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LOCAL-CONVEXITY REINFORCEMENT FOR SCENE RECONSTRUCTION FROM SPARSE
POINT CLOUDS

Maxime Lhuillier

Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000, Clermont Ferrand, France

ABSTRACT
Several methods reconstruct surfaces from sparse point clouds
that are estimated from images. Most of them build 3D De-
launay triangulation of the points and compute occupancy la-
beling of the tetrahedra thanks to visibility information and
surface constraints. However their most notable errors are
falsely-labeled freespace tetrahedra. We present labeling cor-
rections of these errors based on a new shape constraint: local-
convexity. In the simplest case, this means that a freespace
tetrahedron of the Delaunay is relabeled matter if its size is
small enough and all its vertices are in matter tetrahedra. The
allowed corrections are more important in the vertical direc-
tion than in the horizontal ones to take into account the aniso-
tropy of usual scenes. In the experiments, our corrections im-
prove the results of previous surface reconstruction methods
applied to videos taken by a consumer 360 camera.

Index Terms— Environment modeling, sparse features,
3D Delaunay triangulation, visibility, hole filling.

1. INTRODUCTION

The surface reconstruction from sparse image features is an
interesting challenge and can be useful in several contexts in-
cluding limited hardware resource, large scale environments,
initialization of dense stereo methods, low-textured regions in
images, applications that do not need a high level of details.
Most methods build 3D Delaunay triangulation of the points
reconstructed from images and compute occupancy labeling
of the tetrahedra thanks to visibility information and surface
constraints. Every tetrahedron is labeled freespace or matter.
The surface is the set of the triangle faces between freespace
and matter tetrahedra. However tetrahedra can be incorrectly
labeled freespace due to noise, bad points and lack of points.

These errors are the most notable ones and take many
forms: 3D box-like shapes (e.g. buildings) with spurious con-
cavities, thin 1D-structures (e.g. posts) that are disconnected,
thin 2D-structures (e.g. traffic signs) with tunnels connecting
both sides. We introduce methods to remove such errors by
using a new constraint: local-convexity (LC). Let M be the
matter, i.e. the union of the matter tetrahedra. It is locally-
convex at a point x ∈ M if x has a small neighborhood
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Fig. 1. Anisotropic local-convexity for a reconstructed scene.
The matter M is gray and the freespace is white. Left: a bal-
cony and a post are disconnected, a building has a spurious
concavity. Right: we would like (1) to fill the building con-
cavity and the gaps of balcony and post and (2) to fill neither
the gap between the two posts nor the gap between the ground
surface and the tree foliage. The local convexity of M is used
for (1), e.g. take y and z in different components of a post to
connect it. Both locality and anisotropy are useful for (2).

N ⊆ R3 such that N ∩M is convex, i.e. yz ⊂ N ∩M if
y, z ∈ N ∩M . The LC of M is reinforced anisotropically by
favoring the vertical direction due to the predominance of ver-
tical structures in usual scenes. Fig. 1 shows what we would
like: we complete the set of the matter tetrahedra at locations
where it is not LC. Our methods are used as preprocessing or
postprocessing of previous surface reconstructions methods.

2. PREVIOUS WORK

Shape priors or constraints are useful not only to take into
account of noise and bad points, but also to deal with spar-
sity. They can be inspired by human perception [11] (e.g.
group shape parts by convexity) and Gestalt theory [3] (e.g.
group points by alignment or proximity laws). A method [14]
uses proximity and interpolates a sparse set of points by a
connected manifold surface. Starting by a 3D Delaunay trian-
gulation of the points, the points are connected by Delaunay
triangles whose edges are as small as possible. Other meth-
ods are based on α-shapes [6], a generalization of convexity
that replace half-spaces outside the shape by balls with radius
equals to α. However [14] is not robust to outliers and the
visibility (lines-of-sight of the points) is unused in [6, 14].

We now consider surface reconstruction methods used in
Computer Vision which assume a sparse point cloud input,
e.g. acquired through Structure-from-Motion. They also start
from a 3D Delaunay triangulation. A graph-cut method in [18]
estimates a closed surface as a set of Delaunay triangles that



minimizes a cost function including a visibility term and a
surface quality term. The former tries to avoid triangle if it is
crossed by line-of-sight. The latter tries to avoid triangle that
is face of “too flat” tetrahedron. In [10], the surface is com-
puted as the boundary of an evolving set of tetrahedra that is
maintained manifold: the set mostly grows in the tetrahedra
crossed by lines-of-sight to meet the visibility constraint. Our
experiments show that our corrections based on LC improve
the results of both [18] and [10]. Our corrections can also
be used with most surface reconstruction methods, which are
based on graph-cut optimization or manifold constraint.

The original definition of LC is in [9] and uses Euclidean
balls as neighborhoods. In our case, the neighborhoods are
larger in the vertical direction than in the horizontal ones due
to the anisotropy of usual scenes. Furthermore, LC is ig-
nored in the previous works on surface reconstruction from
3D points reconstructed from images. Thus we briefly overview
the usage of LC and its variants (convexity, weak-convexity,
star-shapeness) in other problems. LC is expressed in terms of
normals and vectors between two close surfaces patches [12,
16]. It is used for segmentation of surface regions into ground/
object [12] and convex parts [16]. A method [1] segments an
oriented point clouds into weakly convex regions. It is based
on the percentage of point pairs whose connecting segment
does not leave the inner volume of the shape. Star-shapeness
generalizes convexity and can be efficiently integrated in a
graph-cut optimization to segment an object in an image [17],
if the user provides the star-shape center. Enforcing convex-
ity [7] is more difficult than enforcing star-shapeness [17].

Previous works also complete the shape during its recon-
struction but need strong assumptions to estimate primitives
(in contrast to LC). In [2], planes are estimated from a point
cloud which is denser than ours. Then a simplified surface is
generated using priors: the prevalence of vertical structures
and orthogonal intersections. A method [13] focuses on in-
door scenes and builds a different 3D space partition (from
scanner points) assuming that the surface is only horizontal
or vertical. In [19], swept surfaces (a generalization of ruled
surfaces) are estimated from sparse Structure-from-Motion
points assuming that the scene is 100% architectural.

3. EXPLICIT USE OF LOCAL-CONVEXITY

Let’s introduce a method (named Method 1) that explicitly
uses the LC definition in Sec. 1. This requires neighborhoods
that are built using a norm:

||x|| = max{ 1

sv
|k>x|, 1

sh

√
(i>x)2 + (j>x)2}, (1)

where x ∈ R3, (i, j,k) is an orthonormal basis of R3 such
that k is vertical, sh and sv are horizontal and vertical scale
factors. The unit ball {x ∈ R3, ||x|| ≤ 1} of ||.|| is a cylinder
with vertical axis, (horizontal) diameter 2sh and length 2sv .
The choice of sh and sv is given in the Appendix.

Let T be the 3D Delaunay triangulation of the input points.
It is a set of tetrahedra and their faces (vertices, edges, trian-
gles) such that the tetrahedra are labeled freespace or matter,
e.g. by ray-casting or graph-cut. There are several ways to
apply LC. Method 1 does this: first check whether edges of
T should be in matter, then relabel matter a tetrahedron of T
if all its edges should be in matter. In the first step, booleans
b(vi) and b(vivj) are defined for every vertex vi ∈ T and
every edge vivj ∈ T . In the second step, every freespace
tetrahedron vivjvkvl ∈ T is relabeled matter iff (if and only
if) the 10 booleans of its 4 vertices and 6 edges are true. For
ease of understanding, we start from a simplified b in Sec. 3.1,
then Sec. 3.2 provides the definition of b used by Method 1.

3.1. Use only matter vertices

First we use LC in the neighborhood N defined by the unit
ball of ||.|| centered at vi: if the vertices of an edge vivj ∈ T
are in both matter andN , then the edge vivj should be matter
too. This is done by the following setting of the booleans.
Let b(vi) be true iff vi is a vertex of a matter tetrahedron
of T . (i.e. iff vi is a “matter vertex”.) Let b(vivj) be true
iff (1) ||vi − vj || ≤ 1 or (2) vivj is an edge of a matter
tetrahedron in T . Thus every edge vivj ∈ T should be in
matter if b(vi) = true and b(vj) = true and b(vivj) = true.
Note that case (1) uses LC and case (2) is straightforward.

Second we explain the relabeling of a freespace tetrahe-
dron ∆ ∈ T . If ∆ is included in an unit ball of ||.|| and its
4 vertices are matter, then ∆ should be relabeled matter by
LC. If ∆ is too large to be included in an unit ball, it could be
subdivided into parts such that every part (1) is small enough
to be included in an unit ball and (2) is the convex hull of
matter points. Then ∆ should be relabeled matter since it is
the union of parts which should be matter. The parts could be
slices of ∆, which are convex hulls of points in the ∆ edges
with true booleans. For efficiency and simplicity, we try to
find neither an enclosing unit ball nor a subdivision of ∆, we
directly relabel matter ∆ iff its 10 booleans are true.

3.2. Extend the set of matter vertices

Here is the idea: initialize b (Sec. 3.1), generate a lot of tetra-
hedra that are not in T but should be labeled matter follow-
ing Sec. 3.1, then vertices of T that are in such a tetrahedron
a0a1a2a3 should be matter. The vertices ai are in T and meet
b(ai) = true. The edges aiaj meet b(aiaj) = true. Note
that b(aiaj) is not yet defined if aiaj /∈ T . In this case, let
b(aiaj) be true iff ||ai− aj || ≤ 1. Then we reset b(v) = true
if a vertex v ∈ T is in the convex hull of a0, a1, a2 and a3.

In practice we successively consider every vertex v ∈ T
such that b(v) = false and only try tetrahedra whose vertices
are in the immediate neighborhood of v: we enumerate every
tetrahedron a0a1a2a3 such that vai ∈ T and b(ai) = true
and ||ai−v|| ≤ 1 where 0 ≤ i ≤ 3. If the 6 booleans b(aiaj)
are true and v ∈ a0a1a2a3, we reset b(v) to true.



4. IMPLICIT USE OF LOCAL-CONVEXITY

Here we introduce two methods whose principle is simple:
generate a lot of sets of freespace tetrahedra included in the
3D Delaunay triangulation T , then all tetrahedra in a set S are
relabeled matter if there are enough matter tetrahedra that sur-
round S. Sec. 4.1 presents criteria to evaluate the surrounding
and explains the implicit use of LC. Then the two methods are
described in Secs. 4.2 and 4.3.

We enforce constraints on the sets such that they are nei-
ther too large nor too numerous. All tetrahedra in S share a
common vertex and S is strongly connected: there is a walk
in the adjacency graph of tetrahedra in S linking every tetra-
hedron in S. (Tetrahedra are adjacent iff they have a common
triangle face.) Thus the expected size of S is less than 27 [4]
and strongly connected components are separately tried.

4.1. Surrounding criteria and local-convexity

We need to measure the matter that surrounds S. Let ∂S be
the boundary of S, i.e. the set of every triangle that is a face
of exactly one tetrahedron in S. Let ∂mS be the triangles in
∂S that are faces of matter tetrahedra (in T \ S). Let c(S) be
the ratio between the area of ∂mS and the area of ∂S. The
area of ∂S is the sum for every abc ∈ ∂S of the Euclidean
norm of s = 1

2 (b−a)∧ (c−a). We have 0 ≤ c ≤ 1. If c(S)
is close to 1, S is well surrounded by the matter tetrahedra.
(S is a freespace cavity of the matter if c(S) = 1.)

We define another criterion ck that takes into account the
scene anisotropy. (c does not.) The area of the triangle abc is
generalized by

√
sT Qs where Q ∈ R3×3 is a symmetric posi-

tive semidefinite matrix. If Q = kkT ,
√
sT Qs is the projected

area of abc onto a horizontal plane (whose normal is k). We
define ck(S) by replacing every Euclidean norm of s in the
expression of c(S) by

√
sTkkT s. We have 0 ≤ ck ≤ 1. If

ck(S) is close to 1, S is well surrounded by the matter tetra-
hedra above and below (relatively to the vertical direction k).

In both cases (if c(S) or ck(S) is close to 1), we can use
the matter LC in a (non-explicit) neighborhood that includes
S: most tetrahedra in S are in the convex hull of ∂mS and S
should be relabeled matter. These relabeled tetrahedra can be
larger than those in Sec. 3 since sh and sv are unset here.

4.2. Method 2

Method 2 extends the Peak Removal operation in [10] to non-
manifold surface separating matter and freespace tetrahedra.
A set S is a strongly connected component of the freespace
tetrahedra in T sharing a vertex v. Furthermore, v is a “peak
of S”, i.e. S has a small solid angle with apex v. (This angle
is the sum for every vabc ∈ S of the solid angle at the vertex
v of the tetrahedron vabc.) In contrast to [10], we can have
several sets S for a same v if v is a non-manifold vertex.

The relabeling of tetrahedra sharing every vertex v ∈ T
is done as follows. First we compute the set(s) S sharing v

by a graph traversal in the adjacency graph of the tetrahedra
that include v. Then every set S is relabeled matter if its solid
angle with apex v is less than a threshold and c(S) is greater
than another threshold. We respectively use thresholds π/2
and 0.5 in the experiments. The value 0.5 implies that the
area between freespace and matter tetrahedra decreases.

4.3. Method 3

In contrast to Method 2, Method 3 takes into account the
scene anisotropy and tries many more sets S. For ease of un-
derstanding, we start from a simplified version of Method 3
without strong connectivity in Sec. 4.3.1, then we update it
with strong connectivity in Sec. 4.3.2. Here we use a con-
fidence measuring that a tetrahedron is freespace: the num-
ber of lines-of-sight intersecting the tetrahedron. Other confi-
dence choices are possible but they are not in the paper topic.

4.3.1. Ignore strong connectivity

The tetrahedra in a set S share a same vertex and have the low-
est confidences. There are two reasons for this choice. First it
is easy to enumerate all sets: for each vertex v ∈ T , store in a
table the freespace tetrahedra in T including v in the increas-
ing order of the freespace confidences, initialize S = ∅, add
to S the i-th element of the table and increment i in the table
range. Second we want to relabel in priority the tetrahedra
that are the most probably falsely-labeled freespace.

Now we detail how to relabel tetrahedra sharing a com-
mon vertex v ∈ T . Let Si = Si−1 ∪ {∆i} where ∆i is
the i-th tetrahedron of the ordered table and S0 = ∅. Let
i∗ = argmaxi ck(Si). If ck(Si∗) is greater than a threshold
c0, the tetrahedra in Si∗ are relabeled matter. In practice, this
process is done for all vertices three times using c0 = 0.6.

4.3.2. Use strong connectivity

In Sec. 4.3.2, we use “component” as a shortening of “strongly
connected component”. The difference between Method 3
and the simplified method in Sec. 4.3.1 is the following: we
compute i∗ = argmaxi ck(S′i) where S′i is the component of
Si that includes ∆i. By doing this, the components of the Si

are separately tried. We now explain how to compute S′i.
The computation of S′i is fast thanks to the incremental

computation of the components of Si from those of Si−1. Let
∆′ ∈ T be one of the four adjacent tetrahedra of ∆i. If ∆′ ∈
Si−1, ∆′ and ∆i must be in the same component. Thus S′i
is the union of the set {∆i} and every component S′ of Si−1
including such a ∆′ (if any). Furthermore, the components of
Si are S′i and those of Si−1 except the set(s) S′. This is done
efficiently thanks to an union-find data structure [15].

5. RELABELING FOR PREVIOUS METHODS

We combine our methods and use them to improve[18, 8, 10].



5.1. Combine several relabeling methods

We try several combinations of our relabeling Methods 1, 2
and 3 described in Secs. 3, 4.2 and 4.3, respectively. In prac-
tice we found that it is always interesting to use 2 as follows:
first apply 2, then apply 1 or 3. Indeed, 2 is faster than 1 and
3 and does a part of the job of 1 and 3.

Up to now, falsely-labeled freespace tetrahedra are cor-
rected and falsely-labeled matter tetrahedra are ignored. The
latter occurs if the tetrahedra are too acute to be intersected by
lines-of-sight. We simply correct this by swapping freespace
and matter in Method 2: relabeling freespace the sets of mat-
ter tetrahedra (instead of relabeling matter the sets of freespace
tetrahedra) with small solid angle if the area between freespace
and matter tetrahedra decreases. This method is named 2̃. We
use a more conservative upper limit of the solid angles in this
case (π/100) so that scene thin structures are not removed.

Our experiments needs notations: 2+1 means that we first
use 2, then 1, last 2̃. Similarly, 2+3 means that we first use
2, then 3, last 2̃. Method 2̃ is used as the end since 1 or 3
can sometimes create falsely-labeled matter tetrahedra. An-
other combination 2+1+3 is possible but is not in the paper
due to space limitation, e.g. if we define the matter tetrahedra
of 2+1+3 by the union of those of 2+1 and 2+3. We also write
2+2̃ if only 2 and 2̃ are used. If 2+1 or 2+3 is used to improve
a previous surface reconstruction method named X, we write
X(2+1) or X(2+3). Here are examples: X=M in Sec. 5.2 and
X=Gi in Sec. 5.3.

5.2. Preprocessing for a manifold method M

M is the manifold method named M3 in [10]. Its input is T
and a labeling obtained by ray-casting: a tetrahedron is la-
beled freespace iff it is crossed by a line-of-sight. Its output
is another labeling with improved freespace and matter tetra-
hedra (named outside and inside in [10]) whose boundary is
a manifold surface. Our corrections are straightforward in a
preprocessing of M, but they remove the manifold property if
they are in a postprocessing of M. Since the efforts of M are
useless in the latter, we only consider the former in the paper.

5.3. Postprocessing for graph-cut methods G1 and G2

G1 is the graph-cut method in [18]. First it builds T and
its adjacency graph, whose weights are computed from the
lines-of-sight and their intersections with the Delaunay tri-
angles and the tetrahedron geometry (using λqual = 1 and
αvis = 1). Then the final tetrahedron labeling is computed
by a minimum s-t cut of the graph.

Our corrections can be a preprocessing or a postprocess-
ing of G1. In the former, the corrections are applied to an ini-
tial labeling (obtained by ray-casting in T ) and t-weights of
the graph increase by a value if we relabel their correspond-
ing tetrahedra. This modifies the cost function, which is mini-
mized by graph-cut. The latter is straightforward. The former

requires an additional parameter (the value) and is left as fu-
ture work. Thus we only consider the latter in the paper.

G2 is the graph-cut method in [8], which improves thin
structures compared to G1. (We use σ = 0, δ = 0.5 and
β/αvis = 32.) Similarly, our corrections are done in a post-
processing of G2.

6. EXPERIMENTS

Sec. 6.1 experiments our corrections alone and Sec. 6.2 shows
improvements that they provide if they are used in a postpro-
cessing of graph-cut methods or in a preprocessing of a man-
ifold method. These processing choices and the notations of
the methods are detailed in Sec. 5. All methods start from
the same 3D Delaunay triangulation T and end by the same
Laplacian smoothing of the surface for fair comparisons.

The sparse input point cloud is computed as in Sec. 7.1
of [10] from two 2496 × 2496 videos at 30Hz taken by a
Garmin Virb 360 camera. This camera is mounted on the top
of a car using a small mast. The trajectory is 6.7km long
in an urban scene. There are 5.5M vertices in T , which are
reconstructed from 6.5k keyframes selected in the videos by
Structure-from-Motion (using central and global shutter ap-
proximations). Fig. 2 shows the 360 camera, a keyframe and
a bottom view of the vertices in T .

6.1. Only use corrections

We compare the initial labeling by ray-casting and its relabel-
ing by our methods 2 + 2̃, 2 + 1 and 2 + 3. The comparison
is interesting since it helps to understand the preprocessing of
method M (which is this relabeling). Furthermore, this shows
the performance of our relabeling in a context that is more
difficult than that of the postprocessing of methods Gx. (The
initial labeling is more corrupted than that computed by Gx.)

Fig. 3 shows labeling differences near a 5-way crossroad
by projecting the freespace tetrahedra (in black) to the hori-
zontal plane. We see that 2 + 2̃ removes the largest freespace
tetrahedra that are inconsistent with the geometry of the urban
corridors. (Note that the camera moves in the 5 main roads).
At this large scale, we also see that 1 and 3 (involved in meth-
ods 2+1 and 2+3) remove other freespace tetrahedra. Fig. 4
shows differences at small scale near two scene components:
both 2 + 1 and 2 + 3 complete thin structures such as trunks
and traffic signs in comparison to 2 + 2̃.

We see that our methods change topology: trunk compo-
nents are connected, tunnels (i.e. holes) in a traffic sign are
filled. So we evaluate the topology changes. Let β0 and β1
be the numbers of connected components and tunnels of the
matter [5]. Tab. 1 shows that our corrections have advantages:
they greatly reduce β1 and improve the surface manifoldness.
Other experiments (not in the paper) show that β0 always de-
creases if 2̃ is unused, but this generates large spurious matter
tetrahedra and the β1 reduction is smaller than before.



Fig. 2. One keyframe, the Garmin Virb 360 camera, and a bottom view of the vertices of T .

Fig. 3. Large scale view of our corrections. From left to right: vertices of T , initial labeling by ray-casting, results of the
correction methods 2 + 2̃, 2 + 1 and 2 + 3. Matter is white and freespace is black.

Fig. 4. Small scale views of our corrections. From left to right: input image, results of the correction methods 2 + 2̃, 2 + 1 and
2 + 3 (best viewed in colors and by zooming in). Vertical triangles are red-green-blue and horizontal triangles are white/black.
Note that 2 + 1 has 3 successive views at the bottom line to show the thickness of the traffic sign with few vertices.



Fig. 5. Apply our corrections with previous methods to a building (best viewed in colors and by zooming in). From left to
right: input image, results of methods M, M(2+1), M(2+3), G1, G1(2+3), G2, G2(2+3).

Method ray-casting 2+2̃ 2+1 2+3
comp. number (β0) 4.8k 5.5k 1.5k 5.1k
tunnel number (β1) 185k 105k 18k 31k
non-manifold vertex 31% 9.8% 5.0% 4.4%

freespace 57% 51% 38% 49%
computation time 102s 22s 38s 62s

Table 1. Topology changes provided by our corrections. See
also the percentage of the freespace tetrahedra in T and the
computation time (using one core of a standard laptop).

6.2. Use corrections with surface reconstruction methods

Fig. 5 compares the methods M, G1, G2 and their corrected
versions on a building of our scene. The surface normal of the
low textured face of the building is always noisy without our
corrections. The 2+3 correction improves the normal of all
methods, which should be constant in this face. In contrast to
this, the normal improvement of the 2+1 correction is negli-
gible in all cases. (The figure only shows M(2+1).) There are
two reasons. First 2+1 uses an upper limit on the edge size
of tetrahedra and 2+3 does not. Second the edge size is large
since the building is in the background and has a low number
of points (due to low texture). We also note that both 2+1 and
2+3 remove two blunders of M.

In Fig. 6, we focus the comparisons on sharp edges of
a facade of our scene. Here a sharp edge is an intersection
between two adjacent and orthogonal planar regions of the
scene. This often occurs in urban scenes: we mostly observe
2 × 2 kinds of sharp edges: horizontal or vertical, convex
or concave. We say that an edge in a surface is convex (re-
spectively, concave) if its neighborhood in the matter side is
convex (respectively, concave). Fig. 6 shows that both 2+1
and 2+3 corrections improve the reconstructions of the ver-
tical sharp edges if they are convex. If the sharp edges are
concave, the sharpness is smoothed by 2+1 which tends to fill
the concavity in the freespace side. This sharpness smoothing
can also occur for 2+3 but it is weaker than that of 2+1. These
comments hold for M, G1 and G2.

Fig. 7 compares M, G1, G2 and their corrected versions
on thin 1D structures of our scene. In the top row, the result
of M(2+1) is better than that of M and M(2+3), since M(2+1)
provides the most complete thin 1D structures. In the bottom
row, both G1(2+1) and G1(2+3) complete the thin 1D struc-
tures of G1. However we see that G1(2+1) has a growing bias:
the thickness of two thin 1D structures near the central post
is larger than the true one, according to the original image of
the scene in the top row.

We also do quantitative evaluations of all methods ap-
plied to the synthetic urban dataset in [10] (a piecewise planar
scene with real textures). The T vertices and the lines-of-sight
are estimated by Structure-from-Motion applied to synthetic
videos taken by a 360 camera whose trajectory is a 621m long
closed loop (Fig. 8). Tab. 2 shows that our corrections im-
prove the previous surface reconstruction methods using both
geometric and topological criteria. Geometric error and trian-
gle number decrease thanks to our corrections. Furthermore a
lot of spurious tunnels are filled (topological noise decreases)
and the GC surface manifoldness is improved in most cases.

Last we do experiments similar to those of Tab. 2 for our
real scene, except that there is no ground truth here. The sur-
face topology of the GC methods is globally improved by our
corrections since the percentage of non-manifold vertices in
the surface always decreases (from 12% to 67%) and the tun-
nel number β1 is divided by 3-5. The β1 of method M de-
creases by about 7%. The triangle number decreases by about
30% using the 2+1 correction or 9-15% using the 2+3 cor-
rection. (This is intuitive: a surface with a lot of tunnels and
small concavities has more triangles than a correction of this
surface such that most tunnels and concavities are filled by
LC.) The component number β0 decreases up to 73% (2+1
correction) and increases up to 25% (2+3 correction).

7. CONCLUSION

We introduce a new shape constraint, local-convexity, to im-
prove previous surface reconstruction methods based on 3D
Delaunay triangulation. This constraint is reinforced by our
corrections in a postprocessing or a preprocessing depending



Fig. 6. Apply our corrections with previous methods to a facade (best viewed in colors and by zooming in). Top (from left to
right): input image, M, M(2+3), G1, G1(2+1), G1(2+3). Bottom: G2 and G2(2+3).

Fig. 7. Apply our corrections with previous methods to a traffic roundabout with urban vegetation and post (best viewed by
zooming in). Top (from left to right): input image, M, M(2+1), M(2+3). Bottom: G1, G1(2+1), G1(2+3), G2 and G2(2+3).

Method G1 G1(2+1) G1(2+3) G2 G2(2+1) G2(2+3) M M(2+1) M(2+3)
80% fractile of error (cm) 28 26 26 28 26 26 24 22 22
90% fractile of error (cm) 94 84 88 94 82 88 68 58 56

triangle number 1.26M 0.86M 1.01M 1.27M 0.82M 0.98M 1.09M 0.72M 0.922M
component number (β0) 46 28 45 27 18 29 2 3 4

tunnel number (β1) 834 187 205 1737 247 351 32 17 18
non-manifold vertex 0.98% 1.24% 0.27% 1.58% 1.18% 0.34% 0% 0% 0%

Table 2. Quantitative improvements provided by our corrections of previous surface reconstruction methods applied to a
synthetic urban dataset. There are not only accuracy improvements (error fractiles decrease) but also topology improvements
(the number of spurious tunnels decreases) and mesh simplification. The true scene has β1 = 3 tunnels and β0 = 1 component.



Fig. 8. Synthetic urban dataset. Left: images at a location.
Right: top views of Structure-from-Motion and M surface.

on the kind of surface reconstruction method to which it is
added. Since the input point cloud is sparse, we do not try to
fit primitives such as planes but enumerate and select (local
packs of) tetrahedra for relabeling, mostly from freespace to
matter. Experiments show improvements for an urban scene
acquired by terrestrial imagery: remove freespace concavi-
ties and tunnels of the matter tetrahedra, improve sharp edges
if they are convex, complete thin structures, reduce both ge-
ometric error and surface complexity. Future work should
avoid oversmoothing of sharp edges if they are concave, vary
the privileged direction along which we obtain most improve-
ments, and investigate other ways to reinforce local-convexity.
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A. APPENDIX

The choice of sv and sh (in Sec. 3) is a trade-off: the relabel-
ing is negligible if they are too small, shape details can be lost
if they are too large. We first estimate a size ε for the level of
detail that is expected for the reconstructed shape, then mul-
tiply it by numbers about 1 to obtain sv and sh. Let sh = 2ε
and sv = 3ε where ε is the median of the horizontal lengths
(used in Eq. 1) of the edges of the input matter tetrahedra.


