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Abstract

High-gain observers and sliding mode observers are two of the most common
techniques to design observers (or differentiators) for lower triangular nonlinear
dynamics. While sliding mode observers can handle globally bounded nonlinear-
ities, high-gain linear techniques can deal with globally Lipschitz nonlinearities.
To gain in generality and avoid the usual assumption that the plant’s solutions are
bounded with known bound, we propose here to mix both designs in the more general
case where the nonlinearities satisfy a global incremental affine bound. We inspire
from the recently-developed low-power high-gain observer technique, which relies
on the interconnection of several second order high-gain observers. Adding sliding-
mode correction terms into this low-power structure enables to guarantee global
convergence of the estimation error in finite-time with gains depending only on the
parameters of the incremental affine bound of the nonlinearities. The estimation error
is also proved to be uniformly stable along solutions starting from any compact sets
of initial conditions.
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1 INTRODUCTION

In this paper our aim is to design a state observer for a system in the form

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ẋ1 = x2 + �1(x1, t)
ẋ2 = x3 + �2(x1, x2, t)

⋮
ẋn = �n(x1,… , xn, t)
y = x1

(1)

where x ∈ ℝn is the state, y ∈ ℝ is the measured output, and the functions �i ∶ ℝn ×ℝ → ℝ are continuous. This lower trian-
gular form typically arises when considering (uniformly) observable (controlled) nonlinear systems (see [1] or more recently [2]).
Designing an observer for this particular nonlinear dynamical system has been deeply studied in the last three decades. Two
main approaches can be distinguished.
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The first one assumes global Lipschitz bound conditions on the nonlinearities. More precisely, the functions �i are supposed
to satisfy for j = 2,… , n

|

|

|

�j(y, x2,… , xj , t) − �j(y, x̂2,… , x̂j , t)
|

|

|

⩽ l1
j
∑

i=2
|xi − x̂i| ,∀(y, x, x̂, t) ∈ ℝ2n+2. (2)

In this case, the very popular high-gain approach can be followed, see, for instance, [3], [4], [1], [5] and references therein. The
observer gain is then composed of a linear correction term which is amplified by a high-gain parameter that is selected large
enough compared to the Lipschitz constant. Following this route, the obtained observer is global and its convergence rate is
exponential. An alternative design, based on the interconnection of two-order high-gain observers, has also been recently pro-
posed in [6,7,8]. Note that if the plant’s trajectories evolve in a compact set C , it is enough to check the bound (2) for x, x̂ in C
and saturate �j outside of C in the observer.
The second approach, initiated in [9], considers finite time differentiators, see also [10]. Employing set-valued homogeneous

correction terms, in [9], a sliding mode observer for (1) is obtained in the particular case in which the functions �i satisfy
{

�j(y, x2… , xj , t) = �j(y, t) , j = 2,… , n − 1
|�n(y, x2… , xn, t) − �n(y, x̂2… , x̂n, t)| ⩽ l0

,∀ (y, x̂, x, t) ∈ ℝ2n+2. (3)

The observer gain is then a homogeneous set-valued vector field and allows to obtain convergence in finite time. The only
constraint on the function �n is that of being bounded. On the other hand, the other functions �j , j < n must depend only on
known variables1. If they depends on unknown state components, but satisfy

|

|

|

�j(y, x2,… , xj , t) − �j(y, x̂2,… , x̂j , t)
|

|

|

⩽ l0 ,∀(x, y, x̂, t) ∈ C ×ℝ ×ℝn ×ℝ, j = 2,… , n − 1, (4)

where C is a known compact set in ℝn, it is possible to follow the design proposed in [12], consisting of a cascade of second
order sliding mode observers, each designed as in [9]. The resulting observer (see also [13,14,11]) has finite time convergence for
state solutions of (1) remaining in the compact set C .
In this paper, we unify these three frameworks into a single global design, by considering the case in which the functions �j

satisfy the following assumption.

Assumption 1. The function �1 is continuous and for each j in 2,… , n, the function �j is continuous and satisfies a lower
triangular incremental affine bound. More precisely, there exist positive real numbers l0 and l1 such that

|

|

|

�j(y, x2,… , xj , t) − �j(y, x̂2,… , x̂j , t)
|

|

|

⩽ l0 + l1
j
∑

i=2
|xi − x̂i| , ∀ (y, x2,… , xj , x̂2,… , x̂j , t) ∈ ℝ2j . (5)

It can be checked that Assumption 1 encompasses nonlinearities satisfying (2), (3) or (4). But none of the existing observers
can be applied under Assumption 1. Note that a simplemotivation to consider such class of nonlinear systems comes from the fact
that for controlled input affine systems, the observability canonical form usually leads to continuous non-lipschitz nonlinearities,
see for instance [2].
The objective of this work is therefore that of proposing a new methodology for the state estimation of systems (1) in

which each function �j satisfies Assumption 1. For this, we will follow the interconnection design of second order high-gain
observers, low-power high-gain observer, proposed in [6], in which each block will be replaced with a more general second order
sliding-mode observer, also called generalized super-twisting algorithm, as proposed in [15], where both sliding-mode and lin-
ear corrections terms are mixed. The motivation is indeed to handle both constant and Lipschitz bounds in the nonlinearities
according to (5). As explained in [15], mixing linear and sliding-mode correction terms destroys in general the homogeneity of
the system and homogeneous Lyapunov functions can no longer be used, although some exception can be found in [11,16]. Some
non-homogeneous Lyapunov functions have nevertheless been designed in [17,18] for the second-order generalized super-twisting
algorithm. But in this paper, because of the presence of perturbations verifying (5) for each i = 1,… , n, we cannot follow the
aforementioned approaches. In particular, the main proofs follow the bi-homogeneity paradigm developed in [19]. Indeed, the
super-twisting algorithm somehow contains two homogeneities: the linear one, dominating and accelerating convergence when
the error is large, and the sliding mode one, dominating and providing finite-time convergence when the error becomes small.
In [19], this property is exploited in the so-called “homogeneity in the bi-limit framework” and provides a constructive design of

1This condition may be relaxed by supposing that each function �j in (1) satisfies an incremental homogeneous bound, see [11]



Andrieu ET AL 3

robust Lyapunov functions. Such a Lyapunov function enables to prove the global finite-time asymptotic stability of the gen-
eralized second-order super-twisting algorithm in presence of nonlinearities verifying (5) through high-gain. A non-standard
interconnection analysis between the second-order blocks then allows to build a global finite-time observer for the nth order
system (1).
The paper is organized as follows. First, in Section 2, we analyze the generalized second-order high-gain super-twisting

observer and we provide an ISS-result with respect to external disturbances, based on a bi-homogeneous Lyapunov function.
Then, the observer for the n-th dimensional system is presented in Section 3 and the main results about convergence and stability
of the proposed algorithm are discussed. The proofs are given in Section 4. A numerical example is presented in Section 5 and
conclusions are derived in Section 6. Finally, some technical results are postponed to the Appendix.

Notations/Definitions
ℝ denotes the real numbers and ℝ+ = [0,∞).

• Sign is the set-valued map defined on ℝ by

Sign(s) =

⎧

⎪

⎨

⎪

⎩

{−1} s < 0
[−1, 1] s = 0
{1} s > 0

. (6)

• for (s, a) in ℝ2, ⌊s⌉a = Sign(s)|s|a.

2 OBSERVER FOR SECOND ORDER SYSTEMS

2.1 Mixed sliding mode observers
In this section, an observer is designed for system (1) for n = 2 when �1 and �2 satisfy Assumption 1. The system reads as

{

ẋ1 = x2 + �1(x1, t)
ẋ2 = �2(x1, x2, t)

, y = x1 . (7)

The observer we consider is in the form
{ ̇̂x1 = x̂2 + �1(y, t) − Lk1(x̂1 − y)

̇̂x2 ∈ �2(y, x̂2, t) − L2k2(x̂1 − y)
, (8)

where k1 ∶ ℝ → ℝ is a continuous function, k2 ∶ ℝ ⇉ ℝ is a set valued map which is outer semi-continuous with convex and
compact values2, and L is a positive parameter to be selected large enough and referred to as high-gain parameter, according to
standard nomenclature.
Depending on the mappings (k1, k2), this observer may be the usual high-gain observer or the sliding mode observer.

• If we select
k1(s) ∶= �s , k2(s) ∶= �s ,∀s ∈ ℝ , (9)

where � is a positive real number3, this is the usual high-gain observer. Picking L sufficiently large compared to l1, the
system (8) is an observer for system (7) when �2 satisfies the Lipschitz bound (2).

• If we consider the standard sliding mode observer given by [9], we select

k1(s) ∶= ⌊�s⌉
1
2 , k2(s) ∶= Sign(s) ,∀s ∈ ℝ , (10)

where � is a positive real number selected sufficiently large. PickingL sufficiently large compared to l2, (8) is an observer
for system (7) when �2 satisfies the bounded assumption (3).

2We refer to the definition of semi-outer continuity given in [20].
3Actually, a more general choice consists in selecting ki(s) ∶= �is, with �1, �2 > 0. Without loss of generality from the conceptual point of view, and in order to

simplify the proofs, here and in the following we select �1 = �2 = �. Nevertheless, it has to be recalled that the choice of different �’s may have an important impact on
the sensitivity to measurement noise.
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• Finally, we can design a mixed sliding mode observer, also denoted as generalized super-twisting algorithm [15], by
selecting k1, k2 as

{

k1(s) ∶= q(�s)
k2(s) ∶= Sign(s) + q(�s)

, q(s) ∶= ⌊s⌉
1
2 + s . (11)

The last approach is of particular interest since it addresses the case in which �2 satisfies Assumption 1, while the first two
methodologies cannot be employed. From there, it yields the following theorem (which is similar to [21, Theorem 12.1.]).

Theorem 1. Assume system (7) satisfies Assumption 1. There exists a positive real number �∗ such that for all � > �∗, there
exists L, such that for all L > L, the observer (8)-(11) ensures finite time and stable estimation of system (7). More precisely,
the set {x = x̂} is globally and asymptotically stable and there exists a time T ≥ 0, depending on the initial condition, such that

x(t) = x̂(t) ∀ t ≥ T .

Before proving the previous result, we analyse in the following section a disturbed error system, and we give a proposition
that is instrumental to the proof of Theorem 1 and also to the n-th order observer design in Section 3.

2.2 Robustness analysis for a disturbed chain of integrator
In this subsection, the following system is considered

{

ė1 = e2 − k1(e1 +w) + v1
ė2 ∈ −k2(e1 +w) + v2

, (12)

where k1 and k2 are given in (11) and where v = (v1, v2) ∶ ℝ → ℝ2, w ∶ ℝ → ℝ are locally integrable time functions. System
(12) is obtained by considering the error dynamics e = x − x̂, with x, x̂ satisfying (7) and (8), respectively, L = 1, �2 = 0, and
disturbances w, v acting on the measured output y and on the state-dynamics, respectively.
Consider the function V ∶ ℝ2 → ℝ+ defined as

V (e1, e2) = |e2|
3 +

�e1

∫
q−1(e2)

⌊ℎ⌉
1
2 −

⌊

q−1(e2)
⌉
1
2 + ⌊ℎ⌉2 −

⌊

q−1(e2)
⌉2 dℎ , (13)

where q−1(s) is the C1 function satisfying
q−1(q(s)) = s.

The function V is well-defined and C1 (see Section A.2). Moreover, in the following proposition it is shown that V is an ISS
Lyapunov function for system (12).

Proposition 1. There exists �∗ ≥ 0 such that, for all � > �∗, there exist positive real numbers c, c, cV , cw, cv1 , cv2 , such that the
function V defined in (13) satisfies

c
(

|e1|
3
2 + |e1|

3 + |e2|
3
)

⩽ V (e) ⩽ c
(

|e1|
3
2 + |e1|

3 + |e2|
3
)

, (14)

and along the solutions4 of (12)

V̇ (e, v,w) ⩽ −cV
[

V (e)
2
3 + V (e)

]

+ cw
[

|w| + |w|3
]

+ cv1
[

|v1|
2 + |v1|

3] + cv2V (e)
2
3
|v2| . (15)

The proof of this proposition is given in Appendix A and relies on the use of homogeneous in the bi-limit framework and the
Lyapunov construction introduced in [22]. We see that the disturbancesw, v1 and v2 are treated in a different manner in equation
(15). Indeed, for cv2 |v2| < cV the Lyapunov function is decreasing. This highlights the dead-zone property of the stability margin
with respect to the disturbance |v2|, coming from the sliding mode part of the observer. This crucial property confers to those
observers their well-known robustness to bounded disturbance on their last line. However, as opposed to standard sliding mode
observer design, the Lyapunov inequality (15) also establishes an ISS property with respect to all disturbances. Finally, note that
Proposition 1 imposes a lower bound on �. This constraints could be removed employing another Lyapunov function as it has
been done in [23]. With the help of Proposition 1, we can now give the proof of Theorem 1.

4Here and all along the paper, V̇ (e, v,w) is the upper right Dini derivative of the function V (e) along any absolutely continuous solution of the associated dynamical
system (here it is related to any solutions of (12)).
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2.3 Proof of Theorem 1
Let e1 ∶= x̂1 − x1 and e2 ∶= x̂2 − x2. Along the solutions of (1)-(8), e is solution of

{

ė1 = e2 − Lk1(e1) ,
ė2 ∈ �2(x1, x2 + e2, t) − �2(x1, x2, t) − L2k2(e1) .

(16)

Previous system can be rewritten as
{ 1

L
ė1 =

e2
L
− k1(e1) ,

1
L
ė2
L
∈ −k2(e1) +

v2
L2
,

(17)

where
v2 = �2(y, x2 + e2, t) − �2(y, x2, t).

System (17) is exactly in the form of system (12) in the coordinates (e1,
e2
L
), with the perturbation v2 multiplied by L−2 and with

the time scaled by 1
L
. Hence, let � > �∗ given by Proposition 1. By using the Lyapunov function V defined in (13) and the

inequality (15) of Proposition 1, we obtain

V̇
(

e1,
e2
L
, v2

)

L
⩽ −cV

[

V
(

e1,
e2
L

)
2
3 + V

(

e1,
e2
L

)

]

+ cv2V
(

e1,
e2
L

)
2
3 |v2|
L2

. (18)

With Assumption 1, it yields
|v2|
L2

⩽
l0
L2

+
l1
L

|e2|
L

,

⩽
l0
L2

+
l1

Lc
1
3

V
(

e1,
e2
L

)
1
3 .

Hence, the former inequality becomes

V̇
(

e1,
e2
L
, v2

)

L
⩽ −

[

cV −
cv2l0
L2

]

V
(

e1,
e2
L

)
2
3 −

[

cV −
cv2l1

Lc
1
3

]

V
(

e1,
e2
L

)

. (19)

Let L > 0 be such that
cv2l0
L2

⩽
cV
2
,

cv2l1

Lc
1
3

⩽
cV
2
.

It implies, for any L > L,

V̇
(

e1,
e2
L
, v2

)

⩽ −
cV
2
L
[

V
(

e1,
e2
L

)
2
3 + V

(

e1,
e2
L

)

]

. (20)

Consequently, by standard Lyapunov arguments, see, e.g., [24], the result follows.

3 OBSERVER FORN-TH ORDER SYSTEM

We are now interested in the design of an observer for the ntℎ order dynamical system (1) in triangular form. As it has been done
in [12] in the semi-global case (i.e. the state x of system (1) is supposed to evolve in a known given compact set C), the main
idea is to employ a cascade of second order observers. However, in order to obtain a global result, we need to interconnect these
observers as done in [6]. In particular, we propose the following interconnection of n−1 blocks of second order systems defined
as

{ ̇̂xii = x̂i(i+1) + �i
(

y, x̂12, x̂23,… , x̂(i−1)i
)

− Lik1
(

x̂ii − x̂(i−1)i
)

̇̂xi(i+1) ∈ x̂(i+1)(i+2) + �i+1
(

y, x̂12, x̂23,… , x̂i(i+1)
)

− L2i k2
(

x̂ii − x̂(i−1)i
) , i = 1,… , n − 1, (21)

with the conventions x̂01 = y and x̂n(n+1) = 0, and where the Li’s are positive real numbers that will be selected later on. The
overall state dimension of the observer is 2n−2. The indexes of the observer variables are selected with the convention5 that x̂ii
is the first state-component of the i-th block providing an estimate of the variable xi, and x̂i(i+1) is the second state-component
of the i-th block providing an estimate of the variable xi+1. As a consequence, for each variable xi, with i = 2,… , n − 1, we
have two different estimates. The structure of observer (21) is depicted in Figure 1 below.

5Note that this convention is chosen differently from the one in [6], [7].
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̇̂x11 = x̂12 + �1 + L1k1(y − x̂11)
̇̂x12 ∈ x̂23 + �2 + L21k2(y − x̂11)

y

x̂11

− ̇̂x22 = x̂23 + �2 + L2k1(x̂12 − x̂22)
̇̂x23 ∈ x̂34 + �3 + L22k2(x̂12 − x̂22)

x̂12

x̂22

−

x̂23

x̂23

x̂34

FIGURE 1 Block-diagram representation of the observer (21).

Note that we recover the “step-by-step sliding-mode” algorithm proposed by [12] when k1, k2 are selected as in (10) and when
we don’t put the feedback interconnection term x̂(i+1)(i+2) in the dynamics of ̇̂xi(i+1). On the other hand, we recover the “low-
power high-gain observer” design proposed in [6], when k1, k2 are selected as in (9). In our context, observer (21) is composed
of n − 1 blocks of second order observers, with k1 a non locally Lipschitz function and k2 a set-valued correction term, as
defined in (11). This set-valued map is outer semi-continuous with convex and compact values, thus ensuring well-posedness
and sequential compactness of solutions, see [20].
The two main theorems of this paper are stated and explained next.

3.1 Global finite-time convergence
In the following theorem, it is shown that by selecting the gains Li sufficiently large and in an appropriate way, observer (21)
ensures finite time convergence of the estimate to the state of the system (1).

Theorem 2. Consider system (1) and suppose Assumption 1 holds. There exist positive real numbers (�, L1,… , Ln−1) > 0,
such that observer (21) ensures finite time estimation of system (1), namely there exists a time T ≥ 0 such that

x̂11(t) = x1(t) , x̂i(i+1)(t) = x̂(i+1)(i+1)(t) = xi+1(t) , i = 1,… , n − 1 , ∀ t ⩾ T . (22)

Proof: See Section 4.2. □
As opposed to existing finite time results, see, e.g., [12], [9], we obtain a global finite-time observer. Indeed, no restriction is

imposed on the set of initial conditions, nor on the set in which the system (1) is evolving, which may be, in this case, unbounded.
Note however that the convergence time T is not uniform, namely it depends on the initial conditions x(0) of system (1). It is
still an open question to achieve uniform finite time convergence since our approach fails to be applied in this context yet. The
proof of Theorem 2 mainly combines the following two iterative arguments:

• Iterative construction of the Li’s starting from Ln going up to L1, similarly to the proof of Proposition 3 in [8], in order to
ensure boundedness of solutions starting from x̂(n−1)n − xn up to x̂11 − x1.

• Iterative convergence to zero of the errors starting from x1 − x̂11 down towards xn − x̂(n−1)n.

However, since we have not provided a global Lyapunov function, Theorem 2 concerns only with the attractivity properties of
the observer. In order to establish a stability result, a more detailed analysis is required, as detailed in the next section.

3.2 Stability from compact sets of initial conditions
The previous section claimed global finite time convergence of observer (21) for some parameters (�, L1,… , Ln−1) appropriately
chosen. The following theorem shows that actually once those parameters are fixed, stability of the estimation error is also
guaranteed when considering trajectories initialized in compact set of initial conditions.

Theorem 3. Let parameters (�, L1,… , Ln−1) be fixed as in Theorem 2, and consider compact sets 0 ⊂ ℝn, ̂0 ⊂ ℝ2(n−1).
Then, for any " > 0, there exists � > 0 such that for any solution x of (1) initialized in 0 and any solution x̂ of (21) initialized
in ̂0, we have the implication

|x̂ii(0) −xi(0)|+ |x̂i(i+1)(0) −xi+1(0)| < � ∀i = 1,… , n−1 ⇐⇒ |x̂ii(t) −xi(t)|+ |x̂i(i+1)(t) −xi+1(t)| < " ∀t . (23)
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Proof: See Section 4.3. □
The stability result given in Theorem 3 is stated according to the classical notion of "−� stability, see for instance [25]. A crucial

remark is that the parameters (�, L1,… , Ln−1) necessary for design of the observer (21) are independent from the compact sets
of initial conditions: they have been fixed in Theorem 2. But because we don’t have a global Lyapunov function of the error, we
cannot obtain uniform stability of the entire zero-error set

 =
{

(x, x̂) ∈ ℝn ×ℝ2(n−1) ∶ x̂ii = xi , x̂i(i+1) = xi+1
}

. (24)

Instead, we claim uniform stability for the set of solutions starting from compact sets of initial conditions6. Note that we do not
require them to be bounded. The crucial argument is that for any given compact set of initial conditions the following facts hold.

• The time of convergence T given by Theorem 2 is uniform.

• Since the estimation error is zero after time T , we only need to show (23) on the compact time interval [0, T ].

Therefore, we can consider a compact set  of ℝn such that for all x0 ∈ 0, x̂0 ∈ ̂0,

x(t) ∈  and
(

x1, x̂12, x̂23,… , x̂(n−1)n
)

(t) ∈  ∀t ∈ [0, T ] .

By continuity of �, we can then show that there exists a class- function 
 , bounded by l0, such that

|�j(y, x2,… , xj) − �j(y, x̂2,… , x̂j)| ⩽ 


( j
∑

i=1
|xi − x̂i|

)

+ l1
j
∑

i=1
|xi − x̂i| ∀(x, x̂) ∈  × 

In other words, the conservative constant l0 in the global bound (5) is replaced in the analysis by 

(
∑j
i=1 |xi − x̂i|

)

, that is
bounded by l0. Unlike l0, this term encodes the fact that the quantity vanishes when (x, x̂) ∈  defined in (24), thus rendering a
stability proof possible. Finally, note that this proof doesn’t follow standard technical arguments for the following main reasons.

• Since the gains (�, L1,… , Ln−1) have already been fixed in Theorem 3, the same conditions need to be exploited for
stability.

• The complex structure of the interconnections and the fact that we prove stability independently from attractivity, leads
us to consider a very particular kind of interconnection for which an unusual “small-gain-like” theorem, see Lemma 2,
needs to be established.

4 PROOFS OF MAIN RESULTS

We provide here the full proofs of Theorems 2 and 3. To this end, we start by analysing the behavior of the estimation errors of
each block i = 1,… , n − 1 in (21).

4.1 Robustness analysis of each error subsystems
The suggested observer gives several error dynamical (sub)systems which interact with each other. By defining ei ∶= (eii, ei(i+1)),
with eii ∶= x̂ii − xi and ei(i+1) ∶= x̂i(i+1) − xi+1 for i = 1,… , n − 1, gives

{

ėii = ei(i+1) − Lik1(eii +wi) + vi1
ėi(i+1) ∈ −L2i k2(eii +wi) + vi2

, (25)

with
wi = −e(i−1)i ,
vi1 = �i(y,… , x̂(i−1)i) − �i(y,… , xi) ,
vi2 = e(i+1)(i+2) + �i+1

(

y, x̂12, x̂23,… , x̂i(i+1)
)

− �i+1(y,… , xi+1) .

6Recall that in the definition of "−� stability for dynamical (time-varying) systems, the value of � may be not uniform in the initial time t0. When � is independent
of t0, then we refer to uniform stability. Compare Definitions 7.1 and 7.2 in [25]. In a similar way, in our context, the value of � in Theorem 3 is not uniform in the initial
conditions, namely it depends on the compact sets 0, ̂0.
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and the conventions e01 = 0, en(n+1) = 0. Employing (5), it yields

|

|

wi
|

|

⩽ |

|

|

e(i−1)i
|

|

|

, (26a)

|

|

vi1|| ⩽ l0 + l1
i−1
∑

j=1

|

|

|

ej(j+1)
|

|

|

, (26b)

|

|

vi2|| ⩽
|

|

|

e(i+1)(i+2)
|

|

|

+ l0 + l1
i

∑

j=1

|

|

|

ej(j+1)
|

|

|

. (26c)

We consider n − 1 Lyapunov functions Vi(ei) defined as

Vi(ei) ∶= V
(

eii,
ei(i+1)
Li

)

, (27)

where V is defined in (13). With (14), it yields that the functions Vi satisfy

c

(

|eii|
3 + |eii|

3
2 +

|ei(i+1)|3

L3i

)

⩽ Vi(ei) ⩽ c

(

|eii|
3 + |eii|

3
2 +

|ei(i+1)|3

L3i

)

. (28)

Applying Proposition 1 in each block i leads to the following result.

Proposition 2. There exist positive real numbers L1,… , Ln−1, c̃v21 , and c such that the following holds. For all i = 1,… , n−1,
and all Li ⩾ Li, the time derivative of Vi along the solutions of (25) satisfies

V̇i(e, vi1, vi2, w)
Li

≤ −
cV
2

[

Vi(ei)
2
3 + Vi(ei)

]

+ L3i−1c̃w
[

Vi−1(ei−1)
1
3 + Vi−1(ei−1)

]

+ ccv1

[

l20
L2i

+
l30
L3i

]

+ c̃v21

i−1
∑

j=1

L3j
L2i

(

Vj(ej)
2
3 + Vj(ej)

)

+
⎛

⎜

⎜

⎝

cv2l1
i−1
∑

j=1

Lj

L2i c
1
3

Vj(ej)
1
3 + cv2

Li+1

L2i c
1
3

Vi+1(ei+1)
1
3

⎞

⎟

⎟

⎠

Vi(ei)
2
3 , (29)

with the conventions V0 ≡ 0 and Vn ≡ 0. Moreover, if there exists a time Ti−1 ⩾ 0 such that

Vj(ej(t)) = 0 , j = 1,… , i − 1 and Vi+1(ei+1(t)) < L6i
c3V c

8c3v2L
3
i+1

,∀t ⩾ Ti−1 , (30)

then there exists Ti > Ti−1 such that Vi(ei(t)) = 0 , ∀t ⩾ Ti.

The bound (29) describes how the error ei in the block i is impacted by the errors coming from other blocks. Now, when
Vj(ej(t)) = 0 for all j = 1,… , i − 1, inequality (29) gives in particular

V̇i(e, vi1, vi2, w)
Li

≤ −
cV
2

[

Vi(ei)
2
3 + Vi(ei)

]

+ ccv1

[

l20
L2i

+
l30
L3i

]

,

which is quite conservative, due to the presence of l0. This is why we added the second part of the result: actually if (30) holds,
we have the stronger property

V̇i(e, vi1, vi2, w)
Li

≤ −
cV
2

[

Vi(ei)
2
3 + Vi(ei)

]

,

showing finite-time convergence of Vi. In other words, if the blocks 1,… , i− 1 have converged and the error in the i-th block is
sufficiently small, then the i-th block is also converging. This “cascade” property is crucial for the rest of the proof because the
goal will be to show by recursion that (30) holds. This recursion provides also a constructive (but conservative) way to select
the parameters L1,… , Ln−1.
It is important to remark that the inequality inside of (30) has to be satisfied after a certain amount of time Ti−1 which depends

in general on the initial condition. We will show in Section 4.2 that this is indeed verified in order to prove Theorem 2.
Proof: First of all, the error system (25) may be rewritten as follows.

⎧

⎪

⎨

⎪

⎩

1
Li
ėii =

ei(i+1)
Li

− k1(eii +wi) +
vi1
Li

1
Li

ėi(i+1)
Li

∈ −k2(eii +wi) +
vi2
L2i

, (31)
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Following the same steps of the proof of Theorem 1, it can be checked that system (31) is exactly in the form of system (12) in
the coordinates (eii,

ei(i+1)
Li
), with the perturbation vi1 and vi2 multiplied by L−1i and L−2i and with the time scaled by 1

Li
. Hence,

from (15), the time derivative of Vi along the solutions of (31) satisfies, for all Li > 0,

V̇i(e, vi1, vi2, w)
Li

≤ −cV
[

Vi(ei)
2
3 + Vi(ei)

]

+ cw
[

|

|

wi
|

|

+ |

|

wi
|

|

3
]

+ cv1

[

(

|

|

vi1||
Li

)2

+
(

|

|

vi1||
Li

)3]

+ cv2Vi(ei)
2
3
|vi2|
L2i

, (32)

which gives

V̇i(e, vi1, vi2, w)
Li

⩽ −cV
[

Vi(ei)
2
3 + Vi(ei)

]

+ cw

[

|

|

|

e(i−1)i
|

|

|

+ |

|

|

e(i−1)i
|

|

|

3
]

+ cv1

⎡

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎝

l0 + l1
∑i−1
j=1

|

|

|

ej(j+1)
|

|

|

Li

⎞

⎟

⎟

⎠

2

+
⎛

⎜

⎜

⎝

l0 + l1
∑i−1
j=1

|

|

|

ej(j+1)
|

|

|

Li

⎞

⎟

⎟

⎠

3
⎤

⎥

⎥

⎥

⎦

+ cv2Vi(ei)
2
3

|

|

|

e(i+1)(i+2)
|

|

|

+ l0 + l1
∑i
j=1

|

|

|

ej(j+1)
|

|

|

L2i
. (33)

From (28), |e(i−1)i|
Li−1

⩽ 1

c
1
3
Vi−1(ei−1)

1
3 , so we get c̃w such that for all Li−1 > 1,

cw

[

|

|

|

e(i−1)i
|

|

|

+ |

|

|

e(i−1)i
|

|

|

3
]

⩽ L3i−1c̃w
[

Vi−1(ei−1)
1
3 + Vi−1(ei−1)

]

, ∀ ei−1 .

Also, using
(

∑i
j=1 aj

)l
⩽ c

∑i
j=1 a

l
j for l = 2 and l = 3 for some positive real number c > 0, it yields

cv1

⎡

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎝

l0 + l1
∑i−1
j=1

|

|

|

ej(j+1)
|

|

|

Li

⎞

⎟

⎟

⎠

2

+
⎛

⎜

⎜

⎝

l0 + l1
∑i−1
j=1

|

|

|

ej(j+1)
|

|

|

Li

⎞

⎟

⎟

⎠

3
⎤

⎥

⎥

⎥

⎦

⩽ ccv1

[

l20
L2i

+
l30
L3i

]

+ ccv1

i−1
∑

j=1

[

l21
L2i

|ej(j+1)|
2 +

l31
L3i

|ej(j+1)|
3

]

, (34)

and we have for Lj > 1, j = 1,… i − 1

ccv1

i−1
∑

j=1

[

l21
L2i

|ej(j+1)|
2 +

l31
L3i

|ej(j+1)|
3

]

⩽ c̃v1

i−1
∑

j=1

L3j
L2i

(

Vj(ej)
2
3 + Vj(ej)

)

.

Moreover,

cv2

|

|

|

e(i+1)(i+2)
|

|

|

+ l0 + l1
∑i
j=1

|

|

|

ej(j+1)
|

|

|

L2i
⩽
cv2l0
L2i

+ cv2l1
i

∑

j=1

Lj

L2i c
1
3

Vj(ej)
1
3 + cv2

Li+1

L2i c
1
3

Vi+1(ei+1)
1
3 .

All together, it yields

V̇i(e, vi1, vi2, w)
Li

≤ −cV
[

Vi(ei)
2
3 + Vi(ei)

]

+ L3i−1c̃w
[

Vi−1(ei−1)
1
3 + Vi−1(ei−1)

]

+ ccv1

[

l20
L2i

+
l30
L3i

]

+ c̃v1

i−1
∑

j=1

L3j
L2i

(

Vj(ej)
2
3 + Vj(ej)

)

+
⎛

⎜

⎜

⎝

cv2l0
L2i

+ cv2l1
i

∑

j=1

Lj

L2i c
1
3

Vj(ej)
1
3 + cv2

Li+1

L2i c
1
3

Vi+1(ei+1)
1
3

⎞

⎟

⎟

⎠

Vi(ei)
2
3 . (35)

Picking Li > 0 sufficiently large, this yields for all Li > Li, inequality (29) is satisfied.
Finally, assume there exists a time Ti−1 ⩾ 0 such that

Vj(ej(t)) = 0 , j = 1,… , i − 1 , ∀t ⩾ Ti−1 . (36)
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Then, going back in the computations, we actually have for all t ⩾ Ti−1,

V̇i(e, vi1, vi2, w)
Li

⩽ −cV
[

Vi(ei)
2
3 + Vi(ei)

]

+ cv2Vi(ei)
2
3

|

|

|

e(i+1)(i+2)
|

|

|

L2i

⩽ −cV
[

Vi(ei)
2
3 + Vi(ei)

]

+ cv2
Li+1

L2i c
1
3

Vi+1(ei+1)
1
3Vi(ei)

2
3

and if besides, Vi+1(ei+1(t)) ⩽ L6i
c3V c

8c3v2L
3
i+1
,

V̇i(e, vi1, vi2, w)
Li

⩽ −
cV
2

[

Vi(ei)
2
3 + Vi(ei)

]

.

Hence Vi converges in finite time to 0 with a time of convergence that depends on |e(Ti−1)|. □

4.2 Proof of Theorem 2 and selection of the parameters Li’s
LetWl ∶ ℝ2(n−l) → ℝ+ for l = 1,… , n − 1 be the C1 functions defined as

Wl(e) =
n−1
∑

i=l
L3i Vi(ei) , l = 1,… , n − 1 . (37)

This yields

Ẇl(e) ≤
n−1
∑

i=l
−
cV
2
L4i

[

Vi(ei)
2
3 + Vi(ei)

]

+
5
∑

k=1
Υk + Ωl , (38)

where (skipping the dependence of Υ in l)

Υ1 =
n−1
∑

i=l
L2i c̄v2Li+1Vi(ei)

2
3Vi+1(ei+1)

1
3 ,

Υ2 =
n−1
∑

i=l+1
L4iL

3
i−1c̃w

[

Vi−1(ei−1)
1
3 + Vi−1(ei−1)

]

,

Υ3 =
n−1
∑

i=l
L2i c̃v1(l

2
0 + l

3
0) ,

Υ4 =
n−1
∑

i=l
L2i c̃v2

i−1
∑

j=l
LjVj(ej)

1
3Vi(ei)

2
3 ,

Υ5 = c̃v1

n−1
∑

i=l

i−1
∑

j=l
L2iL

3
j

(

Vj(ej)
2
3 + Vj(ej)

)

.

with L0 = 0, Ln = 0, and Ωl defined as

Ωl =

⎧

⎪

⎨

⎪

⎩

0 , l = 1

L4iL
3
i−1c̃w

[

Vl−1(el−1)
1
3 + Vl−1(el−1)

]

+ c̃v1

n−1
∑

i=l

l−1
∑

j=1
L2iL

3
j

(

Vj(ej)
2
3 + Vj(ej)

)

+
n−1
∑

i=l
L2i c̃v2

l−1
∑

j=1
LjVj(ej)

1
3Vi(ei)

2
3 , l > 1

Note that with Young inequality we have for some positive real numbers c̄v12 , c̄w, c̄v22 , independent of Li’s, the following
inequalities:

Υ1 ⩽
n−1
∑

i=l

cV
8
Vi+1(ei+1) +

n−1
∑

i=l
c̄v2Vi(ei)L

3
2
i+1L

3
i ,
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Also

Υ2 ⩽
n−1
∑

i=l+1
L4iL

3
i−1c̃wVi−1(ei−1) +

n−1
∑

i=l+1
L4iL

3
i−1c̃wVi−1(ei−1)

1
3

⩽
n−1
∑

i=l+1
L4iL

3
i−1c̃wVi−1(ei−1) +

n−1
∑

i=l+1
L4iL

3
i−1c̃wVi−1(ei−1)

2
3 +

n−1
∑

i=l+1

L4i
4
L3i−1c̃w

⩽
n−1
∑

i=l+1
c̃wL

4
iL

3
i−1

[

Vi−1(ei−1) + Vi−1(ei−1)
2
3

]

+
n−1
∑

i=l+1

L4i
4
L3i−1c̃w ,

Also,

Υ4 = c̃v2

n−1
∑

i=l

i−1
∑

j=l
LjVj(ej)

1
3L2i Vi(ei)

2
3

⩽ c̃v2

n−1
∑

i=l

i−1
∑

j=l
L3jVj(ej) + L

3
i Vi(ei)

⩽ nc̃v2

n−1
∑

i=l
L3i Vi(ei)

Finally

Υ5 = c̃v1

n−1
∑

i=l

( n−1
∑

j=i+1
L2j

)

L3i
(

Vi(ei)
2
3 + Vi(ei)

)

.

Hence,

Ẇl(e) ≤
n−1
∑

i=l

(

−
cV
2
L4i +

cV
8
+ c̄v2L

3
2
i+1L

3
i + c̃wL

4
i+1L

3
i + nc̃v2L

3
i + c̃v1

( n−1
∑

j=i+1
L2j

)

L3i

)

[

Vi(ei)
2
3 + Vi(ei)

]

+
n−1
∑

i=l
L2i c̃v1(l

2
0 + l

3
0) +

n−1
∑

i=l+1

L4i
4
L3i−1c̃w + Ωl , (39)

We now define Ln−1 > 1 sufficiently large such that

−
cV
2
L4n−1 +

cV
8
+ nc̃v2L

3
n−1 ⩽ −

cV
4
L4n−1

and then, recursively, Ln−2 ≥ 1, Ln−3 ≥ 1, ... , L1 ≥ 1 sufficiently large such that

−
cV
2
L4i +

cV
8
+ L

3
2
i+1L

3
i + c̄wL

4
i+1L

3
i + nc̃v2L

3
i + c̃v1

( n−1
∑

j=i+1
L2j

)

L3i ⩽ −
cV
4
L4i (40a)

8
cV

(n−1
∑

j=i
L2j c̃v1(l

2
0 + l

3
0) +

n−1
∑

j=i+1

L4j
4
L3j−1c̃w

)

< L6i
c3V c
8c3v2

(40b)

by exploiting the domination of L4i in (40a) and of L
6
i in (40b). Hence, it yields for each l = 1,… , n − 1,

Ẇl(e) ⩽ −
cV
4
Wl(e) +

n−1
∑

i=l
L2i c̃v1(l

2
0 + l

3
0) +

n−1
∑

i=l

L4i
2
L3i−1 + Ωl . (41)

Take l > 1 and assume there exists Tl−1 > 0 such that

V1(e1(t)) = V2(e2(t)) =⋯ = Vl−1(el−1(t)) = 0 , ∀t ⩾ Tl−1 (42)

this implies that Ωl = 0 for all t ⩾ Tl−1. Consequently, this implies that along the solution

Ẇl(e) ⩽ −
cV
4
Wl(e) +

n−1
∑

i=l
L2i c̃v1(l

2
0 + l

3
0) +

n−1
∑

i=l+1

L4i
2
L3i−1 . (43)
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With (40b), there exists a time T̄l−1 > 0 (depending on |e(Tl−1)| and the parameters) such that

Wl(e(t)) ⩽
8
cV

(n−1
∑

i=l
L2i c̃v1(l

2
0 + l

3
0) +

n−1
∑

i=l+1

L4i
4
L3i−1c̃w

)

⩽ L6l
c3V c
8c3v2

, ∀t ⩾ T̄l−1 > 0 (44)

and therefore

Vl+1(el+1(t)) ⩽ L6l
c3V c

8c3v2L
3
l+1

, ∀t ⩾ T̄l−1 > 0. (45)

Consequently, with Proposition 2, there exists a time Tl (depending on |e(T̄l−1)| and the parameters) such that

V1(e1(t)) = V2(e2(t)) =⋯ = Vl(el(t)) = 0 , ∀t ⩾ Tl . (46)

Observing that Ω1 = 0, and using the same reasoning for l = 1, we prove that V1(e1(t)) = 0 after some time, depending on
|e(0)| and the parameters (�, L1,… , Ln−1), and then by recursion, propagate to obtain Vi(ei(t)) = 0 for all i = 1,… , n − 1 after
a certain time, whose bound depends on the bound of |e(0)| and the parameters (�, L1,… , Ln−1).

4.3 Proof of Theorem 3
From Theorem 2, there exists T such that for any initial conditions x0 ∈ 0, x̂0 ∈ ̂0,

x̂ii(t) = xi(t) , x̂i(i+1)(t) = xi+1(t) ∀t ⩾ T , ∀i = 1,… , n − 1

The uniformity of T with respect to the initial conditions comes from the fact that it only depends on e(0) which is bounded for
x0 ∈ 0, x̂0 ∈ ̂0 and the given gains.
Let us now denote  a compact set of ℝn such that for all x0 ∈ 0, x̂0 ∈ ̂0,

x(t) ∈  and
(

x1, x̂12, x̂23,… , x̂(n−1)n
)

(t) ∈  ∀t ∈ [0, T ] .

By continuity of �, there exists a class- function 
0 such that

|�j(y, x2,… , xj) − �j(y, x̂2,… , x̂j)| ⩽ 
0

( j
∑

i=1
|xi − x̂i|

)

∀(x, x̂) ∈  ×  . (47)

Therefore, we actually have

|�j(y, x2,… , xj) − �j(y, x̂2,… , x̂j)| ⩽ min
{

l0 , 
0

( j
∑

i=1
|xi − x̂i|

)

− l1
j
∑

i=1
|xi − x̂i|

}

+ l1
j
∑

i=1
|xi − x̂i|

⩽ 


( j
∑

i=1
|xi − x̂i|

)

+ l1
j
∑

i=1
|xi − x̂i| ∀(x, x̂) ∈  ×  (48)

where 
 is a class  function that is globally bounded by l0. Now reusing (32) with this new bound leads to

V̇i(e)
Li

⩽ −
cV
2

[

Vi(ei)
2
3 + Vi(ei)

]

+ L3i−1c̃w
[

Vi−1(ei−1)
1
3 + Vi−1(ei−1)

]

+ ccv1

⎡

⎢

⎢

⎢

⎣



(

∑i−1
j=1

|

|

|

ej(j+1)
|

|

|

)2

L2i
+


(

∑i−1
j=1

|

|

|

ej(j+1)
|

|

|

)3

L3i

⎤

⎥

⎥

⎥

⎦

+ c̃v1

i−1
∑

j=1

L3j
L2i

(

Vj(ej)
2
3 + Vj(ej)

)

+
⎛

⎜

⎜

⎝

cv2l1
i−1
∑

j=1

Lj

L2i c
1
3

Vj(ej)
1
3 + cv2

Li+1

L2i c
1
3

Vi+1(ei+1)
1
3

⎞

⎟

⎟

⎠

Vi(ei)
2
3 , (49)
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for all t ∈ [0, T ], namely

V̇i(e)
Li

⩽ −
cV
2

[

Vi(ei)
2
3 + Vi(ei)

]

+ L3i−1c̃w
[

Vi−1(ei−1)
1
3 + Vi−1(ei−1)

]

+ ccv1

⎡

⎢

⎢

⎢

⎣



(

∑i−1
j=1 LjVj(ej)

1
3

)2

L2i
+


(

∑i−1
j=1 LjVj(ej)

1
3

)3

L3i

⎤

⎥

⎥

⎥

⎦

+ c̃v1

i−1
∑

j=1

L3j
L2i

(

Vj(ej)
2
3 + Vj(ej)

)

+
⎛

⎜

⎜

⎝

cv2l1
i−1
∑

j=1

Lj

L2i c
1
3

Vj(ej)
1
3 + cv2

Li+1

L2i c
1
3

Vi+1(ei+1)
1
3

⎞

⎟

⎟

⎠

Vi(ei)
2
3 . (50)

Hence, employing (40a), the functionWl defined in (37) satisfy for each l = 1,… , n − 1, and for t ∈ [0, T ]

Ẇl(e) ⩽ −
cV
4
Wl(e) +

n−1
∑

i=l
L2i c̃v1

⎛

⎜

⎜

⎝




( i−1
∑

j=1
LjVj(ej)

1
3

)2

+ 


( i−1
∑

j=1
LjVj(ej)

1
3

)3
⎞

⎟

⎟

⎠

+
n−1
∑

i=l+1
L4iL

3
i−1c̃w

(

Vi−1(ei−1)
1
3 − Vi−1(ei−1)

2
3

)

+ Ωl
(

V1(e1),… , Vl−1(el−1)
)

⩽ −
cV
4
Wl(e) + �l

(

V1(e1),… , Vn−2(en−2)
)

+ Ωl
(

V1(e1),… , Vl−1(el−1)
)

. (51)

where �l is globally bounded by

�l
(

V1(e1),… , Vn−2(en−2)
)

⩽
n−1
∑

i=l
L2i cv1(l

2
0 + l

3
0) +

n−1
∑

i=l+1
L4iL

3
i−1
c̃w
4
< L6l

c4V c
64c3v12

(52)

according to (40b), and where we recall that Ωl is a continuous map that vanishes when
(

V1(e1),… , Vl−1(el−1)
)

= 0 for l > 1
and Ω1 = 0. Similarly, (50) can be rewritten as

V̇i(e)
Li

⩽ −
cV
2

[

Vi(ei)
2
3 + Vi(ei)

]

+ cv2
Li+1

L2i c
1
3

Vi+1(ei+1)
1
3Vi(ei)

2
3 + Ω′i(V1(e1),… , Vi−1(ei−1))

⩽ −
cV
2

[

Vi(ei)
2
3 + Vi(ei)

]

+ cv2
1

L2i c
1
3

Wi(e)
1
3Vi(ei)

2
3 + Ω′i(V1(e1),… , Vi−1(ei−1)) (53)

where Ω′i is a continuous map that vanishes when
(

V1(e1),… , Vi−1(ei−1)
)

= 0 for i > 1 and Ω′1 = 0.
We will now recursively use the small-gain-like technical Lemma 2 on (Wi, Vi), starting from (Wn−2, Vn−2) up to (W1, V1), in

order to prove thatW1 (and thus all the Vi) is ISS with respect to the initial error e(0). From there, stability will follow.
Let us start with l = i = n − 2. The key property that we are going to exploit is that the derivative ofWn−2 in (51) depends

only on Vi, i = 1,… , n−2, and not on Vn−1. More precisely, from (51), (52), (53), and by continuity on compact sets, there exist
class- functions �n−2, �n−2 such that �n−2 verifies

�n−2(s) < L6n−2
c4V c
64c3v2

∀s (54)

and for all t ∈ [0, T ],

Ẇn−2(e) ⩽ −
cV
4
Wn−2(e) + �n−2

(

Vn−2(en−2)
)

+ �n−2

(n−3
∑

i=1
Vi(ei)

)

V̇n−2(e) ⩽ −
cV
2
Ln−2

[

Vn−2(en−2)
2
3 + Vn−2(en−2)

]

+ cv2
1

Ln−2c
1
3

Wn−2(e)
1
3Vn−2(en−2)

2
3 + �n−2

(n−3
∑

i=1
Vi(ei)

)

To apply Lemma 2, the small-gain condition (B10) writes

cv2
1

Ln−2c
1
3

(

8
cV
�n−2(Vn−2(en−2))

)
1
3

<
cV
2
Ln−2
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which holds accroding to (54). Therefore, according to Lemma 2, there exists a class- function �n−2 such that for all t ∈ [0, T ],

Wn−2(e(t)) ⩽ �n−2

(

|e(0)| + sup
s∈[0,t]

n−3
∑

i=1
Vi(ei(s))

)

.

Now, by recursion, take 1 ≤ l ≤ n − 3 and assume there exists a class- function �l+1 such that for all t ∈ [0, T ],

Wl+1(e(t)) ⩽ �l+1

(

|e(0)| + sup
s∈[0,t]

l
∑

i=1
Vi(ei(s))

)

.

Then, since Vi(ei) ⩽ Wl+1(e) for all i ≥ l + 1, we deduce from (51), (52), (53), that there exist class- functions �l , �l such
that �l verifies

�l(s) < L6l
c4V c
64c3v2

∀s ∈ ℝ+ ,

and for all t ∈ [0, T ],

Ẇl(e) ⩽ −
cV
4
Wl(e) + �l

(

sup
s∈[0,t]

Vl(el(s))
)

+ �l

(

|e(0)| + sup
s∈[0,t]

l−1
∑

i=1
Vi(ei(s)))

)

,

V̇l(e) ⩽ −
cV
2
Ll

[

Vl(el)
2
3 + Vl(el)

]

+ cv2
1

Llc
1
3

Wl(e)
1
3Vl(el)

2
3 + �l

(

l−1
∑

i=1
Vi(ei))

)

.

Applying Lemma 2 again, we thus get that

Wl(e(t)) ⩽ �l

(

|e(0)| + sup
s∈[0,t]

l−1
∑

i=1
Vi(ei(s))

)

,

for some class- function �l . By recursion, we thus obtain for all t ∈ [0, T ]

Vi(ei(t)) ⩽
1
L3i
W1(e(t)) ⩽

1
L3i
�1 (|e(0)|) ∀i = 1,… , n − 1 ,

with �1 of class-. It follows that for any " > 0, there exists � > 0 such that

|e(0)| ≤ � ⇐⇒ |e(t)| ≤ " ∀t ∈ [0, T ].

Since e(t) = 0 for all t ⩾ T , we deduce the stability property.

5 NUMERICAL EXAMPLE

As an illustration, we consider a controlled two-mass spring damper system on a horizontal plane described by
ṗ1 = v1

m1v̇1 ∈ Ψ1(v1) + �(p2 − p1)
ṗ2 = v2

m2v̇2 ∈ Ψ2(v2) + �(p1 − p2) + u(t)

(55)

in which pi is the position of each system with respect to its equilibrium, vi, mi are its velocity and mass, respectively, and u(t)
is a known external input force. We suppose that the masses are connected by a spring with stiffness coefficient � and subject
to Coulomb frictions described as in [26,27] by the set-valued maps s⇉ Ψi(s),

Ψi(v) ∶= −F̄iSign(v) − 
iv , (56)

in which F i is the static friction and 
is is the viscous contribution with viscous friction coefficient 
i. More precisely, when
v = 0 and the spring force �|p2 − p1| ⩽ F̄1, the dry friction compensates exactly the spring force which is in the interval
[−F i, F i], so that v̇1 = 0 and the mass stays put.
In our context, we suppose that the position of the first mass p1 is measured and we are interested in estimating the position

and the velocity of both objects. Due to the presence of the sign and the differential inclusion, p2, v2 in (55) are not observable
for all solutions evolving in the set

 =
{

(p1, v1, p2, v2) ∈ ℝ4 ∶ v1 = 0
}

,
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m1 = 1 
1 = 0.2 F̄1 = 0.2 �1 = 0.01 � = 1
m2 = 1 
2 = 0.4 F̄2 = 0.2 �2 = 0.01

� = 4 L1 = 3 L2 = 2 L3 = 1

TABLE 1 Values of the parameters of model (58) and observer (21) with n = 4.

since for all (p1, v1, p2, v2) ∈ we have v̇1 constantly equal to zero, although p2 and v2 may be different from zero. Therefore,
from v1 we cannot observe p2, v2. Hence, in the following we use an approximate model of the function Ψ in (56) that does not
destroy the observability properties of the system, given by

Ψi(v) ∶= −F̄i sat1
(

⌊v⌉�i
)

− 
iv (57)

with �i ∈ (0, 1), and
sat1(s) = max(min(s, 1),−1) .

Note that for �i → 0, we recover the friction model (56). By selecting x ∈ ℝ4 = (p1, v1,
�
m1
p2,

�
m1
v2), model (55), (57), reads

therefore
ẋ1 = x2
ẋ2 = x3 + �2(x1, x2)
ẋ3 = x4
ẋ4 = �4(x1, x3, x4, t)
y = x1

(58)

with
�2(x1, x2) ∶=

1
m1

[

Ψ1(x2) − �x1
]

, �4(x1, x3, x4, t) ∶=
�

m1m2

[

Ψ2
(m1
�
x4
)

+ �x1 − m1x3 + u(t)
]

.

Due to the definition of Ψi in (57), functions �2, �4 are continuous and satisfy Assumption 1 with

l0 = max
{

2F̄1
m1

,
2�F̄2
m1m2

}

, l1 = max
{


1
m1
,

2
m2
, �
m2

}

.

It can be noticed that for the class of system (58) none of existing techniques [9,22,11,6,16,14] can be employed when �1 >
n−2
n−1

= 2
3

since the system (58) is not homogeneous. The approach of [12], on the other hand, would now allow to achieve global conver-
gence.We follow therefore the design proposed in (21) obtaining an observer of total dimension 2n−2 = 6. Table 1 summarizes
the values of parameters of system (58) and that of observer (21) used in the simulations. For the simulations, we considered the
initial conditions of the plant (58) as x(0) = (3,−4, 6,−8), with input u selected as u(t) = 3 for t ∈ [1, 3] and u(t) = 0 otherwise.
Figure 2 shows the behaviour of the plant (55) with (56). The observer (21) is initialized at the origin. Simulations have been
done in Matlab-Simulink 2017b with fixed-step size 1e− 6 and solver “ode8”. Figure 3 shows the behaviour of the estimation
errors for the first 5 seconds, while Table 2 summarizes the convergence time and asymptotic values of the estimation errors. It
can be noticed that due to the filtering properties of the cascade induced by the linear gains, the effect of the chattering induced
by the Sign(⋅) function in the first-block is attenuated through the successive two blocks. As a result, for the states x2, x3, the
estimate x̂22, respectively x̂33, has a better asymptotic behaviour compared to x̂12, respectively x̂23. By increasing the values of
Li, the convergence time can be reduced, but the chattering effect is amplified. Simulations suggests that a further development
of this work is to investigate how to reduce the effect of chattering for large systems.

6 CONCLUSIONS

In this paper, we presented a new observer design for lower-triangular systems. The proposed design allows to obtain a global
finite time convergent observer when the nonlinearity are affinely bounded. The proposed design generalizes a certain number
of usual observer design techniques, since its structure combines standard high-gain observers, sliding mode observers (denoted
also as generalized super-twisting algorithm) and interconnection of second-order observers (denoted as low-power high-gain
observers). A future development is that of quantifying the effect of measurement noise and chattering in the proposed algorithm.
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Estimate Convergence Time Asymptotic Error

|x1 − x̂11| 0.67s 1e − 11
|x2 − x̂12| 0.67s 1e − 5
|x2 − x̂22| 2.09s 1e − 7
|x3 − x̂23| 2.09s 3e − 4
|x3 − x̂33| 2.59s 1e − 4
|x4 − x̂34| 2.59s 5e − 3

TABLE 2 Values of the convergence time and asymptotic estimation errors of observer (21) of dimension 6. The estimation
error is computed as |x|∞ = lim supt→∞ |x(t)| and is induced by the chattering phenomenon. The

FIGURE 2 Behaviour of system (56). First graph: p1 (in red) and v1 (in dash-dotted blue). Second graph: p2 (in red) and v2 (in
dash-dotted blue).

FIGURE 3 Convergence of the estimation errors of observer (21). First graph: x1 − x̂11. Second graph: x2 − x̂12 (in red) and
x2 − x̂22 (in dash-dotted blue). Third graph: x3 − x̂23 (in red) and x3 − x̂33 (in dash-dotted blue). Fourth graph: x4 − x̂34.
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APPENDIX

A HOMOGENEOUS IN THE BI-LIMIT CORRECTION TERMS

The objective of this appendix is to establish Proposition 1. This proof is based on the use of the homogeneous in the bi-limit
framework and is obtained in several steps.

A.1 Homogeneous in the bi-limit framework
The particular feature of the bound (5) is that, for small values of the error, it is bounded by a constant, but for large values, it is
Lipschitz. Homogeneity in the bi-limit is a property that has been introduced in [22]. It characterizes functions which have two
(homogeneous) distinct behaviors at infinity and around the origin. Typically, the set-valued mappings k1 and k2 given in (11)
have two different behaviors. Around the origin, (k1, k2) are (almost) equal to

k1,0(s) = ⌊�s⌉
1
2 , k2,0(s) = Sign(s)

and at infinity (k1, k2) are (almost) equal to
k1,∞(s) = �s , k2,∞(s) = �s.

k0 = (k1,0, k2,0) and k∞ = (k1,∞, k2,∞) are homogeneous approximating vector fields corresponding to the sliding mode observer
and the high-gain observer respectively, and k = (k1, k2) is a homogeneous in the bi-limit vector field. More precisely, we say
that � ∶ ℝn → ℝ is bi-homogeneous (or homogeneous in the bi-limit) with weights r0 ∈ ℕn and r∞ ∈ ℕn, degrees d0 and d∞,
and approximating functions �0 and �∞ if

• �0 and �∞ are homogeneous with weights r0 and r∞, and degrees d0 and d∞ respectively.

• for every compact set C which doesn’t contain the origin, every � > 0, there exists �0 > 0 and �∞ > 0 such that for all
x ∈ C ,

|

|

|

|

�(�r0 ⋅ x)
�d0

− �0(x)
|

|

|

|

≤ " ∀� ∈ (0, �0]

|

|

|

|

�(�r∞ ⋅ x)
�d∞

− �∞(x)
|

|

|

|

≤ " ∀� ∈ [�∞,+∞)

where we denote �r ⋅ x = (�r1x1,… , �rnxn). To simplify we say that � is bi-homogeneous with triples (r0, d0, �0) and
(r∞, d∞, �∞). As for a vector field f =

∑

fi
)
)xi

, it is bi-homogeneous with triples (r0, d0, f0) and (r∞, d∞, f∞) if each fi is
bi-homogeneous with triples (r0, d0 + r0,i, f0,i) and (r∞, d∞ + r∞,i, f∞,i). Homogeneity in the bi-limit has been studied in [22]

only when there are functions with homogeneous degree larger than 0. So the case of Sign (set-valued) function has not been
considered. However, by extending these tools, it is possible to include this case.

A.2 The function V is C1

In this section, it is shown that the function V defined in (13) is C1. Note that this is obtained if the function e2 →
⌊

q−1(e2)
⌉
1
2 is

C1. First of all, this function is C1 every where expect maybe at 0. By [22, Proposition 2.11], q−1 is homogeneous in the 0-limit with
homogeneous approximating function e2 → e22. Moreover, by definition of q, we have

dq−1

de2
(e2) =

1
q′
(

q−1(e2)
) =

2
√

|q−1(e2)|

1 + 2
√

|q−1(e2)|
, ∀ e2 ≠ 0 . (A1)

Moreover, for all e2 ≠ 0, it yields
d
⌊

q−1(e2)
⌉
1
2

de2
= 1
1 + 2

√

|q−1(e2)|
, ∀ e2 ≠ 0 . (A2)
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By extension by continuity, this implies that e2 →
⌊

q−1(e2)
⌉
1
2 is C1.

A.3 Finite time stability for the error system
In this section we consider the set valued vector field

F (e) =
[

e2 − k1(e1)
−k2(e1)

]

(A3)

where k1 and k2 are given in (11). We show in the following proposition that when � is selected sufficiently large, the function
V defined in (13) is a Lyapunov function for this vector field (see also [16] for the homogeneous case).

Proposition 3. There exists a positive real number �∗ such that, for all � > �∗, there exists a positive real number cV ,0 such
that the function V given in (13) satisfies

max
{)V
)e
(e)F (e)

}

≤ −cV ,0
[

V (e) + V (e)
2
3

]

, ∀e ∈ ℝ2 . (A4)

Proof: The proof is inspired from Theorem 3.1 in [22]. Note that
)V
)e
(e)F (e) ⊂ {T1(�e1, e2) + �T2(�e1, e2)} , (A5)

where

T1(�, e2) = −(Sign(q(�)) + q(�))

⎛

⎜

⎜

⎜

⎝

3 ⌊e2⌉
2 +

�

∫
q−1(e2)

(

⌊

q−1(e2)
⌉
1
2 +

⌊

q−1(e2)
⌉2
)′

dℎ

⎞

⎟

⎟

⎟

⎠

and
T2(�, e2) =

(

e2 − q(�)
)

(

⌊�⌉
1
2 −

⌊

q−1(e2)
⌉
1
2 + ⌊�⌉2 −

⌊

q−1(e2)
⌉2
)

.

Furthermore, that there exists a continuous single-valued map T̃1 ∶ ℝ3 → ℝ such that

T1(�, e2) = {T̃1(�, e2, s) , s ∈ sign(q(�))} .

Define r0 = (2, 1), r∞ = (1, 1). T2 and T̃1 are both homogeneous in the bi-limit with weights r0, r∞ and (r0, 0), (r∞, 0)
respectively, with same degrees d0 = 2, d∞ = 3 and with homogeneous approximations

T̃1,0(�, e2, s) = −s
(

3 ⌊e2⌉
2 + � − ⌊e2⌉

2
)

,

T̃1,∞(�, e2, s) = −�
(

3 ⌊e2⌉
2 + ⌊�⌉2 − ⌊e2⌉

2
)

,

and

T2,0(s, e2) = −
(

e2 − ⌊�⌉
1
2

)2
,

T2,∞(s, e2) =
(

e2 − �
)

(

⌊�⌉2 − ⌊e2⌉
2
)

.

Moreover, q is an increasing function and T2 ⩽ 0, with T2 = 0 only if e2 = q(�). Note also that if e2 = q(�), T1(�, e2) =
−3|e2|2 − 3|e2|3 < 0. The same holds for the homogeneous approximation functions given above when s ∈ Sign(q(�)).
Employing the technical Lemma 1, it yields the existence of �⋆ > 0 such that for all � > �⋆,

max
s∈sign(q(�))

T̃1(�, e2, s) + �T2(�, e2) < 0 , ∀ (�, e2) ∈ ℝ2 ⧵ {0} .

It thus follows that
max

{)V
)e
(e)F (e)

}

< 0 , ∀ (e1, e2) ∈ ℝ2 ⧵ {0},

and the same for its homogeneous approximation. Following the proof of Corollary 2.15 in [22] employed with Lemma 1, it
implies that there exists cV > 0 such that

max
{)V
)e
(e)F (e)

}

≤ −cV V (e1, e2) − cV V (e1, e2)
2
3 .

□
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A.4 Proof of Proposition 1
Let � > �∗ where �∗ is given in Proposition 3. Along any solution of system (12), we have

V̇ (e, v,w) ≤ �(e, v,w) + )V
)e2

(e)v2

with
�(e, v,w) = max

{

)V
)e
(e)

(

e2 + k1(e1 +w) + v1
k2(e1 +w)

)}

.

Attributing tow the same homogeneous weights as e1, and to v1 the same homogeneous weights as e2, � is homogeneous in the
bi-limit and, according to Proposition 3, we obtain

�(e, 0, 0) +
cV
2

[

V (e)
2
3 + V (e)

]

< 0 ∀e .

Applying the technical Lemma 1 with


(w, v1) =
[

|w| + |w|3
]

+
[

|v1|
2 + |v1|

3] ,

shows that there exists c > 0 such that

�(e,w, v1) +
cV
2

[

V (e)
2
3 + V (e)

]

− c
(w, v1) < 0 .

Finally, we can observe that )V
)e2
(e) is homogeneous of degree 2, so that there exists cv2 > 0 such that

|

|

|

|

)V
)e2

(e)
|

|

|

|

≤ cv2V (e)
2
3 ,

concluding the proof.

B TECHNICAL LEMMAS

Lemma 1. Let � ∶ ℝn → ℝ be homogeneous in the bi-limit, with weights r0 and r∞, degrees d0 and d∞, of the form

�(x) = max
s∈sign(f (x))

�̃(x, s)

for some continuous maps �̃ ∶ ℝn+1 → ℝ, and f ∶ ℝn → ℝ such that, for all x ∈ ℝn, for all � > 0

Sign(f (�r0 ⋅ x)) = Sign(f (x)) (B6)
Sign(f (�r∞ ⋅ x)) = Sign(f (x)) , (B7)

and such that �̃ is homogeneous in the bi-limit, with weights (r0, 0) and (r∞, 0), degrees d0 and d∞, and approximating functions
�̃0 and �̃∞. Consider a continuous function 
 ∶ ℝn → ℝ+ that is homogeneous in the bi-limit, with same weights and degrees
and with approximating functions 
0 and 
∞ such that ∀x ∈ ℝn ⧵ {0}, ∀s ∈ Sign(f (x))

⎧

⎪

⎨

⎪

⎩


(x) = 0 ⇐⇒ �̃(x, s) < 0 ,


0(x) = 0 ⇐⇒ �̃0(x, s) < 0 ,


∞(x) = 0 ⇐⇒ �̃∞(x, s) < 0 .

Then there exists a real number c∗ such that, for all c ≥ c∗, and for all x in ℝn ⧵ {0}

�(x) − c 
(x) < 0 . (B8)

Proof: First by homogeneity of the approximations, according to [11, Lemma 4], there exist c∗0 > 0 and c
∗
∞ > 0, �∗0 > 0 and �

∗
∞ > 0,

such that for all c0 ≥ c∗0 and c∞ ≥ c∗∞, and for all x in ℝn ⧵ {0}, and for all s ∈ Sign(f (x))

�̃0(x, s) − c0 
0(x) < −�0 , �̃∞(x, s) − c∞ 
∞(x) < −�∞ .

Define c1 = max{c0, c∞} and �1 = min{�0, �∞}. Reproducing arguments of [22, Appendix C], we next prove that there exists a
compact set C such that for all c ≥ c1,

{x ∈ ℝn , ∃s ∈ Sign(f (x)) , �̃(x, s) − c 
(x) ≥ 0} ⊆ C . (B9)
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Indeed, the bi-homogeneity of �̃ and 
 means that there exist �0 > 0, �∞ > 0 such that, denoting the homogeneous norm

|x|r,d =
(

∑n
i=1 |xi|

d
ri

)

1
d , we have the following properties.

• For all � ∈ (0, �0], for all x such that |x|r0,d0 = 1, and for all s ∈ Sign(f (x)),

|�̃(�r0 ⋅ x, s) − �d0 �̃0(x, s)| ⩽ �d0 �
4
,

|
(�r0 ⋅ x) − �d0
0(x, s)| ⩽ �d0 �
4
,

which implies for c ⩾ c1
�̃(�r0 ⋅ x, s) − c
(�r0 ⋅ x)

⩽ �d0
(

�̃0(�r0 ⋅ x, s) − c
0(�r0 ⋅ x)
)

+ �d0 �
2

⩽ − �
2
,

using (B6), and therefore,
�̃(x, s) − c
(x) < 0 ∀ 0 < |x|r0,d0 ≤ �0 .

• For all � ∈ [�∞,+∞), for all x such that |x|r∞,d∞ = 1, and for all s ∈ Sign(f (x)),

|�̃(�r∞ ⋅ x, s) − �d∞ �̃∞(x, s)| ⩽ �d∞ �
4
,

|
(�r∞ ⋅ x) − �d∞
∞(x, s)| ⩽ �d∞ �
4
,

which implies for c ≥ c1 in the same way

�̃(x, s) − c
(x) < 0 ∀|x|r∞,d∞ ≥ �∞ .

Therefore, by defining the compact set

C ∶= {x ∈ ℝn , |x|r0,d0 ≥ �0 , |x|r∞,d∞ ≤ �∞} ,

we indeed have (B9).
Finally, assume that for all c ≥ c1, there exists x ≠ 0 such that �(x) − c 
(x) ≥ 0. Then, we can build a sequence (xk, sk) of

elements of C × [−1, 1] such that
�̃(xk, sk) − k
(xk) ≥ 0

with sk ∈ Sign(f (xk)) for all k ∈ ℕ∗. Since C is compact, there exists a subsequence which converges to (x∗, s∗) ∈ C ×[−1, 1].
Taking the limit and using the continuity of �̃, necessarily implies that 
(x∗) = 0 and �̃(x∗, s∗) ≥ 0. This is impossible if s∗ ∈
Sign(f (x∗)). But either f (x∗) ≠ 0, and s∗ = Sign(f (x∗)) by continuity of f , or f (x∗) = 0 and s∗ ∈ [−1, 1] = Sign(f (x∗)).
This concludes the proof. □

Lemma 2. Let (aW , aV ), two positive real numbers and (�W , �V ) two class- functions verifying

�V

(

2
aW

�W (s)
)

< aV ∀s > 0 . (B10)

There exists a class- function � such that for any two locally integrable functions �W ∶ [0, T ]→ ℝ and �V ∶ [0, T ]→ ℝ, any
two continuous functions W ∶ [0, T ] → ℝ+, and V ∶ [0, T ] → ℝ+ whose upper right Dini derivative (denoted D+) satisfies
for all t in [0, T )

D+W (t) ⩽ −aWW (t) + �W

(

sup
s∈[0,t]

V (s)
)

+ �W (t), (B11)

D+V (t) ⩽ −aV
(

V (t) + V (t)
2
3

)

+ �V (W (t)) V (t)
2
3 + �V (t) (B12)

the following inequality is satisfied

W (t) ≤ �
(

W (0) + V (0) + sup
s∈[0,t]

|�W (s)| + |�V (s)|
)

, ∀t ∈ [0, T ].

Lemma 2 looks like a small-gain theorem but with the following two differences:

• due to the presence of sups∈[0,t] V (s) instead of V (t) in (B11), we do not prove ISS but simply that W is “stable” with
respect to the initial conditions and the maximal perturbations ;
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• in (B12), taking �V = 0, we have D+V (t) < 0 whenever aV > �V (W (t)), which is not of the form V (t) > �(W (t)) with
� of class- as in the standard small-gain theorem.

Hence, the small-gain proof needs to be adapted.
Proof: Let � be a class- function that is C1 on (0,+∞) and verifies

�′(s) > 0 ∀s > 0 , �W (s) ≤
aW
2
�(s) ∀s ≥ 0 , �V ◦�(s) ≤ aV ∀s ≥ 0

which is always possible thanks to (B10). Define

U (t) = max
{

W (t), sup
s∈[0,t]

�(V (s))
}

, ∀t.

Let t be in [0, T ), we have

• ifW (t) > �
(

sups∈[0,t] V (s)
)

, then U (t) = W (t), and

D+U (t) ⩽ −aWW (t) + �W

(

sup
s∈[0,t]

V (s)
)

+ �W (B13)

⩽ −
aW
2
W (t) −

aW
2
�
(

sup
s∈[0,t]

V (s)
)

+ �W

(

sup
s∈[0,t]

V (s)
)

+ �W (t) (B14)

⩽ −
aW
2
W (t) + �W (t) (B15)

⩽ −
aW
2
U (t) + �W (t) (B16)

• ifW (t) < �
(

sups∈[0,t] V (s)
)

, then V (t) ≠ 0, U (t) = �(sups∈[0,t] V (s)), and we have the following cases :

– if sups∈[0,t] V (s) ≠ V (t), then, by continuity of V there exists t1 such that V (�) < sups∈[0,t] V (s), for all � in [t, t1].
Consequently,

sup
s∈[0,�]

V (s) = sup
s∈[0,t]

V (s) , ∀� ∈ [t, t1]

and thus, D+U (t) = 0.
– if sups∈[0,t] V (s) = V (t) and D+V (t) ⩽ 0, to show that D+ sups∈[0,t] V (s) ⩽ 0, let us assume the opposite and the
existence of � > 0 such that D+ sups∈[0,t] V (s) > � > 0.

D+ sup
s∈[0,t]

V (s) = lim sup
ℎ↘0

sups∈[0,t+ℎ] V (s) − sups∈[0,t] V (s)
ℎ

(B17)

= lim sup
ℎ↘0

sups∈[t,t+ℎ] V (s) − V (t)
ℎ

(B18)

= lim
ℎ↘0

sup
�∈(0,ℎ]

sups∈[0,�] V (t + s) − V (t)
�

> � (B19)

Hence, this implies that for all (ℎi)i∈ℕ there exists si ⩽ �i ⩽ ℎi such that
V (t + si) − V (t)

�i
> �
2

This implies that for all ℎi there exists si ⩽ ℎi
V (t + si) − V (t)

si
=
V (t + si) − V (t)

�i

�i
si
> �
2

which contradictsD+V (t) ⩽ 0. Consequently, ifD+V (t) ⩽ 0 thenD+ sups∈[0,t] V (s) ⩽ 0 and since � is an increasing
function D+�(sups∈[0,t] V (s)) ⩽ 0.

– if sups∈[0,t] V (s) = V (t) and D+V (t) > 0. By definition of Dini derivative, for each � > 0, there exists ℎ∗ > 0, such
that for all 0 < ℎ ⩽ ℎ∗,

V (t + ℎ) − V (t)
ℎ

≤ D+V (t) + � .
So for all ℎ ≤ ℎ∗

sup
�∈(0,ℎ]

V (t + �) − V (t)
�

⩽ D+V (t) + �
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Moreover, for all ℎ ≤ ℎ∗ such that max�∈[0,ℎ] V (t + �) − V (t) > 0,

0 <
max�∈[0,ℎ] V (t + �) − V (t)

ℎ
⩽ sup

�∈(0,ℎ]

V (t + �) − V (t)
�

⩽ D+V (t) + � .

And for all ℎ ≤ ℎ∗ such that max�∈[0,ℎ] V (t + �) − V (t) ≤ 0, we trivially have

max�∈[0,ℎ] V (t + �) − V (t)
ℎ

⩽ D+V (t) + �

since D+V (t) > 0. Therefore, the previous inequality holds for all ℎ ≤ ℎ∗. So since maxs∈[0,t] V (s) = V (t), we get
for all ℎ ≤ ℎ∗

maxs∈[0,t+ℎ] V (s) − maxs∈[0,t] V (s)
ℎ

≤ D+V (t) + �,

and thus
D+ max

s∈[0,t]
V (s) ≤ D+V (t) + �

This property being true for all � > 0, it yieldsD+ sups∈[0,t] V (s) ⩽ D+V (t). Thus, since � is an increasing function,

D+U (t) ≤ �′(V (t))D+V (t)

≤ �′(V (t))
[

−aV
(

V (t) + V (t)
2
3

)

+ �V (W (t))V (t)
2
3 + �V (t)

]

≤ �′(V (t))
[

−aV
(

V (t) + V (t)
2
3

)

+ �V ◦�
(

sup
s∈[0,t]

V (s)
)

V (t)
2
3 + �V (t)

]

≤ �′(V (t))
[

−aV V (t) + �V (t)
]

≤ �′(�−1(U (t)))
[

−aV �−1(U (t)) + �V (t)
]

• ifW (t) = �
(

sups∈[0,t] V (s))
)

, we have

D+U (t) = lim sup
ℎ↘0

U (t + ℎ) − U (t)
ℎ

= lim sup
ℎ↘0

max
{

W (t + ℎ), sups∈[0,t+ℎ] �(V (s))
}

− U (t)
ℎ

= lim sup
ℎ↘0

max
{

W (t + ℎ) −W (t)
ℎ

,
sups∈[0,t+ℎ] �(V (s)) − sups∈[0,t] �(V (s))

ℎ

}

= max
{

D+W (t), D+
(

sup
s∈[0,t]

�(V (s))
)}

,

and we use the previous two steps.

It follows that

D+U (t) ≤ 0 if U (t) ≥ max
{

2
aW

|�W (t)|, �
(

1
aV

|�V (t)|
)}

with the convention that �−1(U ) = +∞ if U ∉ �(ℝ≥0). According to the following lemma, we conclude

U (t) ≤ max
{

U (0), max
s∈[0,t]

2
aW

|�W (s)|, maxs∈[0,t]
�
(

1
aV

|�V (s)|
)}

.

□

Lemma 3. Let g, f ∶ [0, T ]→ ℝ≥0 be two continuous functions, such that for all t

D+f (t) ≤ 0 if f (t) ≥ g(t) .

Then,

f (t) ≤ max
{

f (0), max
s∈[0,t]

g(s)
}

∀t ∈ [0, T ] .
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Proof: Assume there exists t1 such that the former property is violated. This implies that

f (t1) > max
{

f (0), max
s∈[0,t1]

g(s)
}

.

The function f being continuous,

max
{

f (0), max
s∈[0,t1]

g(s)
}

∈ f ([0, t1]) .

Hence, we can define t0 in [0, t1) as

t0 = max
{

f−1
(

max
{

f (0), max
s∈[0,t1]

g(s)
})}

.

In other words, f (t0) = max{f (0),maxs∈[0,t1] g(s)}, and

f (t) > max
{

f (0), max
s∈[0,t1]

g(s)
}

⩾ max
{

f (0), max
s∈[0,t]

g(s)
}

for all t ∈ [t0, t1]. This implies
f (t0) < f (t1) & D+f (t) ⩽ 0 , ∀t ∈ [t0, t1)

which contradicts [28, Theorem 2.1, Appendix I, p 347]. □
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