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High-gain observers and sliding mode observers are two of the most common techniques to design observers (or differentiators) for lower triangular nonlinear dynamics. While sliding mode observers can handle globally bounded nonlinearities, high-gain linear techniques can deal with globally Lipschitz nonlinearities.

To gain in generality and avoid the usual assumption that the plant's solutions are bounded with known bound, we propose here to mix both designs in the more general case where the nonlinearities satisfy a global incremental affine bound. We inspire from the recently-developed low-power high-gain observer technique, which relies on the interconnection of several second order high-gain observers. Adding slidingmode correction terms into this low-power structure enables to guarantee global convergence of the estimation error in finite-time with gains depending only on the parameters of the incremental affine bound of the nonlinearities. The estimation error is also proved to be uniformly stable along solutions starting from any compact sets of initial conditions.

INTRODUCTION

In this paper our aim is to design a state observer for a system in the form

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ̇ 1 = 2 + 1 ( 1 , ) ̇ 2 = 3 + 2 ( 1 , 2 , ) ⋮ ̇ = ( 1 , … , , ) = 1 (1) 
where ∈ ℝ is the state, ∈ ℝ is the measured output, and the functions ∶ ℝ × ℝ → ℝ are continuous. This lower triangular form typically arises when considering (uniformly) observable (controlled) nonlinear systems (see [START_REF] Gauthier | Deterministic observation theory and applications[END_REF] or more recently [START_REF] Bernard | On the triangular canonical form for uniformly observable controlled systems[END_REF] ). Designing an observer for this particular nonlinear dynamical system has been deeply studied in the last three decades. Two main approaches can be distinguished.

It can be checked that Assumption 1 encompasses nonlinearities satisfying (2), (3) or (4). But none of the existing observers can be applied under Assumption 1. Note that a simple motivation to consider such class of nonlinear systems comes from the fact that for controlled input affine systems, the observability canonical form usually leads to continuous non-lipschitz nonlinearities, see for instance [START_REF] Bernard | On the triangular canonical form for uniformly observable controlled systems[END_REF] .

The objective of this work is therefore that of proposing a new methodology for the state estimation of systems (1) in which each function satisfies Assumption 1. For this, we will follow the interconnection design of second order high-gain observers, low-power high-gain observer, proposed in [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF] , in which each block will be replaced with a more general second order sliding-mode observer, also called generalized super-twisting algorithm, as proposed in [START_REF] Moreno | A linear framework for the robust stability analysis of a generalized super-twisting algorithm[END_REF] , where both sliding-mode and linear corrections terms are mixed. The motivation is indeed to handle both constant and Lipschitz bounds in the nonlinearities according to (5). As explained in [START_REF] Moreno | A linear framework for the robust stability analysis of a generalized super-twisting algorithm[END_REF] , mixing linear and sliding-mode correction terms destroys in general the homogeneity of the system and homogeneous Lyapunov functions can no longer be used, although some exception can be found in [START_REF] Bernard | Observers for a non-Lipschitz triangular form[END_REF][START_REF] Cruz-Zavala | Homogeneous high order sliding mode design: a Lyapunov approach[END_REF] . Some non-homogeneous Lyapunov functions have nevertheless been designed in [START_REF] Moreno | On strict Lyapunov functions for some non-homogeneous super-twisting algorithms[END_REF][START_REF] Castillo | Super-twisting algorithm in presence of time and state dependent perturbations[END_REF] for the second-order generalized super-twisting algorithm. But in this paper, because of the presence of perturbations verifying (5) for each = 1, … , , we cannot follow the aforementioned approaches. In particular, the main proofs follow the bi-homogeneity paradigm developed in [START_REF] Andrieu | On the existence of Kazantzis-Kravaris / Luenberger Observers[END_REF] . Indeed, the super-twisting algorithm somehow contains two homogeneities: the linear one, dominating and accelerating convergence when the error is large, and the sliding mode one, dominating and providing finite-time convergence when the error becomes small. In [START_REF] Andrieu | On the existence of Kazantzis-Kravaris / Luenberger Observers[END_REF] , this property is exploited in the so-called "homogeneity in the bi-limit framework" and provides a constructive design of robust Lyapunov functions. Such a Lyapunov function enables to prove the global finite-time asymptotic stability of the generalized second-order super-twisting algorithm in presence of nonlinearities verifying (5) through high-gain. A non-standard interconnection analysis between the second-order blocks then allows to build a global finite-time observer for the th order system (1).

The paper is organized as follows. First, in Section 2, we analyze the generalized second-order high-gain super-twisting observer and we provide an ISS-result with respect to external disturbances, based on a bi-homogeneous Lyapunov function. Then, the observer for the -th dimensional system is presented in Section 3 and the main results about convergence and stability of the proposed algorithm are discussed. The proofs are given in Section 4. A numerical example is presented in Section 5 and conclusions are derived in Section 6. Finally, some technical results are postponed to the Appendix.

Notations/Definitions

ℝ denotes the real numbers and ℝ + = [0, ∞).

• Sign is the set-valued map defined on ℝ by

Sign( ) = ⎧ ⎪ ⎨ ⎪ ⎩ {-1} < 0 [-1, 1] = 0 {1} > 0 . ( 6 
) • for ( , ) in ℝ 2 , ⌊ ⌉ = Sign( )| | .

OBSERVER FOR SECOND ORDER SYSTEMS

Mixed sliding mode observers

In this section, an observer is designed for system (1) for = 2 when 1 and 2 satisfy Assumption 1. The system reads as

̇ 1 = 2 + 1 ( 1 , ) ̇ 2 = 2 ( 1 , 2 , ) , = 1 . ( 7 
)
The observer we consider is in the form

̇̂ 1 = ̂ 2 + 1 ( , ) -1 ( ̂ 1 -) ̇̂ 2 ∈ 2 ( , ̂ 2 , ) -2 2 ( ̂ 1 -) , ( 8 
)
where 1 ∶ ℝ  → ℝ is a continuous function, 2 ∶ ℝ ⇉ ℝ is a set valued map which is outer semi-continuous with convex and compact values2 , and is a positive parameter to be selected large enough and referred to as high-gain parameter, according to standard nomenclature. Depending on the mappings ( 1 , 2 ), this observer may be the usual high-gain observer or the sliding mode observer.

• If we select

1 ( ) ∶= , 2 ( ) ∶= , ∀ ∈ ℝ , ( 9 
)
where is a positive real number [START_REF] Tornambè | Use of asymptotic observers having-high-gains in the state and parameter estimation[END_REF] , this is the usual high-gain observer. Picking sufficiently large compared to 1 , the system ( 8) is an observer for system (7) when 2 satisfies the Lipschitz bound (2).

• If we consider the standard sliding mode observer given by [START_REF] Levant | Robust exact differentiation via sliding mode technique[END_REF] , we select

1 ( ) ∶= ⌊ ⌉ 1 2 , 2 ( ) ∶= Sign( ) , ∀ ∈ ℝ , ( 10 
)
where is a positive real number selected sufficiently large. Picking sufficiently large compared to 2 , ( 8) is an observer for system (7) when 2 satisfies the bounded assumption (3).

• Finally, we can design a mixed sliding mode observer, also denoted as generalized super-twisting algorithm [START_REF] Moreno | A linear framework for the robust stability analysis of a generalized super-twisting algorithm[END_REF] , by selecting 1 , 2 as

1 ( ) ∶= ( ) 2 ( ) ∶= Sign( ) + ( ) , ( ) ∶= ⌊ ⌉ 1 2 + . ( 11 
)
The last approach is of particular interest since it addresses the case in which 2 satisfies Assumption 1, while the first two methodologies cannot be employed. From there, it yields the following theorem (which is similar to [START_REF] Moreno | On discontinuous observers for second order systems: properties, analysis and design[END_REF]Theorem 12.1.] ).

Theorem 1. Assume system (7) satisfies Assumption 1. There exists a positive real number * such that for all > * , there exists , such that for all > , the observer (8)- (11) ensures finite time and stable estimation of system (7). More precisely, the set { = ̂ } is globally and asymptotically stable and there exists a time ≥ 0, depending on the initial condition, such that

( ) = ̂ ( ) ∀ ≥ .
Before proving the previous result, we analyse in the following section a disturbed error system, and we give a proposition that is instrumental to the proof of Theorem 1 and also to the -th order observer design in Section 3.

Robustness analysis for a disturbed chain of integrator

In this subsection, the following system is considered

̇ 1 = 2 -1 ( 1 + ) + 1 ̇ 2 ∈ -2 ( 1 + ) + 2 , ( 12 
)
where 1 and 2 are given in (11) and where = ( 1 , 2 ) ∶ ℝ  → ℝ 2 , ∶ ℝ  → ℝ are locally integrable time functions. System (12) is obtained by considering the error dynamics = -̂ , with , ̂ satisfying ( 7) and ( 8), respectively, = 1, 2 = 0, and disturbances , acting on the measured output and on the state-dynamics, respectively. Consider the function ∶ ℝ 2 → ℝ + defined as

( 1 , 2 ) = | 2 | 3 + 1 ∫ -1 ( 2 ) ⌊ℎ⌉ 1 2 - ⌊ -1 ( 2 ) ⌉ 1 2 + ⌊ℎ⌉ 2 - ⌊ -1 ( 2 ) ⌉ 2 ℎ , ( 13 
)
where -1 ( ) is the 1 function satisfying -1 ( ( )) = .

The function is well-defined and 1 (see Section A.2). Moreover, in the following proposition it is shown that is an ISS Lyapunov function for system (12).

Proposition 1. There exists * ≥ 0 such that, for all > * , there exist positive real numbers , , , , 1 , 2 , such that the function defined in (13) satisfies

| 1 | 3 2 + | 1 | 3 + | 2 | 3 ⩽ ( ) ⩽ | 1 | 3 2 + | 1 | 3 + | 2 | 3 , ( 14 
)
and along the solutions4 of ( 12)

̇ ( , , ) ⩽ - ( ) 2 3 + ( ) + | | + | | 3 + 1 | 1 | 2 + | 1 | 3 + 2 ( ) 2 3 | 2 | . ( 15 
)
The proof of this proposition is given in Appendix A and relies on the use of homogeneous in the bi-limit framework and the Lyapunov construction introduced in [START_REF] Andrieu | Homogeneous approximation, recursive observer design and output feedback[END_REF] . We see that the disturbances , 1 and 2 are treated in a different manner in equation (15). Indeed, for 2 | 2 | < the Lyapunov function is decreasing. This highlights the dead-zone property of the stability margin with respect to the disturbance | 2 |, coming from the sliding mode part of the observer. This crucial property confers to those observers their well-known robustness to bounded disturbance on their last line. However, as opposed to standard sliding mode observer design, the Lyapunov inequality (15) also establishes an ISS property with respect to all disturbances. Finally, note that Proposition 1 imposes a lower bound on . This constraints could be removed employing another Lyapunov function as it has been done in [START_REF] Moreno | Lyapunov approach for analysis and design of second order sliding mode algorithms[END_REF] . With the help of Proposition 1, we can now give the proof of Theorem 1.

Proof of Theorem 1

Let 1 ∶= ̂ 1 -1 and 2 ∶= ̂ 2 -2 . Along the solutions of ( 1)-( 8), is solution of

̇ 1 = 2 -1 ( 1 ) , ̇ 2 ∈ 2 ( 1 , 2 + 2 , ) -2 ( 1 , 2 , ) -2 2 ( 1 ) . ( 16 
)
Previous system can be rewritten as

1 ̇ 1 = 2 -1 ( 1 ) , 1 ̇ 2 ∈ -2 ( 1 ) + 2 2 , ( 17 
)
where 17) is exactly in the form of system (12) in the coordinates ( 1 , 2 ), with the perturbation 2 multiplied by -2 and with the time scaled by [START_REF] Gauthier | Deterministic observation theory and applications[END_REF] . Hence, let > * given by Proposition 1. By using the Lyapunov function defined in (13) and the inequality (15) of Proposition 1, we obtain

2 = 2 ( , 2 + 2 , ) -2 ( , 2 , ). System (
̇ 1 , 2 , 2 ⩽ - 1 , 2 2 3 + 1 , 2 + 2 1 , 2 2 3 | 2 | 2 . ( 18 
)
With Assumption 1, it yields

| 2 | 2 ⩽ 0 2 + 1 | 2 | , ⩽ 0 2 + 1 1 3 1 , 2 1 3 .
Hence, the former inequality becomes

̇ 1 , 2 , 2 ⩽ - -2 0 2 1 , 2 2 3 - -2 1 1 3 1 , 2 . ( 19 
)
Let > 0 be such that

2 0 2 ⩽ 2 , 2 1 1 3 ⩽ 2 .
It implies, for any > ,

̇ 1 , 2 , 2 ⩽ - 2 1 , 2 2 3 + 1 , 2 . ( 20 
)
Consequently, by standard Lyapunov arguments, see, e.g., [START_REF] Bhat | Geometric homogeneity with applications to finite-time stability[END_REF] , the result follows.

OBSERVER FOR -TH ORDER SYSTEM

We are now interested in the design of an observer for the ℎ order dynamical system (1) in triangular form. As it has been done in [START_REF] Floquet | Super twisting algorithm-based step-by-step sliding mode observers for nonlinear systems with unknown inputs[END_REF] in the semi-global case (i.e. the state of system ( 1) is supposed to evolve in a known given compact set ), the main idea is to employ a cascade of second order observers. However, in order to obtain a global result, we need to interconnect these observers as done in [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF] . In particular, we propose the following interconnection of -1 blocks of second order systems defined as

̇̂ = ̂ ( +1) + , ̂ 12 , ̂ 23 , … , ̂ ( -1) - 1 ̂ -̂ ( -1) ̇̂ ( +1) ∈ ̂ ( +1)( +2) + +1 , ̂ 12 , ̂ 23 , … , ̂ ( +1) -2 2 ̂ -̂ ( -1) , = 1, … , -1, (21) 
with the conventions ̂ 01 = and ̂ ( +1) = 0, and where the 's are positive real numbers that will be selected later on. The overall state dimension of the observer is 2 -2. The indexes of the observer variables are selected with the convention [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF] that ̂ is the first state-component of the -th block providing an estimate of the variable , and ̂ ( +1) is the second state-component of the -th block providing an estimate of the variable +1 . As a consequence, for each variable , with = 2, … , -1, we have two different estimates. The structure of observer ( 21) is depicted in Figure 1 below.

̇̂ 11 = ̂ 12 + 1 + 1 1 ( -̂ 11 ) ̇̂ 12 ∈ ̂ 23 + 2 + 2 1 2 ( -̂ 11 ) ̂ 11 - ̇̂ 22 = ̂ 23 + 2 + 2 1 ( ̂ 12 -̂ 22 ) ̇̂ 23 ∈ ̂ 34 + 3 + 2 2 2 ( ̂ 12 -̂ 22 ) ̂ 12 ̂ 22 - ̂ 23 ̂ 23 ̂ 34 FIGURE 1
Block-diagram representation of the observer (21).

Note that we recover the "step-by-step sliding-mode" algorithm proposed by [START_REF] Floquet | Super twisting algorithm-based step-by-step sliding mode observers for nonlinear systems with unknown inputs[END_REF] when 1 , 2 are selected as in (10) and when we don't put the feedback interconnection term ̂ ( +1)( +2) in the dynamics of ̇̂ ( +1) . On the other hand, we recover the "lowpower high-gain observer" design proposed in [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF] , when 1 , 2 are selected as in (9). In our context, observer ( 21) is composed of -1 blocks of second order observers, with 1 a non locally Lipschitz function and 2 a set-valued correction term, as defined in (11). This set-valued map is outer semi-continuous with convex and compact values, thus ensuring well-posedness and sequential compactness of solutions, see [START_REF] Filippov | Differential equations with discontinuous right-hand sides[END_REF] .

The two main theorems of this paper are stated and explained next.

Global finite-time convergence

In the following theorem, it is shown that by selecting the gains sufficiently large and in an appropriate way, observer (21) ensures finite time convergence of the estimate to the state of the system (1). Theorem 2. Consider system (1) and suppose Assumption 1 holds. There exist positive real numbers ( , 1 , … , -1 ) > 0, such that observer (21) ensures finite time estimation of system (1), namely there exists a time ≥ 0 such that

̂ 11 ( ) = 1 ( ) , ̂ ( +1) ( ) = ̂ ( +1)( +1) ( ) = +1 ( ) , = 1, … , -1 , ∀ ⩾ . ( 22 
)
Proof: See Section 4.2. □ As opposed to existing finite time results, see, e.g., [START_REF] Floquet | Super twisting algorithm-based step-by-step sliding mode observers for nonlinear systems with unknown inputs[END_REF] , [START_REF] Levant | Robust exact differentiation via sliding mode technique[END_REF] , we obtain a global finite-time observer. Indeed, no restriction is imposed on the set of initial conditions, nor on the set in which the system (1) is evolving, which may be, in this case, unbounded. Note however that the convergence time is not uniform, namely it depends on the initial conditions (0) of system (1). It is still an open question to achieve uniform finite time convergence since our approach fails to be applied in this context yet. The proof of Theorem 2 mainly combines the following two iterative arguments:

• Iterative construction of the 's starting from going up to 1 , similarly to the proof of Proposition 3 in [START_REF] Astolfi | Low-power peaking-free high-gain observers[END_REF] , in order to ensure boundedness of solutions starting from ̂ ( -1) -up to ̂ 11 -1 .

• Iterative convergence to zero of the errors starting from 1 -̂ 11 down towards -̂ ( -1) .

However, since we have not provided a global Lyapunov function, Theorem 2 concerns only with the attractivity properties of the observer. In order to establish a stability result, a more detailed analysis is required, as detailed in the next section.

Stability from compact sets of initial conditions

The previous section claimed global finite time convergence of observer (21) for some parameters ( , 1 , … , -1 ) appropriately chosen. The following theorem shows that actually once those parameters are fixed, stability of the estimation error is also guaranteed when considering trajectories initialized in compact set of initial conditions. Theorem 3. Let parameters ( , 1 , … , -1 ) be fixed as in Theorem 2, and consider compact sets  0 ⊂ ℝ , 0 ⊂ ℝ 2( -1) . Then, for any > 0, there exists > 0 such that for any solution of (1) initialized in  0 and any solution ̂ of (21) initialized in 0 , we have the implication

| ̂ (0) -(0)| + | ̂ ( +1) (0) -+1 (0)| < ∀ = 1, … , -1 ⇐⇒ | ̂ ( ) -( )| + | ̂ ( +1) ( ) -+1 ( )| < ∀ . ( 23 
)
Proof: See Section 4.3. □ The stability result given in Theorem 3 is stated according to the classical notion ofstability, see for instance [START_REF] Yoshizawa | Stability theory by Liapunov's second method[END_REF] . A crucial remark is that the parameters ( , 1 , … , -1 ) necessary for design of the observer (21) are independent from the compact sets of initial conditions: they have been fixed in Theorem 2. But because we don't have a global Lyapunov function of the error, we cannot obtain uniform stability of the entire zero-error set

 = ( , ̂ ) ∈ ℝ × ℝ 2( -1) ∶ ̂ = , ̂ ( +1) = +1 . ( 24 
)
Instead, we claim uniform stability for the set of solutions starting from compact sets of initial conditions [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF] . Note that we do not require them to be bounded. The crucial argument is that for any given compact set of initial conditions the following facts hold.

• The time of convergence given by Theorem 2 is uniform.

• Since the estimation error is zero after time , we only need to show (23) on the compact time interval [0, ].

Therefore, we can consider a compact set  of ℝ such that for all 0 ∈  0 , ̂ 0 ∈ 0 ,

( ) ∈  and 1 , ̂ 12 , ̂ 23 , … , ̂ ( -1) ( ) ∈  ∀ ∈ [0, ] .
By continuity of , we can then show that there exists a class- function , bounded by 0 , such that

| ( , 2 , … , ) -( , ̂ 2 , … , ̂ )| ⩽ ∑ =1 | -̂ | + 1 ∑ =1 | -̂ | ∀( , ̂ ) ∈  × 
In other words, the conservative constant 0 in the global bound ( 5) is replaced in the analysis by

∑ =1 | -̂ |
, that is bounded by 0 . Unlike 0 , this term encodes the fact that the quantity vanishes when ( , ̂ ) ∈  defined in (24), thus rendering a stability proof possible. Finally, note that this proof doesn't follow standard technical arguments for the following main reasons.

• Since the gains ( , 1 , … , -1 ) have already been fixed in Theorem 3, the same conditions need to be exploited for stability.

• The complex structure of the interconnections and the fact that we prove stability independently from attractivity, leads us to consider a very particular kind of interconnection for which an unusual "small-gain-like" theorem, see Lemma 2, needs to be established.

PROOFS OF MAIN RESULTS

We provide here the full proofs of Theorems 2 and 3. To this end, we start by analysing the behavior of the estimation errors of each block = 1, … , -1 in (21).

Robustness analysis of each error subsystems

The suggested observer gives several error dynamical (sub)systems which interact with each other. By defining ∶= ( , ( +1) ), with ∶= ̂ -and ( +1) ∶= ̂ ( +1) -+1 for = 1, … , -1, gives

̇ = ( +1) - 1 ( + ) + 1 ̇ ( +1) ∈ -2 2 ( + ) + 2 , ( 25 
) with = -( -1) , 1 = ( , … , ̂ ( -1) ) -( , … , ) , 2 = ( +1)( +2) + +1 , ̂ 12 , ̂ 23 , … , ̂ ( +1) -+1 ( , … , +1 ) .
and the conventions 01 = 0, ( +1) = 0. Employing (5), it yields

| | | | ⩽ | | | ( -1) | | | , (26a) | | 1 | | ⩽ 0 + 1 -1 ∑ =1 | | | ( +1) | | | , (26b) | | 2 | | ⩽ | | | ( +1)( +2) | | | + 0 + 1 ∑ =1 | | | ( +1) | | | . ( 26c 
)
We consider -1 Lyapunov functions ( ) defined as

( ) ∶= , ( +1) , ( 27 
)
where is defined in (13). With (14), it yields that the functions satisfy

| | 3 + | | 3 2 + | ( +1) | 3 3 ⩽ ( ) ⩽ | | 3 + | | 3 2 + | ( +1) | 3 3 . ( 28 
)
Applying Proposition 1 in each block leads to the following result.

Proposition 2. There exist positive real numbers 1 , … , -1 , ̃ 21 , and such that the following holds. For all = 1, … , -1, and all ⩾ , the time derivative of along the solutions of (25) satisfies

̇ ( , 1 , 2 , ) ≤ - 2 ( ) 2 3 + ( ) + 3 -1 ̃ -1 ( -1 ) 1 3 + -1 ( -1 ) + 1 2 0 2 + 3 0 3 + ̃ 21 -1 ∑ =1 3 2 ( ) 2 3 
+ ( ) + ⎛ ⎜ ⎜ ⎝ 2 1 -1 ∑ =1 2 1 3 ( ) 1 3 + 2 +1 2 1 3 
+1 ( +1 )

1 3 ⎞ ⎟ ⎟ ⎠ ( ) 2 3 , ( 29 
)
with the conventions 0 ≡ 0 and ≡ 0. Moreover, if there exists a time -1 ⩾ 0 such that

( ( )) = 0 , = 1, … , -1 and +1 ( +1 ( )) < 6 3 8 3 2 3 +1 , ∀ ⩾ -1 , ( 30 
)
then there exists > -1 such that ( ( )) = 0 , ∀ ⩾ .

The bound (29) describes how the error in the block is impacted by the errors coming from other blocks. Now, when ( ( )) = 0 for all = 1, … , -1, inequality (29) gives in particular

̇ ( , 1 , 2 , ) ≤ - 2 ( ) 2 3 + ( ) + 1 2 0 2 + 3 0 3
, which is quite conservative, due to the presence of 0 . This is why we added the second part of the result: actually if (30) holds, we have the stronger property

̇ ( , 1 , 2 , ) ≤ - 2 ( ) 2 3 + ( ) ,
showing finite-time convergence of . In other words, if the blocks 1, … , -1 have converged and the error in the -th block is sufficiently small, then the -th block is also converging. This "cascade" property is crucial for the rest of the proof because the goal will be to show by recursion that (30) holds. This recursion provides also a constructive (but conservative) way to select the parameters 1 , … , -1 .

It is important to remark that the inequality inside of (30) has to be satisfied after a certain amount of time -1 which depends in general on the initial condition. We will show in Section 4.2 that this is indeed verified in order to prove Theorem 2. Proof: First of all, the error system (25) may be rewritten as follows.

⎧ ⎪ ⎨ ⎪ ⎩ 1 ̇ = ( +1) -1 ( + ) + 1 1 ̇ ( +1) ∈ -2 ( + ) + 2 2 , ( 31 
)
Following the same steps of the proof of Theorem 1, it can be checked that system (31) is exactly in the form of system (12) in the coordinates ( , ( +1) ), with the perturbation 1 and 2 multiplied by -1 and -2 and with the time scaled by 1 . Hence, from (15), the time derivative of along the solutions of (31) satisfies, for all > 0,

̇ ( , 1 , 2 , ) ≤ - ( ) 2 | | | 3 ⩽ 3 -1 ̃ -1 ( -1 ) 1 3 + -1 ( -1 ) , ∀ -1 .
Also, using

∑ =1 ⩽ ∑ =1
for = 2 and = 3 for some positive real number > 0, it yields

1 ⎡ ⎢ ⎢ ⎢ ⎣ ⎛ ⎜ ⎜ ⎝ 0 + 1 ∑ -1 =1 | | | ( +1) | | | ⎞ ⎟ ⎟ ⎠ 2 + ⎛ ⎜ ⎜ ⎝ 0 + 1 ∑ -1 =1 | | | ( +1) | | | ⎞ ⎟ ⎟ ⎠ 3 ⎤ ⎥ ⎥ ⎥ ⎦ ⩽ 1 2 0 2 + 3 0 3 + 1 -1 ∑ =1 2 1 2 | ( +1) | 2 + 3 1 3 | ( +1) | 3 , ( 34 
)
and we have for

> 1, = 1, … -1 1 -1 ∑ =1 2 1 2 | ( +1) | 2 + 3 1 3 | ( +1) | 3 ⩽ ̃ 1 -1 ∑ =1 3 2 ( ) 2 3 + ( ) . Moreover, 2 | | | ( +1)( +2) | | | + 0 + 1 ∑ =1 | | | ( +1) | | | 2 ⩽ 2 0 2 + 2 1 ∑ =1 2 1 3 ( ) 1 3 + 2 +1 2 1 3
+1 ( +1 ) 1 [START_REF] Tornambè | Use of asymptotic observers having-high-gains in the state and parameter estimation[END_REF] .

All together, it yields

̇ ( , 1 , 2 , ) ≤ - ( ) 2 3 + ( ) + 3 -1 ̃ -1 ( -1 ) 1 3 + -1 ( -1 ) + 1 2 0 2 + 3 0 3 + ̃ 1 -1 ∑ =1 3 2 ( ) 2 3 + ( ) + ⎛ ⎜ ⎜ ⎝ 2 0 2 + 2 1 ∑ =1 2 1 3 ( ) 1 3 + 2 +1 2 1 3 +1 ( +1 ) 1 3 ⎞ ⎟ ⎟ ⎠ ( ) 2 3 . ( 35 
)
Picking > 0 sufficiently large, this yields for all > , inequality (29) is satisfied. Finally, assume there exists a time -1 ⩾ 0 such that

( ( )) = 0 , = 1, … , -1 , ∀ ⩾ -1 . ( 36 
)
Then, going back in the computations, we actually have for all ⩾ -1 ,

̇ ( , 1 , 2 , ) ⩽ - ( ) 2 3 + ( ) + 2 ( ) 2 3 | | | ( +1)( +2) | | | 2 ⩽ - ( ) 2 3 + ( ) + 2 +1 2 1 3 +1 ( +1 ) 1 3 ( ) 2 3 
and if besides, +1 ( +1 ( )) ⩽ 6 ,

̇ ( , 1 , 2 , ) ⩽ - 2 ( ) 2 3 + ( ) .
Hence converges in finite time to 0 with a time of convergence that depends on | ( -1 )|. □

Proof of Theorem 2 and selection of the parameters 's

Let ∶ ℝ 2( -) → ℝ + for = 1, … , -1 be the 1 functions defined as

( ) = -1 ∑ = 3 ( ) , = 1, … , -1 . ( 37 
)
This yields

̇ ( ) ≤ -1 ∑ = - 2 4 ( ) 2 3 + ( ) + 5 
∑ =1 Υ + Ω , (38) 
where (skipping the dependence of Υ in )

Υ 1 = -1 ∑ = 2 ̄ 2 +1 ( ) 2 3 
+1 ( +1 ) 1 [START_REF] Tornambè | Use of asymptotic observers having-high-gains in the state and parameter estimation[END_REF] ,

Υ 2 = -1 ∑ = +1 4 3 -1 ̃ -1 ( -1 ) 1 3 + -1 ( -1 ) , Υ 3 = -1 ∑ = 2 ̃ 1 ( 2 0 + 3 0 ) , Υ 4 = -1 ∑ = 2 ̃ 2 -1 ∑ = ( ) 1 3 ( ) 2 3 
,

Υ 5 = ̃ 1 -1 ∑ = -1 ∑ = 2 3 ( ) 2 3 + 

( ) .

with 0 = 0, = 0, and Ω defined as

Ω = ⎧ ⎪ ⎨ ⎪ ⎩ 0 , = 1 4 3 -1 ̃ -1 ( -1 ) 1 3 + -1 ( -1 ) + ̃ 1 -1 ∑ = -1 ∑ =1 2 3 
( )

2 3 + ( ) + -1 ∑ = 2 ̃ 2 -1 ∑ =1 ( ) 1 3 ( ) 2 3 
, > 1

Note that with Young inequality we have for some positive real numbers ̄ 12 , ̄ , ̄ 22 , independent of 's, the following inequalities:

Υ 1 ⩽ -1 ∑ = 8 +1 ( +1 ) + -1 ∑ = ̄ 2 ( ) 3 2 +1 3 , Also Υ 2 ⩽ -1 ∑ = +1 4 3 -1 ̃ -1 ( -1 ) + -1 ∑ = +1 4 3 -1 ̃ -1 ( -1 ) 1 3 ⩽ -1 ∑ = +1 4 3 -1 ̃ -1 ( -1 ) + -1 ∑ = +1 4 3 -1 ̃ -1 ( -1 ) 2 3 + -1 ∑ = +1 4 4 3 -1 ̃ ⩽ -1 ∑ = +1 ̃ 4 3 -1 -1 ( -1 ) + -1 ( -1 ) 2 3 + -1 ∑ = +1 4 4 3 -1 ̃ , Also, Υ 4 = ̃ 2 -1 ∑ = -1 ∑ = ( ) 1 3 2 ( ) 2 3 ⩽ ̃ 2 -1 ∑ = -1 ∑ = 3 ( ) + 3 ( ) ⩽ ̃ 2 -1 ∑ = 3 ( ) Finally Υ 5 = ̃ 1 -1 ∑ = -1 ∑ = +1 2 3 ( ) 2 3 + ( ) . Hence, ̇ ( ) ≤ -1 ∑ 
= - 2 4 + 8 + ̄ 2 3 2 +1 3 + ̃ 4 +1 3 + ̃ 2 3 + ̃ 1 -1 ∑ = +1 2 3 ( ) 2 3 + ( ) + -1 ∑ 
= 2 ̃ 1 ( 2 0 + 3 0 ) + -1 ∑ = +1 4 4 3 -1 ̃ + Ω , ( 39 
)
We now define -1 > 1 sufficiently large such that

- 2 4 -1 + 8 + ̃ 2 3 -1 ⩽ - 4 4 -1
and then, recursively, -2 ≥ 1, -3 ≥ 1, ... , 1 ≥ 1 sufficiently large such that

- 2 4 + 8 + 3 2 +1 3 + ̄ 4 +1 3 + ̃ 2 3 + ̃ 1 -1 ∑ = +1 2 3 ⩽ - 4 4 (40a) 8 -1 ∑ 
= 2 ̃ 1 ( 2 0 + 3 0 ) + -1 ∑ = +1 4 4 3 -1 ̃ < 6 3 8 3 2 (40b)
by exploiting the domination of 4 in (40a) and of 6 in (40b). Hence, it yields for each = 1, … , -1,

̇ ( ) ⩽ - 4 ( ) + -1 ∑ = 2 ̃ 1 ( 2 0 + 3 0 ) + -1 ∑ = 4 2 3 -1 + Ω . ( 41 
)
Take > 1 and assume there exists -1 > 0 such that

1 ( 1 ( )) = 2 ( 2 ( )) = ⋯ = -1 ( -1 ( )) = 0 , ∀ ⩾ -1 (42) 
this implies that Ω = 0 for all ⩾ -1 . Consequently, this implies that along the solution

̇ ( ) ⩽ - 4 ( ) + -1 ∑ = 2 ̃ 1 ( 2 0 + 3 0 ) + -1 ∑ = +1 4 2 3 -1 . ( 43 
)
With (40b), there exists a time ̄ -1 > 0 (depending on | ( -1 )| and the parameters) such that

( ( )) ⩽ 8 -1 ∑ = 2 ̃ 1 ( 2 0 + 3 0 ) + -1 ∑ = +1 4 4 3 -1 ̃ ⩽ 6 3 8 3 2 , ∀ ⩾ ̄ -1 > 0 (44)
and therefore

+1 ( +1 ( )) ⩽ 6 3 8 3 2 3 +1 , ∀ ⩾ ̄ -1 > 0. (45) 
Consequently, with Proposition 2, there exists a time (depending on | ( ̄ -1 )| and the parameters) such that

1 ( 1 ( )) = 2 ( 2 ( )) = ⋯ = ( ( )) = 0 , ∀ ⩾ . ( 46 
)
Observing that Ω 1 = 0, and using the same reasoning for = 1, we prove that 1 ( 1 ( )) = 0 after some time, depending on | (0)| and the parameters ( , 1 , … , -1 ), and then by recursion, propagate to obtain ( ( )) = 0 for all = 1, … , -1 after a certain time, whose bound depends on the bound of | (0)| and the parameters ( , 1 , … , -1 ).

Proof of Theorem 3

From Theorem 2, there exists such that for any initial conditions 0 ∈  0 , ̂ 0 ∈ 0 ,

̂ ( ) = ( ) , ̂ ( +1) ( ) = +1 ( ) ∀ ⩾ , ∀ = 1, … , -1
The uniformity of with respect to the initial conditions comes from the fact that it only depends on (0) which is bounded for 0 ∈  0 , ̂ 0 ∈ 0 and the given gains.

Let us now denote  a compact set of ℝ such that for all 0 ∈  0 , ̂ 0 ∈ 0 ,

( ) ∈  and 1 , ̂ 12 , ̂ 23 , … , ̂ ( -1) ( ) ∈  ∀ ∈ [0, ] .
By continuity of , there exists a class- function 0 such that

| ( , 2 , … , ) -( , ̂ 2 , … , ̂ )| ⩽ 0 ∑ =1 | -̂ | ∀( , ̂ ) ∈  × . (47) 
Therefore, we actually have

| ( , 2 , … , ) -( , ̂ 2 , … , ̂ )| ⩽ min 0 , 0 ∑ =1 | -̂ | -1 ∑ =1 | -̂ | + 1 ∑ =1 | -̂ | ⩽ ∑ =1 | -̂ | + 1 ∑ =1 | -̂ | ∀( , ̂ ) ∈  ×  (48) 
where is a class  function that is globally bounded by 0 . Now reusing (32) with this new bound leads to

̇ ( ) ⩽ - 2 ( ) 2 3 + ( ) + 3 -1 ̃ -1 ( -1 ) 1 3 + -1 ( -1 ) + 1 ⎡ ⎢ ⎢ ⎢ ⎣ ∑ -1 =1 | | | ( +1) | | | 2 2 + ∑ -1 =1 | | | ( +1) | | | 3 3 ⎤ ⎥ ⎥ ⎥ ⎦ + ̃ 1 -1 ∑ =1 3 2 ( ) 2 3 + ( ) + ⎛ ⎜ ⎜ ⎝ 2 1 -1 ∑ =1 2 1 3 ( ) 1 3 + 2 +1 2 1 3 +1 ( +1 ) 1 3 ⎞ ⎟ ⎟ ⎠ ( ) 2 3 , ( 49 
)
for all ∈ [0, ], namely

̇ ( ) ⩽ - 2 ( ) 2 3 + ( ) + 3 -1 ̃ -1 ( -1 ) 1 3 + -1 ( -1 ) + 1 ⎡ ⎢ ⎢ ⎢ ⎣ ∑ -1 =1 ( ) 1 3 2 2 + ∑ -1 =1 ( ) 1 3 3 3 ⎤ ⎥ ⎥ ⎥ ⎦ + ̃ 1 -1 ∑ =1 3 2 ( ) 2 3 + ( ) + ⎛ ⎜ ⎜ ⎝ 2 1 -1 ∑ =1 2 1 3 ( ) 1 3 + 2 +1 2 1 3 +1 ( +1 ) 1 3 ⎞ ⎟ ⎟ ⎠ ( ) 2 3 . (50)
Hence, employing (40a), the function defined in (37) satisfy for each = 1, … , -1, and for ∈ [0, ]

̇ ( ) ⩽ - 4 ( ) + -1 ∑ = 2 ̃ 1 ⎛ ⎜ ⎜ ⎝ -1 ∑ =1 ( ) 1 3 2 + -1 ∑ =1 ( ) 1 3 3 ⎞ ⎟ ⎟ ⎠ + -1 ∑ = +1 4 3 -1 ̃ -1 ( -1 ) 1 3 --1 ( -1 ) 2 3 
+ Ω 1 ( 1 ), … , -1 ( -1 )

⩽ - 4 ( ) + 1 ( 1 ), … , -2 ( -2 ) + Ω 1 ( 1 ), … , -1 ( -1 ) . ( 51 
)
where is globally bounded by

1 ( 1 ), … , -2 ( -2 ) ⩽ -1 ∑ = 2 1 ( 2 0 + 3 0 ) + -1 ∑ = +1 4 3 -1 ̃ 4 < 6 4 64 3 12 (52) 
according to (40b), and where we recall that Ω is a continuous map that vanishes when 1 ( 1 ), … , -1 ( -1 ) = 0 for > 1 and Ω 1 = 0. Similarly, (50) can be rewritten as

̇ ( ) ⩽ - 2 ( ) 2 3 + ( ) + 2 +1 2 1 3 +1 ( +1 ) 1 3 
( )

2 3 + Ω ′ ( 1 ( 1 ), … , -1 ( -1 )) ⩽ - 2 ( ) 2 3 + ( ) + 2 1 2 1 3 ( ) 1 3 
( )

2 3 + Ω ′ ( 1 ( 1 ), … , -1 ( -1 )) (53) 
where Ω ′ is a continuous map that vanishes when 1 ( 1 ), … , -1 ( -1 ) = 0 for > 1 and Ω ′ 1 = 0. We will now recursively use the small-gain-like technical Lemma 2 on ( , ), starting from ( -2 , -2 ) up to ( 1 , 1 ), in order to prove that 1 (and thus all the ) is ISS with respect to the initial error (0). From there, stability will follow.

Let us start with = = -2. The key property that we are going to exploit is that the derivative of -2 in (51) depends only on , = 1, … , -2, and not on -1 . More precisely, from (51), ( 52), (53), and by continuity on compact sets, there exist class- functions -2 , -2 such that -2 verifies

-2 ( ) < 6 -2 4 64 3 2 ∀ ( 54 
)
and for all ∈ [0, ],

̇ -2 ( ) ⩽ - 4 -2 ( ) + -2 -2 ( -2 ) + -2 -3 ∑ =1 ( ) ̇ -2 ( ) ⩽ - 2 -2 -2 ( -2 ) 2 3 + -2 ( -2 ) + 2 1 -2 1 3 -2 ( ) 1 3 -2 ( -2 ) 2 3 + -2 -3 ∑ =1 ( )
To apply Lemma 2, the small-gain condition (B10) writes By extension by continuity, this implies that 2  → ⌊ -1 ( 2 ) ⌉ 1 2 is 1 .

A.3 Finite time stability for the error system

In this section we consider the set valued vector field

( ) = 2 -1 ( 1 ) -2 ( 1 ) (A3)
where 1 and 2 are given in (11). We show in the following proposition that when is selected sufficiently large, the function defined in ( 13) is a Lyapunov function for this vector field (see also [START_REF] Cruz-Zavala | Homogeneous high order sliding mode design: a Lyapunov approach[END_REF] for the homogeneous case).

Proposition 3. There exists a positive real number * such that, for all > * , there exists a positive real number ,0 such that the function given in (13) satisfies max ( ) ( ) ≤ -,0 ( ) + ( )

2 3
, ∀ ∈ ℝ 2 .

(A4)

Proof: The proof is inspired from Theorem 3.1 in [START_REF] Andrieu | Homogeneous approximation, recursive observer design and output feedback[END_REF] . Note that

( ) ( ) ⊂ { 1 ( 1 , 2 ) + 2 ( 1 , 2 )} , ( A5 
)
where 1 ( , 2 ) = -(Sign( ( )) + ( ))

⎛ ⎜ ⎜ ⎜ ⎝ 3 ⌊ 2 ⌉ 2 + ∫ -1 ( 2 )
⌊ -1 ( 2 )

⌉ 1 2 + ⌊ -1 ( 2 ) ⌉ 2 ′ ℎ ⎞ ⎟ ⎟ ⎟ ⎠ and 2 ( , 2 ) = 2 -( ) ⌊ ⌉ 1 2 - ⌊ -1 ( 2 ) ⌉ 1 2 + ⌊ ⌉ 2 - ⌊ -1 ( 2 ) ⌉ 2 .
Furthermore, that there exists a continuous single-valued map ̃ 1 ∶ ℝ 3 → ℝ such that 1 ( , 2 ) = { ̃ 1 ( , 2 , ) , ∈ sign( ( ))} . Define 0 = (2, 1), ∞ = (1, 1). 2 and ̃ 1 are both homogeneous in the bi-limit with weights 0 , ∞ and ( 0 , 0), ( ∞ , 0) respectively, with same degrees 0 = 2, ∞ = 3 and with homogeneous approximations

̃ 1,0 ( , 2 , ) = -3 ⌊ 2 ⌉ 2 + -⌊ 2 ⌉ 2 , ̃ 1,∞ ( , 2 , ) = -3 ⌊ 2 ⌉ 2 + ⌊ ⌉ 2 -⌊ 2 ⌉ 2 , and 2,0 ( , 2 ) = -2 -⌊ ⌉ 1 2 2 , 2,∞ ( , 2 ) = 2 - ⌊ ⌉ 2 -⌊ 2 ⌉ 2 .
Moreover, is an increasing function and 2 ⩽ 0, with 2 = 0 only if 2 = ( ). Note also that if 2 = ( ), 1 ( , 2 ) = -3| 2 | 2 -3| 2 | 3 < 0. The same holds for the homogeneous approximation functions given above when ∈ Sign( ( )). Employing the technical Lemma 1, it yields the existence of ⋆ > 0 such that for all > ⋆ , max ∈sign( ( )) ̃ 1 ( , 2 , ) + 2 ( , 2 ) < 0 , ∀ ( , 2 ) ∈ ℝ 2 ⧵ {0} .

It thus follows that max ( ) ( ) < 0 , ∀ ( 1 , 2 ) ∈ ℝ 2 ⧵ {0}, and the same for its homogeneous approximation. Following the proof of Corollary 2.15 in [START_REF] Andrieu | Homogeneous approximation, recursive observer design and output feedback[END_REF] employed with Lemma 1, it implies that there exists > 0 such that

max ( ) ( ) ≤ - ( 1 , 2 ) - ( 1 , 2 ) 2 3 . 
□

FIGURE 2

 2 FIGURE 2Behaviour of system (56). First graph: 1 (in red) and 1 (in dash-dotted blue). Second graph: 2 (in red) and 2 (in dash-dotted blue).

FIGURE 3

 3 FIGURE 3 Convergence of the estimation errors of observer (21). First graph: 1 -̂ 11 . Second graph: 2 -̂ 12 (in red) and 2 -̂ 22 (in dash-dotted blue). Third graph: 3 -̂ 23 (in red) and 3 -̂ 33 (in dash-dotted blue). Fourth graph: 4 -̂ 34 .

TABLE 2

 2 Values of the convergence time and asymptotic estimation errors of observer

This condition may be relaxed by supposing that each function in (1) satisfies an incremental homogeneous bound, see[START_REF] Bernard | Observers for a non-Lipschitz triangular form[END_REF] 

We refer to the definition of semi-outer continuity given in[START_REF] Filippov | Differential equations with discontinuous right-hand sides[END_REF] .

Actually, a more general choice consists in selecting ( ) ∶= , with 1 , 2 > 0. Without loss of generality from the conceptual point of view, and in order to simplify the proofs, here and in the following we select 1 = 2 = . Nevertheless, it has to be recalled that the choice of different 's may have an important impact on the sensitivity to measurement noise.

Here and all along the paper, ̇ ( , , ) is the upper right Dini derivative of the function ( ) along any absolutely continuous solution of the associated dynamical system (here it is related to any solutions of (12)).

Note that this convention is chosen differently from the one in[START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF] ,[START_REF] Wang | High-gain observers with limited gain power for systems with observability canonical form[END_REF] .

Recall that in the definition ofstability for dynamical (time-varying) systems, the value of may be not uniform in the initial time 0 . When is independent of 0 , then we refer to uniform stability. Compare Definitions

[START_REF] Wang | High-gain observers with limited gain power for systems with observability canonical form[END_REF].1 and 7.2 in[START_REF] Yoshizawa | Stability theory by Liapunov's second method[END_REF] . In a similar way, in our context, the value of in Theorem 3 is not uniform in the initial conditions, namely it depends on the compact sets  0 , 0 .

which holds accroding to (54). Therefore, according to Lemma 2, there exists a class- function -2 such that for all ∈ [0, ], Then, since ( ) ⩽ +1 ( ) for all ≥ + 1, we deduce from (51), ( 52), (53), that there exist class- functions , such that verifies ( )

Applying Lemma 2 again, we thus get that

for some class- function . By recursion, we thus obtain for all ∈ [0, ]

with 1 of class-. It follows that for any > 0, there exists > 0 such that

Since ( ) = 0 for all ⩾ , we deduce the stability property.

NUMERICAL EXAMPLE

As an illustration, we consider a controlled two-mass spring damper system on a horizontal plane described by

in which is the position of each system with respect to its equilibrium, , are its velocity and mass, respectively, and ( ) is a known external input force. We suppose that the masses are connected by a spring with stiffness coefficient and subject to Coulomb frictions described as in [START_REF] Armstrong-Hélouvry | A survey of models, analysis tools and compensation methods for the control of machines with friction[END_REF][START_REF] Beerens | Reset integral control for improved settling of PID-based motion systems with friction[END_REF] by the set-valued maps ⇉ Ψ ( ),

in which is the static friction and is the viscous contribution with viscous friction coefficient . More precisely, when = 0 and the spring force

1 , the dry friction compensates exactly the spring force which is in the interval [-, ], so that ̇ 1 = 0 and the mass stays put.

In our context, we suppose that the position of the first mass 1 is measured and we are interested in estimating the position and the velocity of both objects. Due to the presence of the sign and the differential inclusion, 2 , 2 in (55) are not observable for all solutions evolving in the set since for all ( 1 , 1 , 2 , 2 ) ∈  we have ̇ 1 constantly equal to zero, although 2 and 2 may be different from zero. Therefore, from 1 we cannot observe 2 , 2 . Hence, in the following we use an approximate model of the function Ψ in (56) that does not destroy the observability properties of the system, given by

with ∈ (0, 1), and sat 1 ( ) = max(min( , 1), -1) .

Note that for → 0, we recover the friction model (56). By selecting

), model ( 55), (57), reads therefore

Due to the definition of Ψ in (57), functions 2 , 4 are continuous and satisfy Assumption 1 with

It can be noticed that for the class of system (58) none of existing techniques [START_REF] Levant | Robust exact differentiation via sliding mode technique[END_REF][START_REF] Andrieu | Homogeneous approximation, recursive observer design and output feedback[END_REF][START_REF] Bernard | Observers for a non-Lipschitz triangular form[END_REF][START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF][START_REF] Cruz-Zavala | Homogeneous high order sliding mode design: a Lyapunov approach[END_REF][START_REF] Fridman | Observation of linear systems with unknown inputs via high-order sliding-modes[END_REF] can be employed when 1 > -2 -1 = 2 3 since the system (58) is not homogeneous. The approach of [START_REF] Floquet | Super twisting algorithm-based step-by-step sliding mode observers for nonlinear systems with unknown inputs[END_REF] , on the other hand, would now allow to achieve global convergence. We follow therefore the design proposed in (21) obtaining an observer of total dimension 2 -2 = 6. Table 1 summarizes the values of parameters of system (58) and that of observer (21) used in the simulations. For the simulations, we considered the initial conditions of the plant (58) as (0) = (3, -4, 6, -8), with input selected as ( ) = 3 for ∈ [1, 3] and ( ) = 0 otherwise. Figure 2 shows the behaviour of the plant (55) with (56). The observer ( 21) is initialized at the origin. Simulations have been done in Matlab-Simulink 2017b with fixed-step size 1 -6 and solver "ode8". Figure 3 shows the behaviour of the estimation errors for the first 5 seconds, while Table 2 summarizes the convergence time and asymptotic values of the estimation errors. It can be noticed that due to the filtering properties of the cascade induced by the linear gains, the effect of the chattering induced by the Sign(⋅) function in the first-block is attenuated through the successive two blocks. As a result, for the states 2 , 3 , the estimate ̂ 22 , respectively ̂ 33 , has a better asymptotic behaviour compared to ̂ 12 , respectively ̂ 23 . By increasing the values of , the convergence time can be reduced, but the chattering effect is amplified. Simulations suggests that a further development of this work is to investigate how to reduce the effect of chattering for large systems.

CONCLUSIONS

In this paper, we presented a new observer design for lower-triangular systems. The proposed design allows to obtain a global finite time convergent observer when the nonlinearity are affinely bounded. The proposed design generalizes a certain number of usual observer design techniques, since its structure combines standard high-gain observers, sliding mode observers (denoted also as generalized super-twisting algorithm) and interconnection of second-order observers (denoted as low-power high-gain observers). A future development is that of quantifying the effect of measurement noise and chattering in the proposed algorithm.

A HOMOGENEOUS IN THE BI-LIMIT CORRECTION TERMS

The objective of this appendix is to establish Proposition 1. This proof is based on the use of the homogeneous in the bi-limit framework and is obtained in several steps.

A.1 Homogeneous in the bi-limit framework

The particular feature of the bound ( 5) is that, for small values of the error, it is bounded by a constant, but for large values, it is Lipschitz. Homogeneity in the bi-limit is a property that has been introduced in [START_REF] Andrieu | Homogeneous approximation, recursive observer design and output feedback[END_REF] . It characterizes functions which have two (homogeneous) distinct behaviors at infinity and around the origin. Typically, the set-valued mappings 1 and 2 given in (11) have two different behaviors. Around the origin, ( 1 , 2 ) are (almost) equal to

) are homogeneous approximating vector fields corresponding to the sliding mode observer and the high-gain observer respectively, and = ( 1 , 2 ) is a homogeneous in the bi-limit vector field. More precisely, we say that ∶ ℝ → ℝ is bi-homogeneous (or homogeneous in the bi-limit) with weights 0 ∈ ℕ and ∞ ∈ ℕ , degrees 0 and ∞ , and approximating functions 0 and ∞ if

• 0 and ∞ are homogeneous with weights 0 and ∞ , and degrees 0 and ∞ respectively.

• for every compact set which doesn't contain the origin, every > 0, there exists 0 > 0 and ∞ > 0 such that for all ∈ ,

where we denote ⋅ = ( 1 1 , … , ). To simplify we say that is bi-homogeneous with triples ( 0 , 0 , 0 ) and ( ∞ , ∞ , ∞ ). As for a vector field = ∑ , it is bi-homogeneous with triples ( 0 , 0 , 0 ) and ( ∞ , ∞ , ∞ ) if each is bi-homogeneous with triples ( 0 , 0 + 0, , 0, ) and ( ∞ , ∞ + ∞, , ∞, ). Homogeneity in the bi-limit has been studied in [START_REF] Andrieu | Homogeneous approximation, recursive observer design and output feedback[END_REF] only when there are functions with homogeneous degree larger than 0. So the case of Sign (set-valued) function has not been considered. However, by extending these tools, it is possible to include this case.

A.2 The function is 1

In this section, it is shown that the function defined in (13) is 1 . Note that this is obtained if the function 2  → ⌊ -1 ( 2 ) ⌉ 1 2 is 1 . First of all, this function is 1 every where expect maybe at 0. By [START_REF] Andrieu | Homogeneous approximation, recursive observer design and output feedback[END_REF]Proposition 2.11] , -1 is homogeneous in the 0-limit with homogeneous approximating function 2  → 2 2 . Moreover, by definition of , we have

Moreover, for all 2 ≠ 0, it yields

A.4 Proof of Proposition 1

Let > * where * is given in Proposition 3. Along any solution of system (12), we have

.

Attributing to the same homogeneous weights as 1 , and to 1 the same homogeneous weights as 2 , is homogeneous in the bi-limit and, according to Proposition 3, we obtain

Applying the technical Lemma 1 with

shows that there exists > 0 such that

Finally, we can observe that 2 ( ) is homogeneous of degree 2, so that there exists 2 > 0 such that

, concluding the proof.

B TECHNICAL LEMMAS

Lemma 1. Let ∶ ℝ → ℝ be homogeneous in the bi-limit, with weights 0 and ∞ , degrees 0 and ∞ , of the form

for some continuous maps ̃ ∶ ℝ +1 → ℝ, and ∶ ℝ → ℝ such that, for all ∈ ℝ , for all > 0

and such that ̃ is homogeneous in the bi-limit, with weights ( 0 , 0) and ( ∞ , 0), degrees 0 and ∞ , and approximating functions ̃ 0 and ̃ ∞ . Consider a continuous function ∶ ℝ → ℝ + that is homogeneous in the bi-limit, with same weights and degrees and with approximating functions 0 and ∞ such that ∀ ∈ ℝ ⧵ {0}, ∀ ∈ Sign( ( ))

Then there exists a real number * such that, for all ≥ * , and for all in

Proof: First by homogeneity of the approximations, according to [START_REF] Bernard | Observers for a non-Lipschitz triangular form[END_REF]Lemma 4] , there exist * 0 > 0 and * ∞ > 0, * 0 > 0 and * ∞ > 0, such that for all 0 ≥ * 0 and ∞ ≥ * ∞ , and for all in ℝ ⧵ {0}, and for all ∈ Sign( ( ))

Define 1 = max{ 0 , ∞ } and 1 = min{ 0 , ∞ }. Reproducing arguments of [START_REF] Andrieu | Homogeneous approximation, recursive observer design and output feedback[END_REF]Appendix C] , we next prove that there exists a compact set such that for all ≥ 1 ,

Indeed, the bi-homogeneity of ̃ and means that there exist 0 > 0, ∞ > 0 such that, denoting the homogeneous norm

, we have the following properties.

• For all ∈ (0, 0 ], for all such that | | 0 , 0 = 1, and for all ∈ Sign( ( )),

⩽ -2 , using (B6), and therefore,

, and for all ∈ Sign( ( )),

which implies for ≥ 1 in the same way

Therefore, by defining the compact set

Finally, assume that for all ≥ 1 , there exists ≠ 0 such that ( ) -( ) ≥ 0. Then, we can build a sequence ( , ) of elements of × [-1, 1] such that ̃ ( , ) -( ) ≥ 0 with ∈ Sign( ( )) for all ∈ ℕ * . Since is compact, there exists a subsequence which converges to ( * , * ) ∈ × [-1, 1].

Taking the limit and using the continuity of ̃ , necessarily implies that ( * ) = 0 and ̃ ( * , * ) ≥ 0. This is impossible if * ∈ Sign( ( * )). But either ( * ) ≠ 0, and * = Sign( ( * )) by continuity of , or ( * ) = 0 and * ∈ [-1, 1] = Sign( ( * )). This concludes the proof. □ Lemma 2. Let ( , ), two positive real numbers and ( , ) two class- functions verifying

There exists a class- function such that for any two locally integrable functions

the following inequality is satisfied

Lemma 2 looks like a small-gain theorem but with the following two differences:

• due to the presence of sup ∈[0, ] ( ) instead of ( ) in (B11), we do not prove ISS but simply that is "stable" with respect to the initial conditions and the maximal perturbations ;

• in (B12), taking = 0, we have + ( ) < 0 whenever > ( ( )), which is not of the form ( ) > ( ( )) with of class- as in the standard small-gain theorem.

Hence, the small-gain proof needs to be adapted. Proof: Let be a class- function that is 1 on (0, +∞) and verifies

which is always possible thanks to (B10). Define

Let be in [0, ), we have

• if ( ) < sup ∈[0, ] ( ) , then ( ) ≠ 0, ( ) = (sup ∈[0, ] ( )), and we have the following cases :

if sup ∈[0, ] ( ) ≠ ( ), then, by continuity of there exists 1 such that ( )

and thus, + ( ) = 0.

if sup ∈[0, ] ( ) = ( ) and + ( ) ⩽ 0, to show that + sup ∈[0, ] ( ) ⩽ 0, let us assume the opposite and the existence of > 0 such that + sup ∈[0, ] ( ) > > 0. This property being true for all > 0, it yields + sup ∈[0, ] ( ) ⩽ + ( ). Thus, since is an increasing function,

+ ( ( )) ( ) Proof: Assume there exists 1 such that the former property is violated. This implies that which contradicts [START_REF] Rouche | Stability theory by Liapunov's direct method[END_REF]Theorem 2.1,Appendix I,p 347] . □