

Interspecific competition between two partridges in farmland landscapes

Tony Rinaud, Clément Harmange, Olivier Pays, Mathieu Sarasa, Maxime Saillard, Vincent V. Bretagnolle

► To cite this version:

Tony Rinaud, Clément Harmange, Olivier Pays, Mathieu Sarasa, Maxime Saillard, et al.. Interspecific competition between two partridges in farmland landscapes. Animal Behaviour, 2020, 165, pp.23-34. 10.1016/j.anbehav.2020.04.018 . hal-02768595

HAL Id: hal-02768595 https://hal.science/hal-02768595

Submitted on 3 Jun2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Version of Record: https://www.sciencedirect.com/science/article/pii/S0003347220301159 Manuscript_faae783cf6fa79c6a6dff2f600affde0

1	Interspecific competition between two partridges in farmland landscapes
2	
3	Tony Rinaud ^{*1} , Clément Harmange ^{*1,2} , Olivier Pays ² , Mathieu Sarasa ^{3,4} ,
4	Maxime Saillard ¹ and Vincent Bretagnolle ^{1,5}
5	
6	¹ Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS and Université La Rochelle, F-79360
7	Beauvoir-sur-Niort, France
8	² LETG-Angers, UMR 6554 CNRS, Université d'Angers, 49000 Angers, France
9	³ BEOPS, 1 Esplanade Compans Caffarelli, 31000 Toulouse, France (current address)
10	⁴ Fédération Nationale des Chasseurs, 13 rue du Général Leclerc, 92136 Issy-les-Moulineaux
11	cedex, France (former address)
12	⁵ LTSER « Zone Atelier Plaine & Val de Sèvre », CNRS, 79360, Beauvoir sur Niort, France
13	*Co-first authors
14	Corresponding author:
15	Clément Harmange, LETG-Angers, UMR 6554 CNRS, Université d'Angers, 49000 Angers,
16	France, +33671918570, clement.harmange@orange.fr
17	
18	Acknowledgements
19	We thank all the fieldworkers who contributed to part of the data collection. We also thank
20	Nicholas Aebischer, Elisabeth Bro, Jérome Moreau, Romain Julliard and Mathieu Boos for
21	their valuable comments on previous drafts. This work was supported by the Fédération
22	Nationale des Chasseurs (grant number FNC-PSN-PR15-2014) and the "Ressources
23	alimentaires" project funded by the LISEA foundation.
24	Word count: 6800 words from abstract to references (excluding supplementary material)

1

Interspecific competition between two partridges in farmland landscapes

2

3 ABSTRACT

4 Interspecific competition is expected to occur between phylogenetically closely related 5 species when sharing resources. In birds, interspecific competition often occurs by song-6 mediated interference, and frequently implies asymmetrical outcomes between the species-7 pairs involved. Habitat loss resulting from agricultural intensification is expected to have 8 aggregated bird species in the remaining suitable habitats, thus increasing the likelihood of 9 interspecific competition. However, this process has rarely been considered as a potential 10 factor limiting population recovery in farmland birds. We investigated whether interspecific 11 competition occurs between grey (Perdix perdix L. 1758) and red-legged (Alectoris rufa L. 12 1758) partridges, two phylogenetically related species. Originally parapatric, they have 13 suffered an artificial increase in their contact zone due to huge human-mediated gamebird 14 releases. We analyzed territorial behaviour through a playback stimuli experiment and 15 investigated shifts in habitat niche in absence and presence of a hypothetical competitor. 16 Results showed that the grey partridge appeared less territorial when co-occurring with the 17 red-legged partridge and shifts its habitat niche away from that occupied by the red-legged 18 partridge, while no such change was detected for the red-legged partridge. These 19 asymmetrical patterns in behaviour and ecology are predicted under an interspecific 20 competition scenario beneficial to the red-legged partridge, and therefore suggest that red-21 legged partridges are competitively dominant to grey partridges where they co-occur. This result has potentially strong implications for the management of grey partridges as 22 23 gamebirds, and for their conservation in areas where they are almost extirpated.

25 Key words

- 26 Asymmetric competition, Grey partridge, Habitat niche displacement, Playback experiment,
- 27 Red-legged partridge, Territorial behaviour.

28

30 INTRODUCTION

31 Interspecific competition is a major driver of trophic interactions (MacArthur & Levins, 32 1964), and may define ecological niches (Diamond, 1978; Martin & Martin, 2001b), 33 determine biogeographic patterns (Bull, 1991; Jankowski et al., 2010) and affect 34 evolutionary processes (Svärdson, 1949; Wiens, 1992). Interspecific competition is expected 35 to occur between phylogenetically close species sharing limiting resources (Wiens, 1992), 36 either indirectly through resource depletion (Dhondt, 2012; Schoener, 1983), or directly 37 through agonistic interactions (Persson, 1985; Wiens, 1992). Agonistic interactions are in 38 most cases asymmetric in vertebrates (Martin et al., 2017; Pasch et al., 2013; Persson, 1985; 39 Schoener, 1983): in an analysis of phylogenetically close bird species, 224 out of 270 species-40 pairs showed asymmetric agonistic interactions, benefiting the larger species in 87% of the 41 cases (Martin et al., 2017). Typically, larger and dominant species show little difference in 42 territorial response (vocal behaviour and approaches) to heterospecific versus conspecific 43 songs, while smaller (subordinate) species show lower response rates to the heterospecific 44 versus conspecific song (Martin & Martin, 2001a; McEntee, 2014). This may result in a shift 45 in the song schedule to avoid territorial interaction (Brumm, 2006; Cody & Brown, 1969) and 46 in the displacement and/or contraction of the ecological niche of the subordinate species 47 (Jankowski et al., 2010; Martin & Martin, 2001b; Svärdson, 1949; Tarjuelo et al., 2017). Such 48 asymmetric outcomes may impact population dynamics of subordinate species, by 49 constraining its distribution to lower quality habitats, resulting in lower breeding success 50 and/or survival (Martin et al., 2017; Martin & Martin, 2001b).

51 Recent declines in rural landscape habitat quality, the result of post-war changes in 52 agricultural practices, has not only triggered a decline in European farmland birds (Benton et 53 al., 2003; Newton, 2004; Robinson & Sutherland, 2002), but has also aggregated surviving 54 bird populations into the remaining local patches of suitable habitat (Aebischer & Ewald, 55 2012). While an increasing likelihood of interspecific competition should be expected in 56 those habitats (Newton, 2004; Robillard et al., 2013), the implications for farmland bird 57 decline or population recovery limitation has remained largely unexplored (though see 58 Robillard et al., 2013). The grey partridge Perdix perdix L. 1758 and red-legged partridge 59 Alectoris rufa L. 1758 are phylogenetically related and belong to the Phasianidae (Wang et 60 al., 2013). They were originally parapatric, showing separated but contiguous distributions 61 (Cramp & Simmons, 1980; see also Watson, 1962; Bull, 1991), with the grey originating from 62 central Europe and Asia (Liukkonen-Anttila et al., 2002) and the red-legged from Iberia 63 (Ferrero et al., 2011). Originally, the distributional contact zone was primarily restricted to 64 central and southern France and north-west Italy (Cramp & Simmons, 1980). However, huge 65 releases of red-legged partridges as gamebirds in the UK and France (Aebischer, 2019; 66 Cramp & Simmons, 1980) resulted in the current situation where both species are sympatric 67 over vast areas of western Europe. Both species select open agricultural landscapes 68 (Aebischer & Kavanagh, 1997; Aebischer & Lucio, 1997; Potts, 1980), have similar breeding 69 habitats (Bro et al., 2013; Green et al., 1987; Rands, 1988), though slight differences in 70 micro-habitat exist (Meriggi et al., 1991). They also overlap in their breeding phenology (egg 71 laying in May-June, peak of territorial activity in February-April; Rotella & Ratti, 1988). In 72 addition, chicks feed on the same arthropod taxa, while adults shift to leaves and seeds (Bro 73 & Ponce-Boutin, 2004; Green, 1984; Green et al., 1987). Finally, partridges are highly 74 territorial, with both mates contributing to territory defense (Casas et al., 2016; Potts, 1980). 75 The original narrow contact zone between both species was suggestive of the presence of 76 competition interactions (Bull, 1991; Watson, 1962). These can now expected to be present

over the entire, vast, contact zone (Jankowski et al., 2010; Martin & Martin, 2001a; McEntee,
2014).

79 The possible increased competition pressure from the introduction of the larger and 80 bulkier red-legged partridge in the human-created contact zone (Carpio et al., 2017; 81 Robertson, 1996; Sokos et al., 2008), has rarely been studied as a possible cause of grey 82 partridge decline or as a limiting factor in population recovery (Bro, 2016; Meriggi et al., 83 1991). However, while the grey partridge is one the most iconic farmland bird in Europe 84 (Sotherton et al., 2014), it has declined strongly over the last few decades (Aebischer & 85 Kavanagh, 1997; Aebischer & Potts, 1994) and is now threatened at national or sub-national 86 scales (Charra & Sarasa, 2018; Eaton et al., 2015). In this study, we investigated behaviours 87 that might potentially indicate interspecific competition between the two partridges, in 88 study areas located within the original area of sympatry (central western France). We 89 quantified territorial behaviour through playback stimuli, analyzing the patterns of territorial 90 response in single- and two-species situations (Cody & Brown, 1969; Martin & Martin, 91 2001a), and further investigated behavioural (territorial daily activity) and habitat niche 92 shifts in the area of co-occurrence. Based on the asymmetric interspecific competition 93 hypothesis, we predicted that grey partridge (smaller species) should respond less to red-94 legged partridge than to the conspecific call both in the absence and co-occurrence of red-95 legged partridge, and should show lower levels of agonistic behaviour in co-occurrence 96 areas. Conversely, red-legged partridge should increase its territorial response to grey 97 partridge in co-occurrence situations, while maintaining or increasing its agonistic behaviour. 98 We also predicted that grey partridge should restrict their daily activity pattern when co-99 occurring with red-legged partridge to minimize inter-specific encounters. Finally, habitat 100 niche of the putatively subordinate grey partridge should shift when in co-occurrence with

red-legged partridges, while the putatively dominant red-legged partridge should beunaffected by the presence of grey partridge.

103

104 MATERIAL & METHODS

105 Study area

106 The study was conducted in the Long-Term Socio-Ecological Research platform (LTSER) 107 "Zone Atelier Plaine & Val de Sèvre" (hereafter, ZAPVS), Central Western France, (Fig. 1; 108 Bretagnolle et al., 2018b), in 2016 and 2017. This is a 435 km² zone of intensive agricultural 109 cultivation, comprising winter cereals (41.5%), sunflower (10.4%), maize (9.6%), rape (8.3%), 110 meadows (13.5%), woodlands (2.9%) and built-up areas (9.8%; average values 2009-2016 in 111 Bretagnolle et al., 2018b). Within the ZAPVS, a restricted study site of 34 km² (2016) to 68 112 km² (2017) was chosen where both partridge species were historically the most observed 113 during the past two decades (Fig. 1). In 2017, a second study site, with higher partridge 114 densities than the ZAPVS, was added to increase the sightings dataset (Table A1, Appendix 115 A). To maintain homogeneity in birds' phenology, this second site is located close to the 116 ZAPVS and has similar habitat types. This 18 km² site is located in the south of Maine-et-117 Loire (METL; Fig. 1).

118

119 Survey protocol and playback tests

We first established a grid of playback stations with a cell size of 500 m (excluding built-up areas) to locate territorial pairs accurately (the size of a single home range is about 20 ha in spring-summer: Birkan et al., 1992). Sample points were placed as close as possible to the centroid of the grid cells, but still on a path or a road for ease of access and minimize disturbance. Each sample point was surveyed four times per year, with two sessions in the

125 morning and two in the evening, as patterns of daily vocal activity peak at dawn and dusk 126 (Pépin & Fouquet, 1992). Sample points were slowly approached by car, the observer then 127 went out quietly and waited for 1 minute before starting a session. A session consisted of 128 broadcasting, at fixed volume (calibrated to be heard up to 250 meters away to avoid 129 overlap between neighboring points) with a NEWONLINE N74[®] speaker, of an audio 130 sequence containing territorial calls of males of both study species (155 seconds for each 131 species), and of the common quail Coturnix coturnix L. 1758 call as control. For each species, 132 bouts were separated by 1-min silence (see Appendix B for more details about sequence 133 preparation and call origins). Since calls of three species were broadcast, six audio sequences 134 containing the six possible broadcasting combinations were prepared and one of them was 135 randomly played at each session. In 2016, surveyed were conducted at 140 playback stations 136 at ZAPVS (April 6 to April 25), while in 2017, 275 stations were surveyed at ZAPVS and 75 at 137 METL, from March 14 to April 28. Surveys involved tracks of 14-17 sampling points along a 138 road/path, with each track corresponding to a sequence of points made in the morning or 139 evening session. Tracks were made alternately in a way, then in the other, to avoid hourly 140 biases in the sequence of points.

141 For each point in a given year, we determined whether none, one or the two species 142 were present, if contacted at least once over the four sampling sessions. Points were then 143 classified into four distinct categories as to whether none, only one or both partridges were 144 contacted. The "no contact" category was discarded, so that only points with at least one 145 occurrence were kept for analyses, assuming that a species was absent of a point if no 146 sighting was recorded there across the four sampling sessions. We checked whether 147 discarded points might actually contain partridges using rarefaction curve analyses (see 148 Appendix C): only 7.3% and 12.5% of points for grey and red-legged partridges, respectively,

149 may have been removed erroneously. For each individual contacted at a point, we noted the 150 playback call that elicited the response, the type of response (0: no response, 1: response to 151 one of the partridge species calls, 2: response to both partridge stimuli), the latency of 152 response (elapsed time between the beginning of the playback and any territorial response) 153 and territorial behaviour (walking approach, flight approach, calling).

154

155 Ecological habitat description

156 Analysis was based on three datasets of grey and red-legged partridge occurrence collected 157 by fieldworkers at ZAPVS between 2013 and 2017 (see Harmange et al., 2019). The first 158 dataset contained occurrences from systematic bird point counts without playback (see 159 Brodier et al., 2014 for protocols), and sampled some 450 points spread throughout the 160 ZAPVS each year during the passerine breeding period (Bretagnolle et al., 2018a). The 161 second dataset comprised of opportunistic sightings made when fieldworkers saw partridges 162 while studying other bird species (Bretagnolle et al., 2018b), or during the systematic land 163 cover monitoring performed twice a year over the entire study site (see Harmange et al., 164 2019). Each year, opportunistic monitoring occurred daily from late March to late July. The 165 third dataset contained partridge sightings from the playback experiment (see above). 166 Collating the three datasets, a total of 286 and 244 locations had grey and red-legged 167 partridges, respectively.

From the annually collected land cover data, we then created a grid of 600 x 600 m² cells, using R (R Core Team, 2017) and QGIS (Quantum GIS Development Team, 2017), excluding all pixels that had less than half their area (18 ha) lying within the study site. Pixel size was chosen as the minimal size that contained sufficient numbers of pixels with (i) only grey partridge occurrences over the period 2013-2017 (n = 115), (ii) only red-legged

173 partridge occurrences (n = 137), or (iii) both partridge species (n = 32). Analyzed landscape 174 metrics were based on those identified as being selected (either positively or negatively) in 175 grey and/or red-legged partridges (Birkan et al., 1992; Bro et al., 2013; Harmange et al., 176 2019; Meriggi et al., 1991; Rands, 1987): cereals, rape, meadows, spring crops (corn, 177 sunflower etc.), hedgerows, roads/tracks, woodlands and buildings. Landscape metrics used 178 in analyses corresponded to the surface area (or total length in m) of each habitat had in the 179 pixel, divided by the pixel surface area (to account for edge effect). Each parameter was 180 calculated annually from 2013 to 2017, except for roads and hedgerows, which remained 181 stable and for which we set only one layer (Harmange et al., 2019).

182

183 Ethical note

This study is restricted to behavioural observations of partridges and, therefore, excludes any animal handling or invasive experiments. Field studies did not involve endangered or protected species. Farmers were made aware of the study, which did not involve any penetration to private properties. The study thus adheres to the "Guidelines for the Use of Animals in Research", and to the legal requirements of the country in which the work has been carried out. Our project was conducted with clearance from the authority *Préfecture Départementale des Deux-Sèvres* (Number: 2017/1).

191

192 Statistical analyses

193 Territorial behaviour

GLMMs (binomial response variable, logit link) were used to investigate presence/absence of each species' territorial response (vocalization and/or approach) using the *lme4* R package (Bates et al., 2018), as a function of the interaction between playback stimuli (*broadcast*)

197 species) and the interspecific situation (target species alone or in co-occurrence with the 198 other species). The playback sequence (6 levels) and the rank of partridge call (1st or 2nd 199 position) were considered as random factors. When needed, Tukey's multiple comparison 200 tests were performed using with the R package emmeans (Lenth et al., 2019). For each 201 species, we further analyzed the magnitude of territorial response, described by four 202 parameters calculated for each point count station. These included *territorial response rate* 203 (number of responding individuals within pairs, 0/1/2), response latency (in seconds), calling 204 behaviour (0: no response, 1: response to one of the two partridge species calls, 2: response 205 to both partridge stimuli), and a *territoriality score* in the form of a ranking of increasing 206 territorial behaviour intensity (0: no response, 1: approach, 2: vocalization, 3: approach with 207 vocalization, 4: flying approach with vocalization; see Table A2 in Appendix A for more 208 details about variables calculation). Then, for each species, we carried out linear discriminant 209 analyses (LDA) (James & McCulloch, 1990) to investigate whether territorial behaviour 210 (described from the four behavioural variables) allowed discrimination between the two 211 interspecific situations, i.e. when a single species was observed and when both species co-212 occurred. LDA allowed the difference between two situations (alone or co-occurrence) to be 213 maximized statistically for each species using a discrimant function assessed from four 214 observed territorial behaviours. This analysis was performed using the MASS R package 215 (Ripley, 2017). To handle the differences in sample sizes between the two situations (alone 216 or co-occurrence) given the low sample size of the "co-occurrence" category, we produced 217 95% confidence intervals (CI) for linear discriminant scores following Luttrell & Lohr (2018). 218 CI was assessed by generating bootstrap samples with replacement and simulating 1000 sets 219 for the "alone" category (highest sample size) with reduced sample size equal to the smaller 220 "co-occurrence" set. The mean of the linear discriminant scores +/- SD for each of the 1000 bootstrapped samples was calculated and a 95% CI was computed for the "alone" category.
Finally, we carried out analyses of variance (ANOVA) to test whether each territorial
behaviour (see above) contributes significantly to discriminate the two interspecific
situations (species alone vs co-occurrence).

225 To investigate the daily pattern of territorial behaviour for each species, we first 226 summed the number of territorial responses (vocal behaviour and approaches) for a 30-227 minute period, using four categories: grey partridge alone and grey co-occurring with red-228 legged partridge, and red-legged partridge alone and red-legged co-occurring with grey 229 partridge. The sum (per half-hour) was then standardised (divided) by the number of trials 230 performed on that given 30-minute period. Seasonal effects were controlled for by 231 considering time (GMT) relative to sunrise (for sampling points in the morning) or sunset 232 (evening). To compare the distribution of territorial responses across the four modalities, we 233 performed Cramér-von Mises distribution tests (Anderson, 1962; Conover, 1999), using the 234 RVAidememoire R package (Hervé, 2018).

235

236 Habitat niche modelling

237 Within-species habitat niches were analyzed with data from 2013-2017, averaging 238 environmental layers across years for each pixel. Three types of occurrences (2013-2017) 239 were considered: (1) occurrence of grey partridge only (at least once) in the pixel over the 5 years (n = 222); (2) occurrence of red-legged partridge only (n = 192); (3) grey (n = 64) and 240 241 red-legged (n = 52) partridges co-occurring, each being recorded at least once (but not 242 necessarily simultaneously). To compare species niches in presence of a single species versus 243 co-occurrence of the two species, we used Broennimann et al. (2012)'s niche modelling 244 framework implemented in the ecospat R package (Broennimann et al., 2016). The first step

245 consists of describing the environmental space available in the study area, using the first two 246 axes of a principal component analysis (PCA-env) performed on all pixels, with each 247 environmental layer being a different variable in the PCA. Then, for each species in each 248 situation (species alone or in co-occurrence), a smoothed density of occurrences in the PCA-249 env space is obtained using a kernel density function. This allows niche space to be 250 graphically delineated, for each situation, as a relative abundance index ranging from 0 251 (environmental conditions in which the species was not observed) to 1 (environmental 252 conditions in which the species was most commonly observed), thus handling between-253 group differences in the number of occurrences. Niche overlap can then be calculated (e.g. 254 between grey alone and grey co-occurring with red-legged partridge), using Schoener's D 255 index (Warren et al., 2008) which ranges from 0 (no overlap) to 1 (full overlap). The niche 256 equivalency test, a commonly-used niche randomization test, was performed (Broennimann 257 et al., 2012; Warren et al., 2008). In this test, the two occurrence datasets are mixed, and 258 two new datasets are reconstituted randomly (1000 times), conserving the sizes of the two 259 original datasets. The distribution of the 1000 D niche overlap values from the paired 260 simulated datasets are then compared with the observed value of D: if the latter is outside 261 the 95% range for the simulated values, the null hypothesis is rejected, i.e. the observed 262 niches are less equivalent than expected by chance (Broennimann et al., 2012; Warren et al., 263 2008). All statistical analyzes were performed using R software (R Core Team, 2017).

264

265 **RESULTS**

266 Territorial behaviour

Among the surveyed points (combining both study sites), there were 21 and 106 points (respectively 2016 and 2017) with at least one species in one of the four sampling sessions. 269 Assuming that the presence of an individual in at least one sampling session for a given point 270 count reflected the presence of a territorial pair, 37 points (7.5%) with grey partridge, 74 271 (15.1%) with red-legged partridge and 16 (3.3%) with both species were recorded. We found 272 that grey partridge territorial responses were significantly influenced both by the broadcast 273 species and whether red-legged partridge co-occurred (Table 1): they responded more to 274 the conspecific than heterospecific call or to the control call (Fig; 2a, Table A3), but co-275 occurrence with red-legged partridge significantly reduced grey partridge response (Fig. 2a, 276 Table A3). Similarly, territorial responses of red-legged partridge, when alone, were higher to 277 the conspecific call than the grey partridge or control call (Fig. 2b, Tables 1, A3). Unlike the 278 grey partridge, the red-legged demonstrated a balanced response whichever the species 279 when co-occurring with grey partridge (Fig. 2b, Table A3).

280 Scores of territorial behaviour in response to playback (from the four behavioural 281 variables) allowed discrimination between situations when grey partridges were alone or co-282 occurring with red-legged partridges. Territorial response rate, calling behaviour and 283 territoriality score were the three highest contributing variables discriminating territorial 284 behaviour between the two situations (Fig. 3b). In situations of co-occurrence the grey 285 partridge reduced its response rate, number of calls and intensity of territorial response (i.e. 286 territorial score) significantly (ANOVA, Table A4). These results suggest a shift in the 287 territorial behaviour of the grey partridge in co-occurrence situations (Fig. 3a). Conversely, 288 behavioural variables were very poor contributors in discriminating situations where red-289 legged were alone or co-occurring with grey partridges (Fig. 3d). Indeed, no significant 290 differences appeared for any of the four behavioural variables in the red-legged partridge 291 responses (ANOVA, Table A4), indicating no shift in behaviour similar to that found for the 292 grey partridge (Fig. 3c).

Daily pattern of grey partridge territorial behaviour was significantly affected by cooccurrence with red-legged partridge (Fig. 4, Table A5, Appendix A): under co-occurrence, grey partridge territorial response became concentrated around the sunset in the evening, while no changes were detected in the morning (Fig. 4). A similar pattern was detected for the red-legged partridge where alone versus in co-occurrence with the grey partridge (Fig. 4, Table A5).

299

300 Habitat niche

301 Analysis showed that the grey partridge's habitat niches when alone or when co-occurring 302 with the red-legged partridge overlapped by only 53%. The equivalency test was significant 303 (p = 0.02), indicating that the grey partridge habitat niche significantly shifted in the 304 presence of the red-legged partridge. Although the Figure 5 suggests a moderate shift (Fig. 305 5a compared to 5b), the core of the grey partridge's habitat niche changed in the opposite 306 direction of the red-legged partridge's habitat niche, towards greater proportions of spring 307 crop, cereal and rape habitats, and lower proportions of meadows and hedgerows (Fig. 5e). 308 Overall, the red-legged partridge's habitat niche was wider, comprised of its preferred open 309 arable land (e.g. spring crops, cereals and rape) associated with semi-natural permanent 310 covers (meadows and hedgerows), but the species also avoided closed habitats (woodlands 311 and built-up areas, Fig. 5e). In contrast to the grey partridge, the red-legged partridge's 312 habitat niches when alone or when co-occurring with the grey partridge showed more 313 overlap (67%, Fig. 5c, d). When co-occurring with the grey partridge, the red-legged's habitat 314 niche did not shift, so remaining equivalent in both situations (equivalency test, p = 0.55).

315

316 **DISCUSSION**

As expected, our results suggest an asymmetric pattern of territorial behaviour between grey and red-legged partridges. Grey partridges reduced their territorial response, and shifted both their hourly territorial behaviour and their habitat niche when co-occurring with the red-legged partridge.

321 Such shifts in territorial behaviour intensity towards a more discreet behaviour when 322 facing a competitive species have been documented previously in birds (e.g. Martin & 323 Martin, 2001a; McEntee, 2014) and other vertebrates, such as mammals (e.g. Pasch et al., 324 2013). Indeed, in such cases, the typical response of the subordinate species is to avoid 325 unfriendly interactions with a dominant and larger competitor. Conversely, the red-legged partridge territorial response rate showed much higher response rate to its own species 326 327 when alone, but shifted to balanced response rates to both species in situations of co-328 occurrence. Such convergence of territorial behaviour has already been documented for 329 dominant species involved in asymmetric interspecific interactions (Jankowski et al., 2010; 330 Pasch et al., 2013) and reject the hypothesis of Murray (1971), which suggests that 331 interspecific territoriality results from misdirected intraspecific interactions due to incorrect 332 signal recognition. However, huge releases of captive-reared partridges for game 333 management could alternatively explain responses to heterospecific call, as both partridge 334 species are often reared in the same farms and may have been sensitized or conditioned by 335 a precocious exposure to the heterospecific call. We suggest that this alternative hypothesis 336 is however unlikely because under the hypothesis of a precocious sensitization in rearing 337 farms, both species should have responded to heterospecific calls (not just to the red-legged 338 partridge), and additionally, each species should have responded to the heterospecific 339 stimuli, whether in absence of competitors or in co-occurring situations. In addition, we 340 found that both species adjusted their daily territorial activity under co-occurrence, though

341 territorial activity of both species remained synchronized, while a temporal segregation was 342 expected. This may be the result of a too coarse temporal resolution in our analyses, making 343 temporal shifts in territorial response hard to detect. For instance, Brumm (2006) showed 344 the temporal segregation in territorial activity occurs at a finer scale in Nightingale Luscinia 345 megarhynchos, which adjusts and focuses its vocal activity within the silent intervals 346 between two heterospecific broadcast songs (see also Cody & Brown, 1969). An alternative 347 explanation would be that given the calls of both partridges are acoustically different, this 348 might have enabled vocal activity to remain synchronized, while ensuring a low interspecific 349 interference (Dhondt, 2012; Doutrelant & Lambrechts, 2001).

350 Finally, we detected a slight habitat niche shift in the less competitive species in 351 situations of co-occurrence with the dominant one, while there was no such shift for the 352 dominant species. This pattern is typical of asymmetric competition for habitat likely 353 resulting from the agonistic behaviour of the dominant species (Jankowski et al., 2010; 354 Martin & Martin, 2001a, 2001b). While the grey partridge (subordinate species) selects 355 preferentially grass along hedgerows to nest (Potts & Aebischer, 1991), its habitat niche 356 shifted to more open habitats (more annual crops and less hedgerows) in co-occurrence 357 situations with the red-legged. These habitats that are more subject to human disturbance, 358 may therefore be of poorer-quality for breeding (Burel et al., 1998), likely resulting in lower 359 fitness and/or survival (see Martin et al., 2017; Martin & Martin, 2001a, 2001b). Such habitat 360 niche shift, likely resulting from interspecific competition, could have also driven the micro-361 habitat segregation observed by Meriggi et al. (1991), with the grey partridge being 362 generally more associated with crops and open lands, while the red-legged is more linked to 363 semi-natural elements like hedgerows.

364 Asymmetric competition occurring in the contact zone of parapatric species is well-365 known to reduce fitness of the subordinate species (Jankowski et al., 2010; Martin & Martin, 366 2001a). Such behavioural outcomes of competition may have strong implications for the 367 conservation and management of partridges. Although releasing non-native species has long 368 been used as a strategy to limit hunting pressure on wild native populations (Aebischer & 369 Ewald, 2004; Bro, 2016; Carpio et al., 2017), the huge releases of red-legged partridges in the 370 core area of the grey partridge raise concerns not only for the grey partridge decline, but 371 also for its future possible recovery. The presence of morphologically similar species has long 372 been identified as interfering with the re-establishment success in translocations (Griffith et 373 al., 1989). The grey partridge is currently a focus of interest for many reinforcement projects, 374 that are identified as the only tool for restoring self-sustaining populations in many areas 375 (Buner et al., 2011; Buner & Aebischer, 2008). However, this has proved inefficient or even 376 counterproductive (Reitz, 2003; Sokos et al., 2008), because of many unintentional but 377 adverse effects on population dynamics (inadvertent shots: in Aebischer & Ewald, 2004; 378 parasite-mediated competition: in Tompkins, Greenman, et al., 2000; Tompkins, Draycott, et 379 al., 2000). Our results suggest further impacts on territorial behaviour and access to 380 resources for the native species, though the effects on demography remain unexplored. Our 381 study thus suggests that the presence of red-legged partridges may limit the chances of 382 success in such projects. Therefore, to quantify the strength of competitive interaction 383 effects on population dynamics, further field experiments are required to formally conclude 384 that interspecific competition occurs between these species. These should include (i) 385 controlling for the origin of birds (natural or captive birds reared in monospecific farms 386 preventing any early contact between both species), (ii) treatments (deliberately releasing 387 grey partridge only, red-legged only or both species together, in different sites offering the

same availability in environmental conditions) and (iii) assessing the influence of species co occurrence on demographic parameters (adult survival, nest predation, chick survival, see
 Martin & Martin, 2001b).

391

392 **REFERENCES**

- 393 Aebischer, N. J. (2019). Fifty-year trends in UK hunting bags of birds and mammals, and
- 394 calibrated estimation of national bag size, using GWCT's National Gamebag Census.
- 395 European Journal of Wildlife Research, 65(4), 64. https://doi.org/10.1007/s10344-
- 396 019-1299-x
- 397 Aebischer, N. J., & Ewald, J. A. (2004). Managing the UK Grey Partridge *Perdix perdix*
- recovery: population change, reproduction, habitat and shooting. *Ibis*, *146*(s2), 181–
 191.
- 400 Aebischer, N. J., & Ewald, J. A. (2012). The grey partridge in the UK: population status,
- 401 research, policy and prospects. *Animal Biodiversity and Conservation*, *35*(2), 353–362.

402 Aebischer, N. J., & Kavanagh, B. (1997). Grey partridge. In W. J. M. Hagemeijer, & M. J. Blair

- 403 (Eds.), The EBCC Atlas of European breeding birds, their distribution and abundance
- 404 (pp. 212–213). London, UK: T&AD Poyser.
- 405 Aebischer, N. J., & Lucio, A. (1997). Red-legged partridge. In W. J. M. Hagemeijer, & M. J.
- 406 Blair (Eds.), *The EBCC Atlas of European breeding birds, their distribution and*
- 407 *abundance* (pp. 209–208). London, UK: T&AD Poyser.
- 408 Aebischer, N. J., & Potts, G. R. (1994). Partridge *Perdix perdix*. In M. F. Tucker, & M. F. Heath
- 409 (Eds.), *Birds in Europe, their conservation status* (Vol. 3, pp. 220–221). Cambridge, UK:

410 BirdLife International.

411 Anderson, T. W. (1962). On the Distribution of the Two-Sample Cramér-von Mises Criterion.

412 The Annals of Mathematical Statistics, 33(3), 1148-1159. JSTOR.

- Bates, D., Maechler, M., Bolker, B., Walker, S., & Christensen, R. H. B. (2018). Ime4: Linear
 mixed-effects models using Eigen and S4. *R package version*.
- 415 Benton, T. G., Vickery, J. A., & Wilson, J. D. (2003). Farmland biodiversity: is habitat
- 416 heterogeneity the key? *Trends in Ecology & Evolution, 18*(4), 182-188.
- 417 https://doi.org/10.1016/S0169-5347(03)00011-9
- 418 Birkan, M., Serre, D., Skibnienski, S., & Pelard, E. (1992). Spring-summer home range, habitat
- 419 use and survival of grey partridge (*Perdix perdix*) in a semi-open habitat. *Gibier Faune*
- 420 Sauvage, 9, 431-442.
- 421 Bretagnolle, V., Berthet, E., Gross, N., Gauffre, B., Plumejeaud, C., Houte, S., Badenhausser,
- 422 I., Monceau, K., Allier, F., & Monestiez, P. (2018a). Description of long-term
- 423 monitoring of farmland biodiversity in a LTSER. *Data in Brief, 19,* 1310-1313.
- 424 Bretagnolle, V., Berthet, E., Gross, N., Gauffre, B., Plumejeaud, C., Houte, S., Badenhausser,
- 425 I., Monceau, K., Allier, F., & Monestiez, P. (2018b). Towards sustainable and
- 426 multifunctional agriculture in farmland landscapes: Lessons from the integrative
- 427 approach of a French LTSER platform. Science of The Total Environment, 627, 822–
- 428 834.
- 429 Bro, E. (2016). *La Perdrix grise. Biologie, écologie, gestion et conservation* (p. 304). Mèze,
 430 France: Biotope.
- 431 Bro, E., Millot, F., Delorme, R., Polvé, C., Mangin, E., Godard, A., Tardif, F., Gouache, C., Sion,
- 432 I., & Brault, X. (2013). PeGASE, bilan synthétique d'une étude perdrix grise
- 433 «population-environnement». *Faune Sauvage, 298,* 17–48.

- Bro, E., & Ponce-Boutin, F. (2004). Régime alimentaire des Phasianidés en plaine de grandes
 cultures. *Faune Sauvage*, *263*, 5-13.
- 436 Brodier, S., Augiron, S., Cornulier, T., & Bretagnolle, V. (2014). Local improvement of skylark
- 437 and corn bunting population trends on intensive arable landscape: a case study of
 438 the conservation tool Natura 2000. *Animal Conservation*, 17(3), 204–216.
- Broennimann, O., Di Cola, V., & Guisan, A. (2016). *ecospat: Spatial ecology miscellaneous methods. R package version 2.1. 1.*
- 441 Broennimann, O., Fitzpatrick, M. C., Pearman, P. B., Petitpierre, B., Pellissier, L., Yoccoz, N.
- 442 G., Thuiller, W., Fortin, M.-J., Randin, C., & Zimmermann, N. E. (2012). Measuring
- 443 ecological niche overlap from occurrence and spatial environmental data. *Global*444 ecology and biogeography, 21(4), 481–497.
- 445 Brumm, H. (2006). Signalling through acoustic windows: nightingales avoid interspecific
- 446 competition by short-term adjustment of song timing. *Journal of Comparative*
- 447 *Physiology A*, 192(12), 1279-1285. https://doi.org/10.1007/s00359-006-0158-x
- 448 Bull, C. M. (1991). Ecology of parapatric distributions. *Annual review of ecology and*
- 449 *systematics*, 22(1), 19–36.
- Buner, F., & Aebischer, N. J. (2008). *Guidelines for re-establishing grey partridges through releasing*. Fordingbridge, UK: Game and Wildlife Conservation Trust.
- 452 Buner, F., Browne, S. J., & Aebischer, N. J. (2011). Experimental assessment of release
- 453 methods for the re-establishment of a red-listed galliform, the grey partridge (*Perdix*
- 454 *perdix*). *Biological Conservation*, 144(1), 593-601.
- 455 https://doi.org/10.1016/j.biocon.2010.10.017
- 456 Burel, F., Baudry, J., Butet, A., Clergeau, P., Delettre, Y., Le Coeur, D., Dubs, F., Morvan, N.,
- 457 Paillat, G., Petit, S., Thenail, C., Brunel, E., & Lefeuvre, J.-C. (1998). Comparative

- 458 biodiversity along a gradient of agricultural landscapes. *Acta oecologica*, *19*(1), 47–
 459 60.
- 460 Carpio, A. J., Guerrero-Casado, J., Barasona, J. A., Tortosa, F. S., Vicente, J., Hillström, L., &

461 Delibes-Mateos, M. (2017). Hunting as a source of alien species: a European review.

- 462 *Biological Invasions*, *19*(4), 1197–1211.
- 463 Casas, F., Arroyo, B., Viñuela, J., Guzmán, J. L., & Mougeot, F. (2016). Are farm-reared red-
- 464 legged partridge releases increasing hunting pressure on wild breeding partridges in
 465 central Spain? *European journal of wildlife research*, 62(1), 79–84.
- 466 Charra, M., & Sarasa, M. (2018). Applying IUCN Red List criteria to birds at different
- 467 geographical scales: similarities and differences. *Animal Biodiversity and*
- 468 *Conservation*, 41(1), 75–95.
- 469 Cody, M. L., & Brown, J. H. (1969). Song asynchrony in neighbouring bird species. *Nature*,
 470 *222*(5195), 778-780.
- 471 Conover, W. J. (1999). *Practical Nonparametric Statistics*. New-York, US: John Wiley & Sons,
 472 Inc.
- 473 Cramp, S., & Simmons, K. E. L. (1980). *Birds of Europe, the Middle East and North Africa* (Vol.
 474 2). Oxford, UK: Oxford University Press.
- 475 Dhondt, A. A. (2012). *Interspecific competition in birds* (Vol. 2). Oxford, UK: Oxford University
 476 Press.
- 477 Diamond, J. M. (1978). Niche Shifts and the Rediscovery of Interspecific Competition: Why
- 478 did field biologists so long overlook the widespread evidence for interspecific
- 479 competition that had already impressed Darwin? *American scientist*, 66(3), 322–331.
- 480 Doutrelant, C., & Lambrechts, M. M. (2001). Macrogeographic variation in song–a test of
- 481 competition and habitat effects in blue tits. *Ethology*, *107*(6), 533–544.

- 482 Eaton, M. A., Aebischer, N. J., Brown, A., Hearn, R., Lock, L., Musgrove, A., Noble, D., Stroud, 483 D., & Gregory, R. (2015). Birds of Conservation Concern 4: the population status of 484 birds in the UK, Channel Islands and Isle of Man. British Birds, 108, 708–746. 485 Ferrero, M. E., Blanco-Aguiar, J. A., Lougheed, S. C., Sánchez-Barbudo, I., Nova, P. J. G. D., 486 Villafuerte, R., & Dávila, J. A. (2011). Phylogeography and genetic structure of the 487 red-legged partridge (*Alectoris rufa*): more evidence for refugia within the Iberian 488 glacial refugium. *Molecular Ecology*, 20(12), 2628-2642. 489 https://doi.org/10.1111/j.1365-294X.2011.05111.x 490 Green, R. E. (1984). The Feeding Ecology and Survival of Partridge Chicks (Alectoris rufa and 491 Perdix perdix) on Arable Farmland in East Anglia. Journal of Applied Ecology, 21(3), 492 817-830. https://doi.org/10.2307/2405049 493 Green, R. E., Rands, M. R. W., & Moreby, S. J. (1987). Species differences in diet and the 494 development of seed digestion in partridge chicks Perdix perdix and Alectoris rufa. 495 *Ibis*, *129*(s2), 511–514. 496 Griffith, B., Scott, J. M., Carpenter, J. W., & Reed, C. (1989). Translocation as a species 497 conservation tool: status and strategy. *Science*, 245(4917), 477–480. 498 Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software 499 package for education and data analysis. *Palaeontologia Electronica*, 4(1), 9. 500 Harmange, C., Bretagnolle, V., Sarasa, M., & Pays, O. (2019). Changes in habitat selection 501 patterns of the gray partridge Perdix perdix in relation to agricultural landscape
- 502 dynamics over the past two decades. *Ecology and evolution*, *9*(9), 5236-5247.

503 https://doi.org/10.1002/ece3.5114

504 Hervé, M. (2018). RVAideMemoire: Testing and plotting procedures for biostatistics. R

505 package version 0.9-69-3.

506	James, F. C., & McCulloch, C. E. (1990). Multivariate analysis in ecology and systematics:
507	panacea or Pandora's box? Annual review of Ecology and Systematics, 21(1), 129–
508	166.
509	Jankowski, J. E., Robinson, S. K., & Levey, D. J. (2010). Squeezed at the top: interspecific
510	aggression may constrain elevational ranges in tropical birds. <i>Ecology</i> , 91(7), 1877–
511	1884.
512	Lenth, R., Singmann, H., Love, J., Buerkner, P., & Herve, M. (2019). Package « emmeans ». R
513	package version, 1(1).
514	Liukkonen-Anttila, T., Uimaniemi, L., Orell, M., & Lumme, J. (2002). Mitochondrial DNA
515	variation and the phylogeography of the grey partridge (<i>Perdix perdix</i>) in Europe:
516	from Pleistocene history to present day populations. Journal of Evolutionary Biology,
517	15(6), 971-982. https://doi.org/10.1046/j.1420-9101.2002.00460.x
518	Luttrell, S. A., & Lohr, B. (2018). Geographic variation in call structure, likelihood, and call-
519	song associations across subspecies boundaries, migratory patterns, and habitat
520	types in the Marsh Wren (Cistothorus palustris). The Auk: Ornithological Advances,
521	<i>135</i> (1), 127–151.
522	MacArthur, R. H., & Levins, R. (1964). Competition, habitat selection, and character
523	displacement in a patchy environment. Proceedings of the National Academy of
524	Sciences of the United States of America, 51(6), 1207.
525	Martin, P. R., Freshwater, C., & Ghalambor, C. K. (2017). The outcomes of most aggressive
526	interactions among closely related bird species are asymmetric. PeerJ, 5, e2847.
527	Martin, P. R., & Martin, T. E. (2001a). Behavioral interactions between coexisting species:
528	song playback experiments with wood warblers. <i>Ecology</i> , 82(1), 207–218.

529	Martin, P. R.	, & Martin,	T. E.	(2001b).	Ecological	and Fitness	Consequences	of Species
-----	---------------	-------------	-------	----------	------------	-------------	--------------	------------

530 Coexistence: A Removal Experiment with Wood Warblers. *Ecology*, *82*(1), 189-206.

531 https://doi.org/10.2307/2680096

- 532 McEntee, J. P. (2014). Reciprocal territorial responses of parapatric African sunbirds: species-
- 533 level asymmetry and intraspecific geographic variation. *Behavioral Ecology*, 25(6),
 534 1380–1394.
- 535 Meriggi, A., Montagna, D., & Zacchetti, D. (1991). Habitat use by partridges (*Perdix perdix*
- 536 and Alectoris rufa) in an area of northern Apennines, Italy. Italian Journal of Zoology,
- *537 58*(1), 85–89.
- 538 Murray, B. G. (1971). The ecological consequences of interspecific territorial behavior in
- 539 birds. *Ecology*, 52(3), 414–423.
- Newton, I. (2004). The recent declines of farmland bird populations in Britain: an appraisal of
 causal factors and conservation actions. *Ibis*, *146*(4), 579–600.
- 542 Novoa, C. (1992). Validation of a spring density index for Pyrenean grey partridge, *Perdix*
- 543 *perdix hispaniensis* obtained with playbacks of recorded calls. *Gibier Faune Sauvage*,
 544 *9*, 105-118.
- Pasch, B., Bolker, B. M., & Phelps, S. M. (2013). Interspecific dominance via vocal interactions

546 mediates altitudinal zonation in Neotropical singing mice. *The American Naturalist*,

- 547 *182*(5), E161–E173.
- 548 Pépin, D., & Fouquet, M. (1992). Factors affecting the incidence of dawn calling in red-legged
 549 and grey partridges. *Behavioural processes*, *26*, 167–176.
- 550 Persson, L. (1985). Asymmetrical competition: are larger animals competitively superior? *The*

551 *American Naturalist*, *126*(2), 261–266.

- 552 Potts, G. R. (1980). The effects of modern agriculture, nest predation and game management
- on the population ecology of partridges (*Perdix perdix* and *Alectoris rufa*). Advances *in ecological research*, 11, 1–79.
- 555 Potts, G. R., & Aebischer, N. J. (1991). Modelling the population dynamics of the grey
- 556 partridge: Conservation and management. In C. M. Perrins, J. D. Lebreton, & G. J. M.
- 557 Hirons (Eds.), Bird Population Studies: Relevance to Conservation and Management
- 558 (pp. 373-390). Oxford, UK: Oxford University Press.
- 559 Quantum GIS Development Team. (2017). Quantum GIS Geographic Information System.
- 560 Open Source Geospatial Foundation Project. http://qgis.osgeo.org
- 561 R Core Team. (2017). *R: A language and environment for statistical computing.* R Foundation
- 562 for Statistical Computing. https://www.R-project.org/.
- Rands, M. R. W. (1987). Hedgerow management for the conservation of partridges *Perdix perdix* and *Alectoris rufa*. *Biological Conservation*, 40(2), 127–139.
- 565 Rands, M. R. W. (1988). The effect of nest site selection on nest predation in grey partridge
- 566 *Perdix perdix* and red-legged partridge *Alectoris rufa*. *Ornis Scandinavica*, *19*(1), 35–
 567 40.
- 568 Reitz, F. (2003). Le statut communal de la perdrix grise et de la perdrix rouge en France:
- 569 résultats d'une enquête. *Faune Sauvage, 258,* 25–33.
- 570 Ripley, B. (2017). MASS: support functions and datasets for Venables and Ripley's MASS. R
- 571 package version.
- 572 Robertson, P. A. (1996). Naturalised introduced gamebirds in Britain. In J. S. Holmes, & J. R.
- 573 Simons (Eds.), *The introduction and naturalisation of birds* (pp. 63-69). London, UK:
- 574 HMSO.

- 575 Robillard, A., Garant, D., & Bélisle, M. (2013). The Swallow and the Sparrow: how agricultural
- 576 intensification affects abundance, nest site selection and competitive interactions.

577 *Landscape Ecology*, *28*(2), 201-215. https://doi.org/10.1007/s10980-012-9828-y

- 578 Robinson, R. A., & Sutherland, W. J. (2002). Post-war changes in arable farming and
- 579 biodiversity in Great Britain. *Journal of Applied Ecology*, *39*(1), 157-176.
- 580 https://doi.org/10.1046/j.1365-2664.2002.00695.x
- 581 Rotella, J. J., & Ratti, J. T. (1988). Seasonal variation in gray partridge vocal behavior. *Condor*,
 582 *90*, 304–310.
- 583 Schoener, T. W. (1983). Field experiments on interspecific competition. *The American*
- 584 *Naturalist*, *122*(2), 240–285.
- 585 Sokos, C. K., Birtsas, P. K., & Tsachalidis, E. P. (2008). The aims of galliforms release and 586 choice of techniques. *Wildlife Biology*, *14*(4), 412–422.
- 587 Sotherton, N. W., Aebischer, N. J., & Ewald, J. A. (2014). Research into action: grey partridge
- 588 conservation as a case study. *Journal of Applied Ecology*, *51*(1), 1-5.
- 589 https://doi.org/10.1111/1365-2664.12162
- 590 Svärdson, G. (1949). Competition and habitat selection in birds. *Oikos*, *1*(2), 157–174.
- 591 Tarjuelo, R., Traba, J., Morales, M. B., & Morris, D. W. (2017). Isodars unveil asymmetric
- 592 effects on habitat use caused by competition between two endangered species.
- *Oikos, 126*(1), 73–81.
- 594 Tompkins, D. M., Draycott, R. a. H., & Hudson, P. J. (2000). Field evidence for apparent
- 595 competition mediated via the shared parasites of two gamebird species. *Ecology*
- 596 *Letters*, *3*(1), 10-14. https://doi.org/10.1046/j.1461-0248.2000.00117.x

597	Tompkins, D. M., Greenman, J. V., Robertson, P. A., & Hudson, P. J. (2000). The role of shared
598	parasites in the exclusion of wildlife hosts: Heterakis gallinarum in the ring-necked
599	pheasant and the grey partridge. Journal of Animal Ecology, 69(5), 829–840.
600	Wang, N., Kimball, R. T., Braun, E. L., Liang, B., & Zhang, Z. (2013). Assessing Phylogenetic
601	Relationships among Galliformes: A Multigene Phylogeny with Expanded Taxon
602	Sampling in Phasianidae. <i>PLoS ONE</i> , 8(5), e64312.

603 https://doi.org/10.1371/journal.pone.0064312

- Warren, D. L., Glor, R. E., Turelli, M., & Funk, D. (2008). Environmental Niche Equivalency
- 605 versus Conservatism: Quantitative Approaches to Niche Evolution. *Evolution*, 62(11),
- 606 2868-2883. https://doi.org/10.1111/j.1558-5646.2008.00482.x
- 607 Watson, G. E. (1962). Sympatry in palearctic *Alectoris* partridges. *Evolution*, *16*(1), 11–19.
- Wiens, J. A. (1992). *The ecology of bird communities* (Vol. 2). Cambridge, UK: Cambridge
 University Press.

611 **Table 1** Results of GLMMs (binomial, logit) considering the territorial response (vocal behaviour and /

612 or approaches) of grey and red-legged partridges as response variable.

613							
Species	Variable	χ ² - value d	f P-value	e Estimate±SE	Variance of		
					random effects		
Grey				(intercept: -2.867 ± 0.413)	Sequence: <0.001		
partridge					Rank: 0.146		
	Broadcast species x interspecific situation	1.455 2	0.483				
	Broadcast species	38.023 2	<0.001	(see Table A3 for multiple comparisons)			
	Interspecific situation	6.942 1	0.008	Co-occurrence: -0.691 ± 0.27	72		
Red-legged partridge				(intercept: -2.736 ± 0.476)	Sequence: 0.041 Rank: 0.085		
	Broadcast species x interspecific situation	8.060 2	0.018	(see Table A3)			
	Broadcast species	19.352 2	<0.001	(see Table A3)			
	Interspecific situation	0.258 1	0.611				

614 Explanatory variables are the broadcast species (control, grey partridge, red-legged partridge) and

615 the interspecific situation (Alone, Co-occurrence). Modalities in italics are considered as references. All

616 models include the playback sequence (n=6) and the rank (n=2) of the partridge broadcast calls (grey

617 *partridge or red-legged partridge broadcast first) as random effect.*

618

Table A1 Grey and red-legged partridge density estimations (mean ± SD) in the Long-Term Socio-

Ecological Research site "Zone Atelier Plaine & Val de Sèvre" (LTSER ZAPVS) and the Maine-et-Loire

622	study area	(METL)) in 2017.

Species	Density in the LTSER ZAPVS	Density in the METL study area
Grey partridge	0.25 (± 0.07)	0.49 (± 0.20)
Red-legged partridge	0.15 (± 0.09)	2.62 (± 0.54)

Estimations were derived from playback experiments of 2016 and 2017.

Table A2 Description of behavioural variables considered in the analysis of territorial behaviour, and

predictions under a hypothetic asymmetric competition for the dominant and subordinate species.

Behavioural metric	Description	Prediction
Territorial response intensity	The sum of responding individuals (by approach and or vocalization) controlled by the number of expected responses (number of individuals seen on this point)	In co-occurrence areas, we expected a higher territorial response intensity for the dominant species, and a lower response intensity for the subordinate one (see Jankowski et al., 2010; Martin & Martin, 2001a)
Response latency	The mean response latency (i.e. the time spent between the beginning of the broadcast call and the vocal response) recorded over the 4 sampling sessions	In co-occurrence area, the response latency is expected to be lower for the dominant species, higher for the subordinate (see Jankowski et al., 2010; Martin & Martin, 2001a)
Calling behaviour	The mean number of calls responded to by individuals, between the conspecific and heterospecific partridge calls. Ranges from 0 (no individual responded to partridge calls over the four sampling sessions), to 2 (all individuals responded to the two partridge calls during each of the four sessions)	Expected to be high for a dominant species responding as well as conspecific than heterospecific call, while it is expected to be low for a subordinate species not responding to the heterospecific call (Martin & Martin, 2001a)
Territoriality score	The mean of the territoriality score obtained by each individual across the four sampling sessions, following the ranking of increasing territoriality: 0 – no response, 1 – approach, 2 – vocalization, 3 – approach with vocalization, 4 – flying approach with vocalization	We expected the dominant species to demonstrate a higher territoriality score in co-occurrence with the subordinate one, while the reverse was expected for the subordinate species (see Jankowski et al., 2010; Martin & Martin, 2001a)

Metrics were calculated for each species, from each point count.

Table A3 Tukey's multicomparison post-hoc tests computed after GLMMs (Link = binomial, logit)

635 performed on the territorial response of grey and red-legged partridge species.

Species	Variable	Estimate	SE	z-ratio	p-value
Grey					
partridge					
	Grey partridge – Red-legged partridge	1.140	0.279	4.084	<0.001
	Grey partridge – Common quail	1.748	0.337	5.192	<0.001
	Red-legged partridge – Common quail	0.608	0.376	1.620	0.234
Red-legged					
partridge					
	Red-legged partridge, Alone – Grey partridge, Alone	1.073	0.253	4.245	<0.001
	Red-legged partridge, Alone – Common quail, Alone	0.946	0.244	3.883	0.001
	Red-legged partridge, Alone – Grey partridge, Co-occurrence	0.327	0.339	0.967	0.922
	Red-legged partridge, Alone – Common quail, Co-occurrence	1.091	0.443	2.461	0.125
	Red-legged partridge, Alone – Red-legged partridge, Co-occurrence	0.780	0.394	1.979	0.334
	Red-legged partridge, Co-occurrence – Grey partridge, Alone	0.293	0.425	0.689	0.982
	Red-legged partridge, Co-occurrence – Common quail, Alone	0.166	0.420	0.395	0.999
	Red-legged partridge, Co-occurrence – Grey partridge, Co-occurrence	-0.453	0.480	-0.944	0.929
	Red-legged partridge, Co-occurrence – Common quail, Co-occurrence	0.311	0.559	0.556	0.993
	Grey partridge, Alone – Common quail, Alone	-0.127	0.290	-0.438	0.998
	Grey partridge, Alone – Common quail, Co-occurrence	0.018	0.470	0.038	1.000
	Grey partridge, Alone – Grey partridge, Co-occurrence	-0.746	0.374	-1.994	0.327

	Grey partridge, Co-occurrence – Common quail, Alone	0.618	0.368 1.681	0.523
	Grey partridge, Co-occurrence – Common quail, Co-occurrence	0.764	0.521 1.466	0.668
	Common quail, Alone – Common quail, Co-occurrence	0.145	0.465 0.311	1.000
638	Variables considered are the broadcast species call (grey partridge, red-legg	ged partridge	and common	
639	quail as control) and the interspecific situation (Alone, Co-occurrence).			
640				
641				
(1)				

643 **Table A4** Effect of the independent variable interspecific situation (*Alone,* Co-occurrence) on the 644 territorial behaviour of grey and red-legged partridges.

Species	Dependent	Independent	t- value	df	P-value	Estimate ± SE
	variables	Variables	0.010			(4.070 + 0.500)
Grey	Territoriality score	(intercept)	8.013	1	<0.001	(4.270 ± 0.533)
partridge		Interspecific	-2.212	1	0.032	Co-occurrence: -2.145 ± 0.970
		situation				
	Response latency	(intercept)	7.337	1	<0.001	(194.720 ± 26.540)
		Interspecific	-0.733	1	0.467	
		situation				
	Calling behaviour	(intercept)	12.118	1	<0.001	(1.284 ± 0.106)
		Interspecific	-2.741	1	0.008	Co-occurrence: -0.529 ± 0.193
		situation				
	Territorial response	(intercept)	14.044	1	<0.001	(0.255 ± 0.018)
	rate	Interspecific	-3.098	1	0.003	Co-occurrence: -0.102 ± 0.033
		situation				
Red-	Territoriality score	(intercept)	10.179	1	<0.001	(2.095 ± 0.206)
legged		Interspecific	-0.781	1	0.437	. ,
partridge		situation				
	Response latency	(intercept)	9.042	1	<0.001	(194.550 ± 21.520)
		Interspecific	0.794	1	0.429	
		situation				
	Calling behaviour	(intercept)	8.966	1	<0.001	(0.718 ± 0.080)
		Interspecific	-0.543	1	0.589	
		situation				
	Territorial response	(intercept)	10.900	1	<0.001	(0.174 ± 0.016)
	rate	Interspecific	-0.267	1	0.790	-
		situation				

645 Territorial behaviour was considered as four dependent variables: territoriality score, response
646 latency, calling behaviour and territorial response rate (see Table A2 for more details). The level in
647 italic was considered as the reference in models.

- 648
- 649

Table A5 Cramer – von Mises' distribution tests comparing the territorial response rates of grey and

- 651 red-legged partridges in single-species versus co-occurring situations.
- 652
- 653

			654
Species	Period	Т	P-value 655
Grey partridge	Morning	0.108	0.274
	Evening	0.445	0.019
Red-legged partridge	Morning	0.116	0.165 658
	Evening	0.306	0.008 659
			660

661 Different periods of the day (morning, evening) were analyzed separately.

662

Table A6 Six orders of arrangement of broadcast calls according to the sequence prepared.

Sequence number	1 st species	2 nd species	3 rd species
1	Grey partridge	Red-legged partridge	Common quail
2	Grey partridge	Common quail	Red-legged partridge
3	Common quail	Grey partridge	Red-legged partridge
4	Common quail	Red-legged partridge	Grey partridge
5	Red-legged partridge	Common quail	Grey partridge
6	Red-legged partridge	Grey partridge	Common quail

669 Table A7 Origin of calls used to prepare audio sequences for the grey partridge, the red-legged670 partridge and the common quail.

Species	Call position	Author	Source	File name	Date	Time	Country
Grey partridge	1 st and 2 nd calls	Jean C. Roché	Oiseaux d'Europe et du Maghreb (CD) ¹	Perdrix grise.mp3	-	-	-
	3 rd call	Krzysztof Deoniziak	xeno-canto ²	XC247485	01/06/2015	21:00	Poland
	4 th call	Peter Boesman	xeno-canto ²	XC280950	28/05/2008	06:50	Belgium
	5 th call	David M.	xeno-canto ²	XC288385-T05	08/01/2012	07:19	UK
Red-legged partridge	1 st call	Jean C. Roché	Oiseaux d'Europe et du Maghreb (CD) ¹	Perdrix rouge.mp3	-	-	-
	2 nd call	David M.	xeno-canto ²	XC284092	25/04/2013	21:03	UK
	3 rd call	David M.	xeno-canto ²	XC197092-T02	03/07/2013	20:53	UK
Common quail	1 st call	Jean C. Roché	Oiseaux d'Europe et du Maghreb (CD)¹	Caille des blés.mp3	-	-	-
	2 nd call	Cedric Mrozko	xeno-canto ²	XC256801	03/07/2015	15:00	Portugal
	3 rd call	Piotr Szczypinski	xeno-canto ²	XC252505	12/06/2015	07:30	Poland
	4 th call	Peter Boesman	xeno-canto ²	XC280955	26/05/2007	11:15	Belgium
	5 th call	Tomas Belka	xeno-canto ²	XC80610	27/05/2015	14:00	Portugal
	6 th call	vprannila	soundcloud ³	Viiriäinen	25/05/2015	-	Finland

¹Roché, J.C. (2001). On *Oiseaux d'Europe et du Maghreb* [CD]. Sittelle-Ceba.

673 ² Xeno-canto Foundation, & Naturalis Biodiversity Center. (2005). Xeno-canto Partager les sons

d'oiseaux du monde entier. Retrieved February, 2016, from http://www.xenocanto.org/

675 ³ SoundCloud Limited. (2016). SoundCloud. Retrieved February, 2016, from https://soundcloud.com/

Table A8 Estimation of the expected number of point counts hosting grey and red-legged partridges

	Richness estimator	Grey partridge	Red-legged partridge
	Chao 2	98.313	156.375
	Jackknife 1	81.250	135.000
	Jackknife 2	97.083	158.667
	Bootstrap	65.031	110.211
	Mean of estimations	85.419	140.063
681	according to the richness estima	tor.	
682			
683			

Table A9 Sampling error calculated as the percentage of false negative point counts (i.e. the proportion of points considered as free of partridges while the species is present but not detected).

	Grey partridge	Red-legged partridge
Total number of sampled points	490	490
Observed number of points with a species occurrence	53	90
Estimated number of points with species occurrence	85	140
Proportion of false negative points	7.3%	12.5%

- 689 **Figure legends**
- 690

691 Figure 1 (a) Location of the two study sites in the Maine-et-Loire (1b) and Deux-Sèvres (1c)

692 departments, central western France. (b) Distribution of the point count stations in Maine-et-Loire. 693 (c) Distribution of the point count stations on the LTSER "Zone Atelier Plaine & Val de Sèvre". White dots refer to points sampled from 2016 to 2017, black dots refer to points sampled in 2017 only.

- 694
- 695 696

Figure 2 Rates of territorial response for grey (a) and red-legged (b) partridges according to the 697 broadcast stimuli (conspecific, heterospecific, or control calls), assessed from a playback stimuli 698 experiment carried out in two interspecific situations (Alone: point count where only the focus 699 species was observed; co-occurrence: both partridge species were observed; see Methods for more details).

700 701

702 Figure 3 Comparison of territorial behaviours of grey (top) and red-legged (bottom) partridges, alone

703 (light-grey) or in co-occurrence areas (dark-grey). Four behavioural metrics were considered:

704 territorial response rate, calling behaviour, response latency and territoriality score (see Table A2 in

705 Appendix A for more details). (a) and (c) show the distribution of the Linear Discriminant Function for

706 grey and red-legged partridges, respectively. Horizontal bars represent 95% confidence intervals of

707 bootstrapped "alone" linear discriminant scores. (b) and (d) show the correlations in the first

- 708 dimension (first axis) of the four variables.
- 709

710 Figure 4 Daily distribution of the territorial response rate of grey (top) and red-legged (bottom) 711 partridges according to the morning time deviation from sunrise (left) and evening time deviation 712 from sunset (right), assessed by playback experiment in 2016 and 2017. Solid lines represent the 713 response rate of each species where alone, dashed lines the response rate where both species co-714 occurred.

715

716 Figure 5 Habitat niche of grey (a) and red-legged (c) partridges when alone and in co-occurrence with 717 the other species (b, d respectively). The solid and dashed lines illustrate respectively 100% and 50% 718 of the available environment. A white arrow indicates a significant shift from the niche centroid in 719 absence to the niche centroid in presence of the second species. (e) represents the correlation circle 720 of the PCA describing the environmental space available in the study area. PC1 and PC2 show the 721 inertia of the first two axes of the PCA.

722

723 Figure A1 Cumulated number of point counts with occurrence of (a) grey, and (b) red-legged

724 partridges, as a function of the number of the sampling session. Dashed lines correspond to 95% 725 confidence intervals.

727 Figure 1728

Figure 3

