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In this work we propose a generic and simple definition of a line separating gas-like and liquid-
like fluid behaviors from the standpoint of shear viscosity. This definition is valid even for fluids
like the hard sphere and the inverse power law which exhibit a unique fluid phase. We argue
that this line is defined by the location of the minimum of the macroscopically scaled viscosity
when plotted as a function of the excess entropy, which differs from the popular Widom lines.
For hard sphere, Lennard-Jones, and inverse-power-law fluids, such a line is located at an excess
entropy approximately equal to −2/3 times Boltzmann’s constant and corresponds to points in the
thermodynamic space for which the kinetic contribution to viscosity is approximately half of the total
viscosity. For flexible Lennard-Jones chains, the excess entropy at the minimum is a linear function
of the chain length. This definition opens a straightforward route to classify the dynamic behavior of
fluids from a single thermodynamic quantity obtainable from high-accuracy thermodynamic models.

BACKGROUND

There is a long history of interest in supercritical fluid
behavior, going back to Andrews’ experiments with CO2

in 1869 [1, 2]. The question of defining a metric that can
be used to differentiate gas-like behavior from liquid-like
behavior has seen significant interest in the intervening
years. Common means of identifying the change between
gas-like and liquid-like behaviors are the Widom line [3–
5], extrema in thermal diffusivity and kinematic viscosity
[6–8], and the Frenkel line [9–12], though each of these
definitions has deficiencies.

In this work a rather different approach for demarcat-
ing gas- and liquid-like behaviors is presented and ap-
plied to hard-sphere, inverse-power-law, Lennard-Jones
and flexible Lennard-Jones chain model fluids. We begin
by considering the macroscopically scaled viscosity [13]
for a number of atomic fluids and note that their scaled
viscosity minima occur in a remarkably narrow range of
excess entropy. From that insight we proceed to investi-
gate the cause of this similarity, identifying connections
between excess entropy and the kinetic and configura-
tional contributions to the viscosity. The analysis for
atomic fluids has a direct extension to molecules. Put
simply, the excess entropy can be used to demarcate gas-
like and liquid-like behaviors.

ENTROPY SCALING

Rosenfeld [13] laid the foundation for the field of en-
tropy scaling of transport properties with his work four
decades ago. This work has received revived interest
in recent years as evidenced by a recent review on the
topic [14]. The salient part of Rosenfeld’s thesis is that
the transport properties, when scaled by the appropriate
macroscopic dimensions [15], should be a function only of
the excess entropy. This conclusion was formed based on
the analysis of a rather small set of molecular dynamics
simulations available at the time.

The first version of isomorph theory [16–20], which is
closely related to entropy scaling [14], states that if there
are isomorphs (curves along which the macroscopically
scaled structure and dynamics are constant), then cer-
tain properties are constant along these curves, among
which are: macroscopically scaled viscosity, excess en-
tropy, and so on [18]; not all scaled transport properties
are isomorph invariants [21]. Furthermore, according to
the isomorph theory, the causality does not go the other
way; a line of constant excess entropy is not necessarily
a line along which the macroscopically scaled viscosity is
constant.

Here we define the excess entropy by

sex(T, ρN) ≡ s(T, ρN)− s(0)(T, ρN). (1)

where sex is the excess entropy per particle, s is the en-
tropy per particle, s(0) is the ideal gas entropy per parti-
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FIG. 1. Overlay of the macroscopically reduced viscosity η̃
data for argon (see Ref. [25]), for the hard sphere from Enskog
theory (HS), inverse-power-law (IPL) of hardness nIPL from
6 to 52, and Lennard-Jones 12-6 (LJ) potentials at reduced
temperature T ∗ from 1.35 to 6 studied in this work. For LJ,
the curves were fit to each nominal isotherm from Ref. [26].
The IPL data are provided in the SI.

cle, T is the temperature, and ρN is the number density.
The evaluation of the excess entropy for a given fluid or
model potential is described below. The excess entropy
can be understood as the change in the number of ac-
cessible microstates caused by interactions between the
particles [22]. The interactions tend to reduce the num-
ber of accessible microstates compared with the ideal gas
at the same temperature and density, and therefore the
excess entropy is negative. The causal link between ex-
cess entropy and self-diffusion may be somewhat com-
prehensible [22] and the fluidity (reciprocal of viscosity)
is proportional to self-diffusion when the Stokes-Einstein
relation is applicable [23].

For simplification of the nomenclature, we define the
variable s+ ≡ −sex/kB, which is a nondimensional en-
tropy term (kB is Boltzmann’s constant [24]) and has the
feature that it becomes more positive as the “structure”
of the fluid is increased (possible microstates are reduced
compared to the ideal gas at the same temperature and
density).

The macroscopically scaled viscosity η̃ is given by [13,
15]

η̃ ≡ η

ρ
2/3
N

√
mkBT

(2)

in which η is the shear viscosity, ρN is the number den-
sity (particles per volume), m is the mass of one particle,
and T is the temperature. The macroscopically scaled
viscosity is a dimensionless quantity and was previously
considered for a range of model potentials and selected
molecular fluids [25]. In this work we extend that anal-
ysis to a more quantitative analysis of this scaling ap-
proach and place our focus on the nature of the minima

of the scaled viscosity. The location of the minima of the
macroscopically scaled viscosity is not coincident with
the minima of the shear viscosity along an isobar [9].

Figure 1 shows selected data previously published [25]
as well as a more comprehensive set of data for the
inverse-power-law potentials of variable hardness gener-
ated in this work. In plotting the scaled viscosity data as
a function of excess entropy, the minima of η̃ consistently
occur near the value s+ = 2/3. This holds true even
for rather soft inverse-power-law potentials, the Lennard-
Jones fluid, and argon data covering a broad range of
temperatures [25].

ATOMIC FLUID VISCOSITY

Hard sphere The hard sphere system is one of the
most well-studied model potentials and forms the basis
of a large body of transport property modeling as de-
scribed in the review of Ref. [27], and in two of the most
popular approaches for connecting the viscosity of hard
spheres with those of real fluids [28–33]. From the corre-
lations obtained from Enskog theory for the hard sphere
provided by Chapman and Cowling [34, pp. 306], the vis-
cosity values divided by the values from the fourth-order-
corrected dilute-gas viscosity [34] yields (the underset an-
notations kk, kc, and cc indicate the three contributions
described in the next section)

η∗

[η∗ρ→0]4
=

1

g(σ)︸ ︷︷ ︸
kk

+
16ζ

5︸︷︷︸
kc

+
1

25

(
4 +

48

f4π

)
(4ζ)2g(σ)︸ ︷︷ ︸

cc

, (3)

where η∗ = ησ2/
√
mε, [η∗ρ→0]4 is the dilute gas viscos-

ity with fourth-order corrections, σ is the hard sphere
diameter, ε is the energy scale, the packing fraction is
defined by ζ = πρNσ

3/6, f4 = 1.016 for the fourth-order
correction[34, pp. 169], and g(σ) is the radial distribu-
tion function at contact. The hard sphere analysis is
described in detail in the supporting information (Sec.
1), as well as a summary of some typographical errors in
the literature, and a more concise definition of the pack-
ing fraction as a function of excess entropy. Combining
the transport and thermodynamic relationships together,
values of η̃ as a function of s+ are shown in Fig. 2. The
minimum of η̃ occurs at s+ = 0.668 ≈ 2/3.
Lennard-Jones 12-6 For the Lennard-Jones 12-6

fluid, there are more than two thousand data points for
viscosity from molecular simulation [35], and for our pur-
poses the most useful dataset is that of Ref. [26]. In
that study, simulation data were available along nominal
isotherms, and for each nominal isotherm, we calculated
s+ from the empirical equation of state [36] and applied
modified entropy scaling [35] to obtain an empirical rep-
resentation of η̃; we obtained the minimum value of η̃
along each isotherm from the empirical model. The val-
ues of η̃ and s+ at the minima of η̃ are shown in Fig. 2.
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FIG. 2. Upper panel: Values of macroscopically reduced vis-
cosity η̃ for the hard sphere fluid from Enskog theory (thick
dashed green curve) and the data for the Lennard-Jones 12-6
fluid (and the empirical curves used to locate the minima)
from the equilibrium molecular dynamics simulations of [26]
for the nominal isotherms of T ∗=(1.35,1.5,1.8,2.1,2.5,3,4,6).
The reduced temperature T ∗ is defined by T ∗ = kBT/ε. The
values of η̃ for the Lennard-Jones fluid are vertically shifted by
T ∗/2 so that the curves can be distinguished. Lower: Value
of s+ at the minimum of η̃ for each nominal isotherm.

The values of s+ at the minima of η̃ are within the range
s+ = 0.666 ± 0.044 ≈ 2/3, with a slight temperature
dependence.

Inverse-Power-Law For the inverse power law poten-
tial VIPL ≡ ε(σ/r)n, where n is the hardness of the po-
tential, molecular dynamics simulations were carried out
in order to evaluate η∗. The viscosity was evaluated with
the SLLOD algorithm [37] implemented in RUMD [38].
Values of s+ are calculated from virial expansions [39] as
described in the SI of Ref. 25. The IPL family includes
the hard sphere in its limit of n→∞ [15], and is a com-
mon means of probing the impact of ranged repulsive
interactions.

Figure 3 shows the scaled simulation results for the IPL
potential calculated in this work as a function of s+ for
a range of hardnesses n. The η̃ minima occur at values
of s+ within 10% of the hard-sphere limiting value of
2/3. In the SI (Fig. S1) the values of s+ at the minima
of η̃ as a function of 1/n are shown, together with the
appropriate extrapolation to the hard sphere limit.
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FIG. 3. Values of macroscopically reduced viscosity η̃ for
the IPL potentials of hardness n=(6,9,12,15,18,24,36,48,52)
(indicated by selected labels) as a function of s+. Diamonds
indicate the interpolated minima for each hardness.
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FIG. 4. Relative contributions to the scaled viscosity for
the hard sphere fluid from Enskog theory (thick dashed
curves) and results from Ref. [26] for the Lennard-Jones
12-6 fluid (straight line segments connecting data points
along the T ∗=1.35, 1.5, 1.8, 2.1, 2.5, 3, 4, and 6 nomi-
nal isotherms). The kinetic-kinetic kk term is in red, the
configurational-configurational cc term is in blue, and the
kinetic-configurational kc term is in green.

VISCOSITY CONTRIBUTIONS

In order to understand why the minima of η̃
consistently occur near s+ = 2/3, we start with
two of the best-studied model systems: the hard
sphere fluid and the Lennard-Jones 12-6 fluid. The
shear viscosity can be decomposed into kinetic-kinetic
(kk), kinetic-configurational (kc), and configurational-
configurational (cc) contributions according to time cor-
relation theory[26]. In some cases, the kinetic term is de-
scribed as translational in the literature, and the config-
urational term as potential, but the definitions are iden-
tical.

For the hard sphere, the kk, kc, and cc contributions
can be evaluated individually from Enskog theory (as in-
dicated in Eq. (3)) and their relative contributions are
overlaid in Fig. 4 (dashed curves) as a function of excess
entropy. At zero density the kk contribution is equal
to the dilute-gas contribution, and decays to zero as s+
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increases. The relative contribution from cc increases
monotonically, and the coupling term has a maximum in
the vicinity of s+ = 1. The value of s+ = 2/3 corre-
sponds to the condition that the kk contribution repre-
sents 46.9% (nearly 50%) of the total shear viscosity.

For the Lennard-Jones 12-6 fluid, the simulations of
Ref. [26] provided values for the individual contributions
η∗kk, η∗kc, η

∗
cc to the total shear viscosity η∗ from the appli-

cation of the Einstein formalism. Figure 4 shows the rel-
ative contribution to the total shear viscosity from each
contribution. In the work of [26], the contributions were
plotted as a function of temperature or density, resulting
in a set of curves, one curve for each isotherm/isochore.
The use of s+ as the independent variable (as opposed
to T or ρN) collapses each contribution to a single mas-
ter curve. This highlights the importance of s+ not only
to the shear viscosity η∗ but also for its contributions
independently. Similar to the hard sphere, the value of
s+ = 2/3 corresponds to the relative contribution from
η∗kk being approximately 50% of η∗. At larger values of
s+, the quantitative behavior is somewhat different from
that of the hard sphere system.

COMPARISON WITH OTHER LINES

The so-called “Widom Line” has many definitions in
the literature (see for instance refs. [3, 5, 9, 12, 40–42]).
The most common definition for the Widom line (here
identified by WLCP) is the loci of the local maxima of the
isobaric specific heat cp originating at the critical point.
One problem with this definition of a line separating the
“gas” and “liquid” domains is that the Widom line ter-
minates: the maximum disappears at temperatures that
are a few times the critical temperature (e.g., see Fig. 4
of Ref. 43). Another limitation of this approach is that
these maxima only occur for fluids with attraction; fully
repulsive potentials have no critical point. One conve-
nient feature of the WLCP is that it can be calculated
from a thermodynamic equation of state. There have
been efforts to evaluate the location of the Widom line
from scattering experiments [8]. An alternative definition
of the “Widom line“, also applicable to fluids without at-
traction, is the loci of the local minima of the kinematic
viscosity or thermal diffusivity along isotherms [6–8].

The “Frenkel line” [9–12] has been proposed as a vari-
ety of intrinsically inconsistent definitions of curves sep-
arating liquid-like and gas-like dynamics. These multiple
definitions of the “Frenkel line” define at best a region,
not a curve. Within its range of applicability, isomorph
theory makes clear that at least two of the definitions
of Frenkel lines are inconsistent: isomorph scaling pre-
dicts invariant dynamics along an isomorph but cv,ex is
only constant along an isomorph to first order [44]. The
theoretical underpinnings of the “Frenkel line” have been
questioned in recent years [45–47].
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FIG. 5. The curves s+ = 2/3 and s+crit and WLCP for the
full L-J fluid, each evaluated from the EOS of Thol et al.
[36] with T ∗crit = 1.32 and ρ∗crit = 0.31 at the critical point
in T -ρ (upper) and p-T coordinates (lower). The thick black
curve is the binodal, and the grey line is a smoothed curve
fit to the interpolated R=0.9 points. The minima of η̃ and
ν∗ are taken from interpolations of the equilibrium molecular
dynamics simulations of Ref. 26 for the nominal isotherms
of T ∗=(1.35,1.5,1.8,2.1,2.5,3,4,6), and from non-equilibrium
simulations in this work for T ∗=(6,10) (tabular results in the
SI, Table S3). The minima of DT were taken from the non-
equilibrium simulations of Ref. 48 for nominal isotherms of
T ∗=(2,3,4,6).

Figure 5 plots the curve s+ = 2/3, the Widom line
based upon the local maxima of the specific heat, and the
curve of constant s+ passing through the critical point.
For all the calculations, the equation of state (EOS) of
Ref. [36] was used, which is for the untruncated Lennard-
Jones potential. This EOS is valid for temperatures up to
T ∗ = 9.24, and the behavior above this limit represents
extrapolation of the equation of state. The interpolated
values of ρ∗ at the minima of ν∗ = η∗/ρ∗ along the nom-
inal isotherms of Meier et al. [26] were also plotted, as
well as interpolated minima of the thermal diffusivity DT
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(DT = λ/(ρcp), where λ is the thermal conductivity, and
cp the constant pressure specific heat) according to the
simulations of Ref. 48.

The minima of η̃ fall closely along the line s+ = 2/3
(see also Fig. 2). As highlighted above (Fig. 1), the loca-
tion of the minima of η̃ occurs at roughly the same value
of s+ for potentials with and without attraction. This
curve of s+ = 2/3 arrives at the critical temperature at
a density lower than that of the critical point. This is a
philosophically unsatisfying result because the Lennard-
Jones fluid has attractions between particles, and the
critical point should intuitively be where the demarca-
tion curve emanates from. On the other hand, the rule-
of-thumb for application of isomorph theory is that the
Pearson correlation between potential energy and virial
energy should be greater than 0.9, a line also shown in the
figure (interpolated from results along isochores for the
Lennard-Jones potential [35], truncated at 2.5σ). The
points at lower temperatures than the curve of R = 0.9
represent, at least approximately, state points for which
isomorph theory is not expected to apply. The higher
temperature points (circa T ∗ > 5) along s+ = 2/3 ex-
trapolate linearly towards the critical point. Further-
more, the location of the critical point is sensitive to the
truncation of the potential; the critical temperature of
the truncated and shifted Lennard-Jones fluid is approx-
imately 80% that of the full Lennard-Jones potential [49].

The minima of thermal diffusivity and kinematic vis-
cosity fall very closely along the line of excess en-
tropy passing through the critical point s+crit, but are
not co-incident. While the WLCP takes a different
course, all the curves at least show qualitatively sim-
ilar behavior – they track a curve of constant s+.
In a temperature-density representation the distinc-
tion among the “Widom lines” is clear, whereas in a
temperature-pressure plot (see also Ref. 7), this distinc-
tion is more difficult to make out.

The macroscopically reduced viscosity η̃ is an appeal-
ing quantity to consider because it is non-dimensional
and is the scaled viscosity used in isomorph theory. The
difference in excess entropy between the minima of ν∗

and those of η̃ is approximately constant for all temper-
atures, which is an interesting feature indicating a rela-
tionship between these two definitions. Isomorph theory
and transport property minima appear to be intertwined
at a more fundamental level than previously understood.

POLYATOMIC FLUIDS

The pair potentials described above are frequently con-
sidered models for the behavior of atomic fluids; molec-
ular fluids have additional internal degrees of freedom.
One model system that can capture (imperfectly) the
impact of intramolecular degrees of freedom is the freely-
jointed Lennard-Jones 12-6 chain (LJC) even if its fully-

flexible bonds are not physically realistic. The trans-
port properties of this fluid have been previously stud-
ied [48, 50, 51], and an equation of state is available for
this system [52] (in combination with the appropriate
monomer EOS [53]). The fully-flexible Lennard-Jones
chains have been shown to have isomorphs [54, 55], so
one should expect that their transport properties should
also follow entropy scaling for a significant portion of
their phase diagram.

Figure 6 shows the simulated values of the
macroscopically-scaled transport properties along the
T ∗ = 3 isotherm. A description of how the variables
are defined and evaluated for LJC is given in the SI (Sec.
4.1); they are based on the mass and number density of
the chains in Eq. (2). The new simulations for LJC in
this work (expanding on Ref. [50]) are available in tab-
ular form in the SI (section 4.2), as well as simulations
along the T ∗ = 4 isotherm, and verification simulations
at T ∗ = 1 and low density to reproduce the simulations of
[56]. Molecular dynamics computations of the LJC vis-
cosity have been performed with an in-house code already
validated [51] with the Reverse Non-Equilibrium Molec-
ular Dynamics scheme of Müller-Plathe and coworkers
[57]; numerical details are provided in Hoang et al. [58].
In order to obtain the location of the minima, a polyno-
mial was fit to ln(η̃× (s+)2/3) for each chain (application
of modified entropy scaling proposed in Ref. [35]), and
the empirical function was then used to locate the mini-
mum of η̃.

Figure 7 shows the values of the excess entropy at
the minima of η̃ for each chain length M . While there
is some noise caused by the interpolation scheme (and
the simulations themselves), the excess entropy values at
the minima of η̃ are very nearly a linear function of the
chain length M . Unfortunately, simulation data passing
through the minima are only available for the T ∗ = 3
and T ∗ = 4 isotherms (simulation data at higher den-
sities for a wider range of temperatures are available in
Ref. 51). In other words, the LJC model fluid shows
that there is a linear relationship between the molecu-
lar size of the fluid and the excess entropy at which the
change between gas-like and liquid-like behavior occurs.
This notion aligns with the link between excess entropy
and lacunarity (roughly speaking, lacunarity is a quan-
tification of the amount of void space within a continuous
medium) [59, 60].

In this figure the values of s+ calculated at the crit-
ical points were also overlaid in order to demonstrate
corresponding states between the minima of η̃ and the
values of s+ calculated at the critical points. We calcu-
lated vapor-liquid equilibria from the equation of state
(see the SI, Fig. S2) from which we calculated critical
points consistent with the thermodynamic model. Other
critical points are given in the literature (e.g., [58, 61]),
but they do not provide values of s+. Aside from the
monomer/polymer jump (M going from 1 to 2), the s+
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solid curves indicate the modified entropy scaling curves used
to obtain the minima, the diamonds indicate the interpolated
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values at the minima of η̃ shift systematically with the
values of s+ calculated at the critical points.

For LJC, the values of the minima along isotherms fol-
low the empirical scaling min(η̃) ∝ M−1/6, where the
proportionality constant is the value of min(η̃) for the
monomer. This exponent of 1/6 on M is unlike the Rouse
[62] or Zimm [63] models; the difference is related to the
use of macroscopic scaling, which introduces a factor of
M in the number density term of η̃. The dilute-gas vis-
cosity scales with M−1/2 [50], and that of the liquid,
according to Rouse scaling, scales with M , therefore, it
follows that the behavior at the minima is intermediate
between these two limits.

CONCLUSIONS

In this work we showed that excess entropy has an
even more intimate connection with the macroscopically-
scaled transport properties than previously described.
The line s+ = 2/3 for atomic fluids can be straight-
forwardly calculated from a thermodynamic equation of
state, and corresponds to the case that the kinetic-kinetic
contribution to viscosity is approximately equal to one
half of the total viscosity. For all fluids, lines of con-
stant s+ can be unambiguously evaluated from an equa-
tion of state or from molecular dynamics simulations and
can be used as a demarcating curve between gas-like and
liquid-like behaviors. Indeed, it can be used to define
a demarcation line between gas-like and liquid-like fluid
behaviors for fluids possessing, or not, attractive inter-
actions. Furthermore, we show that the minima of kine-
matic viscosity and thermal diffusivity track closely the
curve of constant excess entropy passing through the crit-
ical point, providing further evidence for the importance
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FIG. 7. Upper panel: Values of s+ at the minima of η̃ for the
freely-jointed Lennard-Jones chains with M segments along
T ∗=3 (filled circles) and at the respective critical point for the
LJ chains (filled triangles). The slopes of each curve are in-
dicated by the number above the slope symbol. Lower panel:
Values of the the minima of η̃ for the LJ chains with M seg-
ments along T ∗=3.

of the excess entropy to the dynamics.

Considering the modified entropy scaling in Ref. [35]
for the Lennard-Jones fluid, it seems highly likely that
a similar analogy can be made to thermal conductivity
and self-diffusion. Viscosity is simpler than the other
transport properties in some regards, as it does not have
the complication of a meaningful critical enhancement (as
in the case of thermal conductivity), and the scaled dilute
gas values are much smaller in magnitude than those of
the liquid phase (unlike self-diffusion). A consideration of
these other transport properties in the same framework
is merited.
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would especially like to thank: our past and present col-
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Roth, and Vincent Arp. Special thanks are also due to
an anonymous reviewer who led us to revisit the min-
ima of thermal diffusivity and kinematic viscosity. This
work was supported by a research grant (00023189) from
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SUPPLEMENTARY MATERIAL

The supplementary material includes mathemati-
cal derivations that complement the analysis in this
manuscript, tabular simulation results, and additional
figures for completeness.
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[36] M. Thol, G. Rutkai, A. Köster, R. Lustig, R. Span, and
J. Vrabec, Equation of State for the Lennard-Jones Fluid,
J. Phys. Chem. Ref. Data 45, 023101 (2016).

[37] D. J. Evans and G. P. Morriss, Statistical Mechanics of
Nonequilibrium Liquids (Academic Press, 1990) p. 302.

[38] Available at http://www.rumd.org.
[39] N. S. Barlow, A. J. Schultz, S. J. Weinstein, and

D. A. Kofke, An asymptotically consistent approximant
method with application to soft- and hard-sphere fluids,
J. Chem. Phys. 137, 204102 (2012).

[40] N. J. Hestand and J. L. Skinner, Perspective: Crossing
the Widom line in no man’s land: Experiments, simula-
tions, and the location of the liquid-liquid critical point in
supercooled water, J. Chem. Phys. 149, 140901 (2018).

[41] A. R. Imre, C. Ramboz, U. K. Deiters, and T. Kraska,
Anomalous fluid properties of carbon dioxide in the su-
percritical region: application to geological CO2 storage
and related hazards, Environ. Earth Sci. 73, 4373 (2014).

[42] A. Imre, U. Deiters, T. Kraska, and I. Tiselj, The pseud-
ocritical regions for supercritical water, Nucl. Eng. Des.
252, 179 (2012).

[43] S. Pieprzyk, A. C. Brańka, S. Maćkowiak, and D. M.
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