∞⋃
k=1

Mk

)
= 0.
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With no loss of generality we can assume that for each k ∈ N the manifold Mk is
a Lipschitz graph with Lipschitz constant less than 1/4 [2, Theorem 2.76]. Then,
for every k ∈ N, Hn−1-a.e. point in J ∩Mk is a point of Hn−1-density 1 both for
J and J ∩Mk, namely

lim
r→0+

Hn−1(J ∩Br(x))

γn−1rn−1
= lim
r→0+

Hn−1((J ∩Mk) ∩Br(x))

γn−1rn−1
= 1,

for every k ∈ N and Hn−1-a.e. x ∈ J ∩Mk. From this, it follows that for every
k ∈ N and for Hn−1-a.e. x ∈ J ∩Mk there exists η(α, x) ∈ (0, ρ) such that

|Hn−1(Br(x) ∩ J)− γn−1r
n−1| ≤ αγn−1r

n−1,

|Hn−1(Br(x) ∩ (J ∩Mk))− γn−1r
n−1| ≤ αγn−1r

n−1,

and

Hn−1(Br(x) ∩ (J∆Mk)) ≤ αHn−1(Br(x) ∩ J),

for every r ≤ η(α, x). In other words, up to sufficiently restricting the radius of
the ball, we can assume that the main content of J in a ball centred at a point
x ∈ J ∩Mk comes from Mk, and not from the other components Mj , for j 6= k.

Let M := J ∩∪kMk. Note that the family
{
Br(x) : x ∈M, r ≤ η(α, x)

}
is a fine

cover of M (see [2, Section 2.4]). Then, applying the Vitali-Besicovitch’s Covering
Theorem [2, Theorem 2.19] to A = M and µ = Hn−1 M , there exists a disjoint
subfamily

{
Br(α,x)(x) : x ∈M ′

}
, for some M ′ ⊂ M and r(α, x) ≤ η(α, x), such

that

Hn−1

(
J \

⋃
x∈M ′

Br(α,x)(x)

)
= 0.

Moreover, the subfamily above is countable, since it is composed of disjoint sets
with nonempty interior. Hence, there exists a sequence {xi}i∈N ⊂ ∪kMk such that

Hn−1

(
J \

⋃
i∈N

Bi

)
= 0,

where Bi := Bri(xi) for every i ∈ N, and where we set ri := r(α, xi). Finally, note
that from the identity above it follows that there exists N = N(α) ∈ N such that

Hn−1

(
J \

N⋃
i=1

Bi

)
< α. (5.2)

Given i ∈ {1, . . . , N}, let k(i) ∈ N be such that xi ∈ Mk(i) and define Γi :=

Mk(i) ∩ Bi. Then Bi \ Γi has two (Lipschitz) connected components, and the
following properties are satisfied:

a) Γi is a Lipschitz graph with constant less than 1/4;

b) |Hn−1(Br(xi) ∩ J)− γn−1r
n−1| ≤ αγn−1r

n−1 for all r ≤ ri;
c) Hn−1(Bi ∩ (J4Γi)) ≤ αHn−1(Bi ∩ J);

d) Hn−1
(
J \

⋃N
i=1 Γi

)
≤ α(1 +Hn−1(J));

e) Ln
(⋃N

i=1Bi

)
≤ γn

γn−1

ρ
1−αH

n−1(J).

Properties a), b), c) follow immediately. We now prove property d). First, note
that

J \
N⋃
i=1

Γi =

(
J \

N⋃
i=1

Bi

)
∪

(
N⋃
i=1

J ∩ (Bi \ Γi)

)
.
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Hence, by (5.2) and by property c)

Hn−1

(
J \

N⋃
i=1

Γi

)
< α+Hn−1

(
N⋃
i=1

J ∩ (Bi \ Γi)

)

≤ α+

N∑
i=1

Hn−1
(
J ∩ (Bi \ Γi)

)
≤ α(1 +Hn−1(J)),

which shows d). To see e) note that, since the closed balls are disjoint,

Ln
( N⋃
i=1

Bi

)
=

N∑
i=1

γnr
n
i ≤

γnρ

γn−1

N∑
i=1

γn−1r
n−1
i

≤ γn
γn−1

ρ

1− α

N∑
i=1

Hn−1(Bi ∩ J) ≤ γn
γn−1

ρ

1− α
Hn−1(J),

where we have also used b).

Finally, letting Γ :=
⋃N
i=1 Γi, one has that Γ is a finite union of disjoint C1

manifolds with C1 boundary. Moreover, thanks to c) and d),

Hn−1(J4Γ) ≤ α(1 + 2Hn−1(J)). (5.3)

Step 2: Cleaning the jump set in the balls Bi. We split this step into further sub-
steps.
Step 2.1: Application of Theorem 4.1 in the balls Bi. Let us denote B+

i , B−i the
connected components of Bi\Γi. Thanks to Theorem 4.1, in each B±i , i = 1, . . . , N ,
there exists a set of finite perimeter ω±i and a function v±i ∈ W 1,p(B±i ;Rn) such
that

v±i = u in B±i \ ω
±
i , (5.4)∫

B±i

|e(v±i )|pdx ≤ c±i
∫
B±i

|e(u)|pdx (5.5)

Hn−1(∂∗ω±i ) ≤ c±i H
n−1(J ∩B±i ), (5.6)

where c±i = c±i (n, p).
Step 2.2: The constant c := max{c±i : i = 1, . . . , N} is bounded uniformly in N
(and hence in α). First we note that, due to the invariance of c±i under uniform
rescalings of the domain, it is not restrictive to assume that Bi has unit radius for
every i = 1, . . . , N .

Now, let i = 1, . . . , N be fixed, and consider for instance the set B+
i . Since

B+
i is a Lipschitz set, there exist r̂+

i and L̂+
i such that for every point of ∂B+

i

we can construct a cylinder with radius 2r̂+
i and half-height 4L̂+

i r̂
+
i where ∂B+

i is

the graph of an L̂+
i -Lipschitz function. Since Γi is a Lipschitz graph with constant

less than 1/4, a careful construction shows that one can find r̂+
i = r̂ and L̂+

i = L̂

independent of the particular manifold Γi. Finally, let N̂+
i ∈ N be given by point

(ii) of Remark 4.3, for the domain B+
i . By the same remark it follows that N̂+

i

satisfies the estimates{
N̂+
i r̂

n−1 ≤ (5n−1/γn−1)Hn−1(∂B+
i ) ≤ (5n−1/γn−1)C2(n),

C1(n) ≤ Hn−1(∂B+
i ) ≤ N̂+

i γn−1r̂
n−1
√

1 + L̂2,

where we have used that

C1(n) := Hn−1(Sn−1 ∩ {xn ≥ 1/4}) ≤ Hn−1(∂B+
i )

≤ Hn−1(Sn−1) +Hn−1(Γi) ≤ nγn + γn−1

√
1 + (1/4)2 =: C2(n).
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From this it follows that N̂+
i can be chosen to be depending only on n.

In conclusion, (N̂+
i , r̂

+
i , L̂

+
i ) can be chosen uniformly in i. Since, by Remark 4.3,

the constant c+i depends on B+
i only via (N̂+

i , r̂
+
i , L̂

+
i ), we finally conclude that the

constant c := max{c±i : i = 1, . . . , N} can be bounded uniformly in N , and hence,
as N = N(α), uniformly in α. In particular, in (5.4)-(5.6), we can replace c±i with
the uniform constant c.

Step 2.3: Conclusion. Thanks to b) and c) in Step 1, we have that

Hn−1(J ∩B±i ) ≤ Hn−1(Bi ∩ (J4Γi)) ≤ αHn−1(Bi ∩ J) ≤ α(1 + α)γn−1r
n−1
i ,

and hence from (5.6) and Step 2.2, Hn−1(∂∗ω±i ) ≤ c α(1+α)γn−1r
n−1
i . (Note that,

in the case where ω±i = B±i , we can simply let v±i = 0; however by choosing α > 0
small enough we can assume with no loss of generality that this does not happen.)

It follows that on ∂Bi the trace of each v±i coincides with the trace of u, except

on a set of total measure at most 2c α(1 + α)γn−1r
n−1
i . Let now

v(x) :=

{
v±i (x) if x ∈ B±i , i = 1, . . . , N ,

u(x) if x ∈ Rn \
⋃N
i=1Bi.

Then v ∈ GSBDp(Rn), and we have the following properties:

1) Jv ∩Bi ⊂ Γi for each i = 1, . . . , N ;

2)

N∑
i=1

Hn−1(Jv ∩ ∂Bi) ≤ α(1 + 2c)Hn−1(J);

3) Hn−1 (Jv \ Γ) ≤ α(1 + (1 + 2c)Hn−1(J)).

Property 1) follows from the definition of v. For property 2), note that by c) and
(5.6)

N∑
i=1

Hn−1 (Jv ∩ ∂Bi) ≤
N∑
i=1

Hn−1 (Ju ∩ ∂Bi) +

N∑
i=1

Hn−1
(
∂Bi ∩ (∂∗ω+

i ∪ ∂
∗ω−i )

)
≤

N∑
i=1

Hn−1
(
J ∩ (Bi \ Γi)

)
+

N∑
i=1

(
Hn−1(∂∗ω+

i ) +Hn−1(∂∗ω−i )
)

≤ αHn−1(J) +

N∑
i=1

(
Hn−1(∂∗ω+

i ) +Hn−1(∂∗ω−i )
)

≤ αHn−1(J) + 2c

N∑
i=1

(
Hn−1(J ∩B+

i ) +Hn−1(J ∩B−i )
)

≤ αHn−1(J) + 2c

N∑
i=1

(
Hn−1((J ∩Bi) \ Γi)

)
≤ α(1 + 2c)Hn−1(J).

Let us show property 3). By (5.2), 1) and 2) we have that

Hn−1 (Jv \ Γ) ≤ Hn−1

(
J \

N⋃
i=1

Bi

)
+

N∑
i=1

Hn−1 (Jv ∩ ∂Bi)

≤ α(1 + (1 + 2c)Hn−1(J)).

Moreover, letting ωB :=
⋃N
i=1(ω+

i ∪ ω
−
i ), one has that v = u Ln-a.e. in Rn \ ωB

and, by (5.6), Hn−1(∂∗ωB) ≤ 2c αHn−1(J).
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Step 3: Cleaning the jump set in the rest of the domain. We now pick δ > 0 with

0 < δ ≤ 0.8α
(

min
i=1,...,N

ri

)
/(2
√
n),

and consider the covering of Rn \
⋃N
i=1Bi made of:

• the family Q1 of cubes δz + [0, δ]n, z ∈ Zn, which intersect Rn \
⋃N
i=1Bi;

• the familyQ2 of cubes δz+[0, δ]n, z ∈ Zn, which are not inQ1, but intersect
some cubes in Q1.

We set Q = Q1 ∪ Q2. For each q ∈ Q, we denote with q ⊂ q′ ⊂ q′′ the concentric
cubes q′ and q′′ with edges (9/8)δ and (10/8)δ, respectively; we also denote with
` < `′ < `′′ the lengths of the edges of q, q′ and q′′, respectively, so that in particular,
`′ = (1 − 0.1)`′′. For each i, letting B′i := B(1−α)ri(xi), we observe that, since Γi
are equi-Lipschitz with constant less than 1

2 , one has

Hn−1
(
Γi ∩ (Bi \B′i)

)
≤ c αrn−1

i ≤ c αHn−1(J ∩Bi) (5.7)

for some constant c = c(n), where in the last inequality we used property b). Hence,
since by the definition of δ we have that q′′ ∩B′i = Ø for each q ∈ Q and for every
i, we have that

Jv ∩
⋃
q∈Q

q′′ =

(
Jv \

(
N⋃
i=1

Bi

))
∪

(
N⋃
i=1

Jv ∩ (Bi \B′i)

)
∪

(
N⋃
i=1

(Jv ∩ ∂Bi)

)
.

Then, recalling 1), and using (5.2), (5.7) and 2), we have

Hn−1

(
Jv ∩

⋃
q∈Q

q′′
)
≤ α(1 + (1 + 3c)Hn−1(J)), (5.8)

for a constant c depending only on the dimension.
We now invoke Theorem 3.2 (in its version for cubes, as noted in Remark 3.6)

for parameters ε = 1 (which thus needs not be the ε of the statement), and σ = 0.1,
and find constants C = C(n, p) and τ = τ(n, p) satisfying the thesis of the theorem.

Let Qg ⊂ Q denote the set of cubes q such that Hn−1(Jv ∩ q′′) ≤ τδn−1, let
Qb := Q\Qg, and ω̃ :=

⋃
q∈Qb q. Since for q ∈ Qb one has Hn−1(Jv ∩ q′′) > τδn−1,

there can be only a finite number of such cubes. Moreover, thanks to (5.8) we have
that {

Hn−1(∂∗ω̃) ≤ c(n)
τ α(1 + (1 + 3c)Hn−1(J)),

Ln(ω̃) ≤ c(n)
τ δ α(1 + (1 + 3c)Hn−1(J)).

(5.9)

Now, let q ∈ Qg. By Theorem 3.2 there exist wq ∈ GSBDp(q′′) ∩W 1,p(q′;Rn)
and ωq ⊂ q′′, with wq = v in q′′ \ ωq, and∫

q′′
|e(wq)|pdx ≤ 2

∫
q′′
|e(v)|pdx,∫

ωq

|e(wq)|pdx ≤ 2

∫
ωq

|e(v)|pdx, (5.10)

Hn−1(∂∗ωq) ≤ CHn−1(Jv ∩ q′′), (5.11)

where (5.10) follows by Remark 3.5.
Possibly reducing τ , we may assume that if q′ ∩ Γi 6= Ø for some i = 1, . . . , N ,

then Hn−1(Γi∩q′′) ≥ τδn−1 (see point a) in Step 1), so that q 6∈ Qg. It then follows
that for any q ∈ Qg, when q′ ⊂ Bi for some i (or more precisely q′ ⊂ B±i , since
q ∈ Qg is such that q′ does not intersect Γi), then wq = v in q′.

We now ‘glue’ the functions wq in order to find a global W 1,p
loc function as

in the claim of the theorem. To do so, we introduce a cut-off function ψ ∈
C∞c ((−9/16, 9/16)n; [0, 1]) with η = 1 on [−1/2, 1/2]n. Then for each q ∈ Qg,
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with center cq, we define ψq(x) := ψ((x− cq)/δ) ∈ C∞c (q′; [0, 1]), so that ψq = 1 on
q. We then let, for x ∈ G :=

⋃
q∈Qg q, ϕq(x) := ψq(x)/(

∑
q̂∈Qg ψq̂(x)) ∈ [0, 1], and

w(x) :=


∑
q∈Qg wq(x)ϕq(x) if x ∈ G ,

0 if x ∈ ω̃ ,
v(x) if x ∈ Rn \ (G ∪ ω̃).

(5.12)

By construction we have that w ∈W 1,p(BR(0)\(Γ∪ ω̃);Rn) for any R > 0. Indeed,
we observe that Rn \ (G∪ ω̃) ⊂

⋃
iBi, and hence (by the definition of v), in this set

the function w is Sobolev outside Γ. Moreover, w does not jump on the intersection
between the boundaries of G and Rn\(G∪ω̃). Indeed, if q ∈ Qg is any cube touching
the set Rn \ (G ∪ ω̃), then it has to be that q ∈ Q2 and q ⊂ Bi for some i (and
therefore, as observed before, wq = v in q′).

Let ωG :=
⋃
q∈Qg ωq and ω̂ := ωB ∪ ωG. Then, w = u in Rn \ (ω̃ ∪ ω̂), since

w = v outside ωG ∪ ω̃, and v = u outside ωB . Hence e(w) = e(u) in that set.

Step 3.1: Traces of w on Γ. We now compare the traces of w and of u on the two
sides of Γ. We have already observed that w = u in Rn\(ω̃∪ω̂), where ω̂ = ωB∪ωG.

Note that, since q′′ ∩ B′i = Ø for every q ∈ Q and for every i = 1, . . . , N ,
(ω̃ ∪ ωG) ∩

⋃
iB
′
i = Ø. Hence the exceptional sets ω̃ and ωG affect the traces of w

only on a subset of Γ of small (in terms of α) Hn−1-measure, by (5.7), namely

Hn−1(Γ ∩ {w± 6= v±}) ≤ cαHn−1(J). (5.13)

For the set ωB we observe that, by the definition of v and by (5.4), for every
i = 1, . . . , N , v±(x) = u±(x) for Hn−1-a.e. x ∈ Γi \ (∂∗ω+

i ∪ ∂∗ω
−
i ). Hence

v±(x) = u±(x) for Hn−1- a.e. x ∈ Γ \
N⋃
i=1

(∂∗ω+
i ∪ ∂

∗ω−i ).

By the estimates of Hn−1(∂∗ω±i ) at the end of Step 2 it follows that the traces of
u and v on the two sides of Γ can only differ on a small (in terms of α) portion of
Γ, namely

Hn−1(Γ ∩ {v± 6= u±}) ≤ 2cαHn−1(J). (5.14)

In conclusion, w± = u± in Γ, up to a set of small (in terms of α) Hn−1 measure.
More precisely,

w±(x) = u±(x) for Hn−1- a.e. x ∈ Γ \
(
ω̃ ∪ ω̂(1) ∪ ∂∗ω̂

)
, (5.15)

and from (5.13) and (5.14)

Hn−1(Γ ∩ {w± 6= u±}) ≤ 3cαHn−1(J). (5.16)

Step 3.2: Estimate of ω̂. We now estimate the exceptional set ω̂, both in perimeter
and in volume. Note that, by (5.11) and (5.8), Hn−1(∂∗ωG) ≤ C

∑
q∈Qg H

n−1(Jv∩
q′′) ≤ cα(1+Hn−1(J)), for some constant c = c(n, p). We also remark that for each
q, one has Ln(ωq) ≤ cδHn−1(∂∗ωq) for a dimensional constant c, so in particular

Ln(ωG) ≤ cδα(1 +Hn−1(J)), (5.17)

with c = c(n, p).
Combining these estimates with the bound on Hn−1(∂∗ωB) at the end of Step 2,

we have that

Hn−1(∂∗ω̂) ≤ cα(1 +Hn−1(J)), (5.18)

for a constant c = c(n, p).
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Step 3.3: Lp-estimate of e(w). We start by estimating
∫
ωG
|e(w)|pdx. From (5.12)

we have, for x ∈ G,

e(w)(x) =
∑
q∈Qg

(
e(wq)(x)ϕq(x) + wq(x)�∇ϕq(x)

)
. (5.19)

Note that, since the cubes q′ have finite overlap, the sum in the right-hand side of
(5.19) is done, at each point, over a uniformly bounded number of terms, depending
on the dimension.

We estimate the Lp norm of the two terms of the sum in (5.19) separately. For
the first term we have that∫

ωG

∣∣∣∣ ∑
q∈Qg

e(wq)(x)ϕq(x)

∣∣∣∣pdx ≤ ∑
q̂∈Qg

∫
ωq̂

∣∣∣∣ ∑
q∈Qg

e(wq)(x)ϕq(x)

∣∣∣∣pdx
≤ c

∑
q̂∈Qg

∑
q∈Qg

q′∩q̂′ 6=Ø

∫
ωq̂∩q′

|e(wq)(x)|pdx. (5.20)

For fixed q̂ and q with q′ ∩ q̂′ 6= Ø we estimate∫
ωq̂∩q′

|e(wq)(x)|pdx =

∫
(ωq̂∩ωq)∩q′

|e(wq)(x)|pdx+

∫
(ωq̂\ωq)∩q′

|e(v)(x)|pdx

≤
∫
ωq

|e(wq)(x)|pdx+

∫
ωq̂

|e(v)(x)|pdx

≤ 2

∫
ωq

|e(v)(x)|pdx+

∫
ωq̂

|e(v)(x)|pdx,

where in the last step we used (5.10). Since the cubes q′ have finite overlap, from
(5.20) we conclude that∫

ωG

∣∣∣∣ ∑
q∈Qg

e(wq)(x)ϕq(x)

∣∣∣∣pdx ≤ c∫
ωG

|e(v)|p dx.

Therefore,∫
ωG

∣∣∣∣ ∑
q∈Qg

e(wq)(x)ϕq(x)

∣∣∣∣pdx ≤ c∫
ωG

|e(v)|p dx

= c

(∫
ωG\∪iBi

|e(v)|p dx+

N∑
i=1

∫
ωG∩Bi

|e(v)|pdx
)

≤ c
(∫

ωG

|e(u)|pdx+

N∑
i=1

∫
Bi

|e(u)|pdx
)
, (5.21)

where in the last inequality we have used the definition of v, and in particular the
fact that v = u outside ∪iBi, and the estimate of e(v±i ) in terms of e(u) (see Step
2).

We now estimate the second term of the sum in (5.19). For x ∈ G we define
Qxg := {q ∈ Qg : ϕq(x) > 0}, and denote Nx

Q := #Qxg (which, as already observed,
is uniformly bounded by a quantity depending only on the dimension, namely 2n).
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Using that
∑
q∈Qxg

∇ϕq(x) = 0, one has∑
q∈Qg

wq(x)�∇ϕq(x) =
∑
q∈Qxg

(
wq(x)− 1

NxQ

∑
q̂∈Qxg

wq̂(x)

)
�∇ϕq(x)

=
1

Nx
Q

∑
q,q̂∈Qxg

(wq(x)− wq̂(x))�∇ϕq(x).

Since q, q̂ ∈ Qxg ⇒ x ∈ q′ ∩ q̂′, to bound the Lp norm of the above expression, it is
enough to estimate ∫

q′∩q̂′
|wq − wq̂|p|∇ϕq|pdx (5.22)

for any pair of neighbouring cubes q, q̂ ∈ Qxg . Note that wq−wq̂ ∈W 1,p(q′∩ q̂′;Rn)
and wq − wq̂ = 0 in (q′ ∩ q̂′) \ (ωq ∪ ωq̂), since both functions coincide with v.

Moreover, since Ln(q′ ∩ q̂′) ≥ δn/8n and Ln(ωq ∪ ωq̂) ≤ Cτn/(n−1)δn for some
dimensional constant C, provided τ is chosen small enough one can ensure that

Ln
(
{x ∈ q′ ∩ q̂′ : wq − wq̂ = 0}

)
≥ 1

2
Ln(q′ ∩ q̂′).

One can then easily deduce from Lemma 4.4 that, for some constant c (depending
on p and on the dimension):∫

q′∩q̂′
|wq − wq̂|pdx ≤ cδp

∫
q′∩q̂′

|e(wq − wq̂)|pdx ≤ cδp
∫
ωq∪ωq̂

|e(wq − wq̂)|pdx.

Since |∇ϕq| ≤ C/δ in each cube, we can estimate (5.22) as∫
q′∩q̂′

|wq − wq̂|p|∇ϕq|pdx ≤ c
∫

(q′∩q̂′)∩(ωq∪ωq̂)
|e(wq − wq̂)|pdx

≤ c

(∫
q′∩(ωq∪ωq̂)

|e(wq)|pdx+

∫
q̂′∩(ωq∪ωq̂)

|e(wq̂)|pdx

)

≤ c
∫
ωq∪ωq̂

|e(v)|pdx.

Hence we have that∫
ωG

∣∣∣∣ ∑
q∈Qg

wq(x)�∇ϕq(x)

∣∣∣∣pdx ≤ c∫
ωG

|e(v)|p dx

which, together with (5.21), gives, from (5.19),∫
ωG

|e(w)|pdx ≤ c
∫
ωG∪(

⋃N
i=1 Bi)

|e(u)|pdx. (5.23)

Finally, we estimate
∫
Rn\(Γ∪ω̃)

|e(w)|pdx. We have∫
Rn\(Γ∪ω̃)

|e(w)|pdx ≤
∫
Rn\(Γ∪ω̃∪ω̂)

|e(w)|pdx+

∫(
Rn\(Γ∪ω̃)

)
∩ω̂
|e(w)|pdx

≤
∫
Rn
|e(u)|pdx+

∫
(Rn\ω̃)∩ωG

|e(w)|pdx+

∫(
Rn\(ω̃∪ωG)

)
∩ωB
|e(w)|pdx, (5.24)

since w = u in Rn \ (ω̃ ∪ ω̂). Using that w = v outside ω̃ ∪ ωG we have∫(
Rn\(ω̃∪ωG)

)
∩ωB
|e(w)|pdx =

∫(
Rn\(ω̃∪ωG)

)
∩ωB
|e(v)|pdx ≤ c

N∑
i=1

∫
Bi

|e(u)|pdx,

(5.25)
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where the last inequality follows from the definition of ωB , the fact that v = v±i in
B±i , and the bound (5.5), for i = 1, . . . , N .

In conclusion, from (5.24), (5.23) and (5.25) it follows that∫
Rn\(Γ∪ω̃)

|e(w)|pdx ≤
∫
Rn
|e(u)|pdx+ c

∫
ωG∪(

⋃N
i=1 Bi)

|e(u)|pdx.

As a consequence, if we recall point e) of the construction of the Bi’s and (5.17)
above, if ρ > 0 and δ > 0 are chosen small enough, one can ensure that∫

Rn\(Γ∪ω̃)

|e(w)|pdx ≤ (1 + α)

∫
Rn
|e(u)|pdx. (5.26)

(Note that for (5.26) to hold true, the choice of ρ > 0 and δ > 0 makes them
dependent on the function u, but α is independent of u.) By choosing α sufficiently
small in (5.3), (5.9), (5.15), (5.16), (5.18) and (5.26) the conclusion follows. �
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