
HAL Id: hal-02768366
https://hal.science/hal-02768366v1

Submitted on 16 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

PRE as a Service within Smart Grid City
Anass Sbai, Cyril Drocourt, Gilles Dequen

To cite this version:
Anass Sbai, Cyril Drocourt, Gilles Dequen. PRE as a Service within Smart Grid City. 16th Inter-
national Conference on Security and Cryptography, Jul 2019, Prague, Czech Republic. pp.394-401,
�10.5220/0007838503940401�. �hal-02768366�

https://hal.science/hal-02768366v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

PRE as a Service within Smart Grid City

Sbai Anass, Drocourt Cyril and Dequen Gilles
MIS Laboratory, University of Picardie Jules Verne, Amiens, France

{anass.sbai, cyril.drocourt, gilles.dequen}@u-picardie.fr

Keywords: Smart-Grid, Cloud Computing, Proxy Re-encryption, Privacy, Confidentiality, Bank of Energy.

Abstract: In the context of Smart Grid Cities, legal obligations require that certain personal data must be stored in the
long term and protected. To deal with confidentiality issues, we use the concept of Proxy Re-Encryption
(PRE) which allows sharing encrypted data. We present the first implementation of the Chow’s algorithm,
and propose an optimized instantiation thanks to elliptic curves. This is the first unidirectional algorithm with
CCA security that does not rely on pairing, which guarantees its high performance. This allows its use in real
conditions. We have implemented it in JavaScript for direct use in a web browser by the user. In order to
be able to process the data asynchronously, we then define the notion of PREaaS (Proxy Re-Encryption as a
Service) that also allows use in a service-oriented context.

1 INTRODUCTION

Demands in terms of energy continues to grow. Nev-
ertheless, old sources of production (as nuclear, fossil
...) are less appreciated and tend to be abandoned due
to the pollution that manufacturing causes. The use of
renewable energy sources has become privileged and
paramount. Thus, creating a new energy market be-
comes a great challenge for companies. A very neat
management must be adapted, starting by the smart
metering systems. This involves the installation of a
whole infrastructure and communication networks in-
cluding smart meters. This also requires a great deal
of attention at the security level, whether it is to en-
sure the confidentiality of consumption data, integrity
to avoid fraud or, above all, to be immune from at-
tacks aimed at destabilizing production systems such
as STUXNET (Matrosov et al., 2010) which target
precisely the data related to a specific type of soft-
ware such as SCADA. Finally this becomes a con-
cern of national security. Recently, (Ronen et al.,
2017) exploited a vulnerability in the ZLL protocol,
allowing to inset a worm spreading quickly and in-
visibly on the network. Such a chain reaction could
rattle a nuclear power station. Other interesting facts,
(Brinkhaus et al., 2011) have shown that smart me-
ters are capable of becoming surveillance devices, as
long as an attacker can access the load curves stored
or transmitted by smart meters. These data, can be
used to identify all the devices connected to the elec-
trical network such as the refrigerator, microwave etc.

Thus, by making predictions about the energy con-
sumed by different devices, see if there is a correla-
tion between predictions and actual data, we can even
guess what movie was viewed.

This paper deals with the secure management of
large amounts of data within the context of the VERT-
POM project.1 The latter, currently being developed,
consists in creating the energy bank, which is a tool
dedicated to the territory energy management. It aims
to maintain an optimized balance between the avail-
able energy from production (conventional and re-
newable energy) with regard to usage (consumption
and losses), in connection with the energy storage
means (Boronat, 2017). For this purpose, the en-
ergy bank uses prediction algorithms and simulations
of energy production, consumption and losses on the
various distribution systems. Thus the energy net-
works must be more responsive, flexible, and thus
foster interactions between market players. These
goals are partly achieved by collecting data on net-
works through remotely controllable sensors and de-
vices. As shown in Fig 1, data needed by the energy
bank for its smooth operation are sent back by the
smart meters via the data concentrators to the servers
of the network manager. Some data managed by the
energy providers (EP) and other information coming
from street (light sensors etc ...) are also sent to the
BE. We will ensure that all the data, once produced
will be encrypted and since, only the owner could ac-

1This work is supported by the Future Investments Pro-
gram operated by ADEME.

Figure 1: Architectural model for the Bank of energy.

cess the data. On the other hand, the data should be
shared between different actors. Thus we propose a
solution based on proxy re-encryption designed pri-
marily to allow decryption delegation2.

The paper is organized as follows: The next sec-
tion is about the related works. We present our ap-
proach, implementation details and performances in
section 3. Finally we conclude with discussion on our
solution and present some perspectives.

2 RELATED WORKS

2.1 Cloud Storage

To date, cloud storage remains restrictive in terms
of confidentiality. In fact, the best-known provider
(e.g GoogleDrive, Dropbox, iCloud, pCloud, OVH
...) do not ensure total confidentiality of their cus-
tomers data. Either the data are encrypted under a
key known by the cloud or stored in plaintext. Be-
cause these CSPs are considered as an all-trusted
part. Several works exist that aim to protect privacy
such as CryptDB (Popa et al., 2011) but still have
some limitations. For example: it cannot be used
for no-sql databases or file systems, and key manage-
ment complexity increase with the number of users.
ESPRESSO (Kang et al., 2014) delivers an encryp-
tion service for CSP to maintain confidentiality. It
uses only symmetric encryption and requires to trust
a third party or the CSPs to ensure the encryption
and key management. More closer to our context

2Authentication issue is out of the scope of this paper

Table 1: The terms defined below will be used in the rest of
the paper.

Term Definition
BE Bank of Energy
NEM Network Energy Manager
EP Energy Provider
Alice, a Sender/Delegator
Bob, b Receiver/Delegate
Pka Public Key of a
Ska Private Key of a
Rka→b Re-encryption Key from a to b
PRE Proxy Re-Encryption
CSP Cloud Service Provider
DO Data Owner
DP Data Producer
DC Data Consumer
KEM Key Encapsulation Mechanism
DEM Data Encapsulation Mechanism
CCA Chosen Ciphertext Attack
CPA Chosen Plaintext Attack
ξ

asym
PK Asymmetric Encryption using PK

ξ
sym
K Symmetric Encryption using K

IBE Identity Based Encryption

ES4AM (Hasan and Mouftah, 2015) provides encryp-
tion schemes for smart grid AMI (Advanced Meter-
ing Infrastructure) based on symmetric encryption. In
the latter case the trust remains a concern and none
of these solutions allow data sharing. This issue is
addressed by various solutions in the literature, start-
ing with the broadcast encryption designed by (Fiat
and Naor, 1993). Within this case, each user can ac-
cess data independently from the others. This requires
at the time of encryption the knowledge of who will

have the privilege to access this data. Another similar
approach was introduced by (Sahai and Waters, 2005)
which is Attribute Based Encryption. Inspired by the
work of D Boneh on the Identity Based Encryption
schemes, their idea was to create a new type of IBE
(Boneh and Franklin, 2001) system that they called
fuzzy IBE to combine encryption and access control.
In this case, access privileges are not addressed to a
set of users but only to users with a specific number
of attributes. Unfortunately, this does not allow for
a selective sharing. As an alternative to these solu-
tions, we choose to use the proxy re-encryption(PRE).
Thanks to this scheme, we will be able to delegate de-
cryption rights to specific entities. We found out that
it was used as a cloud based solution for file sharing
called Skycryptor by (Jivanyan et al., 2015). Basi-
cally, the proposed solution uses a unique symmet-
ric key for each file to be encrypted with AES and
then encrypt the key with the asymmetric public key
of the user generated thanks to the PRE algorithm.
The solution is a dedicated device software and is now
marketed under the name of BeSafe. Each user’s de-
vice has its own key pair and re-encryption is used
to share files between different devices or users. But
above all, the users must install the BeSafe software
and use it to encrypt the data. The solution could be
adapted to our problematic and used as a solution but
a lot of changes need to be done. Instead, we propose
the PREaaS which dosn’t need any heavy client and
which is more flexible, modular and transparent. We
consider important to give definition and the state of
art of the PRE so that the reader can better understand
our choice of PRE as well as the rest of the paper.

2.2 Proxy Re-encryption

First appeared in 1998, it was designed by Blaze
Bleum and Strauss (Blaze et al., 1998) based on the
asymetric encryption scheme ElGamal. They show
that it’s possible to incorporate a substitution key
to re-encrypt an already encrypted message without
compromising it. One of the drawbacks of their
method is that the system is bidirectional. That is
to say, if Alice delegate decryption rights to Bob,
the latter would consequently delegate decryption
rights to Alice. (Ivan and Dodis, 2003) formalizes
the design of proxy re-encryption schemes by catego-
rizing these systems in two types: unidirectional and
bidirectional.
Usually a PRE scheme can be defined as a tuple
ζ : {Setup,KeyGen,ReKeyGen,ξasym,ReEnc,Dec}.
Where :

• Setup(1k) = params : takes as input a security
parameter k and generates the scheme parameters

that define in general the recommended message
and keys length.

• KeyGen(params) = (Pk,Sk) : is the function that
generate the pair public/private key.

• RekeyGen(Ska,Pkb) = Rka→b in the case of unidi-
rectional PRE, it takes as input a’s private key and
b’s public key to generate the re-encryption key.

• ξ
asym
PK (M) =Ca is the encryption function.

• ReEnc(Ca,Rka→b) =Cb is the re-encryption func-
tion.

• Dec(C,Sk) = M is the decryption function.

In some cases we can find two more functions used
for encryption and decryption in such a way that the
cipher cannot be re-encrypted and only the owner of
the private key can decrypt.
(Ateniese et al., 2006) gives a more formal definition
for PRE and defines concretely the properties such
that :

• Unidirectional: Delegation of decryption rights
from Alice to Bob does not allow Alice to decrypt
Bob’s cipher.

• Non-interactive: The re-encryption key can be
generated by Alice without interacting with Bob,
and thus using only Bob’s public key.

• Transparent: Or invisible, meaning that the del-
egate can not distinguish between an encrypted
message and a re-encrypted message.

• Key-optimal: The size of Bob’s secret storage
must remain unchanged, no matter how many del-
egations he accepts.

• Original access: The sender can decrypt any re-
encrypted message which he was originally the
owner.

• Collusion-safe: If the proxy and Bob collude, they
shouldn’t get Alice’s secret key.

• Non-transitive: The proxy can not re-delegate re-
encryption rights. (e.g from Rka→b and Rkb→c the
proxy can not calculate Rka→c)

• Non-transferable: The proxy and delegates can
not redefine decryption rights. (e.g from Rka→b
and Pkc and Skb we can not calculate Rka→c)

• Temporary: Bob can decipher the messages re-
ceived from Alice only at a certain point in time.

2.3 PRE Security

Several works have been published concerning PRE
security. The first functional system of an IBE-based

PRE using pairing was proposed in (Green and Ate-
niese, 2007) by Ateniese. These works have been im-
plemented and patented by the authors. (Canetti and
Hohenberger, 2007) proposes the first bidirectional
PRE CCA Secure, where he proves the security of
his scheme using the UCS method (Universally Com-
posable Security (Canetti, 2001)) . In (Deng et al.,
2008), the authors tackle the open problem presented
by Canetti concerning the construction of a CCA Se-
cure PRE without pairing. The cost of calculation
decreases and their construction also makes it possi-
ble to reduce the size of the secret at the level of the
re-encryption, which was not the case in their earlier
scheme. (Ateniese et al., 2009) formalizes the notion
of key privacy. It means that using the re-encryption
key we cannot recover the identity of both the dele-
gate and the delegator. Ateniese shows why the previ-
ous systems were not key-private and proposes a new
re-encryption system considered as the first unidirec-
tional PRE that is key private. Their construction is
single-use CPA and not CCA Secure. (Chow et al.,
2010) has demonstrated the possibility of conducting
a CCA attack on the Shao system (Shao and Cao,
2009) and shows how to fix the issue. This leads to
reduce the performance of the scheme. They then pro-
posed their own scheme without using pairing and re-
lying only on elGamal and the Shnorr signature. The
system is unidirectional CCA Secure in the random
oracle model.

3 OUR CONTRIBUTION

3.1 Architecture

If we review the global system, there are three main
actors in addition to the Cloud Storage Provider
(CSP3) as illustrated in Fig.2 (according to (Nuñez
et al., 2017)):

• Data Producers: In our case it contains all the
sensors, meters and devices generating data which
has to be encrypted before storage.

• Data Owners: Party who is entitled to access their
data and also those who can grant access to data.

• Data Consumers: Access with the permission of
data owners to the shared information through the
CSP. Mainly the BE, and other entities like the
NEM.

We assume that a shared secret exists between
Data Owner (DO) and Data Producer (DP) which

3The CSP in our use case could be a NEM client, NEM
city or an EP.

Figure 2: Main actors in a data sharing scenario.

encrypt data. Our system uses the KEM/DEM tech-
nique (ξ

asym
PK (K)‖ξsym

K (M)) where the shared secret
(eg. the session key ’K’) is used to encrypt data with
symmetric encryption and then encapsulated within
the cipher of the session key generated by the DP
using asymmetric encryption of PRE. The result is
sent to be stored in the cloud. When the data needs to
be shared with Data Consumers (DC), the DO creates
a re-encryption key and transfers it to the PRE. This
one will re-encrypt them using the corresponding
re-encryption keys and forward it to the recipient.
Finally, the data can be consumed by DC.

3.1.1 Nave Approach (Fig. 3)

Figure 3: Proxy Re-Encryption as a Service.

Our first intuition is to put the PRE as a proxy server
in the BE side. BE will send requests with its pub-
lic key to the different entities passing by the PRE
to retrieve the needed data. The corresponding enti-
ties should generate re-encryption keys if it belongs
to owner’s domain, or on the other hand should send
the public key of BE to the DOs to generate them.
Thus the PRE could re-encrypt the data for the BE
to be treated properly, the corresponding keys (public
key and its re-encryption key) will then be stored for
forthcoming operations. The re-encryption procedure
can be very expensive. In addition to key manage-
ment issues, having only one proxy to do it can gen-
erate delays. It wouldn’t be possible as well to share
data between EPs and NEMs.

3.1.2 Second Approach (Fig. 4)

Figure 4: Second approach: PRE used by each entity.

Our second intuition is that the use of Proxy in each
cloud could be more appropriate than the first ap-
proach. It allows the NEM and EP to share data with
each other and relieve the bank from doing all the
work. Thus, each entity will manage their own keys,
re-encrypt the needed data and transfer it to the recip-
ient as illustrated in Fig.3. Nevertheless, it still takes
a long time for re-encryption due to its nature. Also,
in a more general case there can be NEMs and EPs
at a time. Then, it will be more complicated if every
entity is forced to have their own PRE and manage a
large data flow.

3.1.3 PRE as a Service Approach (Fig.5)

Figure 5: Proxy Re-Encryption as a Service.

Our final intuition is to propose the PRE as a service
for data sharing in multi-cloud systems. Data flows
already exist, and instead of NEM providing informa-
tions to the EPs, it will be enough to refer to PREaaS
rather than to EPs. The potential of cloud computing
would take charge of re-encryption time consump-
tion. Our solution can be considered as a part of Secu-
rity As A Service (SECaaS). Our PREaaS, has the ad-
vantage to manage only encrypted data and key man-
agement handle only public keys and Re-encryption
keys. It does not affect under no circumstances the
confidentiality, even if CSPs or users are corrupted
and collude with the PREaaS. This is guaranteed by
careful choice on the algorithms used by the service.

3.2 Implementation

In this section we present the algorithm used for PRE,
implementation environment and the resulting perfor-
mance. The algorithm used is the newest version of
Chow’s algorithm (Chow et al., 2010). We chose it
owing to its efficiency which is due to the fact that it
does not need pairings. Thanks to this survey (Qin
et al., 2016), we can see the computational compar-
ison of PRE schemes. By keeping only the schemes
that are CCA secure we can conclude that Chow’s al-
gorithm is the more efficient among them. In (Selvi
et al., 2017) the authors find a flaw in the security
proof of Chow’s construction and propose to fix it
by incorporating additional information to the exist-
ing Encrypt algorithm along with ciphertext validity
checks in both the Re-Encrypt and the Decrypt algo-
rithm. Most importantly the scheme is unidirectional,
collision resistant and CCA secure in the random ora-
cle model. Two implementations were made. First we
use a generic group with prime order length 3072-bit,
and the second one using NIST Standard ECC p-256
(Gueron and Krasnov, 2015) thanks to SJCL (Stand-
ford Javascript Crypto Library) (Stark et al., 2013).
Both correspond to the same security level that is 128-
bit. We give a formal version of the Chow’s algorithm
with ECC below :

• Setup(1k): for 128-bit, choose a prime p of
256-bit length and an elliptic curve EFp such
that a = p− 3. G = (xG,yG), a point on the
curve, known as the base point with order n.
The elliptic curve equation is then : y2 = x3 −
3x + b mod (p). (You can find the exact val-
ues of NIST p-256 curve parameters in (Gueron
and Krasnov, 2015)). Choose five hash func-
tions: H1 : {0,1}l0 ×{0,1}l1 → Z∗p,H2 : EFp →
{0,1}l0+l1 ,H3 : {0,1}∗ → Z∗p,H4 : EFp →
Z∗p,H5 : EF

4
p×{0,1}l0+l1 → EF p. The message

space M is {0,1}l0 , where l0 = l1 = k. params =
(p,EFp,G,H1,H2,H3,H4, l0, l1).

• KeyGen(params):

– Pick xa,1,xa,2
$←− Z∗p.

– Compute Pka,1 = xa,1.G , Pka,2 = xa,2.G
– Return Ska =(xa,1,xa,2) & Pka =(Pka,1,Pka,2).

• RekeyGen(Ska,Pka,Pkb):

– Pick h $←− {0,1}l0 ,π
$←− {0,1}l1 .

– Compute v = H1(h,π),V = v.Pkb,2 and W =
H2(v.G)⊕ (h||π).

– Define rk =
h

xa,1H4(Pka,2)+ xa,2

– Return Rka→b = (rk,V,W).

• ξ
asym
Pka

(m):

– Pick u $←− Z∗p,w
$←− {0,1}l1 .

– Compute D= u.[(H4(Pkb,2).Pka,1)∗Pka,2] , r =
H1(m,w) & E = r.[(H4(Pkb,2).Pka,1)∗Pka,2].

– Compute F = H2(r.G)⊕ (m||w).
– Compute D = u.H5(Pka,1,Pka,2,D,E,F) &

E = r.H5(Pka,1,Pka,2,D,E,F).
– Compute s = u+ r×H3(D,E,F) mod(p).
– Return Ca = (D,E,F,s).

• ReEnc(Ca,Pka,Pkb,Rka→b):

– Compute D and D:
D = s.[(H4(Pkb,2).Pka,1)*Pka,2]*
(H3(E,E,F).E)−1

D = (s.H5(Pka,1,Pka,2,D,E,F))*
(H3(E,E,F).E)−1 =
u.[H5(Pka,1,Pka,2,D,E,F)]

– Check if:
s.[(H4(Pkb,2).Pka,1)*Pka,2]=D*(H3(E,E,F).E)
(1)
s.[H5(Pka,1,Pka,2,D,E,F)]=D*(H3(E,E,F).E)
(2)

– If the above check fail return +. Else, compute
E ′ = Erk = (r×h).G

– Return C′b = (E ′,F,V,W).

• Dec(Ca,Pka,Ska):
(Original CipherText)

– Compute D and D. Then check if (1) & (2)
holds.

– If the condition hold, compute (m||w) = F ⊕
H2(

1
xa,1H4(Pka,2 + xa,2)

.E)

– If : E = H1(m,w).[(H4(Pkb,2).Pka,1)*Pka,2]

and E = H1(m,w).[H5(Pka,1,Pka,2,D,E,F)]
return m , else return +.

(Transformed CipherText)

– Compute (h||π) =W ⊕H2(
1

Ska,2
.V).

– Extract (m||w) = F⊕H2(
1
h
.E ′).

– If : V =H1(h,π).Pka,2 and E ′=(h×H1(m,w)).G
return m , else return +.

We chose to use JavaScript as a core technology.
And thus to be executed in the client side directly by
navigator or even mobile devices without any soft-
ware and also in the server side, thanks to Nodejs.
For the tests we used a 2,5 GHz intel core i7, with 16
GB RAM.

Table 2. shows the time resources consumed by
the different functions of Chow’s algorithm for both

Table 2: Computational efficiency of Chow algorithm in
(ms).

Function Fp ECC
KeyGen 515 68
ReKeyGen 502 48
Encrypt 1000 95
ReEncrypt 967 89
Decrypt 979 78

implementations. We can see that encryption and re-
encryption functions consume the most compared to
keys generation and decryption. Practically, encrypt
and key generation functions wont be often called.
Generating re-encryption keys, depends on the num-
ber of delegations needed. But, still not constraining
in terms of time consumption. On the other side, re-
encryption function is called for each new user, new
delegation and changed session key. Having an in-
dependent service that does the re-encryption work is
lightening.

Figure 6: Tasks distribution between different environ-
ments.

An API will be developed which will act as the
gateway to our service functionalities. This API does
not manage any sensible data. The only concern is
to prevent from DDos attacks, then a simple API key
mechanism can be used as API authentication to iden-
tify the API user and the API consumers (Tang et al.,
2015).

3.3 Data Flow

Figure 7: Interactions between DO, CSP and DP.

Figure 7 is about, in the first part the initialization pro-
cess between a DO, DP and a CSP. Which consists in:

• 1© The registration of the data owner with the
CSP.

• 2© The CSP proposing the sharing option to DOs
in order to use a dedicated algorithm.

• 3©Generating a pair public/private key pair by the
DO, encrypting the private key with a symmet-
ric encryption scheme using a key derived from a
password (the use of SCRY PT for the purpose is
recommended) and sending the public key and the
encrypted private key to the CSP.

• 4© The CSP storing the encrypted private key and
transmitin the public key.

• 5© Encrypting the data with a session key that will
be encrypted with the corresponding public key.

• 6©Authenticating DO to the CSP which will grant
access in response to the corresponding data.

• 7© The decryption of the session key that will be
deciphered by the DO with his private key.

Figure 8: Interactions between DO, CSP and DC.

Figure 8, describes the sharing process between the
DO and DC. The dotted arrows mean that the requests
are transmitted indirectly passing by the PREaaS. The
latter will at first demand access to the needed data.
The CSP will forward the demand to the DO with
the DC public key. As a response he creates a re-
encryption Key and transmits it to the CSP. This one
calls the PREaaS to re-encrypt the corresponding ci-
pher of the session key and send the needed encrypted
data.

As an illustration we provide a concrete example
of data flow in Fig. 9. It includes one NEM, one
client, the BE and the PREaaS. If we take into con-
sideration all the process from registration until data
consuming, then there will be 8 steps:
• 1: Registration of the NEM (who plays the role of

the CSP) with PREaaS.

• 2: Notify the BE that a new NEM has been added.

• 3: Sending a sharing request to access the needed
Data by the BE .

• 4, 5: PREaaS receive and forward the sharing re-
quest by sending the BE’s public key to the NEM

Figure 9: Data Flow.

which will send it to the client with an access re-
quest.

• 6: The client creates and transfers the re-
encryption key to the NEM.

• 7: NEM authenticate with the PREaaS and return
the encrypted data.

• 8: PREaaS re-encrypts the corresponding data
with the key received and transfers it to the BE
to be consumed.

In the case of an ”automatic or predefined” shar-
ing between the NEM and the BE, the PREaaS re-
ceives by default the new data produced from the CSP
which will involve only two steps (7,8) and as soon as
there is a new customer it will be asked by the NEM
to create a re-encryption key that will be returned to
PREaaS and added to its directory (5,6,7,8).

4 CONCLUSIONS

In this paper we present an original approach, which
is PRE as a Service with it application to smartgrid
cities. The PREaaS could be used in a more general
context and applied to different scenarios. We imple-
mented a prototype that use the Chow algorithm and
evaluate the performances. We will see if it would be
more appropriate to instantiate them in different man-
ners e.g with HMAC. Which was proved to be more
secure in different schemes. The PREaaS will allow
the use of different PRE algorithm in future such as
BBS with ephemeral keys, Ateniese scheme... And
thus for scalability and flexibility purpose. As a part
of the VERTPOM’s project, we will work on authenti-
cation issues in multi cloud systems which we haven’t
treated in this work. Our future research will be fo-
cused on the security analysis of PRE, mainly on the
instantiation of random oracle and its effect on the
PRE schemes.

REFERENCES

Ateniese, G., Benson, K., and Hohenberger, S. (2009). Key-
private proxy re-encryption. In Cryptographers Track
at the RSA Conference, pages 279–294. Springer.

Ateniese, G., Fu, K., Green, M., and Hohenberger, S.
(2006). Improved proxy re-encryption schemes with
applications to secure distributed storage. ACM Trans-
actions on Information and System Security (TISSEC),
9(1):1–30.

Blaze, M., Bleumer, G., and Strauss, M. (1998). Divertible
protocols and atomic proxy cryptography. In Interna-
tional Conference on the Theory and Applications of
Cryptographic Techniques, pages 127–144. Springer.

Boneh, D. and Franklin, M. (2001). Identity-based encryp-
tion from the weil pairing. In Annual international
cryptology conference, pages 213–229. Springer.

Boronat, J.-P. (2017). Vritable nergie du territoire positif et
modulaire.

Brinkhaus, S., Carluccio, D., Greveler, U., Justus, B., Löhr,
D., and Wegener, C. (2011). Smart hacking for pri-
vacy. In Proceeding of the 28th Chaos Communica-
tion Congress (28C3).

Canetti, R. (2001). Universally composable security: A new
paradigm for cryptographic protocols. In Foundations
of Computer Science, 2001. Proceedings. 42nd IEEE
Symposium on, pages 136–145. IEEE.

Canetti, R. and Hohenberger, S. (2007). Chosen-ciphertext
secure proxy re-encryption. In Proceedings of the 14th
ACM conference on Computer and communications
security, pages 185–194. ACM.

Chow, S. S., Weng, J., Yang, Y., and Deng, R. H. (2010).
Efficient unidirectional proxy re-encryption. In Inter-
national Conference on Cryptology in Africa, pages
316–332. Springer.

Deng, R. H., Weng, J., Liu, S., and Chen, K. (2008).
Chosen-ciphertext secure proxy re-encryption without
pairings. In International Conference on Cryptology
and Network Security, pages 1–17. Springer.

Fiat, A. and Naor, M. (1993). Broadcast encryption. In
Annual International Cryptology Conference, pages
480–491. Springer.

Green, M. and Ateniese, G. (2007). Identity-based proxy
re-encryption. In Applied Cryptography and Network
Security, pages 288–306. Springer.

Gueron, S. and Krasnov, V. (2015). Fast prime field elliptic-
curve cryptography with 256-bit primes. Journal of
Cryptographic Engineering, 5(2):141–151.

Hasan, M. M. and Mouftah, H. T. (2015). Encryption as
a service for smart grid advanced metering infrastruc-
ture. In Computers and Communication (ISCC), 2015
IEEE Symposium on, pages 216–221. IEEE.

Ivan, A.-A. and Dodis, Y. (2003). Proxy cryptography re-
visited. In NDSS.

Jivanyan, A., Yeghiazaryan, R., Darbinyan, A., and
Manukyan, A. (2015). Secure collaboration in public
cloud storages. In CYTED-RITOS International Work-
shop on Groupware, pages 190–197. Springer.

Kang, S., Veeravalli, B., and Aung, K. M. M. (2014).
Espresso: An encryption as a service for cloud stor-
age systems. In IFIP International Conference on Au-
tonomous Infrastructure, Management and Security,
pages 15–28. Springer.

Matrosov, A., Rodionov, E., Harley, D., and Malcho, J.
(2010). Stuxnet under the microscope. ESET LLC
(September 2010).

Nuñez, D., Agudo, I., and Lopez, J. (2017). Proxy re-
encryption: Analysis of constructions and its applica-
tion to secure access delegation. Journal of Network
and Computer Applications, 87:193–209.

Popa, R. A., Zeldovich, N., and Balakrishnan, H. (2011).
Cryptdb: A practical encrypted relational dbms.

Qin, Z., Xiong, H., Wu, S., and Batamuliza, J. (2016). A
survey of proxy re-encryption for secure data sharing
in cloud computing. IEEE Transactions on Services
Computing.

Ronen, E., Shamir, A., Weingarten, A.-O., and OFlynn, C.
(2017). Iot goes nuclear: Creating a zigbee chain re-
action. In Security and Privacy (SP), 2017 IEEE Sym-
posium on, pages 195–212. IEEE.

Sahai, A. and Waters, B. (2005). Fuzzy identity-based
encryption. In Annual International Conference on
the Theory and Applications of Cryptographic Tech-
niques, pages 457–473. Springer.

Selvi, S. S. D., Paul, A., and Pandurangan, C. (2017).
A provably-secure unidirectional proxy re-encryption
scheme without pairing in the random oracle model.
In International Conference on Cryptology and Net-
work Security, pages 459–469. Springer.

Shao, J. and Cao, Z. (2009). Cca-secure proxy re-
encryption without pairings. In International Work-
shop on Public Key Cryptography, pages 357–376.
Springer.

Stark, E., Hamburg, M., and Boneh, D. (2013). Stanford
javascript crypto library.

Tang, L., Ouyang, L., and Tsai, W.-T. (2015). Multi-
factor web api security for securing mobile cloud.
In Fuzzy Systems and Knowledge Discovery (FSKD),
2015 12th International Conference on, pages 2163–
2168. IEEE.

