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An Application of the Universality Theorem for Tverberg Partitions

Imre Bárány∗ Nabil H. Mustafa†

Abstract

We show that, as a consequence of a new result of Pór on universal Tverberg partitions, any
large-enough set P of points in Rd has a (d+ 2)-sized subset whose Radon point has half-space
depth at least cd · |P |, where cd ∈ (0, 1) depends only on d. We then give an application of this
result to computing weak ε-nets by random sampling. We further show that given any set P of

points in Rd and a parameter ε > 0, there exists a set of O

(
1

εb d
2 c+1

) ⌊
d
2

⌋
-dimensional simplices

(ignoring polylogarithmic factors) spanned by points of P such that they form a transversal for
all convex objects containing at least ε · |P | points of P .

Keywords: Tverberg’s theorem, Radon’s lemma, weak ε-nets, half-space depth, transversals.

1 Introduction

Radon’s lemma states that, given any set Q of (d+2) points in Rd, there always exists a partition of
Q into two sets, say Q1 and Q2, such that conv Q1∩conv Q2 6= ∅. Further, if Q is in general position,
then a dimension argument implies that such a partition {Q1, Q2}—called a Radon partition of
Q—is unique and conv Q1 ∩ conv Q2 consists of a single point, called the Radon point of Q and
denoted by Radon Q.

In this paper we present an application of the following statement, which is one consequence of a
recent theorem of Pór (see [2]).

Lemma 1 (Proof in Section 2). For every d ∈ N there is f(d) ∈ N such that every set P ⊂ Rd of
f(d) points in general position contains two disjoint sets A,B ⊂ P with |A| = d + 2, |B| = d + 1
and the Radon point of A is contained in conv B. Furthermore, the Radon partition of A consists
of two sets of sizes

⌊
d
2

⌋
+ 1 and

⌈
d
2

⌉
+ 1.

We use Lemma 1 to prove the following theorem. Given a set P of points in Rd, the half-space
depth of a point q ∈ Rd with respect to P is defined to be the minimum number of points of P
contained in any half-space containing q.
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Theorem 2 (Proof in Section 2). For every d ∈ N there is h(d) ∈ N such that every set P of at
least h(d) points in Rd in general position contains a set P ′ ⊆ P of size (d+2) with Radon P ′ being

contained in at least |P |
h(d) vertex-disjoint simplices spanned by the points of P \ P ′. In particular,

Radon P ′ has half-space depth at least |P |h(d) .

We expect that Theorem 2 will find further applications in discrete and combinatorial geometry.
Here we give an application to the computation of a weak ε-net for a given set P of points in Rd in
general position.

Definition 3. Given a set P of points in Rd and a parameter ε > 0, a set N ⊆ Rd is a weak
ε-net with respect to convex sets for P if for every convex set K with |K ∩ P | ≥ ε · |P |, we have
K ∩N 6= ∅.

Consider the following simple algorithm to compute a weak ε-net for a given set P of points in Rd.

Algorithm Weak-Nets (Input: a set of points P , parameter ε > 0)

Let R ⊆ P be a uniform random sample of size g(d)
ε log 1

ε , for a constant g(d) depending only
on d.

Q =

{
Radon R′ : R′ ∈

(
R

d+ 2

)}
.

return Q ∪R.

Our application of Theorem 2 is the following.

Theorem 4 (Proof in Section 3). Let P be a set of points in Rd in general position and ε > 0
a given parameter. Then there is a g(d) ∈ N such that a uniform random sample R ⊆ P of size
g(d)
ε log 1

ε satisfies the following properties with probability at least 9
10 .

1. Q∪R is a weak ε-net for P , where Q is the set of Radon points of all (d+ 2)-sized subsets of
R. That is, Algorithm Weak-Nets returns a weak ε-net for P of size O

(
1

εd+2

)
, and

2. each convex object containing at least ε|P | points of P intersects the convex hull of at least
one

(⌊
d
2

⌋
+ 1
)
-sized subset of R.

Remark. The first part of Theorem 4 gives a bound on the size of the ε-net that is weaker than
the current best bound due to Matoušek and Wagner [6], which is of the order of O

(
1
εd

)
(ignoring

polylogarithmic factors). Yet our construction of a weak ε-net is novel and interesting as it uses
certain Radon points of the underlying set P .

The constant 9
10 can be increased by picking a larger random sample R.

2 Proof of Lemma 1 and Theorem 2.

We need some definitions. We set m = (r− 1)(d+ 1) + 1, and for k ∈ [d+ 1] the block Bk is the set
of integers {(r − 1)(k − 1) + 1, (r − 1)(k − 1) + 2, . . . , (r − 1)k + 1}. The blocks are of size r each
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and they almost form a partition of [m], only neighboring blocks have a common element, namely
(r−1)k+1 ∈ Bk∩Bk+1 for all k ∈ [d]. Call an r-partition {I1, . . . , Ir} of [m] special if |Ij ∩Bk| = 1
for every j ∈ [r] and every k ∈ [d+ 1].

Pór’s result is about sequences S = (a1, . . . , aN ) of vectors in Rd. A sequence (b1, . . . , bt) is a
subsequence of length t of S if bj = aij for all j ∈ [t] where 1 ≤ i1 < i2 < . . . < it ≤ N .
Given a sequence S = (a1, . . . , am), ai ∈ Rd, an r-partition {S1, S2, . . . , Sr} of S is in one-to-one
correspondence with an r-partition {Ii, . . . , Ir} of [m] via ai ∈ Sj if and only if i ∈ Ij . An r-partition
of S is called special if the corresponding r-partition of [m] is special.

Tverberg’s theorem states that given a set P of (r − 1)(d + 1) + 1 points in Rd, there exists a
partition of P into r sets whose convex-hulls contain a common point.

We can now state Pór’s result [10].

Theorem A (Universality theorem for Tverberg partitions). Assume d, r, t ∈ N, r ≥ 2, and
m = (r − 1)(d + 1) + 1 ≤ t. Then there exists N = N(d, r, t) ∈ N such that every sequence
S = (a1, . . . , aN ) of vectors (in general position) in Rd contains a subsequence S′ = (b1, . . . , bt) (of
length t) such that the Tverberg partitions of every subsequence of length m of S′ are exactly the
special partitions.

Note that when the points of S (or P ) come from the moment curve Γ(x) = {γ(x) : x ∈ R+} where
γ(x) = (x, x2, . . . , xd), then there is a natural ordering S = (γ(x1), . . . , γ(xn)) with x1 < x2 < . . . <
xn. Now let 0 < x1 < . . . < xn a rapidly increasing sequence of real numbers, meaning that, for
every h ∈ [n − 1], xh+1/xh is at least as large as some (large) constant cd,r,h depending only on
d, r, h. It is not hard to check that in this case all Tverberg partitions of all m = (r − 1) (d+ 1) + 1
long subsequences of S are the special ones. This (and other examples as well) show that no other
set of partitions can be universal, i.e., that exist as Tverberg partitions in a large-enough point set.

We are going to apply the universality theorem in the special case r = 3 and t = m = (r − 1)(d+
1) + 1 = 2d + 3. In this case N(d, r, t) depends on d only and thus we can set f(d) = N(d, r, t) =
N(d, 3, 2d+ 3).

Proof of Lemma 1. Order the elements of P arbitrarily to obtain a sequence S =
(
p1, . . . , pf(d)

)
.

Apply Theorem A to S with r = 3, t = m = 2d + 3. We get a subsequence S′ of length m all of
whose Tverberg 3-partitions are exactly the special ones. Define I1 = {z ∈ [m] : z ≡ 1 mod 4} and
I2 = {z ∈ [m] : z ≡ 3 mod 4} and I3 = {z ∈ [m] : z is even}. Note that |I1| =

⌈
d
2

⌉
+1, |I2| =

⌊
d
2

⌋
+1

and |I3| = d+ 1.

It is easy to see that {I1, I2, I3} is a special partition of [m]: every block contains exactly one
element of I1, I2, I3. Let the corresponding partition of S′ be {S1, S2, S3}. So

⋂3
1 conv Si 6= ∅. Set

A = S1 ∪ S2 and B = S3. Then the Radon point of A, which is conv S1 ∩ conv S2, is contained in
conv B.

Proof of Theorem 2. Consider a (2d + 3)-uniform hypergraph H = (P,E) on the vertex set P ,
where e ∈ E if and only if the (2d + 3) points of e can be partitioned into two sets e = e1 ∪ e2
such that |e1| = d+ 2, and Radon e1 ∈ conv e2. We will call the set e1 the Radon-base of the edge
e. By the result of de Caen [4], any r-uniform hypergraph on n vertices and m edges contains an
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independent set of size at least

r − 1

r
r
r−1

· n
r
r−1

m
1
r−1

.

On the other hand, Lemma 1 implies that any set Q of f(d) points of P must contain two disjoint
sets—AQ ⊆ Q of size (d+ 2) and BQ ⊆ Q of size (d+ 1)—such that Radon AQ ∈ conv BQ. Then
the (2d+ 3) points AQ ∪BQ form an edge in H. This implies that no subset of P of size f(d) can
be independent in H. Thus, with r = 2d+ 3, we have

2d+ 2

(2d+ 3)
2d+3
2d+2

· |P |
2d+3
2d+2

|E|
1

2d+2

≤ size of max. ind. set in H < f(d) =⇒ |E| ≥ |P |2d+3

2(2d+ 3)f(d)2d+2
.

By the pigeonhole principle, there exists a (d+ 2)-sized set P ′ ⊆ P that is the Radon-base of a set
E′ of edges of E, where

|E′| ≥ |E|( |P |
d+2

) ≥ |P |2d+3

2(2d+3)f(d)2d+2( |P |
d+2

) .

The (d+1)-uniform hypergraph consisting of the sets E′′ = {e′ \ P ′ : e′ ∈ E′} has the property that
the convex hull of the elements of each set contains Radon P ′. It suffices to show that it contains
a matching of size Ω(|P |)—and this follows from known lower-bounds on matchings in uniform
hypergraphs (see [1]). For simplicity, we instead present a direct argument, though with worse
constants.

Iteratively construct a matching by adding a (d + 1)-sized set from E′′ to the matching, and
deleting all sets from E′′ whose intersection with this added set is non-empty. Each set added to
the matching can cause the deletion of at most (d+ 1) ·

(|P |
d

)
sets of E′′, as a vertex of P \ P ′ can

belong to at most
(
n
d

)
sets of E′′ (each set in E′′ has size (d+ 1)). The size of the final matching is

the number of iterations, which, by the above discussion, is lower-bounded by

|P |2d+3

2(2d+3)f(d)2d+2( |P |
d+2

) /(
|P |
d

)
(d+ 1).

A calculation then shows that

|P |2d+3

2(2d+3)f(d)2d+2( |P |
d+2

) /(
|P |
d

)
(d+ 1) ≥ |P |

h(d)
, where h(d) =

2(2d+ 3)(d+ 1)f(d)2d+2

(d+ 2)!d!
.

3 Proof of Theorem 4

Definition 5. Given positive integers d, p, q with p ≥ q >
⌊
d
2

⌋
, let CHS(d, p, q) denote the smallest

integer such that the following holds. For any compact convex object K ⊆ Rd and any set P ⊆ Rd\K
of points, if every subset of P of size p has a q-sized subset whose convex hull is disjoint from K,
then P can be separated from K with CHS(d, p, q) half-spaces (that is, there exists a set H of
CHS(d, p, q) half-spaces such that K ⊆

⋂
h∈H h and

(⋂
h∈H h

)⋂
P = ∅).
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Then the key statement is the following.

Lemma 6. Let P be a set of n points in Rd and ε ∈
[
0, 12
]

a given parameter. Further let q >
⌊
d
2

⌋
be

an integer and define p = q ·h(d), where h(d) is the function from Theorem 2. Assume CHS (d, p, q)
is finite. Let R be a uniform random sample of P of size

c2 · d · CHS (d, p, q) · log CHS (d, p, q)

ε
log

1

ε
,

where c2 is a large-enough constant independent of d, ε and q. Then with probability at least 9
10 ,

1. R∪Q is a weak ε-net for P , where Q is the set of Radon points of all (d+ 2)-sized subsets of
R, and

2. each convex object containing at least ε|P | points of P intersects the convex hull of at least
one

(⌊
d
2

⌋
+ 1
)
-sized subset of R.

Proof. The proof follows the method of Mustafa and Ray [7]; however they assumed a more
restrictive case, so we present a proof modified appropriately to give a more general bound.

Claim 7. With probability at least 9
10 , R is an ε-net for the set system induced on P by the

intersection of CHS (d, p, q) half-spaces in Rd.

Proof. The set system induced by the intersection of k half-spaces in Rd has VC-dimension
Θ (d k log k) [3]. Thus by the ε-net theorem, a uniform random sample of size

Θ

(
dk log k

ε
log

1

ε

)
=
c2 · d · CHS (d, p, q) · log CHS (d, p, q)

ε
log

1

ε

is an ε-net with probability at least 9
10 (see [9]), where c2 is a large-enough constant independent

of d, ε and q.

Assume that R is such an ε-net. Let K be any convex object containing at least ε|P | points of P .

Claim 8. There exists RK ⊆ R of size p such that the convex hull of every subset of RK of size q
intersects K.

Proof. If for every subset of R of size p there exists a q-sized subset whose convex hull is disjoint
from K, then by the definition of CHS (d, p, q), all points of R can be separated from K by a set H
of CHS (d, p, q) half-spaces. The common intersection of these half-spaces contains K and hence at
least ε|P | points of P and no point of R, a contradiction to Claim 7.

By Theorem 2, RK has a (d+ 2)-sized subset, say R′K , such that Radon R′K ∈ Q is contained in at

least |RK |h(d) vertex-disjoint simplices spanned by points of RK \R′K . Now Radon R′K must lie inside
K: otherwise the half-space separating it from K must contain at least one point from each simplex
containing Radon R′K—namely it must contain at least |RK |h(d) = p

h(d) = q points of RK . But then
the convex hull of these q points does not intersect K, a contradiction to Claim 8. Thus R ∪Q is
a weak ε-net for P , and further, the Radon partition of R′K of size

⌊
d
2

⌋
+ 1 must intersect K. This

completes the proof.
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Proof of Theorem 4. It is known that CHS(d, p, q) is finite for large-enough values of q—this
together with Lemma 6 implies the proof. In particular,

1. ([5]) For p ≥ q = d+ 1 we have

CHS(d, p, q) = O
(
pd

2
logc

′d3 log d p
)
,

where c′ is an absolute constant.

2. ([8]) For any real β > 0 and p ≥ q = (1 + β) ·
⌊
d
2

⌋
we have

CHS(d, p, q) = O
(
q2p

1+ 1
β log p

)
.

The second bound is stronger, but both of them imply, by setting q = (d+ 1), p = q · h(d) and
applying Lemma 6, the existence of a function

g(d) = O
(
d · CHS (d, (d+ 1) · h (d) , (d+ 1)) · log CHS (d, (d+ 1) · h (d) , (d+ 1))

)
.
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