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Numerical simulations of a dissipative soliton-
similariton laser are shown to reproduce a range 
of instabilities seen in recent experiments. The model 
uses a scalar nonlinear Schrödinger equation map, and 
regions of stability and instability are readily identified 
as a function of gain and saturable absorber parameters. 
Studying evolution over multiple roundtrips reveals 
spectral instabilities linked with soliton molecule 
internal motion, soliton explosions, chaos, and inter-
mittence. For the case of soliton molecules, the relative 
phase variation in the spectrum is shown to be due to 
differences in nonlinear phase evolution between the 
molecule components over multiple roundtrips.

There is currently much interest in the real-time characteri-
zation of mode-locked dissipative soliton fiber laser dynamics.
Dispersive Fourier Transform measurements of spectral varia-
tions are a particular focus, revealing soliton build up dynamics
[1–5], soliton molecules with internal motion [6, 7], and soliton
explosions and pulsations [8–14]. Work has also reported com-
plex intermittence where a laser randomly alternates between
sequences of metastable molecules, explosions, and chaos [15].

Although measuring such instabilities has been relatively
straightforward, interpreting the underlying physics has proven
more difficult. Certainly insight has been obtained from com-
plex cubic quintic Ginzburg-Landau equation (CGLE) studies
[16–19], as well as iterative map simulations based on nonlin-
ear Schrödinger equation (NLSE) modelling for fiber segments,
and suitable transfer functions for other elements [6, 8, 20–22].
However, although these approaches have reproduced some
results seen experimentally, simulations have generally consid-
ered specific descriptions for key components, such as saturable
absorption based on nonlinear loop mirrors [22], vector polar-
ization evolution [20], or rate-equation gain dynamics [6, 8]. The
question remains to what degree instabilities observed experi-
mentally can be reproduced using more generic models.

In this Letter, we simulate a dissipative soliton laser using
an iterative cavity map based on only scalar NLSE propaga-
tion and widely-used models for gain and saturable absorption.
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Fig. 1. (a) Schematic: EDF, erbium doped fiber; SMF, single
mode fiber; SA, saturable absorber. LAB = 11 m with β2 =
+40× 10−3 ps2 m−1, γ = 6× 10−3 W−1m−1. LSMF1 = 2.42 m
and LSMF2 = 7.8 m with β2 = −21.7 × 10−3 ps2 m−1 and
γ = 1.1× 10−3 W−1m−1. Net cavity GVD is +0.22 ps2. (b) Evo-
lution of temporal (blue, left axis) and spectral (red, right axis)
widths for stable single pulses (q0 = 0.9, Psat = 150 W, Esat =
0.4 nJ, g0 = 0.78 m−1).

Although saturable absorbers in many lasers use nonlinear po-
larization evolution, our ability to reproduce instabilities seen
in experiments with a scalar model highlights the role of ba-
sic NLSE dynamics. Moreover, we generate a detailed stability
map of laser operation, and explicitly reproduce both internal
motion dynamics of soliton molecules, and complex sequential
instabilities.

We consider a soliton-similariton laser [23, 24] as in Fig. 1,
with normal group velocity dispersion (GVD) Erbium-doped
fiber (EDF) , anomalous GVD single-mode fibre (SMF1 and
SMF2), a saturable absorber (SA), and a spectral filter. The
parameters (see caption) are adapted from Ref. [15]. Each fiber
segment is modelled by a modified scalar NLSE [23]:

∂A
∂z

= − iβ2
2

∂2 A
∂τ2 +

ĝ
2

A + iγ|A|2 A. (1)

Here, A = A(z, τ) is the pulse envelope with z the propaga-
tion coordinate and τ co-moving time. β2 and γ are the GVD
and nonlinearity parameters for each segment. To study the
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ability of the simplest model to reproduce complex dynam-
ics, higher-order terms are not included. The EDF gain is:
ĝ(ω) = g0/(1 + E/Esat)× 1/(1 + Ω2/Ω2

g) where g0 is the un-
saturated (small signal) gain, and Ωg corresponds to a 40 nm
gain bandwidth. E =

∫
|A|2dτ is the intracavity energy, and Esat

is a gain saturation parameter [25]. Ω = ω−ω0 is the (angular)
frequency detuning, with ω0 corresponding to a wavelength of
1550 nm. The saturable absorber is described by the function
[23]: T(τ) = 1− q0(1 + P(τ)/Psat)−1 where q0 is modulation
depth, P(τ) = |A(z, τ)|2 is instantaneous power, and Psat is
saturation power. We use q0 ≥ 0.7, consistent with previous
modelling of similar lasers [26]. The spectral filter was a 10 nm
intensity FWHM supergaussian with unity transmittance at line
center. A lumped linear intracavity loss of 2.2 dB was applied
after the filter to model output coupling and insertion losses.
Simulations used 213 points, a 500 ps time span, and adaptive
spatial steps.

Figure 1(b) plots stable single pulse intracavity evolution.
In this regime, this model has previously reproduced linearly-
chirped parabolic pulses as seen in experiment [15]. To study
instabilities, we systematically varied the saturable absorber and
gain parameters to identify regimes with qualitatively different
behaviour. Figure 2 shows the different stability regions iden-
tified (see legend and caption) as a function of: (a) saturable
absorber parameters (q0, Psat) at a fixed gain setting and (b) gain
parameters (g0, Esat) for a fixed saturable absorber setting. The
parameter range considered encompassed values used in similar
studies [21, 23, 26].

The initial conditions used for Fig. 2 were single and double
gaussian pulses (2 ps FWHM), injected at Point A in Fig. 1. The
parameter spaces were finely gridded and the behaviour of the
model was studied towards either convergence or instability.
For some parameters, the seed rapidly decayed, corresponding
to the below-threshold region. We sought convergence up to 105

roundtrips but in many cases, steady state was reached at only
several 100’s of roundtrips. We describe Fig. 2 as follows. The
green region corresponds to convergence towards a stable single
pulse. These single pulse states were found to be insensitive to a
wide range of initial conditions: pulse durations of 1–30 ps and
peak powers of 0.1 mW—10 W. Even when seeded from noise,
the simulations still converged to a final state depending only
on the laser parameters. Noise seeds used ranged from a one
photon per mode background to 100% (uniformly distributed)
random intensity modulation.

The orange region corresponded to either stable single pulses
or molecules depending on the initial conditions. In particular,
single pulse seeds yielded ∼10 ps stable single pulse solutions,
but if the seed was a double pulse with separation 40–200 ps,
the simulations converged to a stable molecule with identical
separation. This behaviour is consistent with similar modelling
of stretched-pulse lasers, where attraction to the stable state is
attributed to cross-phase modulation and nonlinear gain [27].
We note, however, that for other regimes, separations different
from the seed have also been reported [28]. We also remark that
when noisy initial conditions were used in this regime, simu-
lations converge to either single or double pulses in a random
way depending on the particular noise on the seed.

The blue region corresponds to only stable molecules being
observed irrespective of initial conditions (i.e. even for single
pulse seeds). Note that the boundaries between the regions in
Fig. 2 depend weakly on the separation used for the double-
pulse initial conditions. For purposes of reproducibility, we plot
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Fig. 2. Stability regimes as a function of: (a) saturable absorber
parameters (q0, Psat) at fixed Esat = 0.4 nJ, g0 = 0.78 m−1, and
(b) gain parameters (g0, Esat) for fixed Psat = 150 W, q0 = 0.70.
The colored legend describes the different regimes (see text).
In (a) the red points (1, 2) correspond to the soliton molecule
results in Fig. 3. The red points (3, 4, 5) in (a) and (b) corre-
spond to the results in Fig. 4.

results here for a separation of 150 ps.
The steady state pulse energy varied over the stability map

as follows. For Fig. 2(a): green region (2.0–2.6 nJ ); orange region
(2.2–2.9 nJ single pulses, 2.2–3.1 nJ double pulses); blue region
(2.3–3.1 nJ). For Fig. 2(b): green region (12 pJ-0.73 nJ ); orange
region (0.68–1.7 nJ single pulses, 0.70–1.8 nJ double pulses); blue
region (1.5–2.9 nJ).

As discussed above, double pulse seeds of separation 40–
200 ps resulted in stable molecules (orange and blue regions
in Fig. 2). However, decreasing the separation below ∼40 ps
was found to induce variation in the relative phase between
the molecule components, arising from enhanced interactions
between the pulse tails [28, 29].

Such phase variations manifest experimentally through
changes in the fringe structure of the molecule spectrum with
roundtrips [30], previously seen in real time spectral measure-
ments [2, 6, 7, 15]. Specifically, for a molecule consisting of two
pulses centred on ω0 with temporal separation T and relative
phase ϕ, the spectrum is: S(ω) = |Ẽ(ω−ω0)|2(1 + cos[2π(ω−
ω0)/Ωp + ϕ]) where Ẽ(ω − ω0) is the spectral amplitude of
each pulse, and Ωp = 2π/T gives the frequency separation
between adjacent fringes in the spectrum. As ϕ varies with
roundtrip, the fringe structure is then displaced.

Our model reproduces this behaviour, and Fig. 3 shows two
examples. Fig. 3(a-d) corresponds to Point 1 in Fig. 2(a) with
Psat = 170 W, q0 = 0.87. Here Fig. 3(a) shows the time-domain
profile of the molecule at the EDF output after a particular
roundtrip, and by following the spectrum over 500 subsequent
roundtrips (zooming into a 10 nm span near 1550 nm), Fig. 3(b)
shows the spectral modulation oscillating with a ∼65 roundtrip
period. The relative phase between the molecule components
can be extracted from the spectrum [30] or in our case directly
from the complex field, and is shown in Fig. 3(c).

This oscillatory phase has been described as analogous to
molecular vibrations [6], attributed to roundtrip-to-roundtrip
peak power oscillations experienced by the two components
of the molecule [29]. These oscillations are seen in our simu-
lations, and shown in Fig. 3(d) at the EDF output. They arise
physically from pulse tail-mediated interaction and the effects



of gain and loss, including gain saturation [31]. Our simula-
tions confirm quantitatively that these oscillations induce the
observed spectral phase variation. Specifically, consider two
pulses in a molecule of peak power P1(z) and P2(z) as they cir-
culate at any point in the cavity z. Accounting for the different
nonlinearity of the cavity segments by a z-dependent γ(z), the
difference in nonlinear phase between the component pulses
δφk+1 after roundtrip k + 1 is related to that after roundtrip k
by δφk+1 = δφk +

∫
γ(z)[P2(z)− P1(z)]dz, where the integral is

performed around the cavity (over the k-th roundtrip). From
the simulations which yield peak power at every point in the
cavity, it is straightforward to calculate this nonlinear phase
and compare with the phase computed from the full field. For
roundtrips above 250, Fig. 3(c) compares the phase variation
calculated from the peak power integration (dashed black line)
with that from the complex field (solid green line) and there is
essentially exact agreement.

The results in Fig. 3(e-h) correspond to Point 2 in Fig. 2(a)
with Psat = 250 W, q0 = 0.87. At this higher saturation power,
the relative phase between the molecule components shows
linear displacement with roundtrip (sometimes referred as an
infinite or diverging phase [6]) with periodic oscillation about
this linear trend (see inset in Fig. 3(g)). Again computing the
nonlinear phase variation from the peak power variation yields
essentially exact agreement with that obtained directly from the
simulation complex field.

These simulations yield insight into the conditions under
which the different behaviour in Fig. 3 is seen. Specifically, if
the peak powers of the constituent pulses vary about a common
mean as in Fig 3(d), then the average position of the fringes
remains constant with roundtrip but the fringes display periodic
oscillation. In contrast, if the peak powers of the pulses vary
about distinct means as in Fig 3(h) then the fringes show an
overall linear displacement with roundtrip and also display
oscillation about this linear trend.

Outside regimes of stability or internal motion, the white re-
gions in Fig. 2 correspond to simulations where no convergence
was seen, and large temporal, spectral and energy fluctuations
over multiple roundtrips. The evolution here depended sensi-
tively on initial conditions, with different random noise yielding
very different behaviour. Figure 4 shows typical results, using
initial conditions of 6 ps pulses with uniformly-distributed 100%
multiplicative noise. These conditions were found to reproduce
transitions between qualitatively different behaviour over 100’s
of roundtrips as seen in experiments.

Figure 4(a) corresponds to Point 3 in Fig. 2(a) with Psat =
950 W, q0 = 0.87. Figures. 4(b) and (c) correspond to Points 4
and 5 in Fig. 2(b) with Esat = 0.68 nJ, g0 = 0.59 m−1 and Esat =
0.68 nJ, g0 = 0.60 m−1 respectively. For all cases, we plot (top
to bottom): energy fluctuations; spectral evolution; temporal
intensity evolution; temporal autocorrelation function evolution.
Although simulations yield the temporal intensity directly, we
also plot the autocorrelation because it is this that is usually
derived from experimental measurements [30]. These results
are remarkable in yielding features of spectral evolution similar
to those seen in recent experiments. Figure 4(a) for example
shows intermittent molecule states (similar to experiments in
Ref. [2]), Fig. 4(b) shows metastable molecule states interrupted
by explosion dynamics (similar to experiments in Refs. [15, 32])
and Fig. 4(c) shows the decay of a molecule state into essentially
a broadband chaotic field with intermittent very short-lived
single pulse states (similar to experiments in Ref. [15] ).

The conclusions are as follows. Firstly, a scalar model for a
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Fig. 3. Molecule internal motion. Results in (a-d) correspond
to point 1 in Fig. 2(a) and show oscillating phase. We plot: (a)
temporal intensity showing trailing (blue) and leading (red)
pulses at one particular roundtrip. Following 500 roundtrips
we show: (b) spectral evolution over a 10 nm span showing
fringe oscillations; (c) corresponding phase evolution com-
puted from the simulated field (green), and calculated only
from the peak power (black dashed, shown from roundtrips
250-500); (d) peak power evolution for leading (red) and trail-
ing (blue) pulses. Results in (e-h) correspond to point 2 in
Fig. 2(a) for a diverging phase. The seed in both cases was a
Gaussian double pulse with 14.5 ps separation.

dissipative soliton laser has been shown to reproduce a range of
instability behaviour seen in experiments. For soliton molecule
evolution, the model reproduces oscillating and diverging phase,
and in both cases allows the phase evolution to be associated
with variations in peak power of the molecule components. To
our knowledge, this is the first time that the link between peak
power evolution and oscillatory or divergent phase has been
shown quantitatively. Outside the stability regimes, a range of
spectral and autocorrelation evolution dynamics were observed
similar to recent experiments. It is particularly significant that
although the results in Refs [2, 15] were obtained using nonlinear
polarization evolution as the saturable absorber mechanism, our
simulations yield similar results assuming only scalar propaga-
tion and generic models for gain and saturable absorption.

This suggests that the instabilities in recent experiments are
not contingent on gain dynamics or nonlinear polarization evo-
lution, but rather arise from basic NLSE interactions. Although
quantitative comparison with experiment may require fully real-
istic models, the essential physical features can be reproduced
using a simpler reduced approach. In the context of Fig. 4, our
results confirm previous studies showing how complex instabili-
ties appear to be intrinsic to the interaction between nonlinearity,
dispersion and dissipation [16]. Of course, understanding how
particular instabilities are triggered remains an open question,
but we anticipate that the ability to study such problems using a
scalar model will yield new general insights, also with regards
to issues of multistability and higher-order molecule formation.
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Fig. 4. Unstable regimes showing (top to bottom) energy (nJ),
spectrum (normalized in dB), instantaneous power P (W),
temporal autocorrelation (normalized in dB). (a) Point 3 in Fig.
2(a) with initial condition of a 6 ps Gaussian pulse with noise;
(b) Point 4 in Fig. 2(b) with initial condition of a double pulse
with noise (separation 40 ps); (c) Point 5 in Fig. 2(b) with initial
condition of a double pulse with noise (separation 40 ps.)
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