An Application of the Universality Theorem for Tverberg Partitions

Imre Bárány* Nabil H. Mustafa ${ }^{\dagger}$

Abstract

We show that, as a consequence of a new result of Pór on universal Tverberg partitions, any large-enough set P of points in \mathbb{R}^{d} has a $(d+2)$-sized subset whose Radon point has half-space depth at least $c_{d} \cdot|P|$, where $c_{d} \in(0,1)$ depends only on d. We then give an application of this result to computing weak ϵ-nets by random sampling. We further show that given any set P of points in \mathbb{R}^{d} and a parameter $\epsilon>0$, there exists a set of $O\left(\frac{1}{\left.\epsilon^{\left\lfloor\frac{d}{2}\right.}\right\rfloor+1}\right)\left\lfloor\frac{d}{2}\right\rfloor$-dimensional simplices (ignoring polylogarithmic factors) spanned by points of P such that they form a transversal for all convex objects containing at least $\epsilon \cdot|P|$ points of P.

Keywords: Tverberg's theorem, Radon's lemma, weak ϵ-nets, half-space depth, transversals.

1 Introduction

Radon's lemma states that, given any set Q of $(d+2)$ points in \mathbb{R}^{d}, there always exists a partition of Q into two sets, say Q_{1} and Q_{2}, such that conv $Q_{1} \cap \operatorname{conv} Q_{2} \neq \emptyset$. Further, if Q is in general position, then a dimension argument implies that such a partition $\left\{Q_{1}, Q_{2}\right\}$ - called a Radon partition of Q-is unique and conv $Q_{1} \cap$ conv Q_{2} consists of a single point, called the Radon point of Q and denoted by Radon Q.

In this paper we present an application of the following statement, which is one consequence of a recent theorem of Pór (see [2]).

Lemma 1 (Proof in Section 2). For every $d \in \mathbb{N}$ there is $f(d) \in \mathbb{N}$ such that every set $P \subset \mathbb{R}^{d}$ of $f(d)$ points in general position contains two disjoint sets $A, B \subset P$ with $|A|=d+2,|B|=d+1$ and the Radon point of A is contained in conv B. Furthermore, the Radon partition of A consists of two sets of sizes $\left\lfloor\frac{d}{2}\right\rfloor+1$ and $\left\lceil\frac{d}{2}\right\rceil+1$.

We use Lemma 1 to prove the following theorem. Given a set P of points in \mathbb{R}^{d}, the half-space depth of a point $q \in \mathbb{R}^{d}$ with respect to P is defined to be the minimum number of points of P contained in any half-space containing q.

[^0]Theorem 2 (Proof in Section 2). For every $d \in \mathbb{N}$ there is $h(d) \in \mathbb{N}$ such that every set P of at least $h(d)$ points in \mathbb{R}^{d} in general position contains a set $P^{\prime} \subseteq P$ of size $(d+2)$ with Radon P^{\prime} being contained in at least $\frac{|P|}{h(d)}$ vertex-disjoint simplices spanned by the points of $P \backslash P^{\prime}$. In particular, Radon P^{\prime} has half-space depth at least $\frac{|P|}{h(d)}$.

We expect that Theorem 2 will find further applications in discrete and combinatorial geometry. Here we give an application to the computation of a weak ϵ-net for a given set P of points in \mathbb{R}^{d} in general position.

Definition 3. Given a set P of points in \mathbb{R}^{d} and a parameter $\epsilon>0$, a set $N \subseteq \mathbb{R}^{d}$ is a weak ϵ-net with respect to convex sets for P if for every convex set K with $|K \cap P| \geq \epsilon \cdot|P|$, we have $K \cap N \neq \emptyset$.

Consider the following simple algorithm to compute a weak ϵ-net for a given set P of points in \mathbb{R}^{d}.

Algorithm Weak-Nets (Input: a set of points P, parameter $\epsilon>0$)

Let $R \subseteq P$ be a uniform random sample of size $\frac{g(d)}{\epsilon} \log \frac{1}{\epsilon}$, for a constant $g(d)$ depending only on d.

$$
Q=\left\{\text { Radon } R^{\prime}: R^{\prime} \in\binom{R}{d+2}\right\} .
$$

return $Q \cup R$.
Our application of Theorem 2 is the following.
Theorem 4 (Proof in Section 3). Let P be a set of points in \mathbb{R}^{d} in general position and $\epsilon>0$ a given parameter. Then there is a $g(d) \in \mathbb{N}$ such that a uniform random sample $R \subseteq P$ of size $\frac{g(d)}{\epsilon} \log \frac{1}{\epsilon}$ satisfies the following properties with probability at least $\frac{9}{10}$.

1. $Q \cup R$ is a weak ϵ-net for P, where Q is the set of Radon points of all $(d+2)$-sized subsets of R. That is, Algorithm Weak-Nets returns a weak ϵ-net for P of size $O\left(\frac{1}{\epsilon^{d+2}}\right)$, and
2. each convex object containing at least $\epsilon|P|$ points of P intersects the convex hull of at least one $\left(\left\lfloor\frac{d}{2}\right\rfloor+1\right)$-sized subset of R.

Remark. The first part of Theorem 4 gives a bound on the size of the ϵ-net that is weaker than the current best bound due to Matoušek and Wagner [6], which is of the order of $O\left(\frac{1}{\epsilon^{d}}\right)$ (ignoring polylogarithmic factors). Yet our construction of a weak ϵ-net is novel and interesting as it uses certain Radon points of the underlying set P.
The constant $\frac{9}{10}$ can be increased by picking a larger random sample R.

2 Proof of Lemma 1 and Theorem 2.

We need some definitions. We set $m=(r-1)(d+1)+1$, and for $k \in[d+1]$ the block B_{k} is the set of integers $\{(r-1)(k-1)+1,(r-1)(k-1)+2, \ldots,(r-1) k+1\}$. The blocks are of size r each
and they almost form a partition of $[m$], only neighboring blocks have a common element, namely $(r-1) k+1 \in B_{k} \cap B_{k+1}$ for all $k \in[d]$. Call an r-partition $\left\{I_{1}, \ldots, I_{r}\right\}$ of $[m]$ special if $\left|I_{j} \cap B_{k}\right|=1$ for every $j \in[r]$ and every $k \in[d+1]$.
Pór's result is about sequences $S=\left(a_{1}, \ldots, a_{N}\right)$ of vectors in \mathbb{R}^{d}. A sequence $\left(b_{1}, \ldots, b_{t}\right)$ is a subsequence of length t of S if $b_{j}=a_{i_{j}}$ for all $j \in[t]$ where $1 \leq i_{1}<i_{2}<\ldots<i_{t} \leq N$. Given a sequence $S=\left(a_{1}, \ldots, a_{m}\right), a_{i} \in \mathbb{R}^{d}$, an r-partition $\left\{S_{1}, S_{2}, \ldots, S_{r}\right\}$ of S is in one-to-one correspondence with an r-partition $\left\{I_{i}, \ldots, I_{r}\right\}$ of $[m]$ via $a_{i} \in S_{j}$ if and only if $i \in I_{j}$. An r-partition of S is called special if the corresponding r-partition of $[m$] is special.

Tverberg's theorem states that given a set P of $(r-1)(d+1)+1$ points in \mathbb{R}^{d}, there exists a partition of P into r sets whose convex-hulls contain a common point.

We can now state Pór's result [10].
Theorem A (Universality theorem for Tverberg partitions). Assume $d, r, t \in \mathbb{N}, r \geq 2$, and $m=(r-1)(d+1)+1 \leq t$. Then there exists $N=N(d, r, t) \in \mathbb{N}$ such that every sequence $S=\left(a_{1}, \ldots, a_{N}\right)$ of vectors (in general position) in \mathbb{R}^{d} contains a subsequence $S^{\prime}=\left(b_{1}, \ldots, b_{t}\right)$ (of length t) such that the Tverberg partitions of every subsequence of length m of S^{\prime} are exactly the special partitions.

Note that when the points of S (or P) come from the moment curve $\Gamma(x)=\left\{\gamma(x): x \in \mathbb{R}^{+}\right\}$where $\gamma(x)=\left(x, x^{2}, \ldots, x^{d}\right)$, then there is a natural ordering $S=\left(\gamma\left(x_{1}\right), \ldots, \gamma\left(x_{n}\right)\right)$ with $x_{1}<x_{2}<\ldots<$ x_{n}. Now let $0<x_{1}<\ldots<x_{n}$ a rapidly increasing sequence of real numbers, meaning that, for every $h \in[n-1], x_{h+1} / x_{h}$ is at least as large as some (large) constant $c_{d, r, h}$ depending only on d, r, h. It is not hard to check that in this case all Tverberg partitions of all $m=(r-1)(d+1)+1$ long subsequences of S are the special ones. This (and other examples as well) show that no other set of partitions can be universal, i.e., that exist as Tverberg partitions in a large-enough point set.

We are going to apply the universality theorem in the special case $r=3$ and $t=m=(r-1)(d+$ $1)+1=2 d+3$. In this case $N(d, r, t)$ depends on d only and thus we can set $f(d)=N(d, r, t)=$ $N(d, 3,2 d+3)$.
Proof of Lemma 1. Order the elements of P arbitrarily to obtain a sequence $S=\left(p_{1}, \ldots, p_{f(d)}\right)$. Apply Theorem to S with $r=3, t=m=2 d+3$. We get a subsequence S^{\prime} of length m all of whose Tverberg 3-partitions are exactly the special ones. Define $I_{1}=\{z \in[m]: z \equiv 1 \bmod 4\}$ and $I_{2}=\{z \in[m]: z \equiv 3 \bmod 4\}$ and $I_{3}=\{z \in[m]: z$ is even $\}$. Note that $\left|I_{1}\right|=\left\lceil\frac{d}{2}\right\rceil+1,\left|I_{2}\right|=\left\lfloor\frac{d}{2}\right\rfloor+1$ and $\left|I_{3}\right|=d+1$.

It is easy to see that $\left\{I_{1}, I_{2}, I_{3}\right\}$ is a special partition of $[m]$: every block contains exactly one element of I_{1}, I_{2}, I_{3}. Let the corresponding partition of S^{\prime} be $\left\{S_{1}, S_{2}, S_{3}\right\}$. So \bigcap_{1}^{3} conv $S_{i} \neq \emptyset$. Set $A=S_{1} \cup S_{2}$ and $B=S_{3}$. Then the Radon point of A, which is conv $S_{1} \cap$ conv S_{2}, is contained in conv B.

Proof of Theorem 2. Consider a $(2 d+3)$-uniform hypergraph $\mathcal{H}=(P, E)$ on the vertex set P, where $e \in E$ if and only if the $(2 d+3)$ points of e can be partitioned into two sets $e=e_{1} \cup e_{2}$ such that $\left|e_{1}\right|=d+2$, and Radon $e_{1} \in \operatorname{conv} e_{2}$. We will call the set e_{1} the Radon-base of the edge e. By the result of de Caen [4], any r-uniform hypergraph on n vertices and m edges contains an
independent set of size at least

$$
\frac{r-1}{r^{\frac{r}{r-1}}} \cdot \frac{n^{\frac{r}{r-1}}}{m^{\frac{1}{r-1}}} .
$$

On the other hand, Lemma 1 implies that any set Q of $f(d)$ points of P must contain two disjoint sets- $A_{Q} \subseteq Q$ of size $(d+2)$ and $B_{Q} \subseteq Q$ of size $(d+1)$-such that Radon $A_{Q} \in \operatorname{conv} B_{Q}$. Then the $(2 d+3)$ points $A_{Q} \cup B_{Q}$ form an edge in \mathcal{H}. This implies that no subset of P of size $f(d)$ can be independent in \mathcal{H}. Thus, with $r=2 d+3$, we have
$\frac{2 d+2}{(2 d+3)^{\frac{2 d+3}{2 d+2}}} \cdot \frac{|P|^{\frac{2 d+3}{2 d+2}}}{|E|^{\frac{1}{2 d+2}}} \leq$ size of max. ind. set in $\mathcal{H}<f(d) \quad \Longrightarrow \quad|E| \geq \frac{|P|^{2 d+3}}{2(2 d+3) f(d)^{2 d+2}}$.
By the pigeonhole principle, there exists a $(d+2)$-sized set $P^{\prime} \subseteq P$ that is the Radon-base of a set E^{\prime} of edges of E, where

$$
\left|E^{\prime}\right| \geq \frac{|E|}{\binom{|P|}{d+2}} \geq \frac{\frac{|P|^{2 d+3}}{2(2 d+3) f(d)^{2 d+2}}}{\binom{|P|}{d+2}}
$$

The ($d+1$)-uniform hypergraph consisting of the sets $E^{\prime \prime}=\left\{e^{\prime} \backslash P^{\prime}: e^{\prime} \in E^{\prime}\right\}$ has the property that the convex hull of the elements of each set contains Radon P^{\prime}. It suffices to show that it contains a matching of size $\Omega(|P|)$-and this follows from known lower-bounds on matchings in uniform hypergraphs (see [1]). For simplicity, we instead present a direct argument, though with worse constants.

Iteratively construct a matching by adding a $(d+1)$-sized set from $E^{\prime \prime}$ to the matching, and deleting all sets from $E^{\prime \prime}$ whose intersection with this added set is non-empty. Each set added to the matching can cause the deletion of at most $(d+1) \cdot\binom{|P|}{d}$ sets of $E^{\prime \prime}$, as a vertex of $P \backslash P^{\prime}$ can belong to at most $\binom{n}{d}$ sets of $E^{\prime \prime}$ (each set in $E^{\prime \prime}$ has size $(d+1)$). The size of the final matching is the number of iterations, which, by the above discussion, is lower-bounded by

$$
\frac{\frac{|P|^{2 d+3}}{2(2 d+3) f(d)^{2 d+2}}}{\binom{|P|}{d+2}} /\binom{|P|}{d}(d+1) .
$$

A calculation then shows that

$$
\frac{\frac{|P|^{2 d+3}}{2(2 d+3) f(d)^{2 d+2}}}{\binom{|P|}{d+2}} /\binom{|P|}{d}(d+1) \geq \frac{|P|}{h(d)}, \quad \text { where } h(d)=\frac{2(2 d+3)(d+1) f(d)^{2 d+2}}{(d+2)!d!} .
$$

3 Proof of Theorem 4

Definition 5. Given positive integers d, p, q with $p \geq q>\left\lfloor\frac{d}{2}\right\rfloor$, let $\operatorname{CHS}(d, p, q)$ denote the smallest integer such that the following holds. For any compact convex object $K \subseteq \mathbb{R}^{d}$ and any set $P \subseteq \mathbb{R}^{d} \backslash K$ of points, if every subset of P of size p has a q-sized subset whose convex hull is disjoint from K, then P can be separated from K with $\operatorname{CHS}(d, p, q)$ half-spaces (that is, there exists a set \mathcal{H} of $\operatorname{CHS}(d, p, q)$ half-spaces such that $K \subseteq \bigcap_{h \in \mathcal{H}} h$ and $\left.\left(\bigcap_{h \in \mathcal{H}} h\right) \cap P=\emptyset\right)$.

Then the key statement is the following.
Lemma 6. Let P be a set of n points in \mathbb{R}^{d} and $\epsilon \in\left[0, \frac{1}{2}\right]$ a given parameter. Further let $q>\left\lfloor\frac{d}{2}\right\rfloor$ be an integer and define $p=q \cdot h(d)$, where $h(d)$ is the function from Theorem 2. Assume CHS (d, p, q) is finite. Let R be a uniform random sample of P of size

$$
\frac{c_{2} \cdot d \cdot \operatorname{CHS}(d, p, q) \cdot \log \operatorname{CHS}(d, p, q)}{\epsilon} \log \frac{1}{\epsilon},
$$

where c_{2} is a large-enough constant independent of d, ϵ and q. Then with probability at least $\frac{9}{10}$,

1. $R \cup Q$ is a weak ϵ-net for P, where Q is the set of Radon points of all $(d+2)$-sized subsets of R, and
2. each convex object containing at least $\epsilon|P|$ points of P intersects the convex hull of at least one $\left(\left\lfloor\frac{d}{2}\right\rfloor+1\right)$-sized subset of R.

Proof. The proof follows the method of Mustafa and Ray [7; however they assumed a more restrictive case, so we present a proof modified appropriately to give a more general bound.

Claim 7. With probability at least $\frac{9}{10}, R$ is an ϵ-net for the set system induced on P by the intersection of CHS (d, p, q) half-spaces in \mathbb{R}^{d}.

Proof. The set system induced by the intersection of k half-spaces in \mathbb{R}^{d} has VC-dimension $\Theta(d k \log k)$ [3]. Thus by the ϵ-net theorem, a uniform random sample of size

$$
\Theta\left(\frac{d k \log k}{\epsilon} \log \frac{1}{\epsilon}\right)=\frac{c_{2} \cdot d \cdot \mathrm{CHS}(d, p, q) \cdot \log \operatorname{CHS}(d, p, q)}{\epsilon} \log \frac{1}{\epsilon}
$$

is an ϵ-net with probability at least $\frac{9}{10}$ (see [9]), where c_{2} is a large-enough constant independent of d, ϵ and q.

Assume that R is such an ϵ-net. Let K be any convex object containing at least $\epsilon|P|$ points of P.
Claim 8. There exists $R_{K} \subseteq R$ of size p such that the convex hull of every subset of R_{K} of size q intersects K.

Proof. If for every subset of R of size p there exists a q-sized subset whose convex hull is disjoint from K, then by the definition of CHS (d, p, q), all points of R can be separated from K by a set \mathcal{H} of CHS (d, p, q) half-spaces. The common intersection of these half-spaces contains K and hence at least $\epsilon|P|$ points of P and no point of R, a contradiction to Claim 7 .
By Theorem $2, R_{K}$ has a $(d+2)$-sized subset, say R_{K}^{\prime}, such that Radon $R_{K}^{\prime} \in Q$ is contained in at least $\frac{\left|R_{K}\right|}{h(d)}$ vertex-disjoint simplices spanned by points of $R_{K} \backslash R_{K}^{\prime}$. Now Radon R_{K}^{\prime} must lie inside K : otherwise the half-space separating it from K must contain at least one point from each simplex containing Radon R_{K}^{\prime} - namely it must contain at least $\frac{\left|R_{K}\right|}{h(d)}=\frac{p}{h(d)}=q$ points of R_{K}. But then the convex hull of these q points does not intersect K, a contradiction to Claim 8. Thus $R \cup Q$ is a weak ϵ-net for P, and further, the Radon partition of R_{K}^{\prime} of size $\left\lfloor\frac{d}{2}\right\rfloor+1$ must intersect K. This completes the proof.

Proof of Theorem 4. It is known that $\operatorname{CHS}(d, p, q)$ is finite for large-enough values of q-this together with Lemma 6 implies the proof. In particular,

1. (5) For $p \geq q=d+1$ we have

$$
\operatorname{CHS}(d, p, q)=O\left(p^{d^{2}} \log ^{c^{\prime} d^{3} \log d} p\right)
$$

where c^{\prime} is an absolute constant.
2. ([8]) For any real $\beta>0$ and $p \geq q=(1+\beta) \cdot\left\lfloor\frac{d}{2}\right\rfloor$ we have

$$
\operatorname{CHS}(d, p, q)=O\left(q^{2} p^{1+\frac{1}{\beta}} \log p\right) .
$$

The second bound is stronger, but both of them imply, by setting $q=(d+1), p=q \cdot h(d)$ and applying Lemma 6, the existence of a function

$$
g(d)=O(d \cdot \operatorname{CHS}(d,(d+1) \cdot h(d),(d+1)) \cdot \log \operatorname{CHS}(d,(d+1) \cdot h(d),(d+1)))
$$

Acknowledgements. The first author was supported by the Hungarian National Research, Development and Innovation Office NKFIH Grants K 111827 and K 116769. The second author was supported by the grant ANR grant ADDS (ANR-19-CE48-0005).

References

[1] N. Alon, P. Frankl, H. Huang, V. Rödl, A. Ruciński, and B. Sudakov. Large matchings in uniform hypergraphs and the conjectures of Erdős and Samuels. Journal of Combinatorial Theory, Series A, 119(6):1200-1215, 2012.
[2] I. Bárány and P. Soberón. Tverberg's theorem is 50 years old: a survey. Bull. Amer. Math. Soc., 55:459-492, 2018.
[3] M. Csikós, N. H. Mustafa, and A. Kupavskii. Tight lower bounds on the VC-dimension of geometric set systems. Journal of Machine Learning Research, 20(81):1-8, 2019.
[4] D. de Caen. Extension of a theorem of Moon and Moser on complete subgraphs. Ars Combin., 16:5-10, 1983.
[5] C. Keller, S. Smorodinsky, and G. Tardos. Improved bounds on the Hadwiger-Debrunner numbers. Israel Journal of Mathematics, 225(2):925-945, Apr 2018.
[6] J. Matoušek and U. Wagner. New constructions of weak epsilon-nets. Discrete E Computational Geometry, 32(2):195-206, 2004.
[7] N. H. Mustafa and S. Ray. Weak ϵ-nets have a basis of size $\mathrm{O}(1 / \epsilon \log 1 / \epsilon)$. Comp. Geom: Theory and Appl., 40(1):84-91, 2008.
[8] N. H. Mustafa and S. Ray. On a problem of Danzer. Combinatorics, Probability and Computing, page 1-10, 2018.
[9] N. H. Mustafa and K. Varadarajan. Epsilon-approximations and epsilon-nets. In J. E. Goodman, J. O'Rourke, and C. D. Tóth, editors, Handbook of Discrete and Computational Geometry, pages 1241-1268. CRC Press LLC, 2017.
[10] A. Pór. Universality of vector sequences and universality of Tverberg partitions. arXiv:1805.07197, 2018.

[^0]: *Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences 13 Reáltanoda Street Budapest 1053 Hungary and Department of Mathematics University College London Gower Street, London, WC1E 6BT, UK. barany.imre@renyi.mta.hu.
 ${ }^{\dagger}$ Université Paris-Est, Laboratoire d'Informatique Gaspard-Monge, Equipe A3SI, ESIEE Paris. mustafan@esiee.fr.

