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Robot dynamics: A recursive algorithm for 
efficient calculation of Christoffel symbols 

Mohammad Safeea, Richard Bearee, and Pedro Neto

Abstract— Christoffel symbols are very important in robotics.
They are used for tuning various proposed robot controllers, for
determining the bounds on Coriolis/Centrifugal matrix, for math-
ematical formulation of optimal trajectory calculation, among
others. In literature, Christoffel symbols are calculated from
the Lagrangian formulation using an off-line generated symbolic
formula. In this study we present an efficient recursive non-
symbolic method where Christoffel symbols are calculated based
on the robot’s transformation matrices and inertial parameters.
The proposed method was analyzed in terms of execution time,
computational complexity and numerical error. Results show
that the proposed algorithm compares favorably with existing
methods.

Index Terms — Dynamics, Christoffel symbols, recursive algo-
rithms

I. INTRODUCTION

Dynamics of robots is an important topic since that it is
highly involved in their design, simulation and control. Owing
to its importance this subject had been studied extensively in
the past three decades. Thus, several algorithms and methods
had been developed to calculate it [1] [2]. Nevertheless, this
subject remains till this day open for extensive research.

The robotics literature has described two formulations for
robot dynamics:

1) Operational space formulation. Where the dynamics
equations are referenced to the manipulator’s end-
effector [3]. This formulation is successfully applied for
the combined application of motion and force control
[4]. Consequently, various operational space algorithms
for efficient calculation of robot dynamics have been
developed [5] and [6].

2) Joint space formulation. It describes the dynamics of the
robot in joint space. This formulation manifests the ef-
fect of the joints’ positions, velocities and accelerations
on the torques and vice-versa.

One of the earliest methods used to deduce the equations
of robot dynamics is based on the Lagrangian formulation.
This method is well established in the literature [7], and
can be encountered in most robotics textbooks. Lagrangian
formulation is a straight forward approach that treats the robot
as a whole and utilizes its Lagrangian, a function that describes
the energy of the mechanical system:
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L = T − U (1)

Where L is the Lagrangian function, T is the kinetic energy
and U is the potential energy, all described in terms of the
generalized coordinates q. In such a case, the associated
generalized forces τ :

τ =
d

dt
(
δL
δq̇

)T − (
δL
δq

)T (2)

Consequently, the canonical form of the inverse dynamics
derived using the Lagrangian is:

τk =
∑
j

akj q̈j +
∑
i,j

ckjiq̇j q̇i + gk (3)

Where τk is the torque at joint k, akj is the (k, j) element
of the mass matrix, q̈j is the angular acceleration of joint j,
q̇j is the angular velocity of joint j, gk is the torque at joint
k due to gravity, and ckji represent Christoffel symbols, from
equation (3) in [8] ckji is given by:

ckji = ckij =
1

2

(
∂akj
∂qi

+
∂aki
∂qj

− ∂aij
∂qk

)
(4)

Even though the Lagrangian formulation can be considered
as a straight forward approach, the method requires partial
differentiation. Despite the fact that symbolic manipulation
methods have been utilized to perform the differentiation [9],
the method still lacks the efficiency in terms of execution-
time. This can be noticed when the robot presents a relatively
high number of DOF as noted in [10] and most remarkably
in [11], where the author performed comparison of execution-
times required to run dynamics simulations based on mod-
els derived by Newton-Euler recursive technique and Euler-
Lagrange technique. Where it was reported execution-times
difference of order of magnitude which put the case in favor
of the Newton-Euler recursion method.

Due to their efficiency, researchers developed various re-
cursive algorithms for calculating the inverse dynamics [12],
the forward dynamics [13, 14], the joint space inertia matrix
[15, 16]. Nevertheless, we are not aware of any proposed
recursive method for calculating Christoffel symbols numer-
ically. As such, in this study we present a method for cal-
culating Christoffel symbols recursively. We also analyze the
performance of the proposed algorithm in terms of number
of operations, execution time and numerical error. MATLAB
code of the proposed algorithm, including implementation
examples, is available on-line in the repository [17].
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II. MOTIVATION AND CONTRIBUTION

Calculating Christoffel symbols is very important in the
robotics field. Hence, they have been used for solving various
robotics problems. In [18] they are used for calculating the
bounds on the Coriolis/Centrifugal matrix. These bounds play
an important role for designing and tuning various proposed
robot controllers [19, 20, 21, 22, 23, 24]. In addition, Christof-
fel symbols have been used in [25] for proposing a dynamic
neurocontroller of robotic arms. They can also be used to
calculate a special form of Coriolis matrix that preserves the
skew symmetry property [26] (an essential property for various
control algorithms). Christoffel symbols are also important
for planning time optimal trajectories and optimal velocity-
profile generation [27]. In such a case, the geometric path is
parametrized using a vector function of a scalar parameter
θ (t). So that the inverse dynamics equation (which enters
the optimization as differential constraint) is reformulated to
decouple the configuration dependent coefficients from the
time dependent parameter θ (t), as shown in [27]:

τ = m̃ (q)θ̈ + c̃ (q)θ̇2 + d̃ (q) (5)

In such a case, Christoffel symbols are utilized for calcu-
lating the (configuration dependent) coefficients c̃ (q) in each
configuration on the discretized geometrical path.

In [28] Christoffel symbols are calculated in symbolic form,
based on the Lagrangian formulation of the robot dynam-
ics. This method has become the norm and is presented
in standard robotics textbooks [29, 26, 30], including the
Handbook of Robotics [31] P100, where the deduction of
Christoffel symbols is introduced under the section “Lagrange
Formulation”. Nevertheless, symbolic methods for performing
the calculations have major drawbacks:

• The symbolic manipulation of the equations is time
consuming, so it has to be performed off-line.

• For high Degrees Of Freedom (DOF), the symbolic
equations become very complex resulting in much slower
execution times than numerical methods, a fact reported
in literature [10].

Apart form that, a recursive method for calculating Christoffel
symbols has several advantages over the symbolic:

• Unlike the symbolic methods, recursive methods can
be used on-the-fly, and does not require an off-line
preprocessing. This makes recursive methods essential for
calculating the Christoffel symbols on-the-fly in robots
that change its kinematic chain and dynamic model, for
example by adding or subtracting extra bodies (including
Reconfigurable and Self Assembling robots , or when
attaching bodies to EEF).

• Since that recursive methods are used on-the-fly, The
proposed recursive method allows updating the dynamical
constants (dynamical model) of the robot on-the-fly, this
allows the algorithm to use initial estimates of dynamic
constants while learning and tuning them more accurately
during operation. This can not be done easily in symbolic
methods that require off-line code regeneration.

Fig. 1
INERTIAL MOMENT µCkj AND LINEAR ACCELERATION p̈Ckj OF CENTER

OF MASS OF LINK i TRANSFERRED BY FRAME j

Moreover, the proposed method calculates Christoffel symbols
based on the robot’s transformation matrices and inertial
parameters, without requiring partial differentiation.

Apart from the previously listed computational advantages,
the proposed method offers more insight into the nature
of Christoffel symbols from the point of view of Newton
mechanics.

III. THEORY AND PRINCIPALS

The proposed algorithm builds on what we call the frame
injection principal [16], Figure 1, in which each frame j
attached to joint j will transfer to link k a linear acceleration
into its center of mass and an inertial moment around its center
of mass. In this study we notate them by ΓCkj and µCkj ,
respectively. This transfer is due to the rotational effect of
joint j around its axes of rotation, or the z axis of frame j
according to modified Denavit Hartenberg (MDH) designation.
This cause and effect relationship between frame j and link
k is referred to by the subscript kj in ΓCkj and µCkj , while
the C in the subscript is used to refer to the mass center of
link k. The same subscript notation will hold throughout this
study for denoting frame-link interaction of cause-and-effect
unless stated otherwise.

A. Link’s acceleration due to the single-frame rotation

Each frame j transfers to link k three acceleration vectors
tangential acceleration, normal acceleration and Coriolis ac-
celeration. The first of which is shown in Figure 2, it is due
to the angular acceleration of frame j:

ΓτCkj = εj × pCkj (6)



Fig. 2
TANGENTIAL ACCELERATION OF CENTER OF MASS OF LINK k

TRANSFERRED BY FRAME j

Where ΓτCkj is the tangential acceleration of the center of
mass of link k due to the rotation of frame j, the symbol ×
is used to denote the cross product (the same notation of the
cross product will hold throughout this study) and pCkj is the
vector connecting the origin of frame j and the center of mass
of link k. εj is the angular acceleration of link j:

εj = q̈jkj (7)

Where kj is the unit vector associated with the z axis of joint
j, and q̈j is the angular acceleration of that joint.

Concerning the normal acceleration, each frame j transfers
to link k a normal acceleration due to its rotation, Figure 2:

ΓnCkj = ωj × (ωj × pCkj) (8)

Where ωj is the angular velocity of link j due to the rotational
effect of joint j. It is given by:

ωj = q̇jkj (9)

We can rewrite the equation of the normal acceleration trans-
ferred to link k due to frame j by:

ΓnCkj = kj × (kj × pCkj)q̇2j (10)

The third acceleration transferred is Coriolis acceleration,
Figure 2, in which each frame j transfers to center of mass of
link k Coriolis acceleration ΓcorCkj :

ΓcorCkj = 2ωj × vrCkj (11)

Where ωj is as described previously in equation (9), and vrCkj
is the velocity transferred to the center of mass of link k from
frames j + 1 up to frame k. Herein vrCkj , the superscript r
is used to denote that this is a relative velocity, and C in the
subscript is used to refer to the mass center of link k, so that
vrCkj can be calculated from:

vrCkj =

k∑
m=j+1

ωm × pCkm (12)

The total linear acceleration transferred by frame j to the
center of mass of link k is given by:

ΓCkj = ΓτCkj + ΓnCkj + ΓcorCkj (13)

B. Link’s inertial moment due to single-frame effect

It can be proved that each frame j will transfer to link k
three inertial moments, the first of which is due to angular
acceleration of frame j, it is given by:

µτCkj = (RkI
k
kR

T
k )εj (14)

While µτCkj is the moment transferred by frame j into link
k due to frame’s j angular acceleration, Rk is the rotation
matrix of frame k in relation to base frame, and Ikk is 3 × 3
inertial tensor of link k around its center of mass represented
in frame k.

The second inertial moment transferred from frame j to link
k is due to centrifugal effect:

µn
Ckj =

1

2
(Lkωj)× ωj (15)

Where Lk is a 3× 3 matrix that is calculated from:

Lk = Rk(tr(Ikk)13 − 2Ikk)RT
k (16)

The subscript in Lk is to notate that the matrix calculated
pertains to link k. tr(Ikk) is the trace of the inertial tensor and
13 is the identity matrix.

The third inertial moment transferred from frame j to link
k is due to Coriolis effect:

µcorCkj = (Lkωj)× ωrkj (17)

Where ωrkj can be calculated from:

ωrkj =

k∑
m=j+1

ωm (18)

Thus, the total inertial moment transferred to link k around its
center of mass due to the rotational effect of frame j is given
by:

µCkj = µτCkj + µn
Ckj + µcorCkj (19)



IV. CALCULATING CHRISTOFFEL SYMBOLS

For articulated rigid bodies in a weightless environment (no
gravitational field) equation (3) becomes:∑

j

akj q̈j +
∑
i,j

ckjiq̇j q̇i = τk (20)

We propose a situation where joints i and j of the articulated
rigid bodies are in motion with constant angular velocities,
while the other joints are fixed, then the left hand side of
equation (20) becomes:∑

i,j

ckjiq̇j q̇i = ckjj q̇
2
j + 2ckjiq̇j q̇i + ckiiq̇

2
i (21)

Considering the frame injection principal, the right hand
side of equation (20) is the torque resulting from the sum of
three inertial moments:

τk = τkj + τkji + τki (22)

Where:
• τkj is the the torque due to the Centrifugal effect resulting

from motion of joint j.
• τkji is the the torque due to the Coriolis effect resulting

from motion of joints j and i.
• τki is the the torque due to the Centrifugal effect resulting

from motion of joint i.
From equations (21) and (22) we find that:

τkj = ckjj q̇
2
j (23)

τkji = 2ckjiq̇j q̇i (24)

τki = ckiiq̇
2
i (25)

In such a case, to calculate ckjj , c
k
ji, and ckii. We can assign a

unitary value to the angular velocities q̇j and q̇i, then equations
(23,24,25) are interpreted as:

• The Christoffel symbol ckji is equal to half the torque τkji ,
which acts on joint k due to Coriolis effect resulting from
the unit angular velocities at joints j and i.

• The Christoffel symbol ckjj is equal to the torque τkj ,
which acts on joint k due to Centrifugal effect resulting
from the unit angular velocity at joint j.

• The same applies for Christoffel symbol ckii, which results
from ckjj after a change of index.

To calculate the Christoffel symbols ckji we apply backward
recursion on the forces and moments shown in Figure 3,
where:

• hkji: is half the inertial moment, µcorCkj , at the center of
mass of link k. It is due to Coriolis effect resulting from
a unit angular velocity at joints j and i . From equation
(17) of the frame injection principal, hkji is given by:

hkji =
1

2
µcorCkj =

1

2
(Lkkj)× ki (26)

• fkji: is half the inertial force at the center of mass of link
k due to ΓcorCkj . Or the Coriolis effect for a unit angular

Fig. 3
BACKWARD RECURSION ON MOMENTS AND FORCES

velocity at joints j and i. From equation (11) of the frame
injection principal, fkji is given by:

fkji =
1

2
mkΓcorCkj = mkkj × (ki × pCki) (27)

• We calculate the Christoffel symbols ckji recursively, by
applying a backward recursion on Figure 3 for: 1) the
inertial forces fkji and 2) the inertial moments hkji:

Fk
ji = Fk+1

ji + fkji (28)

Hk
ji = Hk+1

ji + hkji + pCkk × f
k
ji + lk ×Fk

ji (29)

ckji = kTkH
k
ji (30)

Where Fk
ji is half the inertial force calculated recursively at

joint k due to the unit angular velocity at joints j and i. Hk
ji is

half the inertial moment calculated recursively at joint k due to
the unit angular velocity at joints j and i, and the superscript
T in kTk is to denote the transpose. By applying a similar
approach on normal accelerations we can calculate ckii (ckjj).
It is noticed that the resulting equations for calculating ckii and
ckjj is exactly similar to the ones in the presented algorithm
(for calculating ckji) only with indices changed.

V. IMPLEMENTATION AND RESULTS

To prove the validity of the proposed method for calcu-
lating Christoffel symbols, and to assess its performance,
a comparison with symbolic Lagrangian based method was
performed, the code used is provided in the public repository
give in [17]. The robot used to run the test is 5 degrees of
freedom serially linked robot, its structure is described in the
file (robotStructure_5DOF.mat), this robot is generated using
the file (generateRandomRobot.m) found in folder (Generating
symbolic equations of Christoffel using Lagrangian) of [17]
in which the mass of each link was generated randomly
in the range [0,1] kg. The inertial tensor of each link was
generated as random positive definite matrix in which each



TABLE I
COMPARISON FOR CALCULATING CHRISTOFFEL OF 5DOF SERIALLY LINKED ROBOT USING DIFFERENT METHODS

Criteria Lagrangian (Optimized) Lagrangian (Not optimized) Proposed
Size of generated file (bytes) 778 732 bytes 67 873 609 bytes 4 497 bytes

Off-line time for function generation 8 days 897 sec -
On-line execution time (seconds) 4.6e-04 96 sec 9.9e-5

TABLE II
COMPUTATIONAL COMPLEXITY OF THE PROPOSED METHOD

Additions Multiplications

12n3 + 19n2 + 40n+ 1 21
2
n3 + 45

2
n2 + 49n

element of the matrix is in the range [0,1] kg.m2. Denavit-
Hartenberg (DH) parameters of each link were generated
randomly. Afterwards, using MATLAB, Christoffel symbols
of the robot were calculated using:

1) The proposed algorithm, which is implemented in the
MATALB function (christoffelNumerically.m).

2) An off-line generated MATLAB function (christof-
fel_symbolicallyGenerated5DOF.m) which contains the
symbolic equations generated using Lagrangian method.
In this case, the optimization option of the code genera-
tor was set to true, as to optimize the generated symbolic
equations.

3) Using an off-line generated MATLAB function (christof-
fel_symbolicallyGenerated5DOFnoOptimization.m)
which contains the symbolic equations generated using
Lagrangian method. In this case, the optimization
option of the symbolic equation generator was set to
false.

Afterwards, the Christoffel symbols of the manipulator were
calculated twice, once using symbolic function and another
using the proposed method. Table I shows a comparison of
achieved results, the proposed recursive method is superior in
various aspects, including, in terms of execution time (4.6X
times faster for a 5DOF robot). For a 6DOF robot the script has
been running for two months without finishing the symbolic
equations generation.

Table II shows a summary of the computational complexity
of the proposed algorithm measured in the number of floating
point operations (additions and multiplications) as function of
n, the number of DOF of the robot. A detailed breakdown
of the computational complexity is found in the excel file
(Operation_Count.ods) found in [17].

Finally, to measure the numerical accuracy of the calcula-
tions, the following metric-value was defined:

e =
2

n3

∑
i,j,k

∣∣∣∣∣ckji − ĉkjickji + ĉkji

∣∣∣∣∣ for each, ckji 6= 0 (31)

Where e is the relative error, ckji is the Christoffel symbols
calculated using proposed method and ĉkji is the Christoffel
symbols calculated using symbolic method. From various cal-
culations using randomly generated configurations, the maxi-
mum error achieved is 2.196e− 14.

VI. CONCLUSION

In this study we proposed recursive algorithm for calculating
Christoffel symbols efficiently for serially linked robots. The
algorithm achieves better efficiency over Lagrangian based
symbolic method. This increase in efficiency is achieved by
performing backward recursion on forces and moments. As
compared to symbolic method, computational testing proves
that the proposed algorithm is (1) efficient (faster execution
time), (2) precise (negligible numerical error), and most im-
portantly (3) it does not require a time consuming off-line code
generation phase.
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