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Abstract—Atrial fibrillation (AF) is a sustained arrhythmia
whose mechanisms are still largely unknown. A recent patient-
tailored AF ablation therapy is based on the use of a multipolar
mapping catheter called PentaRay. This new protocol targets
areas of spatiotemporal dispersion (STD) in the atria as potential
AF drivers. However, interventional cardiologists localize STD
sites visually through the observation of intracardiac electro-
grams (EGMs). The present work aims to automatically char-
acterize ablation sites in STD-based ablation. Recent research
suggests that the distribution of the time series of maximal voltage
absolute values at any of the PentaRay bipoles (VAVp) is affected
by the STD pattern. Motivated by this finding, we consider VAVp
as a key feature for STD identification. To our knowledge, this
work applies for the first time statistical analysis and ML tools
to automatically identify STD areas based on VAVp time series.
Experiments are first conducted on synthetic data to quantify
the effect of STD pattern characteristics (number of delayed
leads, fractionation degree and number of fractionated leads) on
engineered features of the VAVp time series like kurtosis, showing
promising results. Then these features are tested on a real dataset
of 23082 multichannel EGM signals from 16 different persistent
AF patients. Statistical features like kurtosis and distribution
(histograms) of VAVp values are extracted and fed to supervised
machine learning (ML) classifiers, but no significant dissimilarity
is obtained between the two categories. The classification of
raw VAVp time series is finally conducted using ML tools like
a shallow convolutional neural network combined with cross
validation and data augmentation, reaching AUC values of 96%.

Index Terms—persistent atrial fibrillation, spatiotemporal dis-
persion, ablation, PentaRay multipolar catheter, maximal voltage
absolute values, machine learning, classification, clustering.

I. INTRODUCTION

Atrial fibrillation (AF) is a sustained cardiac arrhythmia
whose drivers and mechanisms are complex and still unknown.
Hospitalizations related to AF represent nearly half million
per year and it is estimated to yield almost one-hundred
thousand deaths annually in the United States alone [1].
Among the existing therapies, ablation interventions prove
very efficient compared to drug treatment. Ablation consists in
applying radiofrequency (RF) energy using catheters to burn
atrial tissue areas thought to be responsible for triggering and
maintaining AF. A recent wholly patient-tailored AF ablation
therapy, giving 95% of procedural success rate, is based on
the use of a multipolar mapping catheter called PentaRay.

It targets areas of spatiotemporal dispersion (STD) in the
atria as potential AF drivers. STD is defined a as delay of
the cardiac activation perceived in intracardiac electrograms
(EGMs) across neighboring leads. In practice, interventional
cardiologists localize STD sites visually using the PentaRay
catheter. The guidelines for STD identification from visual
inspection claim that the multichannel EGM signal acquired by
the PentaRay would exhibit a cardiac activation delay of 70%
on a minimum of three contiguous bipoles [2]. However the
visual identification of STD locations is prone to uncertainty
due to the subjectivity of the interventional cardiologist. It is
worth highlighting that thousands of cardiac sites are mapped
in a typical ablation procedure.

This work aims to automatically characterize and identify
ablation sites in an STD-based ablation. Numerical simulations
in [2] suggest that the distribution of the time series of max-
imal voltage absolute values at any of the PentaRay bipoles
(VAVp), is affected by the dispersion pattern. Motivated by this
finding, we suggest to consider VAVp as a key feature for STD
identification. Two different approaches are investigated. First,
engineered and statistical features are extracted manually from
VAVp time series and fed to supervised classifiers like linear
discriminant analysis (LDA) [3], support vector machines
(SVM) [4] and a convolutional neural network (CNN) [5]. This
first approach is called feature engineering. In particular, we
study the kurtosis [6] and distribution (histogram) of VAVp
time series. Synthetic multichannel EGMs are generated to
mimic the STD pattern and to gradually evaluate its effect
on VAVp statistics. The histograms of VAVp samples from
both STD and non-STD real datasets are also clustered using
hierarchical clustering analysis (HCA) [7]. Experiments are
conducted on both synthetic and real datasets and several
Monte Carlo (MC) simulations are carried out. The second
approach is called automatic feature extraction. It consists in
classifying raw VAVp recordings using supervised machine
learning (ML) tools. Besides, cross validation (CV) [8] is
used to avoid overfitting and data augmentation (DA) [9]
is applied to handle the highly imbalanced dataset issue.
Both approaches, feature engineering and automatic feature
extraction, are complementary. On the one hand, the statistical
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analysis is intuitive and easily interpretable although results are
strongly dependent on an appropriate choice of features. On
the other hand, even successful modern ML tools like CNN
can automatically extract classification features from raw data
through its deepest layers. However, these features are not
easily interpretable and validated from a medical perspective.
The study dataset of real signals includes a cohort of 23082
multichannel EGM recordings from 16 different persistent AF
patients.

To our knowledge, this is the first time that statistical metrics
and ML tools are used to automatically identify STD areas and
characterize AF drivers for wholly patient tailored ablation
protocols based on VAVp distribution.

II. AF ABLATION

A. Catheter Ablation of Persistent AF

AF is characterized by a disorganized activation in the upper
chambers of the heart called atria. The atria start quivering,
thus causing irregular fluctuations in the baseline, instead of
beating effectively to eject blood into the ventricles. This
results into a disorganized ventricular rate [1]. Motivated by
the limits of drug treatment to cure persistent AF, ablation is
an increasingly used therapy. It consists in burning the cardiac
myocytes (cells) displaying irregular activation patterns with
RF energy delivered through a catheter. A classical ablation
protocol, called stepwise approach, consists in isolating the
pulmonary veins, harboring the triggers taught to be respon-
sible for initiating AF. Cardiac areas displaying complex
fractionated electrograms (CFAE) are then ablated. However,
a growing number of reports find little advantage in targeting
CFAEs alone after PVI [10]. Instead, alternative criteria have
been developed to ablate potential drivers throughout the atrial
substrate [2].

B. STD-Guided Ablation

A breakthrough AF ablation therapy, giving 95% of proce-
dural success rate, is based on the use of PentaRay mapping
catheter. It targets areas of STD in the atria as potential AF
drivers [2]. The PentaRay is a 20-pole high resolution catheter
(Biosense Webster Inc, Irvine, CA, USA). In practice, the
interventional cardiologist sequentially positions the catheter
in various regions of the atria before ablation. Locations
exhibiting a non synchronous cardiac activity observable on a
minimum of three contiguous leads are called dispersion points
and are tagged for ablation. It is claimed that dispersion areas
represent clusters of electrograms, either fractionated (CFAE)
or nonfractionated, displaying interelectrode time and space
dispersion at a minimum of three contiguous leads [2], as
shown in Fig. 1. However, the identification of STD areas
is prone to errors and lack of reproducibility since it is
performed visually by the cardiologist. In order to automatize
STD identification, this work investigates statistical and ML
tools that explain STD features.

Fig. 1: Dispersion areas delineated via a mapping approach [2].
A 1-2, A 3-4, B 5-6, B 7-8,C 9-10 and C 11-12 display STD.

III. METHODS

A. VAVp Time Series

The one-dimensional VAVp time series is calculated as
follows: 1) the absolute values of each channel of the multilead
EGM recording are computed to form the VAV matrix; 2) the
maximal values of VAV over the leads dimension are computed
at each time sample to form the VAVp signal. Numerical sim-
ulations in [2] show that the histograms of VAVp distribution
(h(VAVp)) depend on STD and that h(VAVp) is peaky and
concentrated around zero if the virtual PentaRay is positioned
in non-STD areas, at the periphery of a driver with slow
excitation for instance, but it gets more spread for EGMs
recorded in STD areas of the heart, like rotors as shown in
Fig. 2 (Fig. 7 in [2]).

(A) (B) (C)

Fig. 2: VAVp distribution (A) at the center of the driver, rem-
iniscent of patients’ dispersion areas, and (B) at the periphery
of the driver. (C) In the interstitial fibrosis condition [2].

B. Kurtosis & Skewness

In statistics, kurtosis refers to a measure of peakedness of
a distribution. It quantifies whether the data are heavy-tailed
(high κ) or light-tailed (low κ) relative to a normal distribution
(κ = 0). Skewness is a measure of the asymmetry of variable’s
probability distribution around its mean. We compute unbiased
estimates of kurtosis and skewness [6].

C. Histogram Clustering

Given a set of data samples, HCA partitions them into
agglomerations using a homogeneity criterion, so that points
within each cluster are similar and points from different
clusters are dissimilar. HCA treats each observation as a
singleton group at the beginning. Then it merges pairs of



groups until all clusters are agglomerated. The linkage can
be presented by a dendrogram. A cutoff is then chosen and
the clusters are formed [7].

D. Classification Algorithms & Metrics

Supervised ML techniques, namely LDA [3], SVM [4] and
CNN [5], are trained on labeled datasets to classify samples
from STD and non-STD categories. The model learns a
classification rule then applies it to new data. The performance
of ML models is evaluated through the following metrics: 1)
accuracy; 2) area under the ROC curve (AUC); 3) sensitivity
(true positive rate), measuring the proportion of actual STD
samples that are correctly identified as such; 4) specificity (true
negative rate), measuring the proportion of actual non-STD
samples that are correctly identified as such.

E. Data Augmentation

The EGM dataset is highly imbalanced, as the ratio of
STD samples to non-STD samples equals 5%. The insuf-
ficient amount of STD samples leads to poor classification
results in terms of sensitivity and AUC. One way of dealing
with this issue is applying a DA method that is approved
by cardiologists. DA consists in synthesizing new samples
belonging to the minority class. Oversampling is a simple but
effective DA option. It consists in forming a balanced super-
dataset by replicating randomly samples from the minority
class (STD) until they reach the number of the majority class
(non-STD) [9].

IV. VAVP ANALYSIS FOR STD IDENTIFICATION

A. Study Datasets

During the mapping phase, the PentaRay catheter is
maintained stable for at least 2.5 s (sampling frequency
fs = 1000Hz) at each atrial site then ten bipoles are simul-
taneously recorded per location. The recording can be stored
in a matrix of 10× 2500. A typical AF cycle length (AFCL)
equals 250 ms.

1) Synthetic Data: To build a realistic synthetic EGM
model, we simulate the cardiac activation pattern as follows:
1) a one-dimensional sawtooth activation with a fundamental
frequency Fref = 50 Hz and fs = 1000 Hz is synthesized; 2)
from this full signal, a unique sawtooth cycle (one “tooth”)
is truncated; 3) the pattern is padded with zeros to form
a single cardiac cycle of 250 samples; 4) this signal is
replicated 10 times to form a full synthetic EGM of length
2500 noted EGMsaw. In order to include the fractionation
pattern in EGMsaw recording, we define d as the fractionation
degree. The fractionated signal EGMd

saw should contain in each
AFCL interval d squashed sawtooth waveforms, generated by
truncating and padding a sawtooth waveform of fundamental
frequency equal to d× Fref, as described previously. EGMd

saw
is then multiplied by a normalization factor ensuring that the
energy of the time discrete signal EGMd

saw is preserved for
all values of d ∈ N∗. The non fractionated signal corresponds
to d = 1 and the totally fractionated signal corresponds to
d = 19. Finally, the full synthetic multichannel EGM matrix

is formed by stacking the synthetic signals EGMd
saw in the

rows of a (10×2500) matrix. Each signal (channel) may have
a different value of d as represented in Fig. 3. The 10 leads
are denoted `1 to `10. In order to simulate the activation delay
characteristic of STD, we introduce a cyclic shift of 35% of
AFCL over two successive channels (matrix rows). As a result
three consecutive leads would have a total delay of 70%. Fig. 3
shows that the delay slope may be positive (leads `3 `4, `5)
or negative (leads `8, `9, `10).

Fig. 3: Example of a synthetic multichannel EGM recording.

2) Real Data: The Cardiology Department of Nice Univer-
sity Hospital Center (CHU) affords the data of multichannel
EGM recordings of 16 patients with persistent AF. All patients
were ablated after analysis of the cartographies acquired with
the PentaRay and visual tagging of STD areas. A phase of
data acquisition, anonymization and cleaning was needed.
EGMs presenting spatiotemporal dispersion according to the
cardiologist are annotated with “STD”, while other labels are
merged into the “non-STD” class. For each cartography of
each patient, 10 EGM bipoles are recorded per location. Each
acquisition can be stored in a (10 × 2500) EGM data matrix.

V. EXPERIMENTS

Experiments including the analysis of VAVp statistics, his-
tograms clustering and classification belong to the feature en-
gineering approach. Whereas, the automatic feature extraction
approach consists in classifying the raw VAVp signals.

A. VAVp of Synthetic Data

As a first attempt, we investigate the effect of the number
of delayed channels (Ndelay) on the VAVp distribution. Fig. 4
shows that as Ndelay grows, the kurtosis decreases which means
that the distribution becomes flatter and fairly symmetric. In
absence of fractionation (d = 1) and for Ndelay = {1, 2, 3, 4}
we have κ > 0, the VAVp histogram approximates a normal
distribution (κ ≈ 0) for Ndelay = {5, 6} but the kurtosis
becomes negative for Ndelay = {7, 8, 9}. This experiment is
computed for different delay values {40, 70, 100} ms. The
resulting curves almost coincide which means that delay range
is not significant.

The combined effect of fractionation and delay of contigu-
ous leads is assessed through MC simulations and the results
are shown in Fig. 4 for d = 8 and d = 16. For each Ndelay, 100
MC simulations are conducted. For each MC simulation, both



the number (Nfrac) of the fractionated leads and their positions
are selected at random. Then, VAVp distribution statistics are
computed. Finally, the average values of kurtosis and skewness
are obtained. The curves in Fig. 4 show the resulting kurtosis
for d = 8 and d = 16 over the 100 MC simulations. The
values are presented as mean ± standard deviation. We notice
that similar behavior is obtained for d = 1 and d = 8.
However for more fractionated signals (d = 16) the kurtosis
decreases from 4 to 0. The distribution passes smoothly from
peaky to normal as Ndelay grows. Though not shown for lack
of space, experiments also demonstrate that skewness is a
negative function of d which means that the VAPp distribution
gets symmetric as d grows. Besides, skewness is much less
sensitive to Ndelay compared to kurtosis.

Fig. 4: Effect of the delay on VAVp distribution.

In order to asses the effect of fractionation on VAVp distri-
bution, fractionated multichannel EGMs are generated. Each
synthetic matrix contains a growing number of fractionated
leads Nfrac ∈ [1, 10]. The fractionation degrees are divided
into three ranges {[1, 6], [1, 12], [1, 19]}. For each range and
for each Nfrac, a series of 100 MC simulations is conducted
where the fractionation degrees are chosen randomly in that
range. The values of kurtosis are computed as in the previously
described experiment. Fig. 5 shows that the kurtosis is a
negative function of both the Nfrac and d. The effect of Nfrac
on the distribution is less important than d regarding the slope
of the curves (Fig. 5).

Fig. 5: Combined effect of fractionation on VAVp distribution.

To summarize, VAVp distribution gets flatter and its tail
lighter as the dispersion patterns represented by the number
of delayed leads, fractionation degree and fractionated lead po-
sitions are emphasized whether simultaneously or separately.

B. VAVp of Real Data

1) Kurtosis Analysis: We compute the kurtosis of multi-
channel EGM samples belonging to both STD and non-STD
datasets. The ranges of values are in the following intervals:
κSTD ∈ [2, 410] while κnon-STD ∈ [1, 621] and mean values are
both very high, namely, κSTD = 23±34 and κnon-STD = 29±41,
which means that in average both VAVp distributions have
sharp histograms but the STD is slightly flatter than the non-
STD VAVp distribution. As a result, we conclude that looking
at metrics related to the VAVp histograms like kurtosis is not
a significant hand engineered feature in STD identification.

2) Histogram Clustering and Classification: We attempt
to analyze the VAVp histograms coming from both STD
(h(VAVp)STD) and non-STD (h(VAVp)non-STD) datasets. We
first cluster the histograms of each class separately using the
HCA [7] algorithm. We opt for Hellinger distance [11] as a
homogeneity criterion because it is a recommended metric to
measure the similarity between sparse data like histograms.
Cutoff values are chosen visually from the dendrograms. We
opt for 6 STD and 10 non-STD clusters of h(VAVp) then
we compute the averaged histograms of the representative
element of each cluster. No obvious dissimilarity in terms
of histogram sharpness nor flatness is obtained by comparing
STD to non-STD clusters as shown in Fig. 6. For instance,
clusters 4 and 5 belonging respectively to STD and non-STD
categories are both sharp reflecting a synchronized cardiac
activation between the channels of the EGM sample. Similarly,
clusters 3 and 8 belonging respectively to STD and non-
STD categories are both flat reflecting a non-synchronized
cardiac activation between the EGM channels. However, we
notice that the h(VAVp)non-STD of some clusters (cluster10)
are sparse compared to h(VAVp)STD. This finding rejects the
hypothesis that VAVp distribution is a key variable in STD
identification, as confirmed by both experiments on simulated
data in Sec. V-A added to Figures 7 and 8 in the medical
reference [2]. To confirm this finding, we try to classify the

Fig. 6: VAVp histograms of the STD (blue) and non-STD (red)
clusters.

labeled histograms into STD vs. non-STD using ML tools
like LDA, SVM with both linear and Gaussian filter and
a shallow CNN but the classification performance is very
poor. Similar results are obtained with both balanced and non
balanced training sets. This result may be explained by the
two following reasons:
• First, the non-STD class contains a wide range of mul-

tichannel EGM types that certainly have different patterns



that would result in a wide range of kurtosis and VAVp
distributions.
• Second, the labels of STD samples do not contain detailed

information about the number of CFAE leads neither the
positions of delayed leads. As a result the STD dataset can be
assimilated to a bag containing samples with all possibilities
of delay values, Ndelay, Nfrac and fractionation degrees.

3) Raw VAVp Classification: Motivated by the poor results
obtained with the analysis of VAVp distribution, we propose
in this section to analyze the raw VAVp time series. To
this end, we train supervised ML models with the labeled
dataset. The classifiers used are: 1) LDA; 2) SVM with a
Gaussian kernel (experiments showed that the performance of
a Gaussian kernel is superior to the linear one); 3) shallow
CNN composed of a 1D convolutional layer with 32 nodes
followed by a dropout layer with a probability equal 0.2 then
a fully connected layer with a sigmoid (linear regression)
activation function. Dropout is a regularization technique [12].
We tried to add several types of pooling layers (max, average
and global average) to the CNN architecture but it degraded
the classifiers’s performance. In order to handle overfitting
and asses the ability of the trained ML models to generalize
the classification rule, we use 5-fold cross validation (CV)
technique [8] [13]. In order to train the CNN, we use ADAM
optimizer [14] with validation AUC as an early stopping
criteria. In each CV round, the test dataset is partitioned into
two equal-sized subsets that will form the new validation and
test sets. This guarantees that the model does not see the
test samples during the training phase. Classification results
on the test set are given in Tab. I. The values of accuracy,
AUC, sensitivity and specificity are around 90% and present
a very low variability (10−3). However, we notice that the
performance of LDA is inferior to the non linear classifiers
(SVM and CNN). For instance, the AUC value of the CNN is
96% while it is equal to 90% for the SVM and 87% for the
LDA. The AUC informs about the combined true classification
rates of both STD and non-STD classes. The superiority of
the CNN may be explained by the ability of this model to
automatically extract key classification features through its
convolutional filters.

TABLE I: VAVp time-series classification performance.

Accuracy AUC Sensitivity Specificity
LDA 0.883 ± 0.007 0.866±0.006 0.848±0.020 0.885±0.008
SVM 0.927±0.004 0.905±0.009 0.880±0.022 0.930±0.005
CNN 0.917±0.005 0.964±0.009 0.867±0.015 0.922±0.004

VI. CONCLUSION AND PERSPECTIVES

Motivated by the finding [2] that the distribution of VAVp
signals is affected by the STD pattern, we propose to auto-
matically identify STD areas in multichannel EGM recordings
in persistent AF through two complementary approaches.
Preliminary experiments using synthetic signals in controlled
conditions demonstrate that VAVp engineered features like
kurtosis are indeed good indicators of STD in AF multipolar

EGMs. However, experiments on real AF data show that these
features do not allow STD identification. Likewise, VAVp
histograms of STD and non-STD datasets clustered using HCA
do not present significant dissimilarities. Modern ML tools
that automatically identify characteristic features from the raw
VAVp time series are more efficient, with AUC up to 96% for
CNN.

Further research will aim at designing optimized ML ar-
chitectures with higher performance rates. Building deeper
classifiers and interpreting, from a medical perspective, the
automatic features synthesized by the deep architecture would
bring knowledge to better characterize the persistent AF ar-
rhythmia. Another perspective is to increase the database of
persistent AF patients in order to provide more relevant clinical
results.
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