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Laurent Véron∗

To Julian with high esteem and sincere friendship

Abstract

We consider the problem of existence of a solution u to ∂tu − ∂xxu = 0
in (0, T )× R+ subject to the boundary condition −ux(t, 0) + g(u(t, 0)) = µ on
(0, T ) where µ is a measure on (0, T ) and g a continuous nondecreasing function.
When p > 1 we study the set of self-similar solutions of ∂tu − ∂xxu = 0 in
R+ × R+ such that −ux(t, 0) + up = 0 on (0,∞). At end, we present various
extensions to a higher dimensional framework.
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∗Institut Denis Poisson, Université de Tours, France. Email: veronl@univ-tours.fr

1



Contents

1 Introduction

Let g : R 7→ R be a continuous nondecreasing function. Set QTR+
= (0, T )×R+

for 0 < T ≤ ∞ and ∂`Q
T
R+

= R+ × {0}. The aim of this article is to study the
following 1-dimensional heat equation with a nonlinear flux on the parabolic
boundary

ut − uxx = 0 in QTR+

− ux(., 0) + g(u(., 0)) = µ in [0, T )

u(0, .) = ν in R+,

(1.1)

where ν, µ are Radon measures in R+ and [0, T ) respectively. A related problem
in Q∞R+

for which there exist explicit solutions is the following,

ut − uxx = 0 in Q∞R+

− ux(t, 0) + |u|p−1u(t, 0) = 0 for all t > 0

lim
t→0

u(t, x) = 0 for all x > 0
(1.2)

where p > 1. Problem (1.2) is invariant under the transformation Tk defined
for all k > 0 by

Tk[u](t, x) = k
1
p−1u(k2t, kx). (1.3)

This leads naturaly to look for existence of self-similar solutions under the form

us(t, x) = t−
1

2(p−1)ω
(
x√
t

)
. (1.4)

Putting η = x√
t
, ω satisfies

−ω′′ − 1

2
ηω′ − 1

2(p− 1)
ω = 0 in R+

− ω′(0) + |ω|p−1ω(0) = 0

lim
η→∞

η
1
p−1ω(η) = 0.

(1.5)

Brezis, Terman and Peletier opened the study of self-similar solutions of nonlin-
ear heat equations in proving in [4] the existence of a positive strongly singular
function satisfying

ut −∆u+ |u|p−1u = 0 in R+ × Rn, (1.6)

and vanishing at t = 0 on Rn \ {0}. They called it the very singular solution.
Their method of construction is based upon the study of an ordinary differential
equation with a phase space analysis. A new and more flexible method based
upon variational analysis has been provided by [6]. Other singular solutions
of (1.6) in different configurations such as boundary singularities have been

studied in [11]. We set K(η) = eη
2/4 and
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L2
K(R+) =

{
φ ∈ L1

loc(R+) :

∫
R+

φ2Kdx := ‖φ‖2L2
K
<∞

}
, (1.7)

and, for k ≥ 1,

Hk
K(R+) =

{
φ ∈ L2

K(R+) :

k∑
α=0

∥∥∥φ(α)∥∥∥2
L2
K

:= ‖φ‖2HkK <∞

}
. (1.8)

Let us denote by E the subset of H1
K(R+) of weak solutions of (1.5) that is the

set of functions satisfying∫ ∞
0

(
ω′ζ ′ − 1

2(p− 1)
ωζ

)
K(η)dη +

(
|ω|p−1ωζ

)
(0) = 0, (1.9)

and by E+ the subset of nonnegative solutions. The next result gives the struc-
ture of E .

Theorem 1.1 1- If p ≥ 2, then E = {0}.
2- If 1 < p ≤ 3

2 , then E+ = {0}
3 - If 3

2 < p < 2 then E = {ωs,−ωs, 0} where ωs is the unique positive solution
of (1.5). Furthermore for any ε > 0 there exists cε > 0 such that

cεη
1
p−1−1−ε ≤ e

η2

4 ωs(η) ≤ cη
1
p−1−1 for all η > 0. (1.10)

Whenever it exists the function us defined in (1.4) is the limit, when `→∞ of
the positive solutions u`δ0 of

ut − uxx = 0 in Q∞R+

− ux(t, .) + |u|p−1u(t, .) = `δ0 in [0, T )

lim
t→0

u(t, x) = 0 for all x ∈ R+.

(1.11)

When such a function us does not exits the sequence {u`δ0} tends to infin-
ity. This is a charateristic phenomenon of an underlying fractional diffusion
associated to the linear equation

ut − uxx = 0 in Q∞R+

− ux(., 0) = µ in [0,∞)

u(0, .) = 0 in R+.

(1.12)

More generaly we consider problem (1.1). We define the set X(QTR+
) of test

functions by

X(QTR+
) =

{
ζ ∈ C1,2

c ([0, T )× [0,∞)) : ζx(t, 0) = 0 for t ∈ [0, T ]
}
. (1.13)
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Definition 1.2 Let ν, µ be Radon measures in R+ and [0, T ) respectively. A

function u defined in QTR+
and belonging to L1

loc(Q
T
R+

)∩L1(∂`Q
T
R+

; dt) such that

g(u) ∈ L1(∂`Q
T
R+

; dt) is a weak solution of (1.1) if for every ζ ∈ X(QTR+
) there

holds

−
∫ T

0

∫ ∞
0

(ζt + ζxx)udxdt+

∫ T

0

(g(u)ζ) (t, 0)dt =

∫ ∞
0

ζdν(x) +

∫ T

0

ζ(t, 0)dµ(t).

(1.14)

We denote by E(t, x) the Gaussian kernel in R+ × R. The solution of

vt − vxx = 0 in Q∞R+

− vx = δ0 in R+

v(0, .) = 0 in R+,

(1.15)

has explicit expression

v(t, x) = 2E(t, x) =
1√
πt
e−

x2

4t . (1.16)

If x, y > 0 and s < t we set Ẽ(t − s, x, y) = E(t − s, x − y) + E(t − s, x + y).
When ν ∈Mb(R+) and µ ∈Mb(R+) the solution of

vt − vxx = 0 in Q∞R+

− vx(., 0) = µ in R+

u(0, .) = ν in R+,

(1.17)

is given by

vν,µ(t, x) =

∫ ∞
0

Ẽ(t, x, y)dν(y) + 2

∫ t

0

E(t− s, x)dµ(s)

= ER+
[ν](t, x) + ER+×{0}[µ](t, x) = EQ∞R+ [(ν, µ)](t, x).

(1.18)

We prove the following existence and uniqueness result.

Theorem 1.3 Let g : R 7→ R be a continuous nondecreasing function such that
g(0) = 0. If g satisfies ∫ ∞

1

(g(s)− g(−s))s−3ds <∞, (1.19)

then for any bounded Borel measures ν in R+ and µ in [0, T ), there exists a
unique weak solution u := uν,µ ∈ L1(QTR+

) of (1.1). Furthermore the mapping

(ν, µ) 7→ uν,µ is nondecreasing.

When g(s) = |s|p−1s, condition (1.19) is satisfied if

0 < p < 2. (1.20)
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The above result is still valid under minor modifications if R+ is replaced
by a bounded interval I := (a, b), and problem (1.1) by

ut − uxx = 0 in QTI
ux(., b) + g(u(., b)) = µ1 in [0, T )

− ux(., a) + g(u(., a)) = µ2 in [0, T )

u(0, .) = ν in (a, b),

(1.21)

where ν, µj (j = 1, 2) are Radon measures in I and (0, T ) respectively.

In the last section we present the scheme of the natural extensions of this
problem to a multidimensional framework

ut −∆u = 0 in QTRn+
− uxn + g(u) = µ in ∂`Q

T
Rn+

u(0, .) = ν in Rn+,
(1.22)

The construction of solutions with measure data can be generalized but there
are some difficulties in the obtention of self-similar solutions. The equation with
a source flux

ut −∆u = 0 in QTRn+
uxn + g(u) = 0 in ∂`Q

T
Rn+

u(0, .) = ν in Rn+,
(1.23)

has been studied by several authors, in particular Fila, Ishige, Kawakami and
Sato [7], [8], [9]. Their main concern deals with global existence of solutions.

2 Self-similar solutions

2.1 The symmetrization

We define the operator LK in C2
0 (R) by

LK(φ) = −K−1(Kφ′)′.

The operator LK has been thouroughly studied in [6]. In particular

inf

{∫ ∞
−∞

φ′2K(η)η :

∫ ∞
−∞

φ2K(η)dη = 1

}
=

1

2
. (2.1)

The above infimum is achieved by φ1 = (4π)−
1
2K−1 and LK is an isomorphism

from H1
K(R) onto its dual (H1

K(R))′ ∼ H−1K (R). Finally L−1K is compact from
L2
K(R) into H1

K(R), which implies that LK is a Fredholm self-adjoint operator
with

σ(LK) =
{
λj = 1+j−1

2 : j = 1, 2, ...
}
,

and
ker (LK − λjId) = span

{
φ
(j)
1

}
.

If φ is defined in R+, φ̃(x) = φ(−x) is the symmetric with respect to 0 while
φ∗(x) = −φ(−x) is the antisymmetric with respect to 0. The operator LK
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restricted to R+ is denoted by L+
K . The operator L+,N

K with Neumann condition

at x = 0 is again a Fredholm operator. This is also valid for the operator L+,D
K

with Dirichlet condition at x = 0. Hence, if φ is an eigenfunction of L+,N
K , then

φ̃ is an eigenfunction of LK in L2
K(R). Similarly, if φ is an eigenfunction of L+,D

K ,
then φ∗ is an eigenfunction of LK in L2

K(R). Conversely, any even (resp. odd)
eigenfunction of LK in L2

K(R) satisfies Neumann (resp. Dirichlet) boundary

condition at x = 0. Hence its restiction to L2
K(R+) is an eigenfunction of L+,N

K

(resp. L+,D
K ). Since φ

(j)
1 is even (resp. odd) if and only if j is even (resp. odd),

we derive

H1,0
K (R+) =

∞⊕
`=1

span
{
φ
(2`+1)
1

}
, (2.2)

and

H1
K(R+) =

∞⊕
`=0

span
{
φ
(2`)
1

}
. (2.3)

Note that φ ∈ H1
K(R+) such that φx(0) = 0 (resp. φ(0) = 0) implies

φ̃ ∈ H1
K(R) (resp. φ∗ ∈ H1

K(R)). Furthermore, φ1 is an eigenfunction of
L+
K in H1

K(Rn+) with Neumann boundary condition on ∂Rn+ while ∂xnφ1 is an
eigenfunction of L+

K in H1
K(Rn+) with Dirichlet boundary condition on ∂Rn+. We

list below two important properties of H1
K(R+) valid for any β > 0. Actually

they are proved in [6, Prop. 1.12] with H1
Kβ (R) but the proof is valid with

H1
Kβ (R+).

(i) φ ∈ H1
Kβ (R+) =⇒ K

β
2 φ ∈ C0, 12 (R+)

(ii) H1
Kβ (R+) ↪→ L2

Kβ (R+) is compact for all n ≥ 1.
(2.4)

2.2 Proof of Theorem 1.1-(i)-(ii)

Assume p ≥ 2, then 1
2(p−1) ≤

1
2 . If ω is a weak solution, then∫ ∞

0

(
ω′2 − 1

2(p− 1)
ω2

)
Kdη + |ω|p+1(0) = 0

If 1
2 >

1
2(p−1) we deduce that ω = 0. Furthermore, when 1

2 = 1
2(p−1) then

|ω|p+1(0) = 0.

If ω is nonzero, it is an eigenfunction of L+,D
K . Since the first eigenvalue is 1 it

would imply 1 = 1
2(p−1) ≤

1
2 , contradiction.

Assume 1 < p ≤ 3
2 and ω is a nonnegative weak solution. We take ζ(η) =

ηe−
η2

4 = −2φ′1 (η), then∫ ∞
0

(
−ζ ′′ − 1

2(p− 1)
ζ

)
ωK(η)dη + ζ ′(0)ωp(0) = 0

Since −ζ ′′ = ζbR+
> 0 and ζ ′(0) = φ1(0) = 1, we derive ωζ = 0 if 1 > 1

2(p−1)
and ω(0) = 0 if 1 = 1

2(p−1) . Hence ω′(0) = 0 by the equation and ω ≡ 0 by the

Cauchy-Lipschitz theorem. �
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2.3 Proof of Theorem 1.1-(iii)

We define the following functional on H1
K(Rn+)

J(φ) =
1

2

∫ ∞
0

(
φ′2 − 1

2(p− 1)
φ2
)
Kdη +

1

p+ 1
|φ(0)|p+1. (2.5)

Lemma 2.1 The functional J is lower semicontinuous in H1
K(R+). It tends

to infinity at infinity and achieves negative values.

Proof. We write

J(ψ) = J1(ψ)− J2(ψ) = J1(ψ)− 1

2(p− 1)
‖ψ‖2L2

K
.

Clearly J1 is convex and J2 is continuous in the weak topology of H1
K(R+)

since the imbedding of H1
K(R+) into L2

K(R+) is compact. Hence J is weakly
semicontinuous in H1

K(R+).

Let ε > 0, then

J(εφ1) =

(
1

4
− 1

4(p− 1)

)
ε2
√
π

2
+
εp+1

p+ 1
.

Since 1 < p < 2, 1
4 −

1
4(p−1) < 0. Hence J(εφ1) < 0 for ε small enough, thus J

achieves negative values on H1
K(R+).

If ψ ∈ H1
K(R+) it can be written in a unique way under the form ψ = aφ1 +ψ1

where a = 2
√
πψ(0) and ψ1 ∈ H1,0

K (R+). Hence, for any ε > 0,

J(ψ) =
1

2

∫ ∞
0

(
ψ′21 −

1

2(p− 1)
ψ2
1

)
Kdη +

a2

2

∫ ∞
0

(
φ′21 −

1

2(p− 1)
φ21

)
Kdη

+ a

∫ ∞
0

(
ψ′1φ

′
1 −

1

2(p− 1)
ψ1φ1

)
Kdη +

1

p+ 1
|a|p+1

≥ 2p− 3

4(p− 1)

∫ ∞
0

ψ′21 Kdη −
aε

2

∫ ∞
0

(
ψ′21 +

1

2(p− 1)
ψ2
1

)
Kdη

+
a2(p− 2)

√
π

4(p− 1)
− ap

√
π

4(p− 1)ε
+

1

p+ 1
|a|p+1.

Note that ‖ψ‖2H1
K
≤ 4

(
‖ψ′1‖

2
L2
K

+ a2
)

. Since 2p − 3 > 0, we can take ε > 0

small enough in order that

lim
‖ψ‖

H1
K
→∞

J(ψ) =∞. (2.6)

�

End of the proof of Theorem 1.1-(iii). By Lemma 2.1 the functional J achieves
its minimum in H1

K(R+) at some ωs 6= 0, and ωs can be assumed to be non-
negative since J is even. By the strong maximum principle ωs > 0, and by the
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method used in the proof of [13, Proposition 1] is is easy to prove that positive
solutions belong to H2

K(R+). Assume that ω̃ is another positive solution, then∫ ∞
0

(
(Kω′s)

′

ωs
− (Kω̃′s)

′

ω̃s

)
(ω2
s − ω̃2

s)dη = 0.

Integration by parts, easily justified by regularity, yields∫ ∞
0

(
(Kω′s)

′

ωs
− (Kω̃′s)

′

ω̃s

)
(ω2
s − ω̃2

s)dη =

[
Kω′s

(
ωs −

ω̃2
s

ωs

)
−Kω̃′s

(
ω2
s

ω̃s
− ω̃s

)]∞
0

−
∫ ∞
0

(
ωs −

ω̃2
s

ωs

)′
Kω′sdη +

∫ ∞
0

(
ω2
s

ω̃s
− ω̃s

)′
Kω′sdη

= −
(
ωp−1s − ω̃p−1s

) (
ω2
s − ω̃2

s

)
(0)

−
∫ ∞
0

((
ω′sω̃s − ωsω̃′s

ω̃s

)2

+

(
ωsω̃

′
s − ω̃sω′s
ωs

)2
)
dη.

This implies that ωs = ω̃s. The proof of (1.10) is similar as the proof of estimate
(2.5) in [11, Theorem 4.1]. �

3 Problem with measure data

3.1 The regular problem

Set G(r) =
∫ r
0
g(s)ds. We consider the functional J in L2(R+) with domain

D(J) = H1(R+) defined by

J(u) =
1

2

∫ ∞
0

u2xdx+G(v(0)).

It is convex and lower semicontinuous in L2(R+) and its subdifferential ∂J
sastisfies ∫ ∞

0

∂J(u)ζdx =

∫ ∞
0

uxζxdx+ g(u(0))ζ(0)

for all ζ ∈ H1(R+). Therefore∫ ∞
0

∂J(u)ζdx = −
∫ ∞
0

uxxζdx+ (g(u(0))− ux(0))ζ(0).

Hence

∂J(u) = −uxx for all u ∈ D(∂J) = {v ∈ H1(R+) : vx(0) = g(v(0))}. (3.1)

The operator ∂J is maximal monotone, hence it generates a semi-group of
contractions. Furthermore, for any u0 ∈ L2(R+) and F ∈ L2(0, T ;L2(L2(R+))
there exists a unique strong solution to

Ut + ∂J(U) = F a.e. on (0, T )
U(0) = u0

(3.2)
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Proposition 3.1 Let µ ∈ H1(0, T ) and ν ∈ L2(R+). Then there exists a
unique function u ∈ C([0, T ];L2(R+) such that

√
tuxx ∈ L2((0, T )×R+) which

satisfies (3.3). The mapping (µ, ν) 7→ u := uµ,ν is non-decreasing and u is a
weak solution in the sense that it satisfies (1.14).

Proof. Let η ∈ C2
0 ([0,∞)) such that η(0) = 0, η′(0) = 1. If f ∈ H1(0, T ),

ν ∈ L2(R+), and u is a solution of

ut − uxx = 0 in QTR+

− ux(., 0) + g(u(., 0)) = µ(t) in [0, T )

u(0, .) = ν in R+,

(3.3)

where ν ∈ L2(R+), then the function v(t, x) = u(t, x)− µ(t)η(x) satisfies

vt − vxx = F in QTR+

− vx(., 0) + g(v(., 0)) = 0 in [0, T )

v(0, .) = ν − µ(0)η in R+,

(3.4)

with F (t, x) = −(µ′(t)η(x) + µ(t)η′′(x)). The proof of the existence follows by
using [2, Theorem 3.6].
Next, let (µ̃, ν̃) ∈ H1(0, T ) × L2(R+) such that µ̃ ≤ µ and ν̃ ≤ ν and let
ũ = uµ̃,ν̃ , then

1

2

d

dt

∫ ∞
0

(ũ− u)2+dx+

∫ ∞
0

(∂x(ũ− u)+)
2
dx− (µ̃(t)− µ(t)) (ũ(t, 0)− u(t, 0))+

+ (g(ũ(t, 0))− g(u(t, 0))))(ũ(t, 0)− u(t, 0)) = 0

Then ∫ ∞
0

(ũ− u)2+dxbt=0 =⇒
∫ ∞
0

(ũ− u)2+dx = 0 on [0, T ].

We can also use (1.18) to express the solution of (3.3):

u(t, x) =

∫ ∞
0

Ẽ(t, x, y)ν(y)dy + 2

∫ t

0

E(t− s, x)(µ(s)− g(u(s, 0)))ds.

In particular, if g(0) = 0, then

|u(t, x)| ≤
∫ ∞
0

Ẽ(t, x, y)|ν(y)|dy + 2

∫ t

0

E(t− s, x)|µ(s)|ds.

The proof of (1.14) follows since u is a strong solution. �

Next, we prove that the problem is well-posed if µ ∈ L1(0, T ).

Proposition 3.2 Assume {νn} ⊂ Cc(R+) and {µn} ⊂ C1([0, T ]) are Cauchy
sequences in L1(R+) and L1(0, T ) respectively. Then the sequence {un} of so-
lutions of

un t − unxx = 0 in QTR+

−unx(., 0) + g(un(., 0)) = µn(t) in [0, T )

un(0, .) = νn in R+

(3.5)

converges in C([0, T ];L1(R+) to a function u which satisfies (1.14).

9



Proof. For ε > 0 let pε be an odd C1 function defined on R such that p′ε ≥ 0
and pε(r) = 1 on [ε,∞), and put jε(r) =

∫ r
0
pε(s)ds. Then

d

dt

∫ ∞
0

jε(un − um)dx+

∫ ∞
0

(unx − umx)2p′ε(un − um)dx

+ (g(un(t, 0))− g(um(t, 0))) pε(un(t, 0)− um(t, 0))

= (µn(t)− µm(t)) pε(un(t, 0)− um(t, 0)).

Hence∫ ∞
0

jε(un − um)(t, x)dx+ (g(un(t, 0))− g(um(t, 0))) pε(un(t, 0)− um(t, 0))

≤
∫ ∞
0

jε(νn − νm)dx+ (µn(t)− µm(t)) pε(un(t, 0)− um(t, 0)).

Letting ε→ 0 implies pε → sgn0, hence for any t ∈ [0, T ],∫ ∞
0

|un − um|(t, x)dx+ |g(un(t, 0))− g(um(t, 0)|

≤
∫ ∞
0

|νn − νm|dx+ |µn(t)− µm(t)|.
(3.6)

Therefore {un} and {g(un(., 0)} are Cauchy sequences in C([0, T ];L1(R+)) and
C([0, T ]) respectively with limit u and g(u) and u = uν,µ satisfies (1.14). If we
assume that (ν, ν̃) and (µ, µ̃) are couples of elements of L1(R+) and L1(0, T )
respectively and if u = uν,µ and ũ = uν̃,µ̃, there holds by the above technique,∫ ∞

0

|u− ũ|(t, x)dx+ |g(u(t, 0))− g(ũ(t, 0)|

≤
∫ ∞
0

|ν̃ − ν̃|dx+ |µ̃(t)− µ̃(t)| for all t ∈ [0, T ].

(3.7)

�
The following lemma is a parabolic version of an inequality due to Brezis.

Lemma 3.3 Let ν ∈ L1(R+) and µ ∈ L1(0, T ) and v be a function defined in
[0, T )× R+, belonging to L1(QTR+

) ∩ L1(∂`Q
T
R+

) and satisfying

−
∫ T

0

∫ ∞
0

(ζt + ζxx)vdxdt =

∫ T

0

ζ(., 0)µdt+

∫ ∞
0

νζdx. (3.8)

Then for any ζ ∈ X(QTR+
), ζ ≥ 0, there holds

−
∫ T

0

∫ ∞
0

(ζt + ζxx)|v|dxdt ≤
∫ ∞
0

ζ(., 0)sign(v)µdt+

∫ ∞
0

|ν|ζdx. (3.9)

Similarly

−
∫ T

0

∫ ∞
0

(ζt + ζxx)v+dxdt ≤
∫ ∞
0

ζ(., 0)sign+(v)µdt+

∫ ∞
0

ν+ζdx. (3.10)

10



Proof. Let pε be the approximation of sign0 used in Proposition 3.2 and ηε be
the solution of

−ηε t − ηε xx = pε(v) in QTR+

ηε x(., 0) = 0 in [0, T ]

ηε(0, .) = 0 in R+.

Then |ηε| ≤ η∗ where η∗ satisfies

−η∗t − η∗xx = 1 in QTR+

η∗x(., 0) = 0 in [0, T ]

η∗(0, .) = 0 in R+.

Although ηε does not belong to X(QTR+
) (it is not in C1,2([0, T )×R+), it is an

admissible test function and we deduce that there exists a unique solution to
(3.8). Thus v is given by expression (1.18).

In order to prove (3.9), we can assume that µ and ν are smooth, ζ ∈ X(QTR+
),

ζ ≥ 0 and set hε = pε(v)ζ and wε = vpε(v), then∫ ∞
0

hε xxvdx =

∫ ∞
0

(2p′ε(v)vxζx + pε(v)ζxx + ζ(pε(v))xx) vdx

=

∫ ∞
0

(2vp′ε(v)vxζx − wε xζx − (vζ)x(pε(v))x) dx

− ζ(t, 0)v(t, 0)p′ε(v(t, 0))vx(t, 0)

= −
∫ ∞
0

(
ζx(jε(v))x + ζp′(v)εv

2
x

)
dx− ζ(t, 0)v(t, 0)p′ε(v(t, 0))vx(t, 0)

= −
∫ ∞
0

(
ζp′(v)εv

2
x − jε(v)ζxx

)
dx− ζ(t, 0)v(t, 0)p′ε(v(t, 0))vx(t, 0),

(3.11)
and ∫ T

0

hε tvdt =

∫ T

0

(pε(v)ζt + p′ε(v)ζvt)vdt. (3.12)

Since v is smooth

0 =

∫ T

0

∫ ∞
0

(vt − vxx)hεdxdt

= −
∫ T

0

∫ ∞
0

(hε t + hε xx)vdxdt−
∫ ∞
0

hε(0, x)ν(x)dx

−
∫ T

0

[pε(v(t, 0))− v(t, 0)p′ε(v(t, 0))] ζ(t, 0)µ(t)dt.

Therefore, using (3.9) and (3.10),

−
∫ T

0

∫ ∞
0

(jεv)ζxx + vpε(v)ζt) dxdt+

∫ T

0

∫ ∞
0

(
ζp′ε(v)v2x − vp′ε(v)vtζ

)
dxdt

=

∫ ∞
0

hε(0, x)ν(x)dx+

∫ T

0

hε(t, 0)µ(t)dt.

(3.13)
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Put `ε(s) =
∫ s
0
rp′ε(r)dr, then |`ε(s) ≤ cε−1s2χ[−ε,ε](s)|. Since∫ T

0

∫ ∞
0

ζvp′ε(v)vtdxdt = −
∫ ∞
0

`ε(v(0, x))ζ(x)dx−
∫ T

0

∫ ∞
0

ζt`ε(v)dxdt,

and ζ has compact support, it follows that

lim
ε→0

∫ T

0

∫ ∞
0

ζvp′ε(v)vtdxdt = 0.

Letting ε → 0 in (3.13), we derive (3.9) for smooth v. Using Proposition 3.2
completes the proof of (3.9). The proof of (3.10) is similar. �

Remark. Inequalities (3.9) and (3.10) hold if ζ(t, x) does not vanish if |x| ≥ R
for some R but if it satisfies

lim
x→∞

sup
t∈[0,T ]

(ζ(t, x) + |ζx(t, x)|) = 0. (3.14)

The proof follows by replacing ζ(t, x) by ζ(t, x)ηn(x) where ηn ∈ C∞c (R+) with
0 ≤ ηn ≤ 1, ηn(x) = 1 on [0, n], ηn(x) = 0 on [n + 1,∞), |η′n| ≤ 2, |η′′n| ≤ 4.
Then ηnζ ∈ X(QTR+

) by letting n→∞ and the proof follows by letting n→∞.

3.2 Proof of Theorem 1.3

We give first some heat-ball estimates relative to our problem. For r > 0, x ∈ R+

and t ∈ R we set

e(t, x; r) =
{

(s, y) ∈ (0, T )× R+ : s ≤ t, Ẽ(t− s, x, y) ≥ r
}
. (3.15)

Since
e(t, x; r) ⊂ [t− 1

4πer2 , t]× [x− 1
r
√
πe
, x+ 1

r
√
πe

],

there holds

|e(t, x; r)| ≤ 1

2r3(πe)
3
2

, (3.16)

and if
e∗(t; r) = {s ∈ (0, T ) : s ≤ t, E(t− s, 0, 0) ≥ r} , (3.17)

then we have

e∗(t; r) ⊂ [t− 1
4πer2 , t] =⇒ |e∗(t; r)| ≤ 1

4r2πe
. (3.18)

If G is a measured space, λ a positive measure on G and q > 1, Mq(G,λ) is
the Marcinkiewicz space of measurable functions f : G 7→ R satisfying for some
constant c > 0 and all measurable set E ⊂ G,∫

E

|f |dλ ≤ c (λ(E))
1
p′ , (3.19)

and
‖f‖Mq(G,λ) = inf{c > 0 s.t. (3.29) holds}.
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Lemma 3.4 Assume µ,ν are bounded measure in R+ and R+ respectively and
u is the solution of (1.17) given by (1.18) and vν,µ is the solution of (1.17).
Then

‖vν,µ‖M3(QTR+
) +

∥∥∥vν,µb∂QTR+∥∥∥M2(∂QTR+
)
≤ c

(
‖µ‖M(∂QTR+

) + ‖ν‖M(QTR+
)

)
.

(3.20)

Proof. First we consider v0,µ

v0,µ(t, x) = 2

∫ t

0

E(t− s, x)dµ(s).

If F ⊂ [0, T ] is a Borel set, than for any τ > 0∫
F

E(t− s, 0)ds =

∫
F∩{E≤τ}

E(t− s, 0)ds+

∫
F∩{E>τ}

E(t− s, 0)ds

≤ τ |F |+
∫
{E>τ}

E(t− s, 0)ds

≤ τ |F | −
∫ ∞
τ

λd|e∗(t, λ)|

≤ τ |F |+
∫ ∞
τ

λd|e∗(t, λ)|

≤ τ |F |+ 1

4πeτ
.

If we choose τ2 = 1
4πe|F | , we derive

∫
F

E(t− s, 0)ds ≤ |F |
1
2

√
πe
. (3.21)

If F ⊂ (0, T ) is a Borel set then∣∣∣∣∫
F

v0,µ(t, 0)dt

∣∣∣∣ = 2

∣∣∣∣∫ t

0

∫
F

E(t− s, 0)dtdµ(s)

∣∣∣∣ ≤ 2|F | 12√
πe
‖µ‖M(∂QTR+

) .

This proves that ∥∥∥v0,µb∂QTR+∥∥∥M2(∂QTR+
)
≤ c ‖µ‖M(∂QTR+

) . (3.22)

Similarly, if G ⊂ [0, T ]× [0,∞) is a Borel set, then∫
G

Ẽ(t− s, x, 0)ds ≤ 2|G| 13√
πe

, (3.23)

and
‖v0,µ‖M3(QTR+

) ≤ c ‖µ‖M(∂QTR+
) . (3.24)
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In the same way we prove that

‖vν,0‖M3(QTR+
) +

∥∥∥vν,0b∂QTR+∥∥∥M2(∂QTR+
)
≤ c ‖ν‖M(QTR+

) . (3.25)

This ends the proof. �

Proof of Theorem 1.3

Uniqueness. Assume u and ũ are solutions of (1.1), then w = u− ũ satisfies

wt − wxx = 0 in QTR+

− wx(., 0) + g(u(., 0))− g(ũ(., 0)) = 0 in [0, T )

w(0, .) = 0 in R+.

(3.26)

Applying (3.9), we obtain

−
∫ T

0

∫ ∞
0

(ζt + ζxx)|w|dxdt+

∫ ∞
0

(g(u(., 0))− g(ũ(., 0)))sign(w)ζ(t, 0)dt ≤ 0,

for any ζ ∈ XTR+
with ζ ≥ 0. Let θ ∈ C1

c (QTR+
), η ≥ 0, we take ζ to be the

solution of
−ζt − ζxx = θ in (0, T )× R+

ζx(t, 0) = 0 in (0, T )
ζ(T, x) = 0 in (0,∞).

Then ζ satisfies (3.14), hence∫ T

0

∫ ∞
0

θ|w|dxdt+

∫ ∞
0

(g(u(., 0))− g(ũ(., 0)))sign(w)ζ(t, 0)dt ≤ 0.

This implies w = 0.

Existence. Without loss of generality we can assume that µ and ν are nonneg-
ative. Let {νn} ⊂ Cc(R+) and {µn} ⊂ Cc([R+]0, T )) converging to ν and µ in
the sense of measures and let un be the solution of (3.5). Then from (3.7),∫ T

0

∫ ∞
0

|un|dxdt+

∫ T

0

|g(un(t, 0))|dt ≤ T
∫ ∞
0

|νn|dx+

∫ T

0

|µn|dt. (3.27)

Therefore un and g(un(., 0)) remain bounded respectively in L1(QTR+
) and in

L1(0, T ). Furthermore, by Lemma 3.4, un remains bounded in M3(QTR+
) and

in M2(∂QTR+
). We can also write un under the form

un(t, x) =

∫ ∞
0

Ẽ(t, x, y)µn(y)dy + 2

∫ t

0

E(t− s, x)(νn(t)− g(un(t, 0)))ds

= An(t, x) +Bn(t, x).
(3.28)

Since we can perform the even reflexion through y = 0, the mapping

(t, x) 7→ An(t, x) :=

∫ ∞
0

Ẽ(t, x, y)µn(y)dy,
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is relatively compact in Cmloc(Q
T
R+

) for any m ∈ N∗. Hence we can extract

a subsequence {unk} which converges uniformly on every compact subset of
(0, T ] × [0,∞), hence a.e. on (0, T ] for the 1-dimensional Lebesque measure.
Concerning the boundary term

(t, x) 7→ Bn(t, x) :=

∫ t

0

E(t− s, x)(νn(t)− g(un(t, 0)))ds,

it is relatively compact on every compact subset of [0, T ] × (0,∞). If x = 0,
then

Bn(t, 0) =

∫ t

0

(νn(t)− g(un(t, 0)))
ds√

π(t− s)
.

Since ‖νn(.)− g(un(., 0))‖L1(0,T ), t 7→ Bn(t, 0) is uniformly integrable on (0, T ),
hence relatively compact by the Frechet-Kolmogorov Theorem. Therefore there
exists a subsequence, still denoted by {nk} such that Bnk(t, 0) converges for
almost all t ∈ (0, T ). This implies that the sequence of function {unk} defined

by (3.28) converges in QTR+
up to a set Θ ∪ Λ where Θ ⊂ QTR+

is neglectable

for the 2-dimensional Lebesgue measure and Λ ⊂ ∂`Q
T
R+

neglectable for the
1-dimensional Lebesgue measure.

From Lemma 3.4, (un,kbQTR+ , ub∂`QTR+ ) converges in L1
loc(Q

T
R+

)×L1(∂`Q
T
R+

)

and the convergence of each of the components holds also almost everywhere (up
to a subsequence). Since un,k is a weak solution, it satisfies for any ζ ∈ X(QTR+

)

−
∫ T

0

∫ ∞
0

(ζt + ζxx)un,kdxdt+

∫ T

0

(g(un,k)ζ) (t, 0)dt

=

∫ ∞
0

ζνn,k(x)dx+

∫ T

0

ζ(t, 0)µn,k(t)dt.

(3.29)

In order to prove the convergence of g(un,k(t, 0)), we use Vitali’s convergence
theorem and the assumption (1.19). Let F ⊂ [0, T ] be a Borel set. Using the
fact that 0 ≤ un,k ≤ vνn,k,µn,k and the estimate of Lemma 3.4, we have for any
λ > 0,∫
F

|g(un,k(t, 0))|dt ≤
∫
F∩{un,k(t,0)≤λ}

|g(un,k(t, 0))|dt+

∫
{un,k(t,0)>λ}

|g(un,k(t, 0))|dt

≤ g(λ)|F | −
∫ ∞
λ

σd|{t : |g(un,k(t, 0))| > σ}|

≤ g(λ)|F |+ c

∫ ∞
λ

|g(σ)|σ−3ds,

where c depends of ‖µ‖M(∂QTR+
) +‖ν‖M(QTR+

). For ε > 0 given, we chose λ large

enough so that the integral term above is smaller than ε and then |F | such that
g(λ)|F |+ ≤ ε. Hence {g(un,k(., 0))} is uniformly integrable. Therefore up to a
subsequence, it converges to g(u(., 0)) in L1(0, T ). Clearly u satisfies

−
∫ T

0

∫ ∞
0

(ζt + ζxx)udxdt+

∫ T

0

(g(u)ζ) (t, 0)dt

=

∫ ∞
0

ζν(x)dx+

∫ T

0

ζ(t, 0)µ(t)dt,

(3.30)
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which ends the existence proof.

Monotonicity. If ν ≥ ν̃ and µ ≥ µ̃; we can choose the approximations such that
νn ≥ ν̃n and µn ≥ µ̃n. It follows from (3.10) that uνn,µn ≥ uν̃n,µ̃n . Choosing the
same subsequence {nk}, the limits u, ũ are in the same order. The conclusion
follows by uniqueness. �

3.3 The case g(u) = |u|p−1u

Condition (1.19) is satisfied if p < 2. If this condition holds there exists a
solution u`δ0 = u0,`δ0 and the mapping ` 7→ u`δ0 is increasing.

Theorem 3.5 (i) If 1 < p ≤ 3
2 , u`δ0 tends to ∞ when k →∞.

(ii) If 3
2 < p < 2, u`δ0 converges to Uωs defined by Uωs(t, x) = t−

1
2(p−1)ωs(

x√
t
),

when k →∞.

Proof. By uniqueness and using (1.3), there holds

Tk[u`δ0 ] = u
k

2−p
p−1

`
δ0
, (3.31)

for any k, ` > 0. Since ` 7→ u`δ0 is increasing, its limit u∞, when ` → ∞,
satisfies

Tk[u∞] = u∞. (3.32)

Hence u∞ is a positive self-similar solution of (1.2), provided it exists. Hence
u∞ = Uωs if 3

2 < p < 2. If 1 < p ≤ 3
2 , ukδ0 admits no finite limit when k →∞

which ends the proof. �

Remark. As a consequence of this result, no a priori estimate of Brezis-Friedman
type (parabolic Keller-Osserman) exists for a nonnegative function u ∈ C2,1(Q∞R+

\
{(0, 0)} solution of

ut − uxx = 0 in Q∞R+

− ux(., 0) + |u|p−1u(., 0) = 0 for all t > 0

u(0, x) = 0 for all x > 0.

(3.33)

when 1 < p ≤ 3
2 . When 3

2 < p < 2 it is expected that

u(t, x) ≤ c

(|x|2 + t)
1

2(p−1)

. (3.34)

The type of phenomenon (i) in Theorem 3.5 is characteristic of fractional dif-
fusion. It has already been observed in [5, Theorem 1.3] with equations

ut + (−∆)α + tβup = 0 in R+ × RNu((0, .) = kδ0 in RN (3.35)

when 0 < α < 1 is small and p > 1 is close to 1.

4 Extension and open problems

The natural extension is to replace a one dimensional domain by a mutidime-
nional one. The main open problem is the question of a priori estimate as stated
in the last remark above.
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4.1 Self-similar solutions

Let η = (η1, ..., ηn) be the coordinates in Rn and denote Rn+ = {η = (η1, ..., ηn) =

(η′, ηn) : ηn > 0}. We set K(η) = e
|η|2
4 and K ′(η′) = e

|η′|2
4 . Similarly to Section

2 we define LK in C2
0 (Rn) by

LK(φ) = −K−1div(K∇φ). (4.1)

If α = (α1, ..., αn) ∈ Nn, we set |α| = α1 + α2 + ... + αn. We denote by φ1
the function K−1. Then the set of eigenvalues of LK is the set of numbers{
λk = n+k

2 : k ∈ N
}

with corresponding set of eigenspaces

Nk = span {Dαφ1 : |α| = k} .

The operators L+,N
K and L+,D

K are defined acoordingly inH1
K(Rn+) andH1,0

K (Rn+)

respectively and σ(L+,N
K ) =

{
n+k
2 : k ∈ N

}
and σ(L+,D

K ) =
{
n+k
2 : k ∈ N∗

}
Furthermore

Nk,N = ker
(
L+,N
K − n+k

2 Id

)
= span {Dαφ1 : |α| = k, αn = 2` with ` ∈ N} ,

(4.2)
and

Nk,D = ker
(
L+,D
K − n+k

2 Id

)
= span {Dαφ1 : |α| = k, αn = 2`+ 1 with ` ∈ N} .

(4.3)

Since L+,N
K and L+,D

K are Fredholm operators,

H1
K(Rn+) =

∞⊕
k=0

Nk,N and H1,0
K (Rn+) =

∞⊕
k=1

Nk,D. (4.4)

We define the following functional on H1
K(Rn+)

J(φ) =
1

2

∫
Rn+

(
|∇φ|2 − 1

2(p− 1)
φ2
)
Kdη +

1

p+ 1

∫
∂Rn+
|φ|p+1K ′dη′. (4.5)

The critical points of J satisfies

−∆ω − 1

2
η.∇ω − 1

2(p− 1)
ω = 0 in Rn+

− ωηn + |ω|p−1ω = 0 in ∂Rn+.
(4.6)

If ω is a solution of (4.6), the function

uω(t, x) = t−
1

2(p−1)ω(
x√
t
) (4.7)

satisfies

uω t −∆uω = 0 in Q∞Rn+
:= (0,∞)× Rn+

−uω xn + |uω|p−1uω = 0 in ∂`Q
∞
Rn+

:= (0,∞)× ∂Rn+.
(4.8)

Here we have set Rn+ = {x = (x1, ..., xn) = (x′, xn) : xn > 0}. We denote by E
the subset H1

K(Rn+) ∩ Lp(∂Rn+; dη′) of solutions of (4.6) and by E+ the subset
of positive solutions. As for the case n = 1 we have the following non-existence
result
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Proposition 4.1 1- If p ≥ 1 + 1
n , then E = {0}.

2- If 1 < p ≤ 1 + 1
n+1 , then E+ = {0}

The proof is similar to the one of Theorem 1.1. Hence the existence is to be
found in the range 1 + 1

n+1 < p < 1 + 1
n .

Conjecture Assume 1 + 1
n+1 < p < 1 + 1

n , then the functional J is bounded

from below in H1
K(Rn+) ∩ LpK′(∂Rn+). Furthermore J(φ) tends to infinity when

‖φ‖H1
K(Rn+) +

∥∥∥φb∂Rn+∥∥∥Lp+1

K′ (∂Rn+)
tends to infinity.

4.2 Problem with measure data

The method for proving Theorem 1.3 can be adapted to prove the following
n-dimensional result

Theorem 4.2 Let g : R 7→ R be a nondecreasing continuous function such that
g(0) = 0 and ∫ ∞

1

(g(s)− g(−s))s− 2n+1
n ds <∞, (4.9)

then for any bounded Radon measures ν in Rn+ and µ in (0, T ) × ∂Rn+, there

exists a unique Borel function u := uν,µ defined in Q
Rn+
T := [0, T ] × Rn+ such

that u ∈ L1(Q
Rn+
T ), ub(0,T )×∂Rn+∈ L

1((0, T )×∂Rn+) and g(u) ∈ L1((0, T )×∂Rn+)
solution of

ut −∆u = 0 in QTRn+
− uxn + g(u) = µ in ∂`Q

T
Rn+

u(0, .) = ν in Rn+,
(4.10)

in the sense that∫∫
QTRn

+

(−∂tζ −∆ζ)udxdt+

∫∫
∂`QTRn

+

g(u)ζdx′dt =

∫
Rn+
ζdν +

∫∫
∂`QTRn

+

ζdµ,

(4.11)

for all ζ ∈ C1,2
c (QTRn+

) such that ζxn = 0 on (0, T ) × ∂Rn+ and ζ(T, .) = 0.

Furthermore (ν, µ) 7→ uν,µ) is nondecreasing.
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