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We show that, as a consequence of a new result of Pór on universal Tverberg partitions, any large-enough set P of points in R d has a (d + 2)-sized subset whose Radon point has half-space depth at least c d • |P |, where c d ∈ (0, 1) depends only on d. We then give an application of this result to computing weak -nets by random sampling. We further show that given any set P of points in R d and a parameter > 0, there exists a set of O

d 2 -dimensional simplices (ignoring polylogarithmic factors) spanned by points of P such that they form a transversal for all convex objects containing at least • |P | points of P .

Introduction

Radon's lemma states that, given any set Q of (d+2) points in R d , there always exists a partition of Q into two sets, say Q 1 and Q 2 , such that conv Q 1 ∩conv Q 2 = ∅. Further, if Q is in general position, then a dimension argument implies that such a partition {Q 1 , Q 2 }-called a Radon partition of Q-is unique and conv Q 1 ∩ conv Q 2 consists of a single point, called the Radon point of Q and denoted by Radon Q.

In this paper we present an application of the following statement, which is one consequence of a recent theorem of Pór (see [START_REF] Bárány | Tverberg's theorem is 50 years old: a survey[END_REF]). We use Lemma 1 to prove the following theorem. Given a set P of points in R d , the half-space depth of a point q ∈ R d with respect to P is defined to be the minimum number of points of P contained in any half-space containing q.

Theorem 2 (Proof in Section 2). For every d ∈ N there is h(d) ∈ N such that every set P of at least h(d) points in R d in general position contains a set P ⊆ P of size (d + 2) with Radon P being contained in at least |P | h(d) vertex-disjoint simplices spanned by the points of P \ P . In particular, Radon P has half-space depth at least |P | h(d) .

We expect that Theorem 2 will find further applications in discrete and combinatorial geometry.

Here we give an application to the computation of a weak -net for a given set P of points in R d in general position.

Definition 3. Given a set P of points in R d and a parameter > 0, a set N ⊆ R d is a weak -net with respect to convex sets for P if for every convex set

K with |K ∩ P | ≥ • |P |, we have K ∩ N = ∅.
Consider the following simple algorithm to compute a weak -net for a given set P of points in R d .

Algorithm Weak-Nets (Input: a set of points P , parameter > 0)

Let R ⊆ P be a uniform random sample of size g(d) log 1 , for a constant g(d) depending only on d.

Q = Radon R : R ∈ R d + 2 . return Q ∪ R.
Our application of Theorem 2 is the following.

Theorem 4 (Proof in Section 3). Let P be a set of points in R d in general position and > 0 a given parameter. Then there is a g(d) ∈ N such that a uniform random sample R ⊆ P of size g(d) log 1 satisfies the following properties with probability at least Remark. The first part of Theorem 4 gives a bound on the size of the -net that is weaker than the current best bound due to Matoušek and Wagner [START_REF] Matoušek | New constructions of weak epsilon-nets[END_REF], which is of the order of O 1 d (ignoring polylogarithmic factors). Yet our construction of a weak -net is novel and interesting as it uses certain Radon points of the underlying set P .

The constant 9 10 can be increased by picking a larger random sample R.

2 Proof of Lemma 1 and Theorem 2.

We need some definitions. We set m = (r -1)(d + 1) + 1, and for k ∈

[d + 1] the block B k is the set of integers {(r -1)(k -1) + 1, (r -1)(k -1) + 2, . . . , (r -1)k + 1}.
The blocks are of size r each and they almost form a partition of [m], only neighboring blocks have a common element, namely (r -

1)k + 1 ∈ B k ∩ B k+1 for all k ∈ [d]. Call an r-partition {I 1 , . . . , I r } of [m] special if |I j ∩ B k | = 1 for every j ∈ [r] and every k ∈ [d + 1]. Pór's result is about sequences S = (a 1 , . . . , a N ) of vectors in R d . A sequence (b 1 , . . . , b t ) is a subsequence of length t of S if b j = a i j for all j ∈ [t] where 1 ≤ i 1 < i 2 < . . . < i t ≤ N . Given a sequence S = (a 1 , . . . , a m ), a i ∈ R d , an r-partition {S 1 , S 2 , . . . , S r } of S is in one-to-one correspondence with an r-partition {I i , . . . , I r } of [m] via a i ∈ S j if and only if i ∈ I j . An r-partition of S is called special if the corresponding r-partition of [m] is special.
Tverberg's theorem states that given a set P of (r -1)(d + 1) + 1 points in R d , there exists a partition of P into r sets whose convex-hulls contain a common point.

We can now state Pór's result [START_REF] Pór | Universality of vector sequences and universality of Tverberg partitions[END_REF].

Theorem A (Universality theorem for Tverberg partitions). Assume d, r, t ∈ N, r ≥ 2, and m = (r -1)(d + 1) + 1 ≤ t. Then there exists N = N (d, r, t) ∈ N such that every sequence S = (a 1 , . . . , a N ) of vectors (in general position) in R d contains a subsequence S = (b 1 , . . . , b t ) (of length t) such that the Tverberg partitions of every subsequence of length m of S are exactly the special partitions.

Note that when the points of S (or P ) come from the moment curve Γ(x) = {γ(x) : x ∈ R + } where γ(x) = (x, x 2 , . . . , x d ), then there is a natural ordering S = (γ(x 1 ), . . . , γ(x n )) with x 1 < x 2 < . . . < x n . Now let 0 < x 1 < . . . < x n a rapidly increasing sequence of real numbers, meaning that, for every h ∈ [n -1], x h+1 /x h is at least as large as some (large) constant c d,r,h depending only on d, r, h. It is not hard to check that in this case all Tverberg partitions of all m = (r -1) (d + 1) + 1 long subsequences of S are the special ones. This (and other examples as well) show that no other set of partitions can be universal, i.e., that exist as Tverberg partitions in a large-enough point set.

We are going to apply the universality theorem in the special case r = 3 and t = m = (r -1)(d + 1) + 1 = 2d + 3. In this case N (d, r, t) depends on d only and thus we can set f (d) = N (d, r, t) = N (d, 3, 2d + 3).

Proof of Lemma 1. Order the elements of P arbitrarily to obtain a sequence S = p 1 , . . . , p f (d) .

Apply Theorem A to S with r = 3, t = m = 2d + 3. We get a subsequence S of length m all of whose Tverberg 3-partitions are exactly the special ones. Define I 1 = {z ∈ [m] : z ≡ 1 mod 4} and

I 2 = {z ∈ [m] : z ≡ 3 mod 4} and I 3 = {z ∈ [m] : z is even}. Note that |I 1 | = d 2 +1, |I 2 | = d 2 +1 and |I 3 | = d + 1.
It is easy to see that {I 1 , I 2 , I 3 } is a special partition of [m]: every block contains exactly one element of I 1 , I 2 , I 3 . Let the corresponding partition of S be {S 1 , S 2 , S 3 }.

So 3 1 conv S i = ∅. Set A = S 1 ∪ S 2 and B = S 3 . Then the Radon point of A, which is conv S 1 ∩ conv S 2 , is contained in conv B.
Proof of Theorem 2. Consider a (2d + 3)-uniform hypergraph H = (P, E) on the vertex set P , where e ∈ E if and only if the (2d + 3) points of e can be partitioned into two sets e = e 1 ∪ e 2 such that |e 1 | = d + 2, and Radon e 1 ∈ conv e 2 . We will call the set e 1 the Radon-base of the edge e. By the result of de Caen [START_REF] De Caen | Extension of a theorem of Moon and Moser on complete subgraphs[END_REF], any r-uniform hypergraph on n vertices and m edges contains an independent set of size at least

r -1 r r r-1 • n r r-1 m 1 r-1 .
On the other hand, Lemma 1 implies that any set Q of f (d) points of P must contain two disjoint sets-A Q ⊆ Q of size (d + 2) and B Q ⊆ Q of size (d + 1)-such that Radon A Q ∈ conv B Q . Then the (2d + 3) points A Q ∪ B Q form an edge in H. This implies that no subset of P of size f (d) can be independent in H. Thus, with r = 2d + 3, we have 2d + 2

(2d + 3) 2d+3 2d+2 • |P | 2d+3 2d+2 |E| 1 2d+2 ≤ size of max. ind. set in H < f (d) =⇒ |E| ≥ |P | 2d+3 2(2d + 3)f (d) 2d+2 .
By the pigeonhole principle, there exists a (d + 2)-sized set P ⊆ P that is the Radon-base of a set E of edges of E, where

|E | ≥ |E| |P | d+2 ≥ |P | 2d+3 2(2d+3)f (d) 2d+2
|P | d+2

.

The (d + 1)-uniform hypergraph consisting of the sets E = {e \ P : e ∈ E } has the property that the convex hull of the elements of each set contains Radon P . It suffices to show that it contains a matching of size Ω(|P |)-and this follows from known lower-bounds on matchings in uniform hypergraphs (see [START_REF] Alon | Large matchings in uniform hypergraphs and the conjectures of Erdős and Samuels[END_REF]). For simplicity, we instead present a direct argument, though with worse constants.

Iteratively construct a matching by adding a (d + 1)-sized set from E to the matching, and deleting all sets from E whose intersection with this added set is non-empty. Each set added to the matching can cause the deletion of at most (d + 1)

• |P | d
sets of E , as a vertex of P \ P can belong to at most n d sets of E (each set in E has size (d + 1)). The size of the final matching is the number of iterations, which, by the above discussion, is lower-bounded by

|P | 2d+3 2(2d+3)f (d) 2d+2 |P | d+2 |P | d (d + 1).
A calculation then shows that

|P | 2d+3 2(2d+3)f (d) 2d+2 |P | d+2 |P | d (d + 1) ≥ |P | h(d) , where h(d) = 2(2d + 3)(d + 1)f (d) 2d+2 (d + 2)!d! .
3 Proof of Theorem 4

Definition 5. Given positive integers d, p, q with p ≥ q > d 2 , let CHS(d, p, q) denote the smallest integer such that the following holds. For any compact convex object K ⊆ R d and any set P ⊆ R d \K of points, if every subset of P of size p has a q-sized subset whose convex hull is disjoint from K, then P can be separated from K with CHS(d, p, q) half-spaces (that is, there exists a set H of CHS(d, p, q) half-spaces such that K ⊆ h∈H h and h∈H h P = ∅).

Then the key statement is the following.

Lemma 6. Let P be a set of n points in R d and ∈ 0, 1 2 a given parameter. Further let q > d 2 be an integer and define p = q • h(d), where h(d) is the function from Theorem 2. Assume CHS (d, p, q) is finite. Let R be a uniform random sample of P of size

c 2 • d • CHS (d, p, q) • log CHS (d, p, q) log 1 ,
where c 2 is a large-enough constant independent of d, and q. Then with probability at least Proof. The proof follows the method of Mustafa and Ray [START_REF] Mustafa | Weak -nets have a basis of size O(1/ log 1/ )[END_REF]; however they assumed a more restrictive case, so we present a proof modified appropriately to give a more general bound.

Claim 7. With probability at least 9 10 , R is an -net for the set system induced on P by the intersection of CHS (d, p, q) half-spaces in R d .

Proof. The set system induced by the intersection of k half-spaces in R d has VC-dimension Θ (d k log k) [START_REF] Csikós | Tight lower bounds on the VC-dimension of geometric set systems[END_REF]. Thus by the -net theorem, a uniform random sample of size

Θ dk log k log 1 = c 2 • d • CHS (d, p, q) • log CHS (d, p, q) log 1
is an -net with probability at least 9 10 (see [START_REF] Mustafa | Epsilon-approximations and epsilon-nets[END_REF]), where c 2 is a large-enough constant independent of d, and q.

Assume that R is such an -net. Let K be any convex object containing at least |P | points of P . Claim 8. There exists R K ⊆ R of size p such that the convex hull of every subset of R K of size q intersects K.

Proof. If for every subset of R of size p there exists a q-sized subset whose convex hull is disjoint from K, then by the definition of CHS (d, p, q), all points of R can be separated from K by a set H of CHS (d, p, q) half-spaces. The common intersection of these half-spaces contains K and hence at least |P | points of P and no point of R, a contradiction to Claim 7.

By Theorem 2, R K has a (d + 2)-sized subset, say R K , such that Radon R K ∈ Q is contained in at least |R K | h(d)
vertex-disjoint simplices spanned by points of R K \ R K . Now Radon R K must lie inside K: otherwise the half-space separating it from K must contain at least one point from each simplex containing Radon R K -namely it must contain at least |R K | h(d) = p h(d) = q points of R K . But then the convex hull of these q points does not intersect K, a contradiction to Claim 8. Thus R ∪ Q is a weak -net for P , and further, the Radon partition of R K of size d 2 + 1 must intersect K. This completes the proof.

Proof of Theorem 4. It is known that CHS(d, p, q) is finite for large-enough values of q-this together with Lemma 6 implies the proof. In particular, 1. ( [START_REF] Keller | Improved bounds on the Hadwiger-Debrunner numbers[END_REF]) For p ≥ q = d + 1 we have CHS(d, p, q) = O p d 2 log c d 3 log d p , where c is an absolute constant.

([8]

) For any real β > 0 and p ≥ q = (1 + β) • d 2 we have CHS(d, p, q) = O q 2 p 1+ 1

β log p .
The second bound is stronger, but both of them imply, by setting q = (d + 1), p = q • h(d) and applying Lemma 6, the existence of a function 

Lemma 1 (

 1 Proof in Section 2). For every d ∈ N there is f (d) ∈ N such that every set P ⊂ R d of f (d) points in general position contains two disjoint sets A, B ⊂ P with |A| = d + 2, |B| = d + 1 and the Radon point of A is contained in conv B. Furthermore, the Radon partition of A consists of two sets of sizes d 2 + 1 and d 2 + 1.

  g(d) = O d • CHS (d, (d + 1) • h (d) , (d + 1)) • log CHS (d, (d + 1) • h (d) , (d + 1)) .

  9 10 , 1. R ∪ Q is a weak -net for P , where Q is the set of Radon points of all (d + 2)-sized subsets of R, and 2. each convex object containing at least |P | points of P intersects the convex hull of at least one d 2 + 1 -sized subset of R.
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