
HAL Id: hal-02773883
https://hal.science/hal-02773883v1

Submitted on 4 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improvements in bach 0.8.1, a User’s Perspective
Jonathan Bell

To cite this version:
Jonathan Bell. Improvements in bach 0.8.1, a User’s Perspective. SMC - Sound and Music Computing,
2020, Turin, France. �hal-02773883�

https://hal.science/hal-02773883v1
https://hal.archives-ouvertes.fr

Improvements in bach 0.8.1, a User’s Perspective

Jonathan Bell
Aix Marseille Univ, CNRS, PRISM

Perception, Representations, Image, Sound, Music
Marseille, France

belljonathan50@gmail.com

ABSTRACT

This paper discusses recent uses of bach automated com-
poser’s helper), a Max library for algorithmic composition.
In the context of the author’s own works, audiovisual musi-
cal scores are (pre)-composed in bach (bach.score). In per-
formance, the scores are sent to performers and synchro-
nised to a shared common clock, in local networked music
performances (npm), with the help of the SmartVox score
distribution system. The 0.8.1 version of bach presents
two major improvements which will articulate the struc-
ture of this article: on the lower level, bach now exposes an
expr-like small language (bell: bach evaluation language
for lllls), which greatly simplifies algorithmic processes in
Max. The case study of an algorithm for automatic cue-
ing system for singers will be given as exemple. On the
higher level, bach.roll now supports dynamics, thus reveal-
ing promising user-friendly playback possibilities, exem-
plified here with Ableton and the ConTimbre library.

1. INTRODUCTION

1.1 Technology for Notation and Representation

The present research situates itself within the realm of “Tech-
nologies for Notation and Representation (TENOR)”, which
emerged in France around 2014 under the initiative of Do-
minique Fober (GRAME-CNCM). The first conference of
the same name took place at IRCAM in 2015, and enjoys
ever since a growing community of researchers, develop-
ers, scholars, and composers. Amongst the latter (com-
posers), the “slow but steady shift away from textualiza-
tion in digital media” [1] inspires very diverse avenues
of research, encompassing live generated scores [2] and
their link to “comprovisation” [3] [4], realtime notation/al-
gorithmic composition [5] [6], animated notation [7] [8],
audio-scores [9] [10], augmented reality notation [11] [12]
and distributed notation [13], to name a few.

1.2 Distributed Notation with SmartVox

Smartvox is web application dedicated to score distribu-
tion. Amongst the aforementioned categories, SmartVox
best situates itself under the categories of audio-scores [14],

Copyright: c© 2020 Jonathan Bell et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

distributed notation [15], and more recently augmented re-
ality notation [16]. Obtaining best results with choirs (with
or without instruments), it consists in distributing audiovi-
sual mp4 scores (i.e. pre-composed audio and animated
notation), and synchronising them to a shared common
clock, through the browser of the singer’s own Smartphones.
Developed by Benjamin Matuszewski and the author at IR-
CAM in 2015, in the SoundWorks framework [17], SmartVox
is based on a node.js server communicating with clients
(smartphones) through the WebSocket protocol. The great
majority of the scores sent and synchronised by SmartVox
are composed by the author in the bach environment. Whilst
bach is perhaps more often used for live-generated scores
than for more traditional algorithmic composition, such
live or ephemeral scores [18] have nevertheless endured
criticism, which encourages the author to carry on writing
fixed scores (i.e. the same score each time, although ani-
mated).

1.3 Algorithmic composition with bach

bach [19] is a library of external objects for real-time CAC
(Computer-Aided Composition) and musical notation in
Max. Providing Max with a large set of tools for the ma-
nipulation of musical scores, it has later been expanded
with the higher-level Cage [20] and Dada [21] libraries.
bach inherits from softwares such as Open Music or PWGL
a lisp-like organisation of data, albeit with its own syntax
called lllls (Lisp-Like Linked Lists). The latest version of
bach (version 0.8.1 released in 2019) exposes the bell lan-
guage [22] [23], conceived specifically for llll (lists) ma-
nipulation.

2. BACH EVALUATION LANGUAGE FOR LLLL-
AN OVERVIEW OF THE BELL LANGUAGE

2.1 General presentation

The bell language in bach arose from an observation that
the Max patching environment can be cumbersome when
formalising algorithmic compositional processes: “It has
been clear since the beginning of bach that non trivial tasks
- in algorithmic composition - require the implementation
of potentially complex algorithms and processes, some-
thing that the graphical, data-flow programming paradigm
of Max [...], is notoriously not well-suited to.” [22].

Indeed, while the Max GUI can be extremely intuitive
and efficient for many DSP processes, its data-flow paradigm

mailto:author1@adomain.org
http://creativecommons.org/licenses/by/3.0/

can make list (llll) formatting inefficient. As will be ex-
emplified with the help of Fig.1, 2 and 3, bach.eval now
allows for a single line of code to centralize list format-
ting, which would have formerly required dozens of ob-
jects, themselves most often bringing priority issues.

2.2 Writing notes and playing them

In some cases, composing with bach essentially comes down
to formatting “addchord” messages (i.e. adding note on the
score) containing all necessary information about where/how
each note should be inscribed and displayed, and what Max
should do when retrieving that information later during
playback. Lisp inherited lllls (lisp-like linked lists) can be
represented as trees (see Fig. 1).

Figure 1. A tree representation of the following list: “add-
chord 2 [1000 [6000 4641 127 [slots [speed 24] [seek
1954] [respect 109] [file be.aif] [size 12] [volume 1.]
]]]”

Before the existence of the bell language (mainly exposed
in Max with the bach.eval object, the formatting of such
list messages typically required the user to build that tree
“from the ground up” (see Fig. 2, reading the patch from
top to bottom, and Fig.1 from bottom to the top). The pro-
cess implied for instance: 1/ appending together all slot
content 2/ wrapping it together (adding a level of paren-
thesis) 3/ appending pitch, duration, and velocity 4/ wrap
again 5/ prepend onset 6/wrap again 7/ prepend addchord
and voicenumber....

Figure 2. The object bach.wrap add a level of parenthesis
around a list. Bach.append appends lists together. Format-
ting complex lists in this way was cumbersome and error-
prone.

Such a process was often prompt to error, and now gives
evidence of the fact that a single bach.eval expression makes
the process much easier and versatile (see Fig. 3).

Figure 3. The bell language (mainly exposed through the
bach.eval object) was conceived for lisp-inherited lisp-like
structured messages. $x1, $x2. . . correspond to the differ-
ent inlets of the object. bach.eval makes the construction of
lisp-inherited parenthesis structures much easier than with
the data-flow bach.wrap system.

The implementation of variables in the bell language con-
stitutes another major improvement of bach. The ability to
name variables in Max in this way (such as ONSET, or
DUREE, as in the loop expressed in Fig. 4) helps again
centralising information within simple expressions, which
the message-driven send-receive Max functionality would
have made cumbersome.

Figure 4. A loop calculates the onset of each syllable of a
vocal line according to a starting onset (the variable “ON-
SET”), a given duration/tempo (“DUREE”), and prosodic
accentuation (2 1 1 2 1 for long short short long short - 0
is used for initialisation).

2.3 Use cases in compositions for voices

According to the performer’s feedback, and in comparison
with the author’s previous artistic output and experience
with composing in bach (since 2015), the use of algorith-
mic processes (such as the ones exposed below) demon-
strated much better results than “hand-made” former meth-
ods. Although in germ in Common Ground 1 (Fig. 5), a
more systematic approach to algorithmic polyphony gen-
eration was used in a Deliciae 2 (Fig. 6), while discovering
the new bell language.

Most polyphonic passages in Deliciae were generated in-
side a poly˜ in Max, with each instance (i.e. each voice)
receiving the same types of information (i.e. text, prosody,
melodic contour and harmonic material) but only differing
by vocal range (sopranos for instance cannot sing below
middle C and so forth). Contrast in Renaissance polyphony
often consist in alternation between homophonic passages
and contrapuntal ones. Contrast therefore mainly consisted
in opposing textures in which singers articulate and move
from one pitch to the next at the same time (homophonic)
or not (contrapuntal). This consideration highly influenced
the parameters chosen at the foreground of the “composer’s
interface” 3 . ONSET is in milliseconds and correspond to

1 Video of the performance: https://youtu.be/ZrLgbBw4xfU
2 Video of Sevilla’s performance: https://youtu.be/zxnznD0Gzo0
3 See parameters tweaks on the right hand side for demonstration here:

https://youtu.be/OKkiySEagm0

https://youtu.be/ZrLgbBw4xfU
https://youtu.be/zxnznD0Gzo0
https://youtu.be/OKkiySEagm0

Figure 5. Common Ground. Photography: Simon Strong.

the position in the timeline where the generation is hap-
pening: as exemplified in the video 747618 ms correspond
to 12’28”. The term DUREE (French for duration) rep-
resents the duration of notes: the tempo speeds up when
durations diminished. RANDUR sets the degree of ran-
domness in durations, RANDOMONSET sets the degree
of randomness in the onset of the first note of the phrase,
DECAL sets the duration of delay between voices, pos-
itive value goes from low register to high, negative val-
ues from high (sopranos) to low (basses). STAGGER, fi-
nally, imitates a behaviour typical of the renaissance where
two groups of voices are staggered or delayed by a given
value. When the variables RANDUR, RANDOMONSET,
DECAL, and STAGGER are set to 0, the algorithm gener-
ates a homophony. If only RANDUR increases, voices will
start at the same time, but their duration will differ between
each other. If only RANDOMONSET increases, they will
all have the same duration but start at different times. If
only DECAL increase, voice will enter at regular intervals
from the bottom-up (and inversely if DECAL is negative).

Figure 6. Deliciae (Madrid version). Photograpy: Enrique
Muñoz

2.3.1 Automatic cueing system

Since the beginning of SmartVox (see [24]), cueing the
singers with what comes next appeared one of the main
advantages of the system.

To identify appropriate moments for page turns and in or-

Figure 7. The script above adds markers only when two
notes are separated by more than 600ms.

Figure 8. The first note (with lyrics “dia”) has a duration
that lasts until the beginning of the following note, (with
lyrics “blo”). The distance between the two (ECART1,
highlighted in yellow) is almost null.

der to cue the singers accordingly, the first step consisted
in identifying the start and end of each phrase (see Fig. 7):
with iterations on each note of the score two by two, we
evaluate if the distance between two notes is superior to
600 ms or not. Fig. 8 and Fig. 9 illustrate how the de-
cision is taken: in the first case it isn’t (see Fig. 8, the
two notes are close to one another) and nothing happens.
On the following iteration however, the gap between two
notes is wider than 600ms (see Fig. 9), so the messages
“addmarker fin” and “addmarker debut” are sent to the end
of the phrase and to the beginning of the next phrase re-
spectively, resulting in adding green marker named debut
and fin at the beginning and the end of the phrase respec-
tively (see Fig. 8 and Fig. 9).

When a performer has nothing to sing, this precious time
is systematically used in the score to provide cues feeding
the perfomer’s headphone with what is coming next: using
the markers previously generated to retrieve their onsets,
if the pause is longer than the phrase to sing, (i.e. if the
DURANTICIP is greater than DUR (see Fig. 10, and the
“then” stance of the “if” statement in the code displayed in
Fig. 12), then the cue will need to start at the onset corre-
sponding to the difference between entrance of the singer
(START) and the end of his phrase (END), with a 300ms
break between the two. If on the other hand, the pause is
shorter than the phrase to sing (see Fig. 11, and the “else”
stance of the if statement in the code displayed in Fig. 12),

Figure 9. The two notes (with lyrics “blo” and “ho” re-
spectively) are separated by a silence longer than 600 ms
(ECART1 lasts a bit more than two seconds), therefore two
markers are generated.

then the cue needs to start as soon as possible, i.e. as soon
as the singers has finished the previous phrase (PREV):

Figure 10. When the pause is long (or very long....) the cue
needs to be provided as late as possible i.e. just before the
singer’s entrance. The corresponding onset value is 0’46”
because START*2 - END = 48,5*2 - 51 = 46

Figure 11. When the pause is short, the cue needs to be
provided as soon as possible i.e. just after the previous
singer’s phrase (see the PREV variable).

Figure 12. Coding example in bell

Finally, the ’end’ markers (the ones named ’fin’, as in Fig.
8 at 0’16”200”’) are used for score display: the domain
to be displayed on the playing staff and on the preview
staff of the bach.roll(i.e. the staff-line that is coming next,
as for page turns). Fig. 13 shows a coding example for
formatting messages aimed at displaying the right portion
of the score at the right time on both staves.

Each time the cursor hits one of these markers, the do-
main display of both ’playing’ and ’preview’ staves are
updated, provoking at the same time an alternation up and
down between the position of those staves, so that the pas-
sive (or ’preview’) roll looks like an anticipation of the ac-
tive (or ’playing’) one, resulting on a 2-staves display with
constant preview. 4

4 See for instance the tenor part: https://youtu.be/NLpI OpFcTs

Figure 13. Message formatting for maker generation in
bell.

3. DYNAMICS IN BACH 0.8.1, IN SEARCH FOR
PLAUSIBLE INSTRUMENTAL WRITING

MOCKUPS

It is often a danger for a composer to write only what he
can hear on his computer, rather than from his imagina-
tion directly. First he will limit his palette to what his vir-
tual instruments can do, but also these instruments will al-
ways draw his attention to how they sound best, rather than
how the instrument they are emulating would sound. How-
ever, the simulations of a sample library like ConTimbre
5 slightly undermine this statement because of the infinity
of timbre combinations it makes available to composers to-
day. Taking advantage of bach 0.8.1 dynamics support, the
following proposes an overview of some mockup strate-
gies for instrumental writing, showing how bach may be
particularly handy in the context of musique mixte (instru-
mental/vocal music with electronics), notably thanks the
control of Ableton Live and/or ConTimbre.

3.1 bach-Ableton

The bach.roll object displays notation in proportional time
(as opposed to bach.score in mensural notation), and out-
puts notifications of its playback status in real-time. These
notifications can be interpreted in Max For Live in order to
synchronize the notation for human players in bach with
the electronic tape in Ableton Live. Figure 14 shows how
Ableton’s playback controls can be accessed through the
live-set path of the live object model (LOM), which makes
constant back and forth playbacks possible between com-
position of the vocal/instrumental lines in the score and
electronic tape (fixed media) in Ableton, during the com-
positional process. Here bach (“master”) sends playback
notifications to Ableton (“slave”) though the live.object.

Figure 14. Max For Live device syncing bach and Ableton.

3.2 Controlling VSTs in Ableton via bach: the
drawbacks of MIDI

We’ll examine here the case where bach (the fullscore) is
used within Max-for-live to control synthesisers or VSTs.

5 https://www.ConTimbre.com/en/

https://youtu.be/NLpI_OpFcTs
https://www.ConTimbre.com/en/

One way to do this consists in hosting the score in one track
(e.g. the master track), and adding one track per instru-
ment e.g. violin on track 1, cello track 2...). Max-for-live
devices can send messages to each other (but not signal),
so the full-score track can send control data to various in-
struments (interpreted as MIDI by VSTs).

Numerous strategies can be used in bach to map symbolic
data to dynamic change. The most common way will con-
sist in using a function stored as slot 6 content, for instance
dB function of time (see Fig. 15), to be retrieved during
playback with the help of bach.slot2curve, thus mimicking
the behaviour of automation lines in a DAW.

Figure 15. bach.slot2curve allows for automation curve
retrieval.

Very similar results can be achieved by mapping the thick-
ness or opacity of the duration line of the note to dynamic
change, using this time bach.dl2curve. In this case the vol-
ume of the sound increases if the duration line gets thicker
over time. Whilst the MIDI control data of the instrument
(noteon pitch velocity noteoff...) is sent to the entry of
the VST, such automation-like gain/volume control must
be placed at its output. Some difficulties then emerge with
this approach to MIDI-to-VST-instrument communication:

- MIDI velocity and volume/automation data tend to con-
tradict each other (e.g. what is the velocity of a crescendo
dal niente?)

- crescendos and diminuendo merely multiply the sig-
nal’s value without changing its spectral content (Risset
famously evidenced the correlation between loudness and
brightness in his trumpet study [25])

- pitch-wise, MIDI communication needs to rely on pitch
bend, which is relatively easy when dealing with finite val-
ues such as semi/quarter or eighth of tones. Pitch bend can
however be more error prone than straightforward MIDI-
cent communication (supported by contimbre through OSC
communication) when dealing with non-approximated pitch
value (e.g. making sure that 59.99 sounds “C” etc...).

3.3 bach Controlling ConTimbre via OSC

ConTimbre is a large database of orchestral sounds (87000
samples, 4000 playing techniques). Its use in conjunction
with bach promisses being of interest for plausible mock-
ups using instrumental extended technique, with clear pos-
sibilities in the realm of algorithmic composition. Consid-
ering one instrument (e.g. flute), each playing technique
can be considered in bach as a list of slot information de-
scribing note-head, articulation, textual information to dis-
play on the score, and control data assigning that note to a
specific playing technique of the ConTimbre library. The

6 The concept of slot in bach consists in attaching various kinds of
metadata to a single note.

lisp-inherited data structure of bach allows to represent all
this information as a tree. 7

The OSC syntax of ConTimbre also allows for precise
control over dynamic change. Dynamic changes will there-
fore simulate true crescendi or diminuendi by sample inter-
polation. In a trumpet crescendo for instance, the timbre
or harmonic content of the sound will transform over time,
from low to high regions of the spectrum. To do so di-
rectly from notation information retrieval, the dynamic of
the note is treated differently whether it is stable (i.e. if the
dynamics list contains only one symbol e.g. f as “forte”),
or if it changes over time (e.g. if the dynamics list contains
3 symbols e.g. o <fff as “crescendo dal niente a fff”). The
figure below routes dynamic information accordingly.

Figure 16. Dynamic information is routed according to the
length of its list: “fff >o” contains 3 symbols.

If the dynamic information contains 3 symbols, it will
send to ConTimbre a noteon message with its initial dy-
namic, followed by a “dynamic” message containing the
duration of the note and the target value.

Figure 17. The message ’dynamic “from max 1” 8400. 1
2742’ demands ConTimbre to reach velocity 1 in 2742ms”

3.4 bach, dada and attempts at using AI-inspired
techniques

A playback engine such as the one described above (bach-
contimbre could lead to interesting research in timbre com-
bination and computer-aided composition, using techniques
borrowed from AI in particular. Attempts are currently un-
dertaken at classifying data with the help of the dada [21]
library. 8

4. CONCLUSIONS

Recent improvements of the bach library for Max open
promising perspectives in the realm of algorithmic com-
position, with the implementation of the bell language in

7 See https://youtu.be/cAtcMUKbQbs for demonstration.
8 See for demonstration : https://youtu.be/UxaEuKtXb8 and

https://youtu.be/ByeIyRLnX-w.

https://youtu.be/cAtcMUKbQbs
https://youtu.be/UxaE_uKtXb8
https://youtu.be/ByeIyRLnX-w

particular. The seemingly anecdotal support of dynamics
offers musical and intuitive playback control possibilities,
and re-inforcing the link between historically-inherited mu-
sical notation and forward-looking algorithmic processes,
which make bach an invaluable tool for composers today.

Acknowledgments

The author would like to thank Andrea Agostini, Daniele
Ghisi, and Jean-Louis Giavitto from the latest improve-
ments of bach. In memoriam Eric Daubresse who highly
supported Cage, the first extention of the bach library.

5. REFERENCES

[1] G. Hajdu, “Embodiment and disembodiment in net-
worked music performance,” in Body, Sound and Space
in Music and Beyond: Multimodal Explorations. Tay-
lor & Francis, 2017.

[2] J. Freeman, “Extreme sight-reading, mediated expres-
sion, and audience participation: Real-time music no-
tation in live performance,” Computer Music Journal,
vol. 32, no. 3, pp. 25–41, 2008.

[3] R. Dudas, “Comprovisation: The various facets of
composed improvisation within interactive perfor-
mance systems,” Leonardo Music Journal, vol. 20, pp.
29–31, 12 2010.

[4] P. Louzeiro, “Improving sight-reading skills through
dynamic notation – the case of comprovisador,” in
Proceedings of the International Conference on Tech-
nologies for Music Notation and Representation –
TENOR’18, S. Bhagwati and J. Bresson, Eds. Mon-
treal, Canada: Concordia University, 2018, pp. 55–61.

[5] A. Agostini and D. Ghisi, “Bach: an environment for
computer-aided composition in max,” in Proceedings
of the 38th International Computer Music Conference
(ICMC), Ljubljana, Slovenia, 2012.

[6] G. Hajdu and N. Didkovsky, “Maxscore: Recent de-
velopments,” in Proceedings of the International Con-
ference on Technologies for Music Notation and Rep-
resentation – TENOR’18, S. Bhagwati and J. Bresson,
Eds. Montreal, Canada: Concordia University, 2018,
pp. 138–146.

[7] C. Hope, “Electronic scores for music: The possibil-
ities of animated notation,” Computer Music Journal,
vol. 41, pp. 21–35, 09 2017.

[8] D. Fober, Y. Orlarey, and S. Letz, “Towards dynamic
and animated music notation using inscore,” in
Proceedings of the Linux Audio Conference — LAC
2017, V. Ciciliato, Y. Orlarey, and L. Pottier, Eds.
Saint Etienne: CIEREC, 2017, pp. 43–51. [Online].
Available: inscore-lac2017-final.pdf

[9] S. Bhagwati, “Elaborate audio scores: Concepts, affor-
dances and tools,” in Proceedings of the International
Conference on Technologies for Music Notation and

Representation – TENOR’18, S. Bhagwati and J. Bres-
son, Eds. Montreal, Canada: Concordia University,
2018, pp. 24–32.

[10] C. Sdraulig and C. Lortie, “Recent audio scores: Affor-
dances and limitations,” in Proceedings of the Interna-
tional Conference on Technologies for Music Notation
and Representation – TENOR’19, C. Hope, L. Vickery,
and N. Grant, Eds. Melbourne, Australia: Monash
University, 2019, pp. 38–45.

[11] D. Kim-Boyle and B. Carey, “Immersive scores on the
hololens,” in Proceedings of the International Con-
ference on Technologies for Music Notation and Rep-
resentation – TENOR’19, C. Hope, L. Vickery, and
N. Grant, Eds. Melbourne, Australia: Monash Uni-
versity, 2019, pp. 1–6.

[12] Z. Liu, M. Adcock, and H. Gardner, “An evaluation of
augmented reality music notation,” 11 2019, pp. 1–2.

[13] R. Gottfried and G. Hajdu, “Drawsocket: A browser
based system for networked score display”,” in Pro-
ceedings of the International Conference on Tech-
nologies for Music Notation and Representation –
TENOR’19, C. Hope, L. Vickery, and N. Grant, Eds.
Melbourne, Australia: Monash University, 2019, pp.
15–25.

[14] J. Bell, “Audio-scores, a resource for composition
and computer-aided performance,” Ph.D. dissertation,
Guildhall School of Music and Drama, 2016. [Online].
Available: http://openaccess.city.ac.uk/17285/

[15] J. Bell and B. Matuszewski, “SmartVox. A web-based
distributed media player as notation tool for choral
practices,” in Proceedings of the 3rd International
Conference on Technologies for Music Notation and
Representation (TENOR). Coruña, Spain: Universi-
dade da Coruña, 2017.

[16] J. Bell and B. Carey, “Animated notation, score dis-
tribution and ar-vr environments for spectral mimetic
transfer in music composition,” in Proceedings of the
International Conference on Technologies for Music
Notation and Representation – TENOR’19, C. Hope,
L. Vickery, and N. Grant, Eds. Melbourne, Australia:
Monash University, 2019, pp. 7–14.

[17] N. Schnell and S. Robaszkiewicz, “Soundworks – A
playground for artists and developers to create collab-
orative mobile web performances,” in Proceedings of
the first Web Audio Conference (WAC), Paris, France,
2015.

[18] S. Bhagwati, “Vexations of ephemerality.” in Proceed-
ings of the 3rd International Conference on Technolo-
gies for Music Notation and Representation (TENOR).
Coruña, Spain: Universidade da Coruña, 2017, pp.
161–166.

[19] A. Agostini and D. Ghisi, “A max library for musical
notation and computer-aided composition,” Computer
Music Journal, vol. 39, no. 2, pp. 11–27, 2015.

inscore-lac2017-final.pdf
http://openaccess.city.ac.uk/17285/

[20] E. D. A. Agostini and D. Ghisi, “cage: a high-level
library for real-time computer-aided composition,” in
Proceedings of the International Computer Music Con-
ference (ICMC), Athens, 2014.

[21] D. Ghisi and C. Agon, “dada: Non-standard user in-
terfaces for computer-aided composition in max,” in
Proceedings of the International Conference on Tech-
nologies for Music Notation and Representation –
TENOR’18, S. Bhagwati and J. Bresson, Eds. Mon-
treal, Canada: Concordia University, 2018, pp. 147–
156.

[22] J.-L. Giavitto and A. Agostini, “Bell, a textual
language for the bach library,” in ICMC 2019
- International Computer Music Conference, New
York, United States, Jun. 2019. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-02348176

[23] A. Agostini, D. Ghisi, and J.-L. Giavitto, “Pro-
gramming in style with bach,” in 14th Inter-
national Symposium on Computer Music Multi-
disciplinary Research. Marseille, France: Mit-
suko Aramaki, Richard Kronland-Martinet , Sølvi
Ystad, Oct. 2019. [Online]. Available: https:
//hal.archives-ouvertes.fr/hal-02347961

[24] J. Bell and B. Matuszewski, “SMARTVOX - A
Web-Based Distributed Media Player as Notation Tool
For Choral Practices,” in TENOR 2017, Coruña,
Spain, May 2017. [Online]. Available: https://hal.
archives-ouvertes.fr/hal-01660184

[25] J.-C. Risset and D. Wessel, “Exploration of timbre by
analysis and synthesis,” in The Psychology of Music,
D. Deutsch, Ed. Academic Press, 1999, pp. 113–169.
[Online]. Available: https://hal.archives-ouvertes.fr/
hal-00939432

https://hal.archives-ouvertes.fr/hal-02348176
https://hal.archives-ouvertes.fr/hal-02347961
https://hal.archives-ouvertes.fr/hal-02347961
https://hal.archives-ouvertes.fr/hal-01660184
https://hal.archives-ouvertes.fr/hal-01660184
https://hal.archives-ouvertes.fr/hal-00939432
https://hal.archives-ouvertes.fr/hal-00939432

	 1. Introduction
	1.1 Technology for Notation and Representation
	1.2 Distributed Notation with SmartVox
	1.3 Algorithmic composition with bach

	 2. Bach Evaluation Language for llll- an overview of the bell language
	2.1 General presentation
	2.2 Writing notes and playing them
	2.3 Use cases in compositions for voices
	2.3.1 Automatic cueing system

	 3. Dynamics in bach 0.8.1, in search for plausible instrumental writing mockups
	3.1 bach-Ableton
	3.2 Controlling VSTs in Ableton via bach: the drawbacks of MIDI
	3.3 bach Controlling ConTimbre via OSC
	3.4 bach, dada and attempts at using AI-inspired techniques

	 4. Conclusions
	 5. References

