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Abstract — In this article, the Modal Expansion Theory (MET) is applied to 3-D metamaterial 
waveguides. The equivalent surface impedances of the metamaterial are computed thanks to an 
open software: GetDP, based on a 3-D Finite-Element-Method (FEM). This program is called 
during the MET algorithm, which allows considering the frequency and incidence angle 
dependency of the surface impedances of the metamaterial to compute the dispersion diagrams 
and the field cartography. To validate the dispersion diagrams obtained with this technique, 
another FEM commercial software (HFSS) is used as a reference. 
 

1. INTRODUCTION 
 
 The advantages of using metamaterials in industry are well known [1]–[4] : controlling the 
field distribution [3], [5]–[7], reducing the size of the devices [8]–[11], controlling the 
polarization [12]–[14] and maybe in the next years for cloaking [15] or reducing the antennas 
radar cross-section [16]–[23]. With their structuration, they constitute new artificial material with 
electromagnetic properties that are not available in nature [24], [25]. In [25]–[27], a relative 
permittivity and/or a permeability lower than 1 or less than 0 have been achieved. Different 
methods allow the characterization of metamaterials: by approximation of their equivalent 
relative permittivity and permeability, or with their surface impedances at any given height [28]–
[34]. In the space industry, the main advantage of using metamaterials lies in the reduction of the 
size and the weight of horn antennas and waveguides [3], [5], [6], [8]–[11]. In [35], the 
rectangular waveguide cross section has been reduced using a new method: the Modal Expansion 
Theory (MET).  

This method has been developed over the past few years, [30]–[33], [36], [37]. With the MET, 
the propagation characteristics of cylindrical and rectangular waveguides with anisotropic walls 
are quickly obtained. Moreover, with a combination of the MET code and a 2-D Finite-Element-
Method (FEM) code, it is now possible to deal with waveguides with 2-D metamaterial walls, 
[29]–[33]. The 2-D FEM code computes the equivalent surface impedances of the metamaterial. 
These impedances are dependent on the frequency, incidence angle and propagation mode. In 
these articles [29]–[33], the MET accuracy and the time efficiency have been well demonstrated, 
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up to 360 time faster than the commercial software HFSS. However, with this 2-D FEM code, 
only 𝑚 = 0 order modes can be determined. Even if such modes are sometimes used in the space 
industry – for example, the TM01 mode with a circular symmetric pattern that is used in signals 
detection [38], or in communications and satellites positioning [39], [40] – the fundamental 
mode is often the TE11 and no hybrid mode can be addressed. Hybrid modes are often wanted as 
fundamental mode. As a matter of fact, their radiation pattern is axially symmetric with zero 
cross-polarization response and may be shaped for high efficiency [6]. Horn antennas may 
support such modes [41]–[44]. In [34], the authors propose a 2-D FEM code returning the whole 
dispersion diagram of cylindrical waveguides with 2-D metamaterials compared to [31]–[33]. 
However, this code [34] and the 2-D MET [31]–[33] are not adequate to characterize all 
metamaterials. For this reason and to take all order modes into account the MET has been 
hybridized with a 3-D FEM code. Thus, waveguides with all metamaterials (with or without 𝜃-
invariance) could be characterized through the MET.  
 In this paper, a new 3-D hybrid numerical technique is proposed to achieve these goals for 
cylindrical waveguides. The MET is used to obtain the propagation characteristics of 
metamaterial waveguides with a new 3-D FEM solution proposed to compute the surface 
impedances. This technique is carefully explained in Section II. In the final section, the 
validation of this method is presented. The comparison point is performed with the FEM 
commercial software HFSS. Three different cylindrical waveguides are tested: a transversal 
corrugated waveguide studied in [31], [36], a longitudinal corrugated waveguide and the finally a 
peak-structure metamaterial waveguide.  
 

2. HYBRID NUMERICAL TECHNIQUE FOR 3D-METAMATERIAL 
WAVEGUIDES CHARACTERIZATION 

 
In this article, the studied waveguides are cylindrical waveguides with metamaterial walls and 

an invariance along the 𝑧-axis, see Fig. 1. Consequently, the electromagnetic field has an 𝑒!!!! 
dependence, where 𝛾! is the propagation constant along the 𝑧-axis. 

To characterize this kind of waveguides the MET is used [29]–[33]. Indeed, the metamaterial 
structuration – whose period is supposed small compared to the wavelength [25] – enables their 
study by computing equivalent anisotropic surface impedances. Therefore, the hybrid technique 
proposed, in this paper, is composed of the MET main program that solves the dispersion 
equation and a program in the open-source software GetDP [45] that computes the surface 
impedances. 

 
Figure 1. Cylindrical waveguide with anisotropic walls. 
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2.1. The Modal Expansion Theory 
 

In the cylindrical coordinate system, the 𝑍!!  and 𝑍!!  surface impedances are defined by (1). 
 

 𝑍!! = − !!
!! !!!

,        𝑍!! =
!!
!! !!!

. (1) 

 
 These impedances are then injected in the dispersion equation (2) determined in [37] and [46] 
from Helmholtz’s equation and the anisotropic conditions. 
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(2) 

 
where 𝑎 is the waveguide internal radius, 𝑢! = 𝑘!𝑎, 𝑍! the free space characteristic impedance, 
𝐽! the Bessel function of order 𝑚, and 𝐽!!  the derivative of the Bessel function 𝐽!.  
 In [30]–[33], [37], it was pointed out that the 𝑍!!  and 𝑍!!  surface impedances were dependent 
on the 𝜑 incidence angle, defined with the relation (3).  
 

 𝜑 = arcsin
𝛽
𝑘!

, (3) 

 
where 𝛽 = −𝑗𝛾!, since only propagating modes were taken into account. In [33], the MET with 
the 2-D FEM code has been extended to identify evanescent modes. Further research will be lead 
to characterize these modes with the 3-D FEM hybridized MET. 
 Consequently, the MET algorithm has to solve the dispersion equation with the recursive 
solution proposed in the Fig. 2. In the algorithm third step and for each 𝜑! computed angle, the 
𝑍!!  and 𝑍!!  surface impedances are computed thanks to the GetDP call. 
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Figure 2. Schematic algorithm to correct the 𝜑 incidence angle. 

 

2.2. The 3D-Conformal Metamaterial Modelling 
 

The analyzed unit cell is simplified in GetDP compared to HFSS solution since it allows non 
parallel periodic walls definition. This new 3-D unit cell is introduced in the next section. Then 
the code and its implementation in the MET are explained. 

 
2.2.1. The 3D Unit Cell 

The waveguides under consideration are, obviously, periodical along the 𝑧-axis. In this paper, 
the metamaterial is not 𝜃-invariant anymore, compared to [31]–[33], but periodically set along 
this axis. The Fig. 3a) represents a 3-D metamaterial waveguide, with two planes that defines the 
angular periodicity of the metamaterial. Thus one periodic lattice can be isolated between these 
planes. 

With the Fig. 3a) example, the 3-D metamaterial appears 18 times at a given longitunal 
position, thus the elementary lattice can be defined with an 𝛼 angle of 20°. The 3-D unit cell is 
represented on the Fig. 3b). 

The lattice is isolated along the 𝑧-axis and 𝜃-axis. A periodical condition (4) is imposed 
between the Γ! and Γ! walls. A similar condition (5) is introduced between the Γ! and Γ! walls. 
 

 𝑈 𝜌,𝜃, 𝑧 + 𝑝
!!
= 𝑈 𝜌,𝜃, 𝑧

!!
× exp −𝛾!𝑝 , (1) 

 𝑈 𝜌,𝜃 + 𝛼, 𝑧
!!
= 𝑈 𝜌,𝜃, 𝑧

!!
× exp −𝑗𝑚𝛼 , (2) 

 
where 𝑈 is a vector which could be the magnetic field 𝐻 or the electric field 𝐸, 𝑝 the distance 
between Γ! and Γ!, 𝛼 the angle between Γ! and Γ! (as defined on the Fig. 3b), and 𝑚 the mode 
order. A surface impedance can be defined on Γ!. In our cases, a PEC condition (the surface 
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impedance is equal to 0) is applied to this boundary. The 𝑍!!  and 𝑍!!  (1) surface impedances are 
computed on the Ω! plane. ℎ is the height to the Ω! plane (ℎ = 𝐴 − 𝑎).  

 

 
Figure 3. a) 3-D metamaterial waveguide and b) the 3-D unit cell. 

 
2.2.2. The New 3D-Finite Element Method Code 

GetDP [45] means General environment for the treatment of Discrete Problems. This program 
is used to compute the equivalent surface impedances of the metamaterial. In its main file, the 
structure definition and the problem equations are specified.  
 The periodical conditions (4) between Γ! and Γ! and (5) between Γ! and Γ! are set in the code 
as the PEC condition on Γ!. The problem is solved by using a FEM formulation with edge 
elements. The weak formulation (6) used is the following: 
 

 ∇!𝐸 + 𝑘!!𝐸 𝑣𝑑𝑉 = 0
 

!

, (3) 

 
where 𝑣 is the test function, since the Galerkin method is used, and 𝑉 the volume described by 
the unit cell.  
 Thanks to a post processing operation, the electric and magnetic fields are returned in the 
whole structure. Besides a file is created with the values of these fields on the Ω! plane. This file 
is used in the MET algorithm to compute the surface impedances.   
 
2.2.3. Implementation of the 3D-Code in the MET 

As explained before, the GetDP program is called on the third step in the MET algorithm. 
Hence, calling it each iteration can be a disadvantage, as it will take a significant computation 
time. Nevertheless, in the next part, it will be proven that even using this scheduling the time 
efficiency is better than using a commercial software. 
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3. RESULTS 
 

To validate this method, this hybrid numerical technique is firstly applied to a waveguide with 
a 2-D metamaterial. This waveguide has corrugations along the 𝜃-axis [31], [36]. Subsequently, 
a 3-D metamaterial is studied: corrugation along the 𝑧-axis. Finally, the code is applied to a 
waveguide with a peak-structure metamaterial. All the dispersion diagrams are compared to 
those obtained with HFSS. All simulations were made with the same computer [Intel® Core™ 
i7-7700 CPU @ 3.60 GHz, 16 GB of RAM]. 

 

3.1. HFSS validation tool 
 

The eigenmode solver is chosen for this problem. A 3-D unit-cell, see Fig. 4, is created and 
periodic boundary conditions are added. A phase delay is included between these two walls, with 
a scan from 0° to 180°. This solver returns the resonance frequency of each solution 
(corresponding to a phase delay) and each mode. Then the propagation constant is computed 
using the phase delay and the 𝑝 distant between both walls. The analysis setup of the simulations 
changes with the tested waveguide. 

 
 

 
Figure 4. Cylindrical representation of a waveguide with periodic boundary conditions and 
anisotropic surface simulated in HFSS. 
 

3.2. Waveguide with corrugations along the 𝜽-axis 
 

The studied waveguide is represented on the Fig. 5a). The Figure 5b) shows the corrugation 
dimensions and the mesh obtained with GMSH-GetDP [45], [47]. 
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Figure 5. a) Corrugated waveguide. The 3-D blue dashed section is used in HFSS, and the 3-D 
red part is used in the MET b) represented with the mesh. The dimensions are 𝐴 = 100 mm, 
𝑎 = 80 mm, ℎ = 20 mm, 𝑝 = 26.225 mm, 𝑤 = 20.98 mm, 𝑑 = 18.2 mm and 𝛼 = 20°. 
 

In [31], only 𝑚 = 0 order modes were displayed on the dispersion diagrams, and in [36] all 
modes were found, however the results between the method proposed and HFSS did not 
perfectly coincide. The Figure 6 represents the new dispersion diagrams obtained with the MET 
and the GetDP code (dots).  

Both diagrams coincide and all modes are found. Consequently, the MET with the hybrid 
numerical technique is validated on this example. In HFSS, the adaptive solution for this 
waveguide is set to a maximum Δ𝑓 of 0.01%. Hence, with HFSS the simulation lasts three days, 
while with the MET it lasts 4 hours and 30 min. As explained before, the computation time with 
the MET with GetDP is quite longer than the MET with the 2-D FEM code [31] (10-min 
computation time), represented with triangles on the Fig. 6, due to the fact the software is called 
each iteration. Moreover, the frequency step is not the same. Indeed, in the MET the frequency is 
imposed then the incidence angle is evaluated to give the propagation constant. In HFSS, the 
incidence angle is imposed and the frequency evaluated. 
 

 
Figure 6. Dispersion diagrams of the cylindrical waveguide with the corrugation presented in 
Fig. 5a) obtained with the MET + 3-D FEM code (dots), the MET + 2-D FEM code [31] 
(triangles) and HFSS (circles). 
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3.3. Waveguide with corrugations along the 𝒛-axis 
 

Corrugations along the 𝑧-axis are now inserted in a waveguide, see Fig. 7a).  
 

 
Figure 7. a) Corrugated waveguide along the 𝑧-axis. The 3-D blue dashed section is used in 
HFSS, and the 3-D red part is used in the MET b) represented with the mesh. The dimensions are 
𝐴 = 100 mm, 𝑎 = 80 mm, ℎ = 20 mm, 𝑝 = 26.225 mm, 𝑑 = 18.2 mm and 𝛼 = 30°. 
 

The 𝛼 angle also conditions the number of metamaterial. In this example, 𝛼 = 30°, thus, there 
are twelve corrugations (360°/𝛼 = 12). The different dimensions and the mesh of the 3-D unit 
cell used in the MET are represented on the Fig. 7b). 

The algorithm is applied to this waveguide, and the dispersion diagrams are compared to HFSS 
ones on the Fig. 8. It took 40 min to obtain the dispersion diagrams with HFSS while with the 
MET only required a 21-min computation time. Therefore, the MET is still 2 time faster. It can 
be noted that the simulation on HFSS is drastically reduced compared to the previous case. As 
the matter of fact, for this waveguide Δ𝑓!"# = 0.05%, otherwise the simulation crashed due to a 
lack of memory space. The difference in the dispersion diagrams between both methods is small: 
the gap between the MET and HFSS increases with the 𝑚 order mode.  

 
Figure 8. Dispersion diagrams of the cylindrical waveguide with the corrugation presented in 
Fig. 7a) obtained with MET (dots) and HFSS (circles). 
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3.4. Waveguide with peak-structure metamaterial 
 

Finally, a 3-D peak-structure metamaterial waveguide is tested with this hybrid numerical 
technique, see Fig. 9a). The Fig. 9b) (i) represents the dimensions and the mesh used in the MET 
and the Fig. 9b) (ii) displays the PEC part of the unit cell. As 𝛼 = 20°, there are 18 peak-
structures in a cross-section. 
 

 
Figure 9. a) Waveguide with the peak-structure metamaterial. The 3-D blue dashed section is 
used in HFSS, and the 3-D red part is used in the MET b) represented with the mesh. The 
dimensions are (i) 𝐴 = 30 mm, 𝑎 = 15 mm, ℎ = 15 mm, 𝑝 = 10 mm; (ii) for the Γ! part (the 
PEC boundary) of the 3-D unit cell with 𝑑 = 8 mm, 𝛼 = 20°, and 𝑤 = 8 mm. 
 

The dispersion diagrams of this waveguide are represented on the Fig. 10, the HFSS diagram is 
still represented with the circles, while the dots are associated with the MET diagram. Using the 
MET, the dispersion diagram was obtained in 1 hour and 16 min, compared to HFSS, with 
Δ𝑓!"# = 0.01%, which lasts around three days. Again both dispersion diagrams coincide. 

 

 
Figure 10. Dispersion diagrams of the cylindrical waveguide with the corrugation presented in 
Fig. 9a) obtained with MET (dots) and HFSS (circles). 
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This new method has allowed plotting the whole dispersion diagrams of all kind of 

metamaterial waveguides. Moreover, the proposed method is at least twice as fast as the FEM 
commercial software for 0.05% error criteria on HFSS and 16 times faster for 0.01% error 
criteria. 
 

CONCLUSION 
 

In this article, the MET has been uploaded with a hybrid numerical technique using an open 
software: GetDP. The new algorithm has been successfully applied to three different 
waveguides: one with a 2-D metamaterial (a corrugation along the 𝜃-axis), and two with a 3-D 
metamaterial. As a consequence, the MET is now completely developed to characterize 
cylindrical waveguides with various metamaterials. Furthermore, the computation time is 
significantly reduced compared to commercial software. 

The MET is currently used to reduce the cross-section of a cylindrical sensor working at the 
frequency band 6, 8  GHz. As a matter of fact, the reduction of the cross-section of sensor is 
mandatory to decrease its impact on the measurement of a testing antenna.  

Moreover, the characterization of evanescent modes is also under development. Since, to 
characterize horn antenna with a mode-matching technique, these modes are also required. With 
the mode-matching technique, it will also be possible to deal with metamaterials that changes 
along the 𝑧-axis. Such kind of metamaterial are useful to improve the matching between the 
feeding access and the waveguide, or to avoid an abrupt termination of a horn antenna or an 
open-ended waveguide.  
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