An Application of the Universality Theorem for Tverberg Partitions

Imre Barany™ Nabil H. Mustafal

Abstract

We show that, as a consequence of a new result of Pér on universal Tverberg partitions, any
large-enough set P of points in R? has a (d + 2)-sized subset whose Radon point has half-space
depth at least ¢q4 - |P|, where ¢4 € (0,1) depends only on d. We then give an application of this
result to computing weak e-nets by random sampling. We further show that given any set P of

points in R? and a parameter € > 0, there exists a set of O Vljﬂ) L%J—dimensional simplices
elL2

(ignoring polylogarithmic factors) spanned by points of P such that they form a transversal for
all convex objects containing at least € - | P| points of P.
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1 Introduction

Radon’s lemma states that, given any set Q of (d+2) points in R?, there always exists a partition of
Q into two sets, say Q1 and )2, such that conv Q1 Nconv Qo # 0. Further, if @ is in general position,
then a dimension argument implies that such a partition {Q1, Q2}—called a Radon partition of
(Q—is unique and conv ()1 N conv Q2 consists of a single point, called the Radon point of Q) and
denoted by Radon Q.

In this paper we present an application of the following statement, which is one consequence of a
recent theorem of Pér (see [2]).

Lemma 1 (Proof in Section . For every d € N there is f(d) € N such that every set P C R% of
f(d) points in general position contains two disjoint sets A, B C P with |A| =d+2, |B|=d+1
and the Radon point of A is contained in conv B. Furthermore, the Radon partition of A consists
of two sets of sizes L%J +1 and {%1 + 1.

We use Lemma [1] to prove the following theorem. Given a set P of points in RY, the half-space
depth of a point ¢ € R? with respect to P is defined to be the minimum number of points of P
contained in any half-space containing gq.
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Theorem 2 (Proof in Section [2). For every d € N there is h(d) € N such that every set P of at
least h(d) points in R in general position contains a set P' C P of size (d+2) with Radon P’ being

contained in at least % vertex-disjoint simplices spanned by the points of P\ P'. In particular,

Radon P’ has half-space depth at least %.

We expect that Theorem [2] will find further applications in discrete and combinatorial geometry.
Here we give an application to the computation of a weak e-net for a given set P of points in R in
general position.

Definition 3. Given a set P of points in R? and a parameter € > 0, a set N C R? is a weak

e-net with respect to convex sets for P if for every convexr set K with |K N P| > € - |P|, we have
KNN #0.

Consider the following simple algorithm to compute a weak e-net for a given set P of points in R,

Algorithm Weak-Nets (Input: a set of points P, parameter ¢ > 0)

Let R C P be a uniform random sample of size @ log %, for a constant g(d) depending only
on d.
Q =<{Radon R": R ¢ r
' d+2) )
return Q U R.

Our application of Theorem [2]is the following.

Theorem 4 (Proof in Section . Let P be a set of points in R? in general position and € > 0
a given parameter. Then there is a g(d) € N such that a uniform random sample R C P of size

%d) log% satisfies the following properties with probability at least 1%.

1. QUR is a weak e-net for P, where Q) is the set of Radon points of all (d+ 2)-sized subsets of
R. That is, Algorithm Weak-Nets returns a weak e-net for P of size O (ed%)’ and

2. each convex object containing at least €|P| points of P intersects the convex hull of at least
one (L%J + 1)—sized subset of R.

Remark. The first part of Theorem [4] gives a bound on the size of the e-net that is weaker than
the current best bound due to Matousek and Wagner [6], which is of the order of O (6%) (ignoring
polylogarithmic factors). Yet our construction of a weak e-net is novel and interesting as it uses
certain Radon points of the underlying set P.

The constant 1% can be increased by picking a larger random sample R.

2 Proof of Lemma 1 and Theorem 2.

We need some definitions. We set m = (r —1)(d+1) + 1, and for k € [d+ 1] the block By, is the set
of integers {(r — 1)(k— 1)+ 1,(r —1)(k—1)+2,...,(r — 1)k + 1}. The blocks are of size r each



and they almost form a partition of [m], only neighboring blocks have a common element, namely
(r—1)k+1 € ByN By for all k € [d]. Call an r-partition {I1,...,I.} of [m] special if |I; N By| = 1
for every j € [r] and every k € [d + 1].

Pér’s result is about sequences S = (ai,...,ax) of vectors in R%. A sequence (by,...,b) is a
subsequence of length ¢ of S if b; = a;; for all j € [t] where 1 < i1 < ip < ... <4 < N.
Given a sequence S = (a1,...,am), a; € R, an r-partition {S1,Ss,...,S,} of S is in one-to-one
correspondence with an r-partition {1;,..., I} of [m] via a; € S; if and only if i € I;. An r-partition
of S is called special if the corresponding r-partition of [m] is special.

Tverberg’s theorem states that given a set P of (r — 1)(d + 1) + 1 points in R%, there exists a
partition of P into r sets whose convex-hulls contain a common point.

We can now state Pér’s result [10].

Theorem A (Universality theorem for Tverberg partitions). Assume d,r,t € N, r > 2, and
m = (r—1)(d+1)+1 < t. Then there exists N = N(d,r,t) € N such that every sequence
S = (a1,...,an) of vectors (in general position) in R contains a subsequence S' = (by,...,b;) (of
length t) such that the Tverberg partitions of every subsequence of length m of S’ are exactly the
special partitions.

Note that when the points of S (or P) come from the moment curve I'(z) = {v(z): x € R} where
y(z) = (x,22,...,2%), then there is a natural ordering S = (y(1),...,v(z,)) with 21 < 22 < ... <
Tn. Now let 0 < 1 < ... < z, a rapidly increasing sequence of real numbers, meaning that, for
every h € [n — 1], xp41/zp is at least as large as some (large) constant cq,; depending only on
d,r, h. It is not hard to check that in this case all Tverberg partitions of all m = (r — 1) (d + 1) +1
long subsequences of S are the special ones. This (and other examples as well) show that no other
set of partitions can be universal, i.e., that exist as Tverberg partitions in a large-enough point set.

We are going to apply the universality theorem in the special case r =3 and t = m = (r — 1)(d +
1)+ 1 = 2d + 3. In this case N(d,r,t) depends on d only and thus we can set f(d) = N(d,r,t) =
N(d,3,2d + 3).

Proof of Lemma . Order the elements of P arbitrarily to obtain a sequence S = (pl, . ,pf(d)).
Apply Theorem [Al to S with r = 3, t = m = 2d + 3. We get a subsequence S’ of length m all of
whose Tverberg 3-partitions are exactly the special ones. Define I} = {z € [m] : 2 = 1 mod 4} and
L ={z€[m]:z=3mod4} and Iy = {z € [m] : z is even}. Note that |I;| = [¢] +1, || = | 4| +1
and |13| =d+1.

It is easy to see that {I1, I3, I3} is a special partition of [m]: every block contains exactly one
element of Iy, Is, I3. Let the corresponding partition of S’ be {S1, Sa, S3}. So ﬂi’ conv S; # (. Set
A= 5S51USy and B = S3. Then the Radon point of A, which is conv S; N conv Ss, is contained in
conv B. O

Proof of Theorem @ Consider a (2d + 3)-uniform hypergraph H = (P, E) on the vertex set P,
where e € E if and only if the (2d 4+ 3) points of e can be partitioned into two sets e = e; U e
such that |e;| = d + 2, and Radon e € conv es. We will call the set e; the Radon-base of the edge
e. By the result of de Caen [4], any r-uniform hypergraph on n vertices and m edges contains an



independent set of size at least
T
r—1 mnr-1
i ° 1 .
rr—1 mr—1

On the other hand, Lemma [I|implies that any set @ of f(d) points of P must contain two disjoint
sets—Ag C Q of size (d+ 2) and Bg C Q of size (d 4+ 1)—such that Radon Ag € conv Bg. Then
the (2d + 3) points Ag U Bg form an edge in H. This implies that no subset of P of size f(d) can
be independent in H. Thus, with r = 2d + 3, we have

2d+3
2d + 2 | P|2d+2
(2d + 3)3i5  |B|7

|P|2d+3
(2d + 3) f(d)?*+2

< size of max. ind. setin’ H < f(d) = |E|> 5

By the pigeonhole principle, there exists a (d + 2)-sized set P’ C P that is the Radon-base of a set
E’ of edges of E, where

| > I 2(2d+3|)113”|(d)
(42) (412)

The (d+ 1)-uniform hypergraph consisting of the sets E” = {¢/ \ P': ¢’ € E'} has the property that
the convex hull of the elements of each set contains Radon P’. It suffices to show that it contains
a matching of size Q(|P|)—and this follows from known lower-bounds on matchings in uniform
hypergraphs (see [I]). For simplicity, we instead present a direct argument, though with worse
constants.

Iteratively construct a matching by adding a (d + 1)-sized set from E” to the matching, and
deleting all sets from E” whose intersection with this added set is non-empty. Each set added to
the matching can cause the deletion of at most (d + 1) - ('5') sets of E” as a vertex of P\ P’ can
belong to at most ([}) sets of E” (each set in E” has size (d + 1)). The size of the final matching is
the number of iterations, which, by the above discussion, is lower-bounded by

P|2d+3

2@d+3)7@> | (|P|
TN / (4 ).
|P|2d+3

22d+3)7(@*? [ (|P] |P| 2(2d + 3)(d + 1) f(d)>*2
(d'f'z)/( d )(CH D2 gy where d) = (d 2l :

A calculation then shows that

3 Proof of Theorem [4]

Definition 5. Given positive integers d,p,q with p > q > L%J, let CHS(d, p,q) denote the smallest
integer such that the following holds. For any compact convex object K C R? and any set P C R¥\ K
of points, if every subset of P of size p has a q-sized subset whose convex hull is disjoint from K,
then P can be separated from K with CHS(d,p,q) half-spaces (that is, there exists a set H of
CHS(d, p, q) half-spaces such that K C (), h and (ﬂheH h) AP=0).

4



Then the key statement is the following.

Lemma 6. Let P be a set of n points in R and € € [0, %] a given parameter. Further let ¢ > LgJ be
an integer and define p = q-h(d), where h(d) is the function from Theorem[3 Assume CHS (d, p,q)
is finite. Let R be a uniform random sample of P of size

Cc d - CHS (d7p7Q) : IOgCHS (d7p)Q) 10g1
67

€

9

where ¢z is a large-enough constant independent of d,e and q. Then with probability at least 15,

1. RUQ is a weak e-net for P, where Q is the set of Radon points of all (d+ 2)-sized subsets of
R, and

2. each convex object containing at least €|P| points of P intersects the convex hull of at least
one (L%J + 1)-sized subset of R.

Proof. The proof follows the method of Mustafa and Ray [7]; however they assumed a more
restrictive case, so we present a proof modified appropriately to give a more general bound.

Claim 7. With probability at least 1%, R is an e-net for the set system induced on P by the

intersection of CHS (d, p,q) half-spaces in R?.

Proof. The set system induced by the intersection of k half-spaces in R? has VC-dimension
© (dklogk) [3]. Thus by the e-net theorem, a uniform random sample of size

o <dklogklog1> _ c2-d-CHS (d,p,q) -log CHS (d, p,q) log -
€

€ € €

is an e-net with probability at least 1% (see [9]), where ¢y is a large-enough constant independent

of d,e and q. O

Assume that R is such an e-net. Let K be any convex object containing at least e|P| points of P.

Claim 8. There exists Rxg C R of size p such that the convex hull of every subset of Ri of size q
intersects K.

Proof. 1f for every subset of R of size p there exists a g-sized subset whose convex hull is disjoint
from K, then by the definition of CHS (d, p, q), all points of R can be separated from K by a set H
of CHS (d, p, q) half-spaces. The common intersection of these half-spaces contains K and hence at
least €| P| points of P and no point of R, a contradiction to Claim O

By Theorem [2] R has a (d + 2)-sized subset, say R}, such that Radon R/ € @ is contained in at

least LLR—Q()‘ vertex-disjoint simplices spanned by points of Rx \ R}. Now Radon R}, must lie inside
K: otherwise the half-space separating it from K must contain at least one point from each simplex
containing Radon R’—mnamely it must contain at least % = % = q points of Ri. But then
the convex hull of these ¢ points does not intersect K, a contradiction to Claim [8l Thus RU Q is
a weak e-net for P, and further, the Radon partition of R} of size [%J + 1 must intersect K. This

completes the proof. O



Proof of Theorem It is known that CHS(d, p, q) is finite for large-enough values of ¢—this
together with Lemma [6] implies the proof. In particular,

1. ([5]) For p > g =d + 1 we have

CHS(d,p,q) = O (pd2 log®' @108 dp) :

where ¢ is an absolute constant.

2. ([8]) For any real 3> 0 and p > ¢ = (1+ 3)- | 2| we have

CHS(d,p,q) = O (qu”B logp) :

The second bound is stronger, but both of them imply, by setting ¢ = (d+ 1), p = ¢ - h(d) and
applying Lemma [6], the existence of a function

9(d) :O(d-CHS(d, (d+1)-h(d),(d+1)) log CHS (d, (d+1) - h(d), (d + 1))).

O]
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