Consequences of dispersal on Atlantic salmon metapopulation stability and dynamics of local populations

Amaïa Lamarins, UMR ECOBIOP (INRAE/UPPA) Mathieu Buoro, UMR ECOBIOP (INRAE/UPPA) Stephanie Carlson, University of California Berkeley

Spatial dispersal « any movement of individuals with potential consequences for gene flow across space » (Ronce, 2007)

Spatial dispersal « any movement of individuals with potential consequences for gene flow across space » (Ronce, 2007)

- Colonization of new habitats
- Rescue effects (Carlson et al, 2014):
 - Demographic rescue
 - Genetic rescue
 - Evolutionary rescue

↗ stability and persistence

Role of dispersal in metapopulation response

Diversity of responses to environmental changes

Role of dispersal in metapopulation response

What about Atlantic salmon ?

Norwegian Institute for Nature Research, Dronningensgt. 13, P. O. Box 736 Sentrum, N-0105 Oslo, Norway

Philopatry

	Conservation Genetics (2005) 6:823-842 DOI 10.1007/s10592-005-9042-4	© Springer 2005	© Springer 2005		
- СЕТ ЧЕ					FISH and FISHERIES, 2007, 8, 297-314
	Asymmetric gene flow and the evolutionary maintenance of genetic diversity in small, peripheral Atlantic salmon populations				
	Sofia Consuegra ^{1,4,*} , Eric ¹ Institute of Zoology, Zoologica Fisheries Research Service, Pi Sciences, University of Wales Sv St. Andrews, St. Andrews, Fife, 2 449; Fax: +44-1334-463-443; E	<i>Journal of Fish Biology</i> (2003) 62 , 641–657 doi:10.1046/j.0022-1112.2003.00053.x, available online at http://www.blackwell-sys		A metapopulation perspective for salmon and other anadromous fish	
				Nicolas Schtie	kzelle ^{1,2} & Thomas P. Quinn ²
		Atlantic salmon straying from the River Imsa		¹ Biodiversity Research Centre, Université Catholique de Louvain, 4 Place Croix du Sud, B-1348 Louvain-la-Neuve, Belgium: ² School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, WA 98195-5020, USA	
		B. Jonsson*, N. Jonsson and L. P. F	Iansen		

What about Atlantic salmon?

Asymmetric gene flow and the evolutionary maintenance of genetic diversity in small, peripheral Atlantic salmon populations Sofia Consuegra^{1,4,*}, Eric Journal of Fish Biology (2003) 62, 641-657 anadromous fish ¹Institute of Zoology, Zoologica doi:10.1046/j.0022-1112.2003.00053.x, available online at http://www.blackwell-syi Fisheries Research Service, Pil Sciences, University of Wales Sw Nicolas Schtickzelle^{1,2} & Thomas P. Ouinn² St. Andrews, St. Andrews, Fife, 449; Fax: +44-1334-463-443; E-Atlantic salmon straying from the River Imsa

© Springer 2005

B. JONSSON*, N. JONSSON AND L. P. HANSEN

Norwegian Institute for Nature Research, Dronningensgt. 13, P. O. Box 736 Sentrum, N-0105 Oslo, Norway

FISH and FISHERIES, 2007, 8, 297-314

A metapopulation perspective for salmon and other

¹Biodiversity Research Centre, Université Catholique de Louvain, 4 Place Croix du Sud, B-1348 Louvain-la-Neuve, Belgium: ²School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, WA 98195-5020, USA

- **Dispersal** rate: ~ 10% (Keefer & Caudill, 2014 for review)
- Mechanisms poorly known
- Dispersal = « straying »

hot considering potential consequences! (demographic / phenotypic / genotypic)

Conservation Genetics (2005) 6:823-842

DOI 10.1007/s10592-005-9042-4

What about Atlantic salmon?

Asymmetric gene flow and the evolutionary maintenance of genetic diversity in small, peripheral Atlantic salmon populations A metapopulation perspective for salmon and other Sofia Consuegra^{1,4,*}, Eric Journal of Fish Biology (2003) 62, 641-657 anadromous fish ¹Institute of Zoology, Zoologica doi:10.1046/j.0022-1112.2003.00053.x, available online at http://www.blackwell-syn Fisheries Research Service. Pi Sciences, University of Wales Sw Nicolas Schtickzelle^{1,2} & Thomas P. Ouinn² St. Andrews, St. Andrews, Fife, 449; Fax: +44-1334-463-443; E-¹Biodiversity Research Centre, Université Catholique de Louvain, 4 Place Croix du Sud, B-1348 Louvain-la-Neuve, Atlantic salmon straying from the River Imsa Belgium: ²School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, WA 98195-5020, USA

B. JONSSON*, N. JONSSON AND L. P. HANSEN Norwegian Institute for Nature Research, Dronningensgt. 13, P. O. Box 736 Sentrum, N-0105 Oslo, Norway

© Springer 2005

Philopatry

Dispersal rate: ~ 10% (Keefer & Caudill, 2014 for review)

Conservation Genetics (2005) 6:823-842

DOI 10.1007/s10592-005-9042-4

- Mechanisms poorly known
- Dispersal = « straying »

not considering potential consequences! (demographic / phenotypic / genotypic)

Explore the role of dispersal in Atlantic salmon metapopulation response using a portfolio approach

FISH and FISHERIES, 2007, 8, 297-314

METHODS

Individual-Based Atlantic Salmon Model

: a demo-genetic individual-based model for a single population (Piou & Prévost 2012)

METHODS

Salmon metapopulation modeling

METHODS

Salmon metapopulation modeling

Individual-Based Atlantic Salmon Model

: a demo-genetic individual-based model for a single population (Piou & Prévost 2012)

- Eco-evolutionary processes:
 - Environmental effects (density, temperature, fishing)
 - Individual response to environmental change:
 phenotypic plasticity
 - Traits genetic basis and transmission: genetic adaptation

Salmon metapopulation modeling

MetalBASAM

a spatially structured version of IBASAM

Dispersal modeling assumptions:

- Constant over space (populations) and time
- Not phenotypically or genotypically determined

- **PE > 1** \rightarrow Metapopulation more stable than expected
- $PE < 1 \rightarrow$ Metapopulation less stable than expected

Anderson et al, 2013

- Asynchrony
- High risk of extinction of small populations

I

- High risk of extinction of small populations
- Demographic rescue of small populations
- Optimum ?

RESULTS

Effect of dispersal on metapopulation stability

RESULTS Phenotypic and genotypic consequences of dispersal on local populations

- No genetic change with dispersal (not shown)
- But consequences on phenotypes (e.g. smolts size)
 - \rightarrow Change of parr density
 - \rightarrow Density-dependent growth

→ Impact on life-history traits ?

AGE AT SEA MATURITY

Role of dispersal in a context of climate change

I

Role of dispersal in a context of climate change

What if non random dispersal (genetic basis)?

Spatial structure of the Brittany metapopulation

Role of dispersal in a context of climate change

What if non random dispersal (genetic basis)?
 Spatial structure?

Goye

Spatial structure of the Brittany metapopulation

Role of dispersal in a context of climate change

What if non random dispersal (genetic basis)?
 Spatial structure?
 Response to climate change?

Spatial structure of the Brittany metapopulation

Fisheries management in the context of spatially structured populations
Brittany: local fishing with population-based conservation limits

 What are the best management strategies fostering metapopulation and local populations persistence and diversity ?

- Straying X
- Dispersal 🗸

TAKE-HOME MESSAGES

- Straying X
- Dispersal 🗸
- Not a linear effect of dispersal on metapopulation stability: rescue (low rates) and anti-rescue effects (high rates)
- Potential consequences of dispersal on life-history traits via density changes

TAKE-HOME MESSAGES

- Straying X
- Dispersal 🗸
- Not a linear effect of dispersal on metapopulation stability: rescue (low rates) and anti-rescue effects (high rates)
- Potential consequences of dispersal on life-history traits via density changes
- Lack of knowledge about mechanisms and rates of dispersal
- Importance to consider spatial structure for management

Thank you for your attention! Any question ?

Population type

Source

Sex-dependent dominance at a single locus maintains variation in age at maturity in salmon

Nicola J. Barson¹*, Tutku Aykanat²*, Kjetil Hindar³, Matthew Baranski⁴, Geir H. Bolstad³, Peder Fiske³, Céleste Jacq⁴, Arne J. Jensen³, Susan E. Johnston⁵, Sten Karlsson³, Matthew Kent¹, Thomas Moen⁶, Eero Niemelä⁷, Torfinn Nome¹, Tor F. Næsje³, Panu Orell⁷, Atso Romakkaniemi⁷, Harald Sægrov⁸, Kurt Urdal⁸, Jaakko Erkinaro⁷, Sigbjørn Lien¹ & Craig R. Primmer²

Axis 1: Role of biocomplexity and dispersal on metapopulation response to CC

Synchrony = 1

 \rightarrow Populations highly synchronous

 \rightarrow Metapopulation size variable

Synchrony = $\frac{\sigma_{metapop}^2}{(\sum_{noni} \sigma_{pop_i})^2}$

Synchrony = 0

 \rightarrow Populations highly asynchronous \rightarrow Metapopulation size stable

PE < 1

Axis 1: Role of biocomplexity and dispersal on metapopulation response to CC

How climate change influences metapopulation persistence?

- Dispersal does not influence metapopulation persistence facing CC
- BUT... has local impacts (populations persistence and density-induced phenotypic changes)
- AND...No diversity of phenotypic and genotypic characters between populations (all environmental conditions = Scorff)

Axis 1: Role of biocomplexity and dispersal on metapopulation response to CC

B. Ongoing and upcoming work

What if environmental conditions were too similar in Brittany?

➡ Another case study: the Adour system

- Dendritic spatial structure
- Dispersal intra basin
- Higher environmental diversity (and biocomplexity ?)
 - Rivers differentially impacted by snow melt

 \rightarrow Model generalization

- Capsis software initiation
- Meeting to build the model « architecture »

different patterns facing CC?