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BOUNDARY NULL-CONTROLLABILITY OF ONE-DIMENSIONAL COUPLED
PARABOLIC SYSTEMS WITH KIRCHHOFF CONDITION

KUNTAL BHANDARI∗, FRANCK BOYER∗† , AND VÍCTOR HERNÁNDEZ-SANTAMARÍA∗‡

Abstract. The main purpose of this paper is to investigate the boundary controllability of some 2 × 2 one-
dimensional parabolic systems with both interior and boundary couplings: the interior coupling is chosen to be linear
while the boundary one is considered by means of a Kirchhoff condition. We consider here the Dirichlet boundary control
on either one of the two state components. In particular, we show that controllability properties change depending on
which component of the system the control is being applied. Regarding this, we point out that the choices of interior
coupling coefficient and the Kirchhoff parameter play a crucial role to deduce the positive or negative controllability
results. Finally, we present a numerical implementation allowing us to illustrate our controllability results and extend
the discussion to some other examples.

Key words. Boundary control, parabolic systems, Carleman estimate, moments method, spectral analysis, Kirchhoff
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1. Introduction.

1.1. Motivation and the problem under study. In this article, we discuss about the boundary
null-controllability of some parabolic systems coupled in the interior as well as on the boundary with
less number of control than the equations in dimension 1. One motivation for studying these kind of
systems is coming from the following prototype of 2× 2 general boundary controllability system,

∂ty +Ay +Mcoup y = 0 in (0, T )× (0, 1),

D0y(t, 0) +N0
∂y

∂νγ
(t, 0) = Bv(t) in (0, T ),

D1y(t, 1) +N1
∂y

∂νγ
(t, 1) = 0 in (0, T ),

y(0, ·) = y0(·) in (0, 1),

(1.1)

where y := (y1, y2) is the unknown and y0 := (y0,1, y0,2) is the initial data from some suitable Hilbert
space and A stands for some diffusion operator with its formal expression

A :=

(
−∂x(γ1∂x) 0

0 −∂x(γ2∂x)

)
,(1.2)

where the diffusion coefficients γ1, γ2 are chosen in such a way that

γi ∈ C1([0, 1]) with 0 < γmin ≤ γi(x) ≤ γmax < +∞, ∀x ∈ [0, 1], i = 1, 2.(1.3)

The precise form of the normal derivative on the boundary points x ∈ {0, 1} is ∂y
∂νγ

= (γ1
∂y1
∂ν , γ2

∂y2
∂ν ),

where ν is the normal vector.
We consider here the interior coupling by means of some 2×2 real matrixMcoup and the boundary

coupling via the 2×2 real coefficient matrices Dj , Nj , for j = 0, 1 mentioned in (1.1). One may consider
here v as a scalar control from some suitable space and B as some real vector.

We further make the following assumptions in our setting.

Assumption 1.1. For each j ∈ {0, 1},
1. The 2× 4 matrix (Dj ,Nj) has the maximal rank.
2. The matrix DjN ∗j is self-adjoint.

The first assumption ensures the sufficient number of boundary conditions in (1.1), whereas the second
one is important for the differential operator A defined by (1.2) to be self-adjoint in its domain

D(A) :=
{
u ∈ (H2(0, 1))2 | D0u(0) +N0

∂u

∂νγ
(0) = 0, D1u(1) +N1

∂u

∂νγ
(1) = 0

}
.(1.4)
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Note that the domain of the operator A considered in (1.1) is not exactly same as (1.4) due to presence
of Bv 6= 0 on the boundary, but we keep the same notation A if there is no confusion.

Now, we must mention that studying a more general system like (1.1) is really intricate and widely
open. Indeed there are some negative results also (even if Assumption 1.1 satisfied): it can be shown
that a linear coupled system in the cascade form is not even approximately controllable for either

Dj =

(
1 0
0 0

)
, Nj =

(
0 0
0 1

)
or Dj =

(
0 0
0 1

)
, Nj =

(
1 0
0 0

)
, j = 1, 2 and for B =

(
1
0

)
; see for

instance, [5, Remark 2.17].
In our present work, we will study some particular class of problems that fit in the framework of

(1.1) from both the theoretical and numerical point of view; moreover, in Section 5.2 we shall provide
a discrete setting for the general system (1.1).

We hereby choose the interior coupling

Mcoup =Ma :=

(
0 0
a 0

)
,(1.5)

for some a ∈ R, and two different kind of the boundary coefficient matrices:

either D0 = I2×2, N0 = O2×2,(1.6a)

or D0 = O2×2, N0 = I2×2,(1.6b)

where in both the cases, we assume

D1 =

(
1 −1
α 0

)
, N1 =

(
0 0
1 1

)
,(1.7)

for some α ≥ 0. In what follows, we have the following coupled parabolic systems with Dirichlet or
Neumann boundary control at left and the Kirchhoff condition at right which actually plays the role
of boundary couplings.

• Two Dirichlet control problems. The problems of interest under (1.6a)–(1.7) are

∂ty1 − ∂x(γ1∂xy1) = 0 in (0, T )× (0, 1),

∂ty2 − ∂x(γ2∂xy2) + ay1 = 0 in (0, T )× (0, 1),

y1(t, 1) = y2(t, 1) in (0, T ),

γ1(1)∂xy1(t, 1) + γ2(1)∂xy2(t, 1) + α y1(t, 1) = 0 in (0, T ),

y1(0, ·) = y0,1(·), y2(0, ·) = y0,2(·) in (0, 1),

(1.8)

with a Dirichlet control at the left end point either on the second or first component depending

on the choices of B =

(
0
1

)
or

(
1
0

)
, that is to say

either y1(t, 0) = 0, y2(t, 0) = v(t) in (0, T ),(1.9a)

or y1(t, 0) = v(t), y2(t, 0) = 0 in (0, T ).(1.9b)

• Two Neumann control problems. By taking into consideration (1.6b)–(1.7), we have two Neu-
mann boundary control systems, that is the same system (1.8) along with the following two

different kind of Neumann control at x = 0, depending on the choices of B = γ2(0)

(
0
1

)
or

γ1(0)

(
1
0

)
, that is

either ∂xy1(t, 0) = 0, ∂xy2(t, 0) = v(t) in (0, T ),(1.10a)

or ∂xy1(t, 0) = v(t), ∂xy2(t, 0) = 0 in (0, T ).(1.10b)

In this context, we mention that a null-controllability result has been proved in [7] for the linear
Kuramoto-Sivashinsky equation on star-shaped trees with a Kirchhoff type boundary conditions. Of
course in our setting, we can not assume a graph domain for any non-trivial interior coupling Ma.
Beside this, in [3, Remark 3.6] the authors mention a particular kind of boundary control system (with
Dirichlet control) of type (1.8) when a = 0 and α = 0; in particular, a = 0 immediately tells us that
there is no interior coupling and in that case choosing a boundary control on either y1 or y2 does not
make any difference in the system.

But as soon as a 6= 0, the two types of control systems (1.8)–(1.9a) or (1.9b) (also (1.8)–(1.10a)
or (1.10b)) are certainly different in nature. In fact, we have the following two situations.
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• Case 1. The boundary controllability of the system (1.8)–(1.9a), that is when we consider a
control on the second component y2, can be establish by means of global Carleman estimate
(and then to find an observability inequality) for any interior coupling coefficient a ∈ R and
boundary parameter α ≥ 0 which is precisely Theorem 2.6 (same tool can be adapted to the
corresponding Neumann control case, that is to (1.8)–(1.10a)).
• Case 2. Surprisingly, when we consider our control to be acted on the first component y1,

it appears that the same tool can not be applied to the system (1.8)–(1.9b) (similarly, for
the Neumann case (1.8)–(1.10b)), and in this situation a moments approach will be used.
Moreover, we shall show in Theorem 2.7 that depending on the choices of quantities (α, a),
the controllability issues significantly changes; indeed, in this situation we also find a class of
negative results (see Remark 2.8) which is not alike the previous one.

1.2. Overview of the paper. For the theoretical part, we mainly study the two Dirichlet control
systems under Case 1 and 2 above.

We prove the boundary controllability of the system (1.8)–(1.9a) in Section 3.1, where we establish
a global boundary Carleman estimate to find an observability inequality for any a ∈ R, α ≥ 0 and
different diffusion coefficients γ1, γ2. But as we mentioned earlier, we can not apply the Carleman
stuffs in the situation when the control is acting on y1 instead of y2, that is the system (1.8)–(1.9b)
(see Remark 3.5 for details) and so in this situation, we take the advantage of applying the so-called
moments technique to construct a control. In this case, we shall restrict ourselves to constant diffusion
coefficients γ1 = γ2 = 1 to simplify the spectral properties of the adjoint to the corresponding elliptic
operator, which we discuss in Section 4.1.2 in detail. This, together with the observation estimates in
Section 4.2, we shall construct a control via moments method in Section 4.3. We also discuss the fact
that how the controllability phenomena changes with respect to the choices of α and a.

To conclude, in Section 5 we introduce a discrete setting for the general control system (1.1). This
will help to illustrate the controllability properties associated to systems (1.8) with boundary controls
(1.9) or (1.10).

Notations. Throughout the paper we shall make use of following notations. The inner product
and norm in the scalar space L2(0, 1) will be simply denoted by (·, ·)L2 and ‖ · ‖L2 respectively. We
also denote the space E := (L2(0, 1))2, its inner product and the norm by (·, ·)E and ‖ ·‖E respectively.
Moreover, we use the notation 〈·, ·〉X′,X to express the duality pair between a space X and its dual X ′.
Beside this, we sometimes write 〈·, ·〉U with U = Rd or Cd, d ≥ 1, to specify the usual inner product
in U .

Further, we declare R∗ := R \ {0} and R+
0 := R+ ∪ {0}, where R+ denotes the set of all positive

real numbers.
We use the letter C and subsequently C̃, C ′, C ′′ to denote some positive constants (those may vary

from line to line) which do possibly depend on γ1, γ2, α, a but not on T and y0. Sometimes, we shall
express some constants by Cp1,p2,··· ,pn to specify its dependency on the quantities p1, p2, · · · , pn.

We often use the symbol M∗ to denote the adjoint of a matrix or an operator M .

2. General settings and main results. In this section, we shall discuss briefly about the well-
posedness of our systems (1.8)–(1.9a) and (1.8)–(1.9b) with L2 boundary data. Also we will provide
the main results concerning boundary null-controllability which are the main concerns of this paper.

2.1. Well-posedness of our systems.

2.1.1. The system with homogeneous Dirichlet data. Let us begin with the following cou-
pled parabolic system with Kirchhoff condition at right end point and homogeneous Dirichlet conditions
at left end point.

∂ty1 − ∂x(γ1∂xy1) = f1 in (0, T )× (0, 1),

∂ty2 − ∂x(γ2∂xy2) + ay1 = f2 in (0, T )× (0, 1),

y1(t, 0) = y2(t, 0) = 0 in (0, T ),

y1(t, 1) = y2(t, 1) in (0, T ),

γ1(1)∂xy1(t, 1) + γ2(1)∂xy2(t, 1) + α y1(t, 1) = 0 in (0, T ),

y1(0, ·) = y0,1(·), y2(0, ·) = y0,2(·) in (0, 1),

(2.1)

where regularity of y0 = (y0,1, y0,2) and f = (f1, f2) will be specified later.
We introduce the self-adjoint and positive elliptic operator Aα, corresponding to the above system
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without interior coupling with its formal expression

Aα :=

(
−∂x(γ1∂x) 0

0 −∂x(γ2∂x)

)
,(2.2a)

with its domain

D(Aα) :=
{
u = (u1, u2) ∈ (H2(0, 1))2 | u1(0) = u2(0) = 0, u1(1) = u2(1),(2.2b)

γ1(1)u′1(1) + γ2(1)u′2(1) + αu1(1) = 0
}
.

Let us consider the space Hα := D(A1/2
α ) as a completion of D(Aα) with respect to the norm

‖u‖Hα := (Aαu, u)
1/2
E =

(
2∑
i=1

∫ 1

0

γi(x)|u′i(x)|2dx+ α|u1(1)|2
)1/2

, ∀u ∈ D(Aα),(2.3)

and one can prove that

Hα =
{
u = (u1, u2) ∈ (H1(0, 1))2 | u1(0) = u2(0) = 0, u1(1) = u2(1)

}
.(2.4)

Moreover, we denote the dual space of Hα by H−α with respect to the pivot space E.
Recall the coupling matrix Ma defined in (1.5) and we further denote

Aα,a = Aα +Ma, with the same domain D(Aα,a) := D(Aα).(2.5)

In particular, Aα,0 := Aα.
By definition, it is clear that Aα,a is not self-adjoint anymore, more precisely, Aα,a has been

obtained by a bounded perturbation Ma to the self-adjoint operator Aα.

Proposition 2.1 (Existence of analytic semigroup). The operator (−Aα,a, D(Aα,a)) defined by
(2.5), generates an analytic semigroup in E.

Proof. Let us first introduce the following densely defined bilinear form h; for all u := (u1, u2), ϕ :=
(ϕ1, ϕ2) ∈ Hα (defined by (2.4)), we consider

h(u, ϕ) =

2∑
i=1

∫ 1

0

γi(x)u′i(x)ϕ′i(x) dx+ a

∫ 1

0

u1(x)ϕ2(x) dx+ αu1(1)ϕ1(1).(2.6)

It is clear that h is continuous in Hα with

|h(u, ϕ)| ≤ κ1‖u‖Hα‖ϕ‖Hα , ∀u, ϕ ∈ Hα,

where κ1 > 0 depends on the diffusion coefficients γi, i = 1, 2, and the coupling coefficient a. On the
other hand, we have

h(u, u) ≥ ‖u‖2Hα − |a| ‖u‖2E , ∀u ∈ Hα.

Then, by [17, Proposition 1.51 and Theorem 1.52], the negative of the operator associated with h
generates an analytic semigroup in E of angle

(
π/2 − arctanκ1

)
. One can show that this operator

is indeed Aα,a with its domain D(Aα,a) = D(Aα) (as defined in (2.5)). Henceforth, the proof is
complete.

Proposition 2.2 (Regularity). Let f = (f1, f2) ∈ L2(0, T ;E) be any given source term.
1. For any given initial data y0 = (y0,1, y0,2) ∈ E, there exists a unique weak solution y =

(y1, y2) ∈ C0([0, T ];E) ∩ L2(0, T ;Hα) satisfying the following energy estimate

‖y‖C0([0,T ];E) + ‖y‖L2(0,T ;Hα) + ‖∂ty‖L2(0,T ;H−α) ≤ CT,a
(
‖y0‖E + ‖f‖L2(0,T ;E)

)
.(2.7)

2. For any initial data y0 ∈ Hα, the weak solution y belongs to the space C0([0, T ];Hα) ∩
L2(0, T ; (H2(0, 1))2) and satisfies

(2.8) ‖y‖L∞(0,T ;Hα) + ‖y‖L2(0,T ;(H2(0,1))2) + ‖∂ty‖L2(0,T ;E)

≤ CT,a
(
‖y0‖Hα + ‖f‖L2(0,T ;E)

)
.
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Proof. 1. The existence of unique weak solution y ∈ C0([0, T ];E) to (2.1) for given data
y0 ∈ E and source term f ∈ L2(0, T ;E) can be concluded by Proposition 2.1.
Below, we provide the sketch of the proof for estimate (2.7). We shall prove the result with
initial data y0 ∈ D(Aα) and the source term f ∈ C1([0, T ];E), which indeed gives us the
existence of unique strong solution y ∈ C1([0, T ];E)∩C0([0, T ];D(Aα)), and then by the usual
density argument we deduce the final result in point 1.
• Let us test the first and second equations of (2.1) again y1 and y2 respectively, we obtain

after an addition, for all t ∈ [0, T ],

1

2

d

dt
‖y(t)‖2E + (Aαy(t), y(t))E + a(y1(t), y2(t))L2 = (f(t), y(t))E ,

and finally

d

dt
‖y(t)‖2E + ‖y(t)‖2Hα ≤ Ca

(
‖f(t)‖2E + ‖y(t)‖2E

)
, ∀t ∈ [0, T ].(2.9)

By applying Gronwall’s lemma (see [10, Appendix B.2]) then by integration over [0, T ],
we obtain the first two required estimates of (2.7).

• Next, to obtain the estimate of ∂ty ∈ L2(0, T ;H−α), let us pick any ζ := (ζ1, ζ2) ∈ Hα
and observe that

〈∂ty(t), ζ〉H−α,Hα + (Aαy(t), ζ)E + a(y1(t), ζ2)L2 = (f(t), ζ)E , ∀t ∈ [0, T ],

which implies ∣∣〈∂ty(t), ζ〉H−α,Hα
∣∣ ≤ Ca(‖y(t)‖Hα + ‖f(t)‖E

)
‖ζ‖Hα ,

and the claim follows from the previous estimates.

2. We shall now prove the point 2 of our theorem, with the given data y0 ∈ D(A2
α) and f ∈

C1([0, T ];D(Aα)), and then again a density argument will give the required estimate (2.8) for
any y0 ∈ Hα and f ∈ L2(0, T ;E).
• We begin by testing the first and second equations of (2.1) by ∂ty1 and ∂ty2, and by

addition we observe that for any t ∈ [0, T ],

‖∂ty(t)‖2E +
1

2

d

dt
(Aαy(t), y(t))E = −a(y1(t), ∂ty2(t))L2 + (f(t), ∂ty(t))E .(2.10)

We now make use of Cauchy-Schwarz inequality to deduce

|a(y1(t), ∂ty2(t))L2 + (f(t), ∂ty(t))E | ≤
1

2
‖∂ty(t)‖2E + Ca

(
‖y(t)‖2E + ‖f(t)‖2E

)
.

Implementing this bound in (2.10) we respectively obtain the third and first estimate of
(2.8).
• The L2(0, T ; (H2(0, 1))2) estimate for y simply follows from the bound

‖∂2
xy‖L2(0,T ;E) ≤ ‖f‖L2(0,T ;E) + ‖∂ty‖L2(0,T ;E) + ‖y‖L2(0,T ;E),

and the previous two estimates.

2.1.2. The system with non-homogeneous Dirichlet data. We consider here a similar cou-
pled system as in the previous paragraph but with non-smooth Dirichlet boundary data; the system
under study is the following

∂ty1 − ∂x(γ1∂xy1) = f1 in (0, T )× (0, 1),

∂ty2 − ∂x(γ2∂xy2) + a y1 = f2 in (0, T )× (0, 1),

y1(t, 0) = g1 in (0, T ),

y2(t, 0) = g2 in (0, T ),

y1(t, 1) = y2(t, 1) in (0, T ),

γ1(1)∂xy1(t, 1) + γ2(1)∂xy2(t, 1) + α y1(t, 1) = 0 in (0, T ),

y1(0, ·) = y0,1(·), y2(0, ·) = y0,2(·) in (0, 1),

(2.11)
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In this context, it is worth introducing the adjoint of the operator Aα,a (introduced in (2.5)), with
its formal expression

A∗α,a = A∗α +M∗a =

(
−∂x(γ1∂x) a

0 −∂x(γ2∂x)

)
,(2.12)

with its domain D(A∗α,a) = D(Aα,a) = D(Aα) (given by (2.2b)).

Remark 2.3. We could have replaced A∗α simply by Aα as this operator is self-adjoint, but in order
to be consistent with the non self-adjoint case (that is when a 6= 0), we decide to keep the notation A∗α
in several places.

Observe that the operator −A∗α,a also generates an analytic semigroup in E, thanks to Theorem

2.1 and we denote this semigroup by
(
e−tA

∗
α,a
)
t≥0

. Indeed, the solution to the adjoint system of (2.1),

for any given ζ ∈ Hα, satisfies the regularity result proved in point 2 of Theorem 2.2. Using this, one
can classically obtain the well-posedness of the solution to (2.11) in a dual sense as in [8, 18].

Proposition 2.4. For any y0 := (y0,1, y0,2) ∈ H−α, f := (f1, f2) ∈ L2(0, T ;E) and g := (g1, g2) ∈
L2(0, T ;R2), there exists a unique y ∈ C0([0, T ];H−α)∩L2(0, T ;E), solution to (2.11), in the following
sense: for any t ∈ [0, T ] and ζ := (ζ1, ζ2) ∈ Hα, we have

〈y(t), ζ〉H−α,Hα = 〈y0, e
−tA∗α,aζ〉H−α,Hα +

∫ t

0

(f(s), e−(t−s)A∗α,aζ)E ds

−
∫ t

0

〈
g(s),

( ∂

∂νγ

(
e−(t−s)A∗α,aζ

)
(x)
)∣∣∣
x=0

〉
R2
ds.

2.2. Main results. We shall now formulate the null-control problems in terms of following propo-
sition.

Proposition 2.5. Let y0 ∈ H−α, a ∈ R, α ≥ 0 and any finite time T > 0 be given. Also recall
the set U as defined in Proposition 2.4.

1. A function v ∈ L2(0, T ;R) is a null-control for the problem (1.8)–(1.9a), if and only if it
satisfies: for any ζ ∈ Hα

−〈y0, e
−tA∗α,aζ〉H−α,Hα = γ2(0)

∫ T

0

v(t)
〈(0

1

)
,
(
∂x
(
e−(T−t)A∗α,aζ

)
(x)
)∣∣∣
x=0

〉
R2
dt.(2.13)

2. A function v ∈ L2(0, T ) is a null-control for the problem (1.8)–(1.9b), if and only if it satisfies:
for any ζ ∈ Hα

−〈y0, e
−tA∗α,aζ〉H−α,Hα = γ1(0)

∫ T

0

v(t)
〈(

1
0

)
,
(
∂x
(
e−(T−t)A∗α,aζ

)
(x)
)∣∣∣
x=0

〉
R2
dt.(2.14)

Here, it is convenient to denote the observation operator (that does not depend on the quantities a or
α) as follows

B∗1 : u = (u1, u2) ∈ (H2(0, 1))2 7→ γ2(0)u′2(0),(2.15a)

B∗2 : u = (u1, u2) ∈ (H2(0, 1))2 7→ γ1(0)u′1(0).(2.15b)

Now, we present the main theorems regarding the null-controllability issues for our problem (1.8)
with both cases: the boundary-control to be applied on either y1 or y2; we shall also achieve some
suitable estimates of the controls, depending on the coupling coefficient a, the boundary parameter α,
as well as the diffusion coefficients γ1, γ2.

• Case 1. To show the boundary null-controllability of the problem (1.8)–(1.9a), that is when
we consider the control applied on y2, we prove a suitable observability inequality, and since
we are in linear case so this will be obtained by a Carleman estimate, detailed in Section 3.1.
Our main theorem is the following.

Theorem 2.6. Let any (α, a) ∈ R+
0 × R and T > 0 be given. Then, for any y0 ∈ H−α, there

exists a null-control v ∈ L2(0, T ;R) for the problem (1.8)–(1.9a), that satisfies the estimate

‖v‖L2(0,T ) ≤ CeC/T ‖y0‖H−α ,

with the constant C := C(γ1, γ2, α, a) > 0 which does not depend on T > 0 and y0.
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• Case 2. As we mentioned earlier, the above strategy of using Carleman estimate to prove
the boundary controllability will no more be applicable for the problem (1.8) with boundary
control on y1, that is precisely (1.9b). This is because, the source integral due to the interior
coupling in our Carleman estimate can not be observable, with our choices of weight functions.
The exact technical point behind this will be specified later in Remark 3.5 in Section 3.1.
Due to this obstacle, the next immediate idea is to investigate the spectral analysis of the
adjoint to the corresponding elliptic operator and try to develop the moments method to
construct a control by hand; here we shall restrict the diffusion coefficients γ1 = γ2 = 1 to
ease the understanding of the spectrum. Indeed, by developing the spectral analysis, we will
observe that the choices of coupling coefficient a and the boundary parameter α really have a
crucial role for the controllability of (1.8)–(1.9b), which is not alike the case when we consider
our control applied on the second component y2, as per Theorem 2.6.
Henceforth, it is reasonable not to find a good observability inequality using Carleman estimate
in the case (1.8)–(1.9b), when the control input is assumed to be applied on the first component
y1. Let us state more precisely the controllability theorem concerning this case.

Theorem 2.7. We fix γ1 = γ2 = 1. Then, there exists a set R ⊂ R+
0 × R∗ such that

1. for each pair (α, a) /∈ R, there is a null-control to the problem (1.8)–(1.9b), for any given
data y0 ∈ H−α,

2. for each pair (α, a) ∈ R, there exists a subspace Yα,a ⊂ H−α of co-dimension 1, such that
there exists a null-control to the problem (1.8)–(1.9b), if and only if y0 ∈ Yα,a.

In addition, in the controllable cases we can choose such a null-control v ∈ L2(0, T ;R) that
satisfies the bound

‖v‖L2(0,T ) ≤ Cα,a eCα,a/T ‖y0‖H−α ,(2.16)

where Cα,a > 0 is independent on T > 0 and y0.

The set R and the space Yα,a will be specified later, namely in (4.29) and (4.31), while proving
Lemma 4.7 in Section 4.2.1.

Remark 2.8. In the case when (α, a) ∈ R, the problem (1.8)–(1.9b) is not even approximately
controllable if we choose our initial data y0 6∈ Yα,a.

In the next sections, we develop the required results to prove the controllability of both the
problems, namely the Theorem 2.6 and 2.7.

3. Boundary controllability of the system with control in the second component. This
section is devoted to prove the existence of a null-control of the coupled system (1.8)–(1.9a), in terms
of finding a proper observability inequality, and so the Carleman estimate is the main ingredient to
obtain.

3.1. A global boundary Carleman estimate. Let us first write the adjoint system to (1.8)–
(1.9a), with homogeneous Dirichlet conditions at the left end point.

(3.1)



−∂tq1 − ∂x(γ1∂xq1) + a q2 = 0 in (0, T )× (0, 1),

−∂tq2 − ∂x(γ2∂xq2) = 0 in (0, T )× (0, 1),

q1(t, 0) = q2(t, 0) = 0 in (0, T ),

q1(t, 1) = q2(t, 1) in (0, T ),

γ1(1)∂xq1(t, 1) + γ2(1)∂xq2(t, 1) + α q1(t, 1) = 0 in (0, T ),

q1(T, ·) = ζ1(·), q2(T, ·) = ζ2(·) in (0, 1),

where the regularity of ζ := (ζ1, ζ2) will be imposed later when needed and for simplicity sometimes
we shall use the notation Q := (0, T )× (0, 1).

Now, we introduce the following space

Q :=
{
q = (q1, q2) ∈ (C2(Q))2 | q1(t, 0) = q2(t, 0) = 0, q1(t, 1) = q2(t, 1),

2∑
i=1

γi(1)∂xqi(t, 1) + αq1(t, 1) = 0, ∀t ∈ (0, T )
}
.

Before introducing the main theorem regarding Carleman estimate, we define some standard weight
functions which are the main ingredients to obtain the Carleman inequality.
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Construction of the weight functions. Let µ0 ∈ (0, 1) close enough to 1 such that[
216µ0

(1− µ0)3
γ2

2(1)− 7γ2
1(1)

]
≥ 1.(3.2)

We consider the following affine functions
βi(x) = 2 + ci(x− 1), ∀x ∈ [0, 1],

with c1 = 1, c2 =
−6

(1− µ0)
, for 0 < µ0 < 1,

(3.3)

that satisfy the following properties

β2 ≥ β1 > 0, in [0, 1], β2(1) = β1(1).(3.4)

Remark 3.1. We will see while proving a Carleman estimate (namely the Theorem 3.2 stated
later), that the above assumption (3.2) is very sharp and crucial to absorb some unusual boundary
integrals sitting in the right hand side of the Carleman estimate.

Now, we assume that λ > 1 and K = 2 max{‖β1‖∞, ‖β2‖∞} and define the weight functions ϕi
and ηi, for i = 1, 2, as follows

ϕi(t, x) =
eλβi(x)

t(T − t) , ηi(t, x) =
eλK − eλβi(x)

t(T − t) , ∀(t, x) ∈ Q.(3.5)

From the properties of β1 and β2 in (3.4), we have that the functions ϕi and ηi are positive and satisfy

ϕ1(t, 1) = ϕ2(t, 1) and η1(t, 1) = η2(t, 1),(3.6)

since β1(1) = β2(1).
We also have the following relations in Q, for i = 1, 2,

∂xϕi = λϕici, ∂xηi = −λϕici,

∂tϕi = ϕi
2t− T
t(T − t) , ∂tηi = ηi

2t− T
t(T − t) ,

∂2
t ηi = ηi

3(2t− T )2 + T 2

2t2(T − t)2
.

(3.7)

Now, we write the main theorem of this section concerning the Carleman estimate.

Theorem 3.2 (A Carleman estimate). Let the weight functions ϕ1, ϕ2 and η1, η2 be defined as in
(3.5). Then, there exists λ1 := λ1(γ1, γ2, α) > 0, s1 := (T 2+T )σ1 > 0 with some σ1 := σ1(γ1, γ2, α) > 0
and a constant C ′ := C ′(γ1, γ2, α) > 0, such that the following Carleman estimate holds true

(3.8) s3λ4
2∑
i=1

∫ T

0

∫ 1

0

e−2sηiϕ3
i |qi|2dx dt+ sλ2

2∑
i=1

∫ T

0

∫ 1

0

e−2sηiϕi|∂xqi|2dx dt

+ s3λ3

∫ T

0

ϕ1(t, 1)e−2sη1(t,1)|q1(t, 1)|2dt ≤ C ′
[ 2∑
i=1

∫ T

0

∫ 1

0

e−2sηi
∣∣∂tqi + ∂x(γi∂xqi)

∣∣2dx dt
+ sλ

∫ T

0

ϕ2(t, 0)e−2sη2(t,0)|∂xq2(t, 0)|2dt
]
,

for s ≥ s1, λ ≥ λ1 and for all (q1, q2) ∈ Q.
Before going to the proof of the theorem above, we let any s > 0, λ > 1 and (q1, q2) ∈ Q and we

write fi = ∂tqi + ∂x(γi∂xqi), then fi ∈ L2(Q), for i = 1, 2. We also set

ψi(t, x) = e−sηi(t,x)qi(t, x), ∀(t, x) ∈ Q, for i = 1, 2.

Observe that,

ψi(t, 0) = 0, i = 1, 2, and ψ1(t, 1) = ψ2(t, 1),(3.9)
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using (3.6) and the properties of qi, i = 1, 2 in Q. Also look that

∂xψi(t, x) = e−sηi(t,x)∂xqi(t, x) + sλβ′i(x)ϕi(t, x)ψi(t, x), ∀(t, x) ∈ Q,(3.10)

so that we have

2∑
i=1

γi(1)∂xψi(t, 1) = −αψ1(t, 1) + sλ
( 2∑
i=1

ci γi(1)
)
ϕ1(t, 1)ψ1(t, 1),(3.11)

thanks to the boundary condition
∑2
i=1 γi(1)∂xqi(t, 1) +αq1(t, 1) = 0, the properties of ϕi in (3.6) and

ψi in (3.9), and the fact that β′i = ci, for i = 1, 2.

Next, we see that the functions ψi satisfies the following relations in Q

M1ψi +M2ψi = Fi, for i = 1, 2,

with 
M1ψi = ∂x(γi∂xψi) + s2λ2c2iϕ

2
i γiψi + s(∂tηi)ψi,

M2ψi = ∂tψi − 2sλciϕi(γi∂xψi)− 2sλ2c2iϕiγiψi,

Fi = e−sηifi + sλciγ
′
iϕiψi − sλ2c2iϕiγiψi.

(3.12)

We have for i = 1, 2,

(3.13) ‖M1ψi‖2L2(Q) + ‖M2ψi‖2L2(Q) + 2
(
M1ψi,M2ψi

)
L2(Q)

= ‖Fi‖2L2(Q).

Now, we present the following auxiliary lemma which is important to prove the main result in
Theorem 3.2.

Lemma 3.3. Let the functions ϕi, ηi, ψi, M1ψi,M2ψ2 in Q, for i = 1, 2, and the quantities c1, c2
be as introduced earlier. Then there exists λ0 := λ0(γ1, γ2) > 0, s0 := (T 2 + T )σ0 > 0 with some
σ0 := σ0(γ1, γ2) > 0 and a constant C ′′ = C ′′(γ1, γ2) > 0 such that we have the following inequality

(3.14)
1

2

2∑
i=1

‖M1ψi‖2L2(Q) +
1

2

2∑
i=1

‖M2ψi‖2L2(Q)

+

2∑
i=1

s3λ4

∫ T

0

∫ 1

0

ϕ3
i |ψi|2 dx dt+

2∑
i=1

sλ2

∫ T

0

∫ 1

0

ϕi|∂xψi|2 dx dt

+

2∑
i=1

γi(1)

∫ T

0

∂xψi(t, 1)∂tψi(t, 1) dt− sλ
2∑
i=1

ci

∫ T

0

ϕi(t, 1)
∣∣γi(1)∂xψi(t, 1)

∣∣2dt
+ sλ

2∑
i=1

ci

∫ T

0

ϕi(t, 0)
∣∣γi(0)∂xψi(t, 0)

∣∣2dt− 2sλ2
2∑
i=1

c2i γ
2
i (1)

∫ T

0

ϕi(t, 1)ψi(t, 1)∂xψi(t, 1) dt

− s3λ3c3i

2∑
i=1

γ2
i (1)

∫ T

0

ϕ3
i (t, 1)|ψi(t, 1)|2dt− s2λ

2∑
i=1

ciγi(1)

∫ T

0

ϕi(t, 1)(∂tηi)(t, 1)|ψi(t, 1)|2dt

≤ C ′′
2∑
i=1

‖e−sηifi‖2L2(Q),

for all λ ≥ λ0, s ≥ s0.

In this paper, we decide to omit the full proof for this auxiliary result in Lemma 3.3, as the
computations we need to perform are more or less of standard fashion. We now focus on obtaining the
Carleman estimate (3.8) which is the main concerned of this section.

Proof of Theorem 3.2.
The main idea to prove this theorem is to play with the boundary integrals of the inequality (3.14),

so that we can absorb the lower order integrals by some leading terms and then to observe the proper
observation term which will be eventually shifted in the right hand side.

We make use of the following notations: denote the all six boundary terms respectively by Jk,
1 ≤ k ≤ 6, by maintaining the same order as in (3.14).
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• We have (using ψ2(t, 1) = ψ1(t, 1))

J1 :=

∫ T

0

[γ1(1)∂xψ1(t, 1) + γ2(1)∂xψ2(t, 1)] ∂tψ1(t, 1) dt

= −α
∫ T

0

ψ1(t, 1)∂tψ1(t, 1) dt+ sλ
( 2∑
i=1

ciγi(1)
)∫ T

0

ϕ1(t, 1)ψ1(t, 1)∂tψ1(t, 1) dt

= −sλ
2

( 2∑
i=1

ciγi(1)
)∫ T

0

(∂tϕ1)(t, 1)|ψ1(t, 1)|2dt,

due to the condition (3.11) and the fact that ψ1(0, ·) = ψ1(T, ·) = 0. Now, using |∂tϕ1| ≤
Tϕ2

1 ≤ 2T 3ϕ3
1, we obtain

|J1| ≤ C̃sλT 3

∫ T

0

ϕ3
1(t, 1)|ψ1(t, 1)|2dt,(3.15)

for some constant C̃ > 0.
• Next, we write the second boundary term of (3.14) as J2 := J21 + J22, where we keep the

second integral in the left hand side of (3.14) since

J22 := −sλ c2
∫ T

0

ϕ2(t, 1)
∣∣γ2(1)∂xψ2(t, 1)

∣∣2dt ≥ 0(3.16)

due to the fact that c2 < 0. Later, we will see that the integral J22 will be used to absorb
some lower order terms.
On the other hand, the first integral of the second boundary term J2 is

J21 := −sλ c1
∫ T

0

ϕ1(t, 1)
∣∣γ1(1)∂xψ1(t, 1)

∣∣2dt,
where c1 > 0 and so J21 ≤ 0. So, we need to absorb those integrals by some higher order
terms in the left hand side. Let us recall (3.11) to express

γ1(1)∂xψ1(t, 1) = −αψ1(t, 1)− γ2(1)∂xψ2(t, 1) + sλ
( 2∑
i=1

ciγi(1)
)
ϕ1(t, 1)ψ1(t, 1),

so that we have the following,

(3.17) |J21| ≤ 3sλα2c1

∫ T

0

ϕ1(t, 1)|ψ1(t, 1)|2dt+ 3sλc1

∫ T

0

ϕ1(t, 1)
∣∣γ2(1)∂xψ2(t, 1)

∣∣2dt
+ 6s3λ3c1

( 2∑
i=1

c2i γ
2
i (1)

)∫ T

0

ϕ3
1(t, 1)|ψ1(t, 1)|2dt := J1

21 + J2
21 + J3

21,

with a simple observation (since ϕ1 ≤ 4T 4ϕ3
1),

J1
21 ≤ C̃sλα2T 4

∫ T

0

ϕ3
1(t, 1)|ψ1(t, 1)|2dt,(3.18)

• Now, we look into the third boundary term, J3 := J31 + J32, where we have

J31 := sλ c1

∫ T

0

ϕ1(t, 0)
∣∣γ1(0)∂xψ1(t, 0)

∣∣2dt ≥ 0,

since c1 > 0 and the function ϕ1 > 0, and so one can discard this term from the left hand side
of (3.14).
On the other hand, we have

|J32| := sλ

∣∣∣∣∣c2
∫ T

0

ϕ2(t, 0)
∣∣γ2(0)∂xψ2(t, 0)

∣∣2dt∣∣∣∣∣ ≤ C̃sλ
∫ T

0

ϕ2(t, 0)e−2sη2(t,0)|∂xq2(t, 0)|2dt,

(3.19)

following the expression of ∂xψ2 given by (3.10) and using the fact that ψ2(t, 0) = 0.
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• Thereafter, we write the fourth boundary integral of (3.14) by J4 := J41 + J42, and we obtain
the following

(3.20) |J41| = 2sλ2c21γ
2
1(1)

∫ T

0

ϕ1(t, 1)
∣∣ψ1(t, 1)∂xψ1(t, 1)

∣∣dt
≤ C̃ε sλ

∫ T

0

ϕ1(t, 1)
∣∣γ1(1)∂xψ1(t, 1)

∣∣2dt+
C̃

ε
sλ3T 4

∫ T

0

ϕ3
1(t, 1)|ψ1(t, 1)|2 dt,

where we have used the Young’s inequality and the fact ϕ1 ≤ 2T 4ϕ3
1. Now, for the first integral

in the right hand side of (3.20), we use the estimate for J21 given by (3.17) to obtain

(3.21) |J41| ≤ C̃ε sλ
∫ T

0

ϕ1(t, 1)
∣∣γ2(1)∂xψ2(t, 1)

∣∣2dt
+ C̃

(
ε s3λ3 + ε sλα2T 4 +

1

ε
sλ3T 4

) ∫ T

0

ϕ3
1(t, 1)|ψ1(t, 1)|2dt.

On the other hand, a similar computation as in (3.20) gives that

|J42| ≤ C̃ε sλ
∫ T

0

ϕ2(t, 1)
∣∣γ2(1)∂xψ2(t, 1)

∣∣2dt+
C̃

ε
sλ3T 4

∫ T

0

ϕ3
2(t, 1)|ψ2(t, 1)|2dt.(3.22)

• The fifth and the leading boundary term in the left hand side of (3.14) is

J5 = s3λ3
(
−c32γ2

2(1)− c31γ2
1(1)

) ∫ T

0

ϕ3
1(t, 1)|ψ1(t, 1)|2 dt,(3.23)

by writing ϕ2(t, 1) = ϕ1(t, 1).
• Finally, the sixth boundary term J6 satisfies

|J6| ≤ C̃s2λT

∫ T

0

ϕ3
1(t, 1)|ψ1(t, 1)|2 dt,(3.24)

due to the facts that ϕ2(t, 1) = ϕ1(t, 1), ∂tη2(t, 1) = ∂tη1(t, 1) and |∂tη1| ≤ Tϕ2
1.

• Let us first try to show that the coefficient of the boundary integral
∫ T

0
ϕ3

1(t, 1)|ψ1(t, 1)|2 dt is
positive in the left hand side of the main inequality (3.14). To deduce this, recall the quantities
J5 from (3.23) and J3

21 from (3.17) and take those quantities in the left hand side of the main
inequality (3.14), we see

J5 − J3
21 = K1s

3λ3

∫ T

0

ϕ3
1(t, 1)|ψ1(t, 1)|2dt, with K1 = c22γ

2
2(1)

(
|c2| − 6c1

)
− 7c31γ

2
1(1).

(3.25)

Recall that we haven chosen c1 = 1, c2 = −6
(1−µ0) (see (3.3)), so that we calculate

K1 =

[
216µ0

(1− µ0)3
γ2

2(1)− 7γ2
1(1)

]
≥ 1,

thanks to the condition (3.4).
• Next, we recall J22 and J2

21 respectively given by (3.16) and (3.17), use ϕ1(t, 1) = ϕ2(t, 1), and
we write the other leading boundary integral in the left hand side as follows

J22 − J2
21 = K2sλ

∫ T

0

ϕ2(t, 1)
∣∣γ2(1)∂xψ2(t, 1)

∣∣2dt, with K2 = (|c2| − 3c1),(3.26)

where we compute K2 = 3(1+µ0)
(1−µ0) > 0, using the values of c1, c2.

• Now, we gather the leading boundary terms J5− J3
21 and J22− J2

21 given by (3.25) and (3.26)
respectively, in the left hand side of our main inequality (3.14), and in the right hand side we
consider all the estimates of the lower order terms namely, J1 from (3.15), J1

21 from (3.18), J31
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from (3.19), J41 from (3.21), J42 from (3.22) and J6 from (3.24), so that the inequality (3.14)
follows

(3.27) s3λ4
2∑
i=1

∫ T

0

∫ 1

0

ϕ3
i |ψi|2 dx dt+ +sλ2

2∑
i=1

∫ T

0

∫ 1

0

ϕi|∂xψi|2 dx dt

+K1s
3λ3

∫ T

0

ϕ3
1(t, 1)|ψ1(t, 1)|2dt+K2sλ

∫ T

0

ϕ2(t, 1)
∣∣γ2(1)∂xψ2(t, 1)

∣∣2dt
≤ C̃

[ 2∑
i=1

∫ T

0

∫ 1

0

e−2sηi |fi|2 dx dt+ sλ

∫ T

0

ϕ2(t, 0)e−2sη2(t,0)|∂xq2(t, 0)|2dt
]

+ C̃ε s3λ3

∫ T

0

ϕ3
1(t, 1)|ψ1(t, 1)|2dt+ 2C̃ε sλ

∫ T

0

ϕ2(t, 1)
∣∣γ2(1)∂xψ2(t, 1)

∣∣2dt
+ C̃ε

(
sλT 3 + sλα2T 4 + sλ3T 4 + s2λT

) ∫ T

0

ϕ3
1(t, 1)|ψ1(t, 1)|2dt.

By choosing ε > 0 to be small enough, taking λ ≥ λ1 := λ1(γ1, γ2, α) and s ≥ s1 := (T 2 +
T )σ1(γ1, γ2, α) > 0, where λ1 and σ1 are large enough so that all the boundary integrals, except
the observation term, in right hand side can be absorbed by the corresponding integrals in left
hand side of (3.27), which leads us

(3.28) s3λ4
2∑
i=1

∫ T

0

∫ 1

0

ϕ3
i |ψi|2 dx dt+ sλ2

2∑
i=1

∫ T

0

∫ 1

0

ϕi|∂xψi|2 dx dt

+ s3λ3

∫ T

0

ϕ1(t, 1)|ψ1(t, 1)|2dt ≤ C ′
[ 2∑
i=1

∫ T

0

∫ 1

0

e−2sηi |fi|2 dx dt

+ sλ

∫ T

0

ϕ2(t, 0)e−2sη2(t,0)|∂xq2(t, 0)|2dt
]
,

for all λ ≥ λ1, s ≥ s1 with the constant C ′ := C ′(γ1, γ2, α). Now, we recall the expression of
∂xψi from (3.10), so that we have

e−2sηi |∂xqi|2 ≤ 2|∂xψi|2 + 2s2λ2(ci)
2ϕ2

i |ψi|2, for i = 1, 2,

and that implies

(3.29) sλ2
2∑
i=1

∫ T

0

∫ 1

0

e−2sηiϕi|∂xqi|2 dx dt

≤ C̃sλ2
2∑
i=1

∫ T

0

∫ 1

0

ϕi|∂xψi|2 dx dt+ C̃s3λ4
2∑
i=1

∫ T

0

∫ 1

0

ϕ3
i |ψi|2 dx dt.

Finally, combining (3.28) and (3.29), and replacing fi = ∂tqi + ∂x(γi∂xqi), i = 1, 2, we obtain
the required Carleman inequality (3.8).

3.2. Null-controllability in terms of a boundary observability inequality. The Carleman
estimate indeed leads us to obtain the following observability inequality which is in fact a necessary
and sufficient condition for null-controllability.

Proposition 3.4 (observability inequality). For any ζ := (ζ1, ζ2) ∈ Hα, the associated solution
q := (q1, q2) ∈ C0([0, T ];Hα)∩L2(0, T ; (H2(0, 1))2) to (3.1) satisfies the following observation estimate

‖q(0)‖2Hα ≤ CeC/T
∫ T

0

|∂xq2(t, 0)|2dt,

for some constant C := C(γ1, γ2, α, a) > 0 that does not depend on T > 0 and ζ.

Proof. We shall prove the required observability inequality for 0 < T ≤ 1 to show the existence
of a control in (0, T ) for the system (1.8)–(1.9a); this will not loose the generality since for any time
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T̃ > 1, a continuation of a control in (0, 1) by 0 in (1, T̃ ) will do the job. Let us now focus on the
proof.

For any given ζ ∈ Hα, one can apply the Carleman inequality given by Theorem 3.2 to the solution
q of (3.1), with ∂tq1 + ∂x(γ1∂xq1) = aq2 and ∂tq2 + ∂x(γ2∂xq2) = 0 to deduce

(3.30) s3λ4
2∑
i=1

∫ T

0

∫ 1

0

e−2sηiϕ3
i |qi|2dx dt+ sλ2

2∑
i=1

∫ T

0

∫ 1

0

e−2sηiϕi|∂xqi|2dx dt

+ s3λ3

∫ T

0

ϕ1(t, 1)e−2sη1(t,1)|q1(t, 1)|2dt ≤ C ′
[ ∫ T

0

∫ 1

0

e−2sη1 |aq2|2 dx dt

+ sλ

T∫
0

ϕ2(t, 0)e−2sη2(t,0)|∂xq2(t, 0)|2dt
]
.

Now, we use 1 ≤ 8T 6ϕ3
2 to see the first term in right hand side of the above estimate as∫ T

0

∫ 1

0

e−2sη1 |aq2|2 dx dt ≤ 8a2T 6

∫ T

0

∫ 1

0

ϕ3
2 e
−2sη1 |q2|2 dx dt(3.31)

≤ 8a2T 6

∫ T

0

∫ 1

0

ϕ3
2 e
−2sη2 |q2|2 dx dt =: X̃,

since β2 ≥ β1 and so η2 ≤ η1 by construction (see (3.5)) which implies e−2sη1 ≤ e−2sη2 for any s > 0.

We see that the term X̃ can be absorbed by the term s3λ4
∫ T

0

∫ 1

0
e−2sη2ϕ3

2|q2|2 dx dt in left hand
side of the estimate (3.30) for some choice of s ≥ s1 = (T 2 + T )σ1 in Theorem 3.2, possibly with some
different σ1 > 0, and also using the fact that s3λ3 ≥ sλ2α, for any λ ≥ λ1 (may be with some larger
λ1 := λ1(γ1, γ2, α)), we obtain

(3.32) sλ2
2∑
i=1

∫ T

0

∫ 1

0

e−2sηiϕi|∂xqi|2dx dt+ sλ2α

∫ T

0

ϕ1(t, 1)e−2sη1(t,1)|q1(t, 1)|2dt

≤ Csλ
∫ T

0

ϕ2(t, 0)e−2sη2(t,0)|∂xq2(t, 0)|2dt,

with some constant C > 0 that now depends on γ1, γ2, α and a.
Let us now restrict the integrals in left hand side in (T/4, 3T/4)× (0, 1). We observe that for any

x ∈ [0, 1], the minimum of the functions ϕi(t, x)e−2sηi(t,x) exists at t = T/4, i = 1, 2, and the maximum
of the function ϕ2(t, 0)e−2sη2(t,0) exists at t = T/2; we see

ϕi e
−2sηi ≥ 16

3T 2
e3λmin[0,1] βi e−(32s/3T 2)(eλK−eλmin[0,1] βi ) in (T/4, 3T/4)× (0, 1),

ϕ2(t, 0) e−2sη2(t,0) ≤ 4

T 2
eλ‖β2‖∞ e−(8s/T 2)(eλK−eλ‖β2‖∞ ) in (0, T )× (0, 1).

Implementing this in (3.32) and by fixing λ = λ1, we deduce that∫ 3T/4

T/4

(
‖∂xq1(t)‖2L2 + ‖∂xq2(t)‖2L2 + α|q1(t, 1)|2

)
dt ≤ CeCs/T 2

∫ T

0

∣∣∂xq2(t, 0)
∣∣2dt,

that implies ∫ 3T/4

T/4

‖q(t)‖2Hα ≤ CeCs/T
2

∫ T

0

∣∣∂xq2(t, 0)
∣∣2dt.(3.33)

Now, thanks to the point 2 of Theorem 2 (which is also valid for the adjoint system (3.1) with source
term f = 0), we have ‖q(0)‖2Hα ≤ Ca‖q(t)‖2Hα for any 0 < t ≤ T (≤ 1). Using this and by choosing
s = s1 = (T 2 + T )σ1 > 0 the inequality (3.33) reduces to

‖q(0)‖2Hα ≤ CeCσ(T 2+T )/T 2

∫ T

0

|∂xq2(t, 0)|2dt,

which gives the required inequality in the proposition with the constant C > 0, independent on T and
ζ.
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Proof of Theorem 2.6 (Null-controllability). Once we have the above observability estimate, then
by some standard duality argument, see for instance [12], one can prove the existence of a boundary
null-control v ∈ L2(0, T ) for the problem (1.8)–(1.9a), and the estimation of the control cost CeC/T

follows from the sharp observability inequality in Proposition 3.4.

Remark 3.5. For the other system, that is for (1.8)–(1.9b), the observation term is B∗2q(t) =
γ1(0)∂xq1(t, 0), and so to obtain a good Carleman estimate one has to choose the functions βi, i = 1, 2
with c1 = −6

(1−µ0) and c2 = 1 (which is opposite to the previous case), to construct the suitable weight

functions.
In that case, a Carleman estimate similar to (3.8) still holds with the observation integral

sλ

∫ T

0

ϕ1(t, 0)e−2sη1(t,0)|∂xq1(t, 0)|2dt,

but we cannot hope for a good observability inequality with observation term γ1(0)∂xq1(t, 0). The reason
behind this is the following: in this case, we have e−2sη1 ≥ e−2sη2 (since β1 ≥ β2 now and consequently

η1 ≤ η2), which will prevent us from absorbing the source term
∫ T

0

∫ 1

0
e−2sη1 |aq2|2 dxdt appeared in the

right-hand side, by the term s3λ4
∫ T

0

∫ 1

0
e−2sη2ϕ3

2|q2|2 dxdt in left-hand side.

The above remark tells us that the Carleman trick is no more applicable to prove the boundary
null-controllability of the system (1.8)–(1.9b).

In fact, it is not a technical since, as we previously mentioned, the controllability property of the
system will depend on the valuess of the coupling coefficient a and of the boundary parameter α. This
will be investigated in the next section.

4. Boundary controllability of our system with control in the first component. This
section is devoted to find a control for the prescribed problem (1.8)–(1.9b) with γ1 = γ2 = 1, using
the moments technique; and as we know, the key point to develop and solve the moments problem is
to obtain sharp estimates on spectral elements of the adjoint to the corresponding elliptic operator.

4.1. Description of spectrum of the underlying elliptic operator. In this section, we
investigate some important spectral properties of the elliptic operatorA∗α,a having the formal expression
in (2.12) with γ1 = γ2 = 1.

Remark 4.1. For γ1 = γ2 = 1 also, we keep the same symbol Aα,a and A∗α,a (for any a ∈ R, α ≥ 0)
to denote the corresponding elliptic operator and its adjoint respectively.

Below, we present the eigenvalue problem A∗α,au = λu, for λ ∈ C, that is explicitly

−u′′1 + au2 = λu1 in (0, 1),

−u′′2 = λu2 in (0, 1),

u1(0) = 0, u2(0) = 0,

u1(1) = u2(1),

u′1(1) + u′2(1) + αu1(1) = 0.

(4.1)

We recall from (2.12) that for a 6= 0, the operator A∗α,a is no more self-adjoint and here we develop
the spectral analysis of this operator (more precisely of its complex version) using some perturbation
argument of linear operators which we discuss in Section 4.1.2. That’s the reason why, we first need
to describe the spectrum of the self-adjoint operator A∗α, which we discuss in the subsequent section.

4.1.1. Spectrum of the self-adjoint operator A∗α. We directly start with the eigenvalue
problem Aαu = A∗αu = λu, u 6= 0, where one may assume that λ is real since Aα is self-adjoint,

−u′′1 = λu1 in (0, 1),

−u′′2 = λu2 in (0, 1),

u1(0) = 0, u2(0) = 0,

u1(1) = u2(1),

u′1(1) + u′2(1) + αu1(1) = 0.

(4.2)

Observe first that we necessarily have λ > 0. Indeed, multiplying the first and second equations
by u1 and u2 respectively, then upon an integration by parts and using the boundary conditions, one
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has ∫ 1

0

(|u′1(x)|2 + |u′2(x)|2) dx+ α|u1(1)|2 = λ

∫ 1

0

(|u1(x)|2 + |u2(x)|2) dx,

which certainly tells us that λ > 0 since α ≥ 0. We shall set µ =
√
λ.

Let us now solve (4.2). We start by observing that if u1 = 0 then the equation for u2 along with
the boundary conditions gives u2 = 0. Therefore, by using the boundary condition at x = 0, we expect
the solution to be of the form

u1(x) = C1 sin(µx), u2(x) = C2 sin(µx), ∀x ∈ [0, 1],

for some C1, C2 ∈ R. On the other hand, the conditions u1(1) = u2(1) and u′1(1) + u′2(1) +αu1(1) = 0
respectively provides

(C1 − C2) sinµ = 0 and(4.3a)

µC1 cosµ+ µC2 cosµ+ αC1 sinµ = 0.(4.3b)

• First, when sinµ 6= 0, then C1 = C2 6= 0 from (4.3a), so that from (4.3b) we end up with

2µ cosµ+ α sinµ = 0.(4.4)

– If α = 0, then µ0
k,1 := (k + 1/2)π for k ≥ 0 are the positive roots of the above equation.

A first family of eigenvalues of (4.2) is thus given by λ0
k,1 := (k + 1/2)2π2, k ≥ 0.

– If α > 0, we rewrite the equation (4.4) as

g(µ) := tanµ+
2

α
µ = 0.

We calculate that g′(µ) = sec2 µ + 2/α > 0, and so in particular, g′(µ) > 0 in ((k +
1/2)π, (k + 3/2)π), for any k ≥ 0. Beside this, we have

lim
µ→((k+1/2)π)+

g(µ) = −∞, g((k + 1)π) =
2

α
(k + 1)π > 0.

So, there exists exactly one root of g in ((k + 1/2)π, (k + 1)π), for each k ≥ 0, and given
α > 0. Let us denote the roots of g by µαk,1 and the eigenvalues by λαk,1 := (µαk,1)2, for all
k ≥ 0 and given any α > 0.

Note that an associated set of normalized eigenfunctions is given by

Φλαk,1(x) :=

(
sin(µαk,1x)

sin(µαk,1x)

)
.(4.5)

• Assume now that sinµ = 0 (see (4.3a)), from which we deduce that µ = (k + 1)π for some
k ≥ 0. By (4.3b) we have C1 = −C2. Now, to be consistent with the notation, we shall
denote this second set of eigenvalue-eigenfunction pairs by

{
λαk,2,Φλαk,2

}
k≥0

, even if they are

not depending on α, with λαk,2 = (k + 1)2π2 and

Φλαk,2(x) :=

(
sin(k + 1)πx
− sin(k + 1)πx

)
.(4.6)

Remark 4.2. Since the operator A∗α is self-adjoint, the family
{

Φλαk,1 ,Φλαk,2
}
k≥0

indeed forms an

orthonormal basis of E.

Remark 4.3. For any α ≥ 0, we deduce the following asymptotic formula of λαk,1,

λαk,1 = (k +
1

2
)2π2 + α+ oα

(
1
)
, for k large,

To obtain the above asymptotic, we express µαk,1 = (k + 1/2)π + δαk,1 with δαk,1 ∈ (0, π/2) for α > 0.
Then we see from g(µαk,1) = 0 that

tan((k + 1/2)π + δαk,1) +
2

α
((k + 1/2)π + δαk,1) = 0,

i.e.,
cos δαk,1
sin δαk,1

=
2

α
((k + 1/2)π + δαk,1),(4.7)
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of which, the right hand side goes to +∞ as k → +∞, and so, for any fixed α > 0, δαk,1 → 0+.
Consequently, sin δαk,1 ∼ δαk,1 and cos δαk,1 ∼ 1 for large k. So, by taking into account (4.7), we have

δαk,1 ∼
α

2kπ
, for k large.

Henceforth, we deduce that

λαk,1 −
(
k +

1

2

)2
π2 =

(
µαk,1 −

(
k +

1

2

)
π

)(
µαk,1 +

(
k +

1

2

)
π

)
= δαk,1((2k + 1)π + δαk,1)

−−−−→
k→∞

α.

4.1.2. Spectrum of the main operator A∗α,a. We begin with our main problem of interest,
that is the system of odes (4.1). For our use, we first denote the set of all eigenvalues of A∗α,a by Λα,a
for any a ∈ R and α ≥ 0.

Let us choose a ∈ R∗ and α ≥ 0 and we pursue some detailed analysis step by step as follows.

– Localization of the spectrum.
We observe that

(4.8) Λα,a ⊂
⋃

λ∈Λα,0

D(λ, 2|a|),

where Λα,0 is the set of all eigenvalues of the self-adjoint operator Aα = Aα,0.
Indeed, if ξ ∈ C is such that |ξ − λ| ≥ 2|a| for any λ ∈ Λα,0, then in particular A∗α,0 − ξI is

invertible and satisfies the resolvent estimate

‖(A∗α,0 − ξI)−1‖ = sup
λ∈Λα,0

1

|ξ − λ| ≤
1

2|a| .

It follows that

A∗α,a − ξI = A∗α,0 − ξI +M∗a = (A∗α,0 − ξI)
(
I − (A∗α,0 − ξI)−1M∗a

)
,

and thus ξ lies in the resolvent set of A∗α,a since

‖(A∗α,0 − ξI)−1M∗a‖ ≤ ‖(A∗α,0 − ξI)−1‖‖M∗a‖ ≤
1

2|a| |a| < 1.

In particular, A∗α,a has compact resolvent since the self-adjoint operator Aα,0 has so, which ensures
that the spectrum of Aα,a is discrete.

– Multiplicity.
Observe now that all eigenvalues have geometric multiplicity 1. Assume that it is not the case,

then we can find one associated eigenfunction u = (u1, u2) such that u1(1) = 0. By the boundary
condition at x = 1, we also have u2(1) = 0. Note that u′2(1) 6= 0 since if it were not the case, we would
have u2 = 0 in (0, 1) and then u1 = 0 in (0, 1) which is not possible.

From (4.1), we see that u2 satisfies a second order ode with homogeneous Dirichlet boundary
conditions from which we deduce that λ = (k + 1)2π2 for some k ≥ 0 and, up to a multiplicative
constant, u2(x) = sin(k + 1)πx, ∀x ∈ [0, 1]. In particular, λ is real.

Now, we multiply the differential equation of u1 by u2 and integrate, i.e.,∫ 1

0

−u′′1(x)u2(x) dx+ a

∫ 1

0

|u2(x)|2 dx = λ

∫ 1

0

u1(x)u2(x) dx.

Performing integration by parts and ui(0) = ui(1) = 0 (for i = 1, 2), we get∫ 1

0

−u′′2(x)u1(x) dx+ a

∫ 1

0

|u2(x)|2 dx = λ

∫ 1

0

u1(x)u2(x) dx.

Now, since −u′′2 = λu2 in (0, 1), and a 6= 0, we deduce from the above equality that u2 = 0 in [0, 1]
which is not possible as discussed above. The claim is proved.
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– The case λ = 0.
We observe that λ = 0 is an eigenvalue if and only if a + 3α + 6 = 0. Take λ = 0 in (4.1).

Then solving the set of odes along with the homogeneous boundary condition at x = 0, one obtain

u2(x) = c1x and u1(x) = c1
ax3

6 + c2x. Now, thanks to the Kirchhoff boundary condition at x = 1, we
obtain c2 = c1(1− a

6 ) and
c1(a+ 3α+ 6) = 0,

which shows that c1 = 0 (consequently, c2 = 0) provided a+ 3α+ 6 6= 0; in that case, λ = 0 is not an
eigenvalue of A∗α,a.

But, as soon as we have a+ 3α+ 6 = 0 (then fix c1 = 1), we see that λ = 0 is an eigenvalue with
the eigenfunction

Φ0(x) =

(
ax3

6 +
(
1− a

6

)
x

x

)
, ∀x ∈ [0, 1].(4.9)

– The case λ 6= 0.
As we have seen above we cannot have u2 = 0 in (0, 1). We take µ ∈ C such that µ2 = λ and we

observe that the solution of (4.1) is necessarily of the form

(4.10)

u1(x) =
aK1x

2iµ
(eiµx + e−iµx) +K2(eiµx − e−iµx),

u2(x) = K1(eiµx − e−iµx),

for some K1,K2 ∈ C. Thereafter, the two boundary conditions at x = 1 provides us the following two
equations {

K1(acµ − 2iµsµ) +K2(2iµsµ) = 0 and

K1(−2µ2cµ + aiµsµ + acµ + 2iαµsµ) +K2(−2µ2cµ) = 0,
(4.11)

where we introduced sµ := (eiµ − e−iµ) and cµ := (eiµ + e−iµ). Now, for the existence of non-zero
solution (K1,K2) of the above system, the following condition should necessarily be satisfied:

8µ2i(sµcµ) + 2µa(s2
µ − c2µ)− 2ai(sµcµ) + 4αµs2

µ = 0,

which is actually the determinant of the coefficient matrix of system (4.11). Since we have assumed
that µ 6= 0, the condition above implies that sµ 6= 0.

Using the relations sµcµ = 2i sin 2µ, s2
µ = −4 sin2 µ and s2

µ−c2µ = −4, the above equation simplifies
as

(4.12) (4µ2 − a) sin 2µ+ 2aµ+ 4αµ sin2 µ = 0.

Now, from the first equation of (4.11), we have K2 = K1

(
1− acµ

2iµsµ

)
= K1

(
1 + a

2µ
cosµ
sinµ

)
. Next we fix

K1 = 1/2i and deduce from (4.10) that the eigenfunction associated with λ = µ2 is given by

(4.13) Φλ(x) :=

(
−ax2µ cos(µx) +

(
1 + a

2µ
cosµ
sinµ

)
sin(µx)

sin(µx)

)
,

as soon as µ ∈ C satisfies (4.12).

– Real solutions of the transcendental equation (4.12).
We set

f(µ) := (4µ2 − a) sin 2µ+ 2aµ+ 4αµ sin2 µ.

Our goal is to prove the following lemma.

Lemma 4.4. Let a ∈ R∗ and α ≥ 0. There exists some kα,a ∈ N∪ {0}, and Cα,a > 0 such that for
each k ≥ kα,a, the function f has:

• one real root, denoted by µα,ak,1 , in the interval(
(k + 1/4)π, (k + 3/4)π

)
,

and that satisfies

µα,ak,1 = (k + 1/2)π +
2α+ a

4kπ
+ oα,a(1/k),(4.14)
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• one real root, denoted by µα,ak,2 , in the interval(
(k + 3/4)π, (k + 5/4)π

)
,

and that satisfies

µα,ak,2 = (k + 1)π − a

4kπ
+ oα,a(1/k).(4.15)

Proof. • Let ε = ∓π/4. A straightforward computation gives

f((k + 1/2)π + ε) ∼ −4 sin(2ε)k2π2, for large k.

Hence, for k large enough, f((k+ 1/4)π) and f((k+ 3/4)π) have different signs, which proves
the existence of a root µα,ak,1 ∈

(
(k + 1/4)π, (k + 3/4)π

)
.

Let δk := µα,ak,1 − (k + 1/2)π ∈ (−π/4, π/4). The equation f(µα,ak,1 ) = 0 gives

(4.16) −
(
4((k + 1/2)π + δk)2 − a

)
sin(2δk) + 2a((k + 1/2)π + δk)

+ 4α((k + 1/2)π + δk) cos2 δk = 0,

and in particular we get for some Cα,a > 0,

| sin(2δk)| ≤ Cα,a
k

,

which implies that δk → 0 as k → +∞ and coming back to (4.16), one can deduce that

δk =
(2α+ a)

4kπ
+Oα,a(1/k3).

• Similarly, we have
f((k + 1)π + ε) ∼ 4 sin(2ε)k2π2, for large k,

and by the similar trick as previous we get the existence of a root µα,ak,2 ∈
(
(k+3/4)π, (k+5/4)π

)
.

Setting now δk := µα,ak,2 − (k + 1)π ∈ (−π/4, π/4), the equation f(µα,ak,2 ) = 0 gives

(4.17)
(
4((k + 1)π + δk)2 − a

)
sin(2δk) + 2a((k + 1)π + δk)

+ 4α((k + 1)π + δk) sin2 δk = 0,

again from which we first deduce that δk tends to 0 (using the similar argument as before)
and then

δk = − a

4kπ
+Oα,a(1/k3).

Corollary 4.5. For any k ≥ kα,a, the operator A∗α,a has two real eigenvalues λα,ak,1 and λα,ak,2 that
satisfy

λα,ak,1 = (k + 1/2)2π2 + (α+ a/2) + oα,a(1),

λα,ak,2 = (k + 1)2π2 − a/2 + oα,a(1).

Moreover, for each k ≥ kα,a (possibly some larger kα,a than earlier) and i ∈ {1, 2}, λα,ak,i is the unique
eigenvalue of A∗α,a in the following disk of the complex plane

D(λα,0k,i , 2|a|),

where conventionally λα,0k,i := λαk,i, the eigenvalues of our self-adjoint operator Aα.

Proof. The solutions µα,ak,i of the transcendental equation f(µ) = 0 are the square roots of the

eigenvalues of our operator. Thus we can set λα,ak,i =
(
µα,ak,i

)2
.

Moreover, for k large enough, we have for i = 1, 2, that

d
(
λα,0k,i , Λα,0 \ {λα,0k,i }

)
≥ 4|a|,
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so that, we have the resolvent estimate

‖(A∗α − ξI)−1‖ ≤ 1

2|a| , ∀ξ ∈ ∂D(λα,0k,i , 2|a|),

and thus

‖M∗a‖ ‖(A∗α − ξI)−1‖ ≤ 1

2
, ∀ξ ∈ ∂D(λα,0k,i , 2|a|).

From [14, Theorems IV–3.16 and 3.18, and V–§4.3], we know that the perturbed operator A∗α,a and

the self-adjoint operator A∗α have the same number of eigenvalues in the disk D(λα,0k,i , 2|a|). Therefore,

in this disk, A∗α,a has only one eigenvalue which is λα,ak,i .

– Conclusion on the structure of Λα,a.
Using the fact given by (4.8) and the Corollary 4.5, we deduce that the spectrum of A∗α,a can be

split into two disjoint parts

(4.18) Λα,a = Λ0
α,a ∪ Λ∞α,a,

where Λ0
α,a is finite, with possibly some complex eigenvalues, and satisfy

Λ0
α,a ⊂

⋃
i=1,2

⋃
0≤k<kα,a

D(λα,0k,i , 2|a|),(4.19)

and Λ∞α,a ⊂ (0,+∞) and is defined by

(4.20) Λ∞α,a :=
{
λα,ak,1 , k ≥ kα,a

}
∪
{
λα,ak,2 , k ≥ kα,a

}
.

The situation is illustrated in Figure 1.

0 200 400 600 800 1,000

−10

0

10

Λ0
α,a Λ∞α,a

<(λ)

=(
λ

)

Fig. 1. A numerical description of a part of the spectrum: for a = 30, α = 0.1

We can summarize the above analysis as follows

Proposition 4.6. Let a ∈ R and α ≥ 0 be any two parameters.
• The spectrum of the operator A∗α,a is discrete, made only of simple eigenvalues, and has the

structure given in (4.18).
• Moreover, the associated family of eigenfunctions {Φλ}λ∈Λα,a is complete in E and Hα.

Note that we considered here the complex version of the spaces E and Hα. Everything was proved
above, except the completeness property of the eigenfunctions which comes as a consequence of a
theorem of Keldysh, see for instance [15, Chapter 1–Theorem 4.3], since the perturbation M∗a is
bounded.
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4.2. Observation estimates and bounds on norms of eigenfunctions . In this section,
we analyze the size of the observation terms |B∗2Φλ| for λ ∈ Λα,a (B∗2 is defined by (2.15b)). If
those quantities do not vanish then the approximate controllability of the problem (1.8)–(1.9b) will
be guaranteed by means of Fattorini-Hautus test (see [11, 16]). Moreover, suitable lower bound for
those quantities combined with upper bounds of ‖Φλ‖Hα will let us build and estimate a null-control
in L2(0, T ) via moments technique.

4.2.1. Approximate controllability. We prove the following lemma (recall that we have as-
sumed the diffusion coefficients γ1 = γ2 = 1).

Lemma 4.7. Let any a ∈ R and α ≥ 0 be given. Then there exists a non-empty set R ⊂ R+
0 ×R∗,

such that we have the following properties:
1. If (α, a) /∈ R, the problem (1.8)–(1.9b) is approximately controllable at any time T > 0 in
H−α.

2. On the other hand, if (α, a) ∈ R, there exists a subspace Yα,a ⊂ H−α of codimension one,
such that the problem (1.8)–(1.9b) is approximately controllable at any time T > 0 if and only
if the initial data belongs to Yα,a.

The set R and the spaces Yα,a are defined by (4.29) and (4.31) respectively inside the proof of
this lemma.

Proof of Lemma 4.7.
We recall that the observation operator B∗2 is given in (2.15b).
• In the simplest case when a = 0, for any α ≥ 0, one can immediately see that the eigenfunctions

in (4.5)–(4.6) satisfy

B∗2Φλαk,1 =
√
λαk,1 6= 0, B∗2Φλαk,2 =

√
λαk,2 = (k + 1)π 6= 0, ∀k ≥ 0.(4.21)

• The case λ = 0 can only happen if a+ 3α+ 6 = 0 (so that in particular a < 0) and it follows
from (4.9) that

B∗2Φ0 = 1− a

6
> 0.

• Let us assume that a 6= 0 and λ 6= 0 be an eigenvalue of A∗α,a. The associated eigenfunction
Φλ is given in (4.13).
An immediate computation gives

B∗2Φλ = − a

2µ
+ µ+

a cosµ

2 sinµ
.(4.22)

From now on, we suppose that B∗2Φλ = 0. Since µ 6= 0 and sinµ 6= 0, this is equivalent to the
relation

(4.23) (2µ2 − a) sinµ+ aµ cosµ = 0.

This equation has to be satisfied in addition to the transcendental equation (4.12). If we
suppose that cosµ = 0, then (4.12) and (4.23) show that this can occur if and only if we have

(4.24) a+ 2α = 0, and µ2 = −α,

this last equation not being compatible with the condition cosµ = 0.
Therefore, we can assume that cosµ 6= 0. Multiplying (4.23) by cosµ and using straightforward
trigonometry we obtain that the two equations (4.12) and (4.23) can be equivalently written
as follows (

(4µ2 − a) 4αµ
(2µ2 − a) −2aµ

)(
sin 2µ
sin2 µ

)
=

(
−2aµ
−2aµ

)
.(4.25)

Denote the coefficient matrix in the left hand side of (4.25) by Mµ ∈M2×2(C) and we calculate
the determinant:

detMµ = 2aµ(a+ 2α)− 8µ3(a+ α).
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– Let us prove that detMµ 6= 0 if µ satisfies (4.25).
The claim is clear if a+ 2α = 0 or a+ α = 0.
From now on we assume a + 2α 6= 0 and a + α 6= 0. The determinant of Mµ cancels if

and only if µ = ±
√

a(a+2α)
4(a+α) ∈ C and, if that happens, the matrix becomes

Mµ =

 aα
a+α ±2α

√
a(a+2α)
(a+α)

− 1
2
a2

a+α ∓a
√

a(a+2α)
(a+α)

 ,

and a straightforward computation shows that

KerM∗µ = Span

{(
a

2α

)}
.

We deduce from (4.25) that

(
1
1

)
belongs to the range of Mµ, which implies that it should

be orthogonal to KerM∗µ, that is (
1
1

)
⊥
(
a

2α

)
.

This is a contradiction since a+ 2α 6= 0 and the claim is proved.
– Solving (4.25).

From the previous point, we know that Mµ is invertible, so that we can solve (4.25) to
get 

sin 2µ =
2aµ(a+ 2α)

a(a+ 2α)− 4µ2(a+ α)
,

sin2 µ =
−4aµ2

2a(a+ 2α)− 8µ2(a+ α)
.

(4.26)

Using the standard trigonometric relation sin2 2µ = 4 sin2 µ(1 − sin2 µ), we can deduce from
(4.26) that

4µ2 = a(a+ 2α+ 2).

Since the sign of µ is unimportant, we conclude that this situation can only occur for the
particular value

µ = µcα,a :=
1

2

√
a2 + 2aα+ 2a.

To summarize, we have finally obtained that if B∗2Φλ = 0, then we necessarily have

(4.27) λ = λcα,a :=
a(a+ 2α+ 2)

4
.

This is a necessary condition and we still have to check whether or not this value of λ (or µ)
does satisfy (4.26), that is to say if α and a satisfy

sin(
√
a2 + 2aα+ 2a) = − (a+ 2α)

√
a2 + 2aα+ 2a

(a2 + a+ 3aα+ 2α2)
,(4.28a)

sin2

(√
a2 + 2aα+ 2a

2

)
=

(a2 + 2aα+ 2a)

2(a2 + a+ 3aα+ 2α2)
.(4.28b)

This leads us to introduce the critical set R as follows

(4.29) R := {(α, a) ∈ R+
0 × R∗, s.t. (4.28) holds}.

The setR is the set of solutions to the two equations (4.28). We recall that those two equations
were obtained from (4.26) by eliminating the value of µ and therefore, are not independent
one from the other. Thus, we observe that any solution (4.28b) necessarily satisfies

(4.30) sin(
√
a2 + 2aα+ 2a) = εα,a

(a+ 2α)
√
a2 + 2aα+ 2a

(a2 + a+ 3aα+ 2α2)
,
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for εα,a ∈ {−1, 1}. On any connected component of the set of solutions of (4.28b), we have
either εα,a = −1 (in which case (4.28a) is satisfied) or εα,a = 1 (in which case (4.28a) is not
satisfied).
We have plotted in Figure 2 the solution curves of (4.28b) in two colors: in blue the ones for
which εα,a = −1 and in red the ones for which εα,a = 1. The set R is thus the union of the
blue curves. The blue dot corresponds to the particular pair (α, a) = (1, 3.1931469) that is
used in the numerical results of Section 5.3.

Fig. 2. In blue: the set R of critical pairs (α, a). In red: The solutions to (4.28b) that are not solution of (4.28a).

• To sum up the previous analysis, we have identified the set R of parameters (α, a) for which
there exists a single critical eigenvalue λcα,a given by (4.27) for which the associated eigenfunc-
tion is not observable, that is B∗2Φλcα,a = 0.
We can now find out the approximate controllability properties of our problem.

1. For any given pair (α, a) 6∈ R all the eigenfunctions ofA∗α,a are observable, and henceforth,
the Fattorini-Hautus criterion is satisfied (see [11, 16]) which implies the approximate
controllability of the system in the space H−α.

2. If a given pair (α, a) belongs to R, then the system (1.8)–(1.9b) can not be approximately
controllable in the full space H−α, since for the particular eigenvalue given in (4.27), we
have B∗2Φλcα,a = 0; thus the Fattorini-Hautus criterion fails.
However, it is not difficult to observe that if the initial data belongs to the smaller space
defined by

Yα,a :=
{
y0 ∈ H−α | 〈y0,Φλcα,a〉H−α,Hα = 0

}
,(4.31)

then the approximate controllability of the system holds true.

4.2.2. Estimates on the eigenfunctions. We will gather here the estimates we need on the
eigenfunctions, namely a bound from below for the observation terms B∗2Φλ and a bound from above
for the norms ‖Φλ‖Hα .

Lemma 4.8. Let a ∈ R and α ≥ 0 be given. Then, there exists some Cα,a such that we have

‖Φλ‖Hα ≤ Cα,a(1 +
√
|λ|), ∀λ ∈ Λα,a,

and moreover, the observation terms enjoy the following estimate
1. When (α, a) /∈ R, we have

|B∗2Φλ| ≥
1

Cα,a
(1 +

√
|λ|), ∀λ ∈ Λα,a.(4.32)
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2. On the other hand, for any pair (α, a) ∈ R, we have the same estimate (4.32) for all λ ∈
Λα,a \ {λcα,a}, where λcα,a is given in (4.27).

Proof. We first observe that, thanks to the structure of the spectrum of our operator given in (4.18),
it is enough to establish the required estimates for λ ∈ Λ∞α,a, in which case we can take advantage of
the explicit asymptotic behavior of the eigenvalues that we have established above. Moreover we only
treat here the case a 6= 0 since the case a = 0 can be treated easily in the very same way by using
formulas (4.5)-(4.6) instead of (4.13).

• For the case λ = 0, (which is possible only when a + 3α + 6 = 0) it is easy to see from (4.9)
that there exists some Cα,a > 0 such that

‖Φ0‖Hα ≤ Cα,a.

• Next, we suppose λ 6= 0 and observe that

‖Φλ‖2Hα = (Aα,0Φλ,Φλ)E

= (A∗α,aΦλ,Φλ)E − (M∗aΦλ,Φλ)E

= λ‖Φλ‖2E − (M∗aΦλ,Φλ)E

≤ (|a|+ |λ|)‖Φλ‖2E .

Therefore, we are reduced to find a uniform estimate of the norm in E of Φλ.
Using the explicit expression (4.13) of the eigenfunction Φλ we get that

‖Φλ‖E ≤ Ca
(

1 +
1

|µ sinµ|

)
,

and so we finally simply need to show that

sup
k
‖Φλα,ak,1 ‖E + sup

k
‖Φλα,ak,2 ‖E < +∞.

– Concerning the first family of eigenvalues, by the asymptotics (4.14), we have that
| sin(µα,ak,1 )| is close to 1 for k large enough. Therefore it is clear that ‖Φλα,ak,1 ‖E is a

bounded quantity when k goes to infinity.
– For the second family of eigenvalues, using (4.15) we see that sin(µα,ak,2 ) is now close to 0

for k large. However, the precise asymptotics shows that the product∣∣∣µα,ak,2 sin(µα,ak,2 )
∣∣∣ ,

is close to |a|/4 for k large, and thus ‖Φλα,ak,2 ‖E is also bounded.

• Concerning the observation terms, we start from (4.22) and separate again the study for the
two families of eigenvalues.

– By the same argument as before, we see that | sin(µα,ak,1 )| is close to 1 and | cos(µα,ak,1 )| is
close to 0, so that we get

B∗2Φλα,ak,1 ∼+∞ µα,ak,1 =
√
λα,ak,1 .

– Concerning the second family of eigenvalues, we need to carefully study the last term in
(4.22), that gives

a cos(µα,ak,2 )

2 sin(µα,ak,2 )
∼

+∞
a(−1)k+1

2(−1)k+1
( −a

4kπ

) = −2kπ ∼
+∞
−2µα,ak,2 .

Coming back to (4.22), we conclude that

B∗2Φλα,ak,2 ∼+∞ −µ
α,a
k,2 = −

√
λα,ak,2 .

This, along with Lemma 4.7 gives the required results in points 1 and 2 of our Lemma.

4.3. Null-controllability. We now focus on obtaining a null-control for the system (1.8)–(1.9b).
We recall again that the diffusion coefficients are γ1 = γ2 = 1.
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4.3.1. The moments problem. The set of eigenfunctions {Φλ}λ∈Λα,a of A∗α,a is a complete
family in Hα on account of Proposition 4.6, so it is enough to check the controllability equation (2.14)
for Φλ for each λ ∈ Λα,a. This indeed tells us that, for any y0 ∈ H−α, the input v ∈ L2(0, T ;C) is a
null-control for (1.8)–(1.9b) if and only if we have

−e−λT 〈y0,Φλ〉H−α,Hα = B∗2Φλ

∫ T

0

v(t) e−λ(T−t) dt, ∀λ ∈ Λα,a.(4.33)

where we used the fact that e−tA
∗
α,aΦλ = e−tλ Φλ, for any λ ∈ Λα,a.

The above set of equations are the moments problem in our case, that we need to solve.

4.3.2. Existence of bi-orthogonal family. From the set of moments problem, we shall find a
control v built upon a suitable bi-orthogonal family to the time-dependent exponential functions. In
this context, it is worth mentioning [2, Theorem 1.5] where the authors proved the existence of bi-
orthogonal families to {tje−σkt}k≥0,0≤j≤η (η ∈ N) for a complex sequence {σk}k≥0 with non-decreasing
modulus. This proof is based on a proper gap condition of |σk − σn| for all k 6= n and some property
of the counting function associated with {σk}k≥0. In fact, concerning this hypothesis on the counting
function, a slightly modified version has been introduced in [1, Remark 4.3] and we indeed make use
of this fact in our case.

Here, we show that the set of eigenvalues Λα,a satisfies all the assumptions of [2, Theorem 1.5].
First, that theorem needs all the elements of Λα,a to have positive real part. So, if needed, one could
choose some mα,a > 0, such that (λ+mα,a) has positive real part for all λ ∈ Λα,a, and we shall then
focus on finding the bi-orthogonal family for

{
e−(λ+mα,a)(T−t)}

λ∈Λα,a
.

1. We know that the set of eigenvalues Λα,a is discrete, and that only a finite number of them
are possibly non-real, see (4.18). Therefore, we clearly have the estimate∣∣=(λ)

∣∣ ≤ Cα,a√<(λ) +mα,a, ∀λ ∈ Λα,a.

2. The gap condition.
Since the set of eigenvalues Λα,a is discrete, one has |λ − λ̃| 6= 0 for any two elements λ 6= λ̃
of Λα,a. So, it is enough to obtain a proper gap condition for large eigenvalues where we can
take the advantage of having only real eigenvalues.
In this context, it is important to recall the set of all real eigenvalues defined in (4.20) and for
simplicity one may re-denote the sequence

{
λα,ak,i

}
k≥kα,a,i=1,2

by {λ2k+i}k≥kα,a,i=1,2 (kα,a has

been introduced in Corollary 4.5), in increasing order as follows

λ2kα,a+1 < λ2kα,a+2 < λ2(kα,a+1)+1 < · · · ,

with
λ2k+1 := λα,ak,1 , λ2k+2 := λα,ak,2 , ∀k ≥ kα,a.

For the re-defined sequence above, we start with the index 2kα,a + 1, since we have that the
set Λ0

α,a ⊂ Λα,a (see (4.19)) consists of exactly 2kα,a eigenvalues.

Let us take into account the asymptotic formulas given by Corollary 4.5 and compute the
following,

λ2k+2 − λ2k+1 = λα,ak,2 − λ
α,a
k,1 = (k + 1)2π2 − (k +

1

2
)2π2 +Oα,a(1)

≥ c̃α,a kπ2, for large k ≥ kα,a,

≥ c̃α,a
π2

7

[
(2k + 2)2 − (2k + 1)2

]
,

as also,

λ2(k+1)+1 − λ2k+2 = λα,ak+1,1 − λ
α,a
k,2 = (k + 1 +

1

2
)2π2 − (k + 1)2π2 +Oα,a(1)

≥ c̃α,a (k + 1)π2, for large k ≥ kα,a,

≥ c̃α,a
π2

5

[
(2(k + 1) + 1)2 − (2k + 2)2

]
,



BOUNDARY CONTROLLABILITY OF KIRCHHOFF PROBLEMS 25

for some constant c̃α,a > 0. Now, from the above two inequalities, it is not difficult to obtain

λ2k+i − λ2n+j ≥ ρα,a
[
(2k + i)2 − (2n+ j)2

]
, ∀
{
k > n ≥ k̃α,a, i, j ∈ {1, 2},
k = n ≥ k̃α,a, i > j,

(4.34)

with ρα,a = c̃α,a π
2/7, independent of the choices of eigenvalues. Hence, the requirement of

gap condition satisfies.

3. The counting function.
Let N be the counting function associated with the set of eigenvalues Λα,a, defined by

N(r) = #
{
λ ∈ Λα,a : |λ| ≤ r

}
, ∀r > 0.

We have that, the function N is piecewise constant and non-decreasing in the interval [0,+∞).
Also for every r ∈ (0,+∞) we have N(r) < +∞ and limr→+∞N(r) = +∞.
Without loss of generality, one can start with some sufficiently large number r > 0, such that
∀r ≥ r, the eigenvalue λN(r) is real. Assuming this N(r) to be an odd number, we have, from
the definition of N, that

N(r) = 2k + 1⇐⇒ λ2k+1 ≤ r and λ2k+2 > r, for k ≥ kα,a,
i.e.,

√
λ2k+1 ≤

√
r <

√
λ2k+2, for k ≥ kα,a,

which yields, by Lemma 4.4,

(k +
1

4
)π ≤ √r < (k +

5

4
)π, for k ≥ kα,a and ∀r ≥ r > 0.

Replacing k by (N(r)−1)
2 , we determine that

2

π

√
r − 3

2
< N(r) ≤ 2

π

√
r +

1

2
, ∀r ≥ r > 0.(4.35)

Similarly, for even N(r), we shall have similar estimate for N(r), possibly with different con-
stants in both sides.

Now, for smaller 0 < r < r, it is obvious that there always exists some constant ĉα,a > 0,
sufficiently large and independent of 0 < r < r such that

N(r) ≤ ĉα,a(
√
r + 1),(4.36)

since N is bounded function in (0, r).
The above inequalities (4.35) and (4.36) are the required conditions for counting functions.

So, by virtue of [2, Theorem 1.5], we can ensure the existence of a family {qλ}λ∈Λα,a ⊂ L2(0, T ;C),

bi-orthogonal to
{
e−(λ+mα,a)(T−t)}

λ∈Λα,a
, t ∈ (0, T ), that is to say

∫ T

0

qλ(t) e−(λ̃+mα,a)(T−t) dt = δλ,λ̃, ∀λ, λ̃ ∈ Λα,a.

In addition, this family satisfies the following estimate

‖qλ‖L2(0,T ) ≤ Cα,a eCα,a
(√
<(λ)+mα,a+ 1

T

)
, ∀λ ∈ Λα,a,(4.37)

for some Cα,a > 0 which only does depend the constants obtained in the point 1, 2, 3 in the above
discussions but definitely not on the eigenvalues λ ∈ Λα,a.

4.3.3. Existence of a control. Now we are in the situation to prove the null-controllability
result, typically the following proof.

Proof of Theorem 2.7.
Without loss of generality, we prove the theorem for given time 0 < T ≤ 1. Since for any time

T̃ > 1, we know that a continuation by 0 of a control in (0, 1) will still be a control in (0, T̃ ).
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• We first suppose (α, a) /∈ R and consider

v(t) =
∑

λ∈Λα,a

vλ(t), ∀t ∈ (0, T ), with(4.38a)

vλ(t) = − e
−λT

B∗2Φλ
〈y0,Φλ〉H−α,Hα qλ(t), ∀t ∈ (0, T ),(4.38b)

for λ ∈ Λα,a, any given y0 ∈ H−α and any 0 < T ≤ 1. The above construction of vλ is
well-defined since we have, by Lemma 4.7, that B∗2Φλ 6= 0, ∀λ ∈ Λα,a.
With this choice of v, we can observe that the set of moments problem (4.33) is formally
satisfied. It remains to show the convergence of the series, and then we need to find the
L2(0, T ) norm of vλ for each λ ∈ Λα,a. We see that

‖vλ‖L2(0,T ) ≤
|e−λT |
|B∗2Φλ|

‖y0‖H−α‖Φλ‖Hα‖qλ‖L2(0,T )(4.39)

≤ Cα,a e
Cα,a
T e−T<(λ) eCα,a

√
<(λ)+mα,a × ‖y0‖H−α

‖Φλ‖Hα
|B∗2Φλ|

,

thanks to the estimate of bi-orthogonal family in (4.37).
Thereafter, an application of Cauchy-Schwarz inequality gives

Cα,a

√
<(λ) +mα,a ≤

T

2

(
<(λ) +mα,a

)
+
C2
α,a

2T
,

so that one has

e−T<(λ) eCα,a
√
<(λ)+mα,a ≤ e

Cα,a
T +T

2 mα,a e−
T
2 <(λ)(4.40)

≤ Cα,a e
Cα,a
T −T2 <(λ) ∀λ ∈ Λα,a,

where we have used that 0 < T ≤ 1 to write e
T
2 mα,a ≤ Cα,a for some constant Cα,a > 0 (which

may differ from the previous one).
Next, we use the estimates of the eigenfunctions from Lemma 4.8 to deduce

‖Φλ‖Hα
|B∗2Φλ|

≤ Cα,a, ∀λ ∈ Λα,a.

Now, taking the sum over λ ∈ Λα,a in (4.39), using the above bounds and applying (4.40), we
get ∑

λ∈Λα,a

‖vλ‖L2(0,T ) ≤ Cα,a e
Cα,a
T ‖y0‖H−α

∑
λ∈Λα,a

e−
T
2 <(λ)

We finally get that

‖v‖L2(0,T ) ≤ Cα,a e
Cα,a
T ‖y0‖H−α ,(4.41)

with a constant Cα,a > 0 does not depend on T .
• On the other hand, when (α, a) ∈ R, we consider our control as

v(t) =
∑

λ∈Λα,a\{λcα,a}
vλ(t), ∀t ∈ (0, T ),(4.42)

with the same formulation of vλ as prescribed in (4.38b).
Since we have assumed that y0 ∈ Yα,a (the space Yα,a has been defined in (4.31)), we see that
the moments problem (4.33) is actually satisfied for any eigenvalue (in the case λ = λcα,a, both
sides of the equality are zero).
The L2-bound of this control alike (4.41) can be then obtained by a similar approach as
previous.
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5. Some numerical studies. We devote this section to illustrate numerically the controllability
results shown in the previous sections. We begin by presenting some facts about the classical penalized
Hilbert Uniqueness Method (see e.g. [13] and [6]) and then we will introduce a general methodology to
incorporate the effect of the boundary conditions into the discretization of the problem. We conclude
by presenting several controllability experiments.

5.1. Preliminaries about the penalized HUM. Following the well-known penalized HUM
approach, we shall look for the control v minimizing the primal functional given by

(5.1) Fε(v) :=
1

2

∫ T

0

|v(t)|2dt+
1

2ε
‖y(T )‖2H−α ,

where we used the same notation y = (y1, y2) to denote the unique weak solution to the system (1.8)
either with the boundary conditions (1.9a) or (1.9b). For the sake of exposition, we assume in what
follows that (1.9b) are satisfied.

Observe that, for any ε > 0, the functional (5.1) has a unique minimizer in L2(0, T ;R) since Fε is
continuous, strictly convex and coercive. Hereafter, we denote this minimizer by vε.

Using Fenchel-Rockafellar theory (see, for instance [9]), we can identify an associated dual func-
tional, more precisely, for any ε > 0, consider

Jε(ζ) :=
1

2

∫ T

0

|∂xq1(t, 0)|2 dt+
ε

2
‖ζ‖2Hα + (y0, q(0))E ,(5.2)

for given initial data y0 ∈ E, where q = (q1, q2) is the solution to the adjoint system (3.1) with given
data q(T ) = ζ = (ζ1, ζ2) ∈ Hα.

For any ε > 0, the dual functional (5.2) also has a unique minimizer, that we denote by ζε. Note
that, in this case the coercivity comes from the term ε

2‖ζ‖2Hα which corresponds, by duality, to the
penalty term introduced in Fε.

Also, by following the arguments in [13, Sections 2.1–2.2], we can obtain the following result
relating the corresponding minimizers of Fε and Jε.

Proposition 5.1. For any ε > 0, the minimizers vε and ζε of the functionals Fε and Jε respec-
tively, are related through the formula

(5.3) vε(t) = ∂xq
ε
1(t, 0),

(5.4) yε(T, ·) = −εAαζε,

where qε = (qε1, q
ε
2) is the solution to (3.1) with given data ζε, and yε stands for the solution to (1.8)–

(1.9b) with control vε. Consequently, we have

(5.5) inf
L2(0,T ;R)

Fε = Fε(vε) = −Jε(ζε) = − inf
Hα

Jε.

The following result allows us to relate the controllability properties of system (1.8)–(1.9b) with
the behavior of the minimizers shown above. More precisely, we write the following theorem.

Theorem 5.2. Let vε and yε be as in Proposition 5.1. Then we have the following.
• System (1.8)–(1.9b) is approximately controllable at time T if and only if

(5.6) yε(T )→ 0, as ε→ 0.

• System (1.8)–(1.9b) is null controllable at time T if and only if

(5.7) M2 := 2 sup
ε>0

(
inf

L2(0,T ;R)
Fε

)
< +∞.

In this case, we have

(5.8) ‖vε‖L2(0,T ;R) ≤M, ‖yε(T )‖H−α ≤M
√
ε.

The proof of such result follows from an adaptation of [6, Theorem 1.7]. Let us remark that the
supremum in (5.7) corresponds actually to the limit as ε→ 0 of infL2(0,T ;R) Fε.
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The main relevance of this theorem is that allow us to recover the controllability results presented
in the previous sections using the constructive approach of the penalized HUM instead of other more
involved arguments. At the numerical level this will be important since we expect that upon discretiza-
tion the corresponding system maintains its controllability properties and Theorem 5.2 will help to
conclude and illustrate this fact.

Now, we discuss some details about the implementation we follow to obtain the controls for problem
(1.8)–(1.9b). A straightforward computation yields

(5.9) ∇Jε(ζ) = Λζ +Aαζ + ẙ(T ),

where ẙ := (ẙ1, ẙ2) is the free solution to (1.8)–(1.9b) that is the solution when we consider v = 0 in
(1.9b) and Λ stands for the Grammian operator defined by

Λ : Hα → H−α
ζ 7→ w(T ),

where w(T ) = (w1(T ), w2(T )) that is actually the solution w at time T to the following system: for
given ζ ∈ Hα, we first solve the adjoint system (3.1) and then

∂tw1 − ∂x(γ1∂xw1) = 0 in (0, T )× (0, 1),

∂tw2 − ∂x(γ2∂xw2) + aw1 = 0 in (0, T )× (0, 1),

w1(t, 1) = w2(t, 1) in (0, T ),

γ1(1)
∂w1

∂x
(t, 1) + γ2(1)

∂w2

∂x
(t, 1) + αw1(t, 1) = 0 in (0, T ),

w1(0, ·) = w2(0, ·) = 0 in (0, 1),

along with the conditions at x = 0 as

w1(t, 0) = ∂xq1(t, 0), w2(t, 0) = 0 in (0, T ).

In this way, the control we are looking for, can be obtained as follows: for any given ε > 0, we
compute ζε = (ζε1, ζ

ε
2), which is solution to the linear problem

(5.10) εAαζ + Λζ = −ẙ(T )

and then compute the solution to the adjoint equation with this initial data. Since Λ is a symmetric
(w.r.t the duality product between Hα and H−α), positive semi-definite operator, the conjugate gra-
dient algorithm is a good candidate to solve the linear problem (5.10). We refer to [13, Section 2.2]
for the implementation of such algorithm.

Once we have computed the minimizer, we use formula (5.3) to obtain the desired result and by
means of Theorem 5.2, the expected controllability properties can be tested by analyzing the involved
quantities with respect to the parameter ε.

5.2. Numerical implementation for the general system (1.1). For the numerical tests, the
systems (1.1) and its adjoint are discretized in time by using a standard implicit Euler scheme with
a uniform time step given by δt = T/M where M is the number of steps on the mesh. The PDEs
are discretized in space by a standard finite-difference scheme, adapted to the corresponding boundary
conditions, with a constant discretization step of size h = 1/(N + 1), where N is the chosen number
of steps. More precisely, we consider fully discrete systems of the form

(5.11)


yn+1 − yn

δt
+Ah yn+1 = Bhvn+1, n ∈ {0, . . .M − 1},

y0 = y0
h,

where y0
h ∈ R2N is an approximation of the given initial data y(0, ·), Ah ∈ R2N×2N is a suitable

approximation of the elliptic operator A and Bh ∈ R2N stands for the corresponding approximation of
the control operator.

As usual, we denote by yj (j = 1, 2), each of the components of system (1.1).
1. Using a standard finite-difference method, we construct the matrix Ah,D ∈ R2N×2N , which

is composed by two tridiagonal matrix coming from the discretization of the operator −γj∂2
x,
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j = 1, 2, with homogeneous Dirichlet boundary conditions and γj > 0 is a constant diffusion
coefficient, i.e.,

(5.12) Ah,D =

(
A1
h 0

0 A2
h

)
,

where for each j = 1, 2, (Ajhyj)i = − γj
h2 (yj,i+1 − 2yj,i + yj,i−1), i = 1, . . . , N . At this point,

we impose that yj,0 = yj,N+1 = 0. In the subsequent steps we will compute and add the
contribution of the boundary conditions to the discretization scheme.

2. To incorporate the effect of the boundary condition at the left point, we compute

(5.13) Ah,0 = − (−N0 + hD0)
−1N0.

This corresponds to writing the boundary unknowns yj,0 in terms of the values of yj,1 and
yields a 2× 2 matrix. The result will be then used to construct the auxiliary matrix:

(5.14) Ãh = Ah,D −
1

h2
Ah,0 ⊗


1 0 · · · 0

0 0
. . .

...
...

. . .
. . . 0

0 · · · 0 0


N×N

where ⊗ denotes the Kronecker product, i.e., for matrices S ∈ Rm×n and T ∈ Rp×q, the
product S ⊗ T is the mp× nq matrix given by

(5.15) S ⊗ T =

 s11T · · · s1nT
...

. . .
...

s1mT · · · smnT


3. In a similar fashion, for adding the contribution of the boundary at x = 1, we compute

(5.16) Ah,1 = (N1 + hD1)−1N1.

This will give the coefficients obtained by expressing yj,N+1 in terms of the values yj,N . We
add the resulting matrix to the one obtained in the previous step as follows

(5.17) Âh = Ãh −
1

h2
Ah,1 ⊗


0 0 · · · 0

0
. . .

. . .
...

...
. . . 0 0

0 · · · 0 1


N×N

4. To conclude, we need to add the internal coupling terms. This can be easily done by computing

(5.18) Ah = Âh +Mcoup ⊗ IN×N .

Observe that in our theoretical results, we have considered the simple case where the control v is applied
to one of the equations of system (1.8) through the boundary conditions (1.9a) or (1.9b). However,
observe that in the general system (1.1), the control can be applied in fact to any linear combination
of boundary values. To take into account this in our discretization, we propose the following:

1. We obtain the auxiliary vector

(5.19) B̃h = h(−N0 + hD0)−1B,

where one might considerB as the canonical vector (1, 0) or (0, 1), depending on which equation
the control is being applied.

2. We obtain the control operator by setting

(5.20) Bh =
1

h2
B̃h ⊗


1
0
...
0


N

.
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Remark 5.3. Some remarks are in order.
• In the general case, under the conditions of Assumption 1.1, the invertibility of the matrices

shown in formulas (5.13), (5.16) and (5.19) is guaranteed for any h > 0 small enough, see
Lemma A.1 in appendix.
• The discretization of system (1.8) with either boundary conditions (1.9a), (1.9b) is a particular

case of the scheme presented above. Indeed, we readily see that for such cases we have Ah,0 =
02×2,

(5.21) Ah,1 =

( γ1
γ1+γ2+αh

γ2
γ1+γ2+αh

γ1
γ1+γ2+αh

γ2
γ1+γ2+αh

)
,

Mcoup = Ma and B̃h =
(

0 1
)T

for the boundary condition (1.9a) (resp.
(

1 0
)T

for
(1.9b)). In this case, we note that since α ≥ 0, (5.21) holds for any value of h > 0.

We denote by Eh, H−α,h, Uh and L2
δt(0, T ;Uh) the discrete spaces associated to E, H−α, R

and L2(0, T ;R), respectively. We denote by Fh,δtε the discretization of the functional Fε, v
ε,h,δt the

corresponding minimizer and yε,h,δt = (yε,h,δt1 , yε,h,δt2 ) the associated controlled solution.
As usual in this context, to connect the discretization to the control problem, we use the penal-

ization parameter ε = φ(h) = h4. This choice is consistent with the order of approximation of the
finite difference scheme. We refer the reader to [6, Section 4] for a more detailed discussion on the
selection of the function φ(h) in the context of the null-controllability of some parabolic problems and
its implications.

To concentrate on the dependency of the numerical experiments with respect to the mesh size h,
in the following we will always set M = 4000. This is due to the fact that the results do not depend
too much on the time step (as soon as it is chosen to ensure at least the same accuracy as the space
discretization). This was observed in [6] and the same still applies here.

5.3. Numerical experiments.

5.3.1. Dirichlet boundary control.
The case a = 0. Using our computational tool, we begin by obtaining the solution to system

(1.8)–(1.9b) without any control. We consider the set of parameters

T = 0.4, γ1 = γ2 = 1,(5.22)

a = 0, α = 1,(5.23)

y0,1(x) = sin(πx), y0,2(x) = 1(0.3,0.8)(x)(5.24)

and plot the time evolution of the uncontrolled system in Figure 3. We observe that the solution of
both components is damped over time, however they are far from the desired null target.

T = 0.4

1

0.5

1

(a) The state (t, x) 7→ y1(t, x)

T = 0.4

1

0.5

1

(b) The state (t, x) 7→ y2(t, x)

Fig. 3. Evolution in time of the uncontrolled solution of system (1.8)–(1.9b).

In Figure 4, we show the solution (y1, y2) obtained after applying the HUM control v(t) (see Figure
5) computed by algorithm (5.9)–(5.10). We observe, that due to this action, both components reach
zero at the prescribed time T = 0.4. Notice that, since we have chosen a = 0 in (1.8)–(1.9b), the action
of the control acts indirectly on the second just by means of the boundary coupling. Intuitively, this
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T = 0.4

1

4

(a) The state (t, x) 7→ y1(t, x)

T = 0.4

1

0.5

1

(b) The state (t, x) 7→ y2(t, x)

Fig. 4. Evolution in time of the controlled solution of system (1.8)–(1.9b).

problem is harder to solve than other classical problems where the coupling is made in the internal
domain.

As far as the asymptotic of the method, we present in Figure 6 the behavior of various quantities
of interest as the mesh size goes to 0. We observe that the control cost ‖vh,δtφ(h)‖L2

δt(0,T ;Uh) ( ) as well

as the optimal energy inf Fh,δtφ(h) ( ) remain bounded as the mesh size h tends to 0. Also, we see that

the norm of the state ‖(yh,δt1 (T ), yh,δt2 (T ))‖H−α,h ( ) behaves like ∼ C
√
φ(h) = Ch2. This behavior

is in agreement with Theorem 5.2 and illustrates our null controllability result.

0 0.1 0.2 0.3 0.4

−10

−5

0

5

time

Fig. 5. Control function v(t).

The case a 6= 0. According to our main controllability results, Theorems 2.6 and 2.7, the con-
trollability of system (1.8) is guaranteed depending on the selection of the parameters (α, a) and the
way the control enters the system. When the control enters through the first equation, that is, when
(1.9b) is verified, we know from Lemma 4.7 that there exist values of (α, a) for which system (1.8) is
not even approximately controllable, this is described by means of the set R defined in (4.29). We
illustrate this fact below. By using a numerical algorithm, we can determine that the approximate
pair (α0, a0) = (1, 3.1931469) belongs to R (see Figure 2) and corresponds to the critical eigenvalue
λcα0,a0 ≈ 5.7421936. Therefore, the eigenfunction Φλcα0,a0

fails to verify the Fattorini-Hautus criterion.
The next figure will elaborate this phenomena.

In Figure 7, we plot the eigenfunction corresponding to the critical eigenvalue λcα0,a0 . We observe
that the first component of the eigenfunction, that is the one in blue color, is almost flat as it approaches
to the boundary point x = 0 and in fact, numerically we can compute the size of the normal derivative
which is of order 10−5. We expect that this is somehow reflected during the penalized HUM procedure.
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Cost of the control
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Fig. 6. Convergence properties of the HUM method.
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Fig. 7. Eigenfunctions corresponding to the critical eigenvalue λcα0,a0

We set the parameters

(5.25)

T = 0.3, γ1 = γ2 = 1,

a0 = 3.1931469, α0 = 1,

y0,1(x) = 10 sin(2πx)3, y0,2(x) = 5× 1(0.3,0.8)(x),

and apply our computational tool to obtain boundary controls. In Figure 8 we observe the asymptotic
behavior of the algorithm. Unlike the previous case, we observe that the optimal energy ( ) blows up
as φ(h)−1 = h4 while the size of the target ( ) remains constant. This indicates that for the selection
of the initial data, system (1.8)–(1.9b) is neither null-controllable or approximately controllable, which
is in accordance with our theoretical results.

A further validation of this result can be done by adapting [6, Theorem 1.11], which gives a hint
of the general behavior of the penalized HUM method in the limit. In our case, it can be shown
that as h → 0, A−1

α,hy
h(T ) should converge towards a nonzero function which belongs to the space of

unobservable modes. As we have seen in Section 4, this space consists only one element which is the
eigenfunction associated to the critical eigenvalue. Thus, we expect to see this at the numerical level.

In Figure 9, it can be seen that as N increases (and therefore h ↓ 0) the target is converging
towards some function instead of going to zero. In this case, it is clear that the target converges to
the critical eigenfunction (up to a constant) shown in Figure 7 which validates the discussion above.

At this point, we shall mention that the approximation of the critical parameter a0 plays an
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Fig. 8. Convergence properties of the HUM method for the critical case. Same legend as in Figure 6.
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Fig. 9. Convergence of the A−1
α,hy

h(T ) as h ↓ 0.

important role in the numerical experiments. In Figure 10 we present a series of experiments where
the parameter a0 is approximated by truncating up to a certain number of decimals. For a fixed value
of h, We see that for a rough approximation (two decimals) the convergence of the target is not as good
as for the finer ones (in the experiments shown h = 1/1600). We recall that the critical parameters
come from obtaining a simultaneous solution to (4.28), therefore the non-controllability result is very
sensitive to even small changes of such values. The behavior shown in Figure 10 is therefore consistent
with this fact.

We finish the discussion here by emphasizing that the behavior shown in Figure 8 comes from the
fact that the control is placed on the boundary of the first component, namely the condition (1.9b). If
instead we consider the boundary control on the second component as (1.9a), Theorem 2.6 indicates
that regardless the choice of (α, a) ∈ R+

0 ×R, system 1.8–(1.9a) is null-controllable at any time T . We
illustrate this fact in Figure 11, where consider the same parameters as in (5.25) with the difference
that the control is applied on the boundary of the second equation. We observe that as h → 0 the
size of the target decreases as

√
φ(h) = h and both the control cost and the optimal energy remain

bounded, which is in concordance with the theoretical controllability result.

5.3.2. Neumann boundary control. The goal of this section is to show that our computation
tool can be used to illustrate other cases not covered in the theoretical results presented in this paper.
This is possible thanks to the general methodology we introduced in Section 5.2.

We will discuss about the controllability of system (1.8) in the case when the boundary conditions
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Fig. 10. Convergence of the target for different approximations of the critical value a0.
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Fig. 11. Convergence properties of the HUM method with critical values but control applied on the second equation.
Same legend as in Figure 6.

at x = 0 are replaced by the Neumann conditions

(5.26) ∂xy1(t, 0) = v(t), ∂xy2(t, 0) = 0, in (0, T ).

Even though this change is quite simple to understand, our results require several non straightforward
adaptations for this case, especially the ones at the heart of the moment’s method technique.

However, at the numerical level, using the discretization scheme shown in Section 5.2, we just have
to set the matrices

N0 =

(
γ1 0
0 γ2

)
, D0 =

(
0 0
0 0

)
,(5.27)

N1 =

(
0 0
γ1 γ2

)
, D1 =

(
1 −1
α 0

)
,(5.28)

and compute the formulas given in (5.12)–(5.20). This simple idea actually allows to test for many
configurations and test for different values of a and α. We consider the following simulation parameters

(5.29)

T = 0.5, γ1 = γ2 = 1,

a = 2, α = 4,

y0,1(x) = sin(πx), y0,2(x) = 1(0.3,0.8)(x),

and use our tool to obtain numerical results for two different configurations. In Figure 12a, we show
the convergence result for the case where v is applied on the first equation, that is, (5.26). We can see
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that as h tends to zero, the size of the target decreases as
√
φ(h) = h2 and both the optimal energy

and the control cost remain bounded.
On the other hand, we show in Figure 12b the result by changing the control to the second equation,

i.e., we consider

(5.30) ∂xy1(t, 0) = 0, ∂xy2(t, 0) = v(t), in (0, T ).

We observe that the behavior of the convergence of the method is exactly the same as in the previous
example.

10−3 10−2
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100

102

slope 2

h

(a) Control applied on the first equation
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10−2

100

102
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h

(b) Control applied on the second equation

Fig. 12. Convergence properties of the HUM method with Neumann control applied in different equations. Same
legend as in Figure 6.

Both simulations point toward a positive null controllability result, nevertheless one should be
cautious with such conclusion. In fact, in the case where the control is applied on the second equation,
some adaptations can be made to our Carleman estimate presented in Theorem 3.2 to deduce a result
for the Neumann condition and thus we can expect null controllability for any a and α.

On the other hand, as we have seen in Section 4.1, a detailed analysis of the spectral behavior of
the underlying operator is required when the control is applied on the first equation and the answer
of whether the system is null-controllable or not in the whole L2 space is far from obvious.

Numerical evidence presented in Figure 13 shows that as in the Dirichlet case, there exists at
least one couple (α, a) for which the observation of one eigenfunction is zero. We can approximate
numerically this pair to (αc, ac) = (0.1, 1.2369289). In Figure 14 we are plotting the first eigenfunction
associated to this pair and from there, it is clear that such eigenfunction is non observable.

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

−1

0

1

2

·10−2

a

<(
B∗

Φ
λ
)

Fig. 13. Size of the observation in the Neumann control case (5.26) for α = 0.1 and a ∈ [0.8, 3].
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0 0.2 0.4 0.6 0.8 1

−3

−2

−1

0

·10−2

x

Fig. 14. Eigenfunctions corresponding to the critical eigenvalue λcα,a (Neumann case).

Using the new couple (α, a) for simulation purposes, we can use our computational tool to test
for controllability. In Figure 15 we present the convergence of the method and as in the Dirichlet case
we observe that the size of the target is not decreasing while the optimal energy is blowing up. This
points towards a non-controllable result.
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Fig. 15. Convergence properties of the HUM method for the critical value in the Neumann case. Same legend as
in Figure 6.

Following with the discussion of the Dirichlet case, we see in Figure 16 that the target is indeed
converging towards the critical eigenfunction (up to some constant) which is consistent with the lack
of controllability. In view of these results, a deeper study of the Neumann control case is needed to
conclude.

We would like to finish this section by emphasizing that as in the Dirichlet case, we need a good
approximation of the critical parameter ac to observe the lack of controllability of the system. In
Figure 17, we see the convergence of the target for h = 1/1600 and different approximations of ac.
This experiment seems to be more sensitive than the previous case since we need a four decimal
approximation of the parameter to obtain a good convergence of the target for the given value of h.

Appendix A. An intermediate result.

Lemma A.1. Let D and N be two real d× d matrices such that

(A.1) (D,N ) is full rank,
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Fig. 16. Convergence of the A−1
α,hy

h(T ) as h ↓ 0 in the Neumann case.
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Fig. 17. Convergence of the target for different approximations of the critical value ac

and

(A.2) DN ∗ is self adjoint,

then N + tD is invertible for any t ∈ R except perhaps for a finite number of values of t.

Proof. We follow the same computations as in [4, Theorem 1.4.4]. More precisely, we first observe
that, under the assumptions of the lemma, we have that D + iN is invertible. Indeed,

• by (A.1), we know that (kerD∗) ∩ (kerN ∗) = {0},
• by (A.2), for any x ∈ C2 we have

‖(D∗ − iN ∗)x‖2 = ‖D∗x‖2 + ‖N ∗x‖2,

so that ker(D∗ − iN ∗) ⊂ (kerD∗) ∩ (kerN ∗) = {0} and the claim is proved.
We can now can define U = −(D + iN )−1(D − iN ) (which is actually a unitary matrix but we don’t
need this fact here). It satisfies

2(D + iN )−1D = (D + iN )−1(D + iN +D − iN ) = (I − U),

2(D + iN )−1N = −i(D + iN )−1
(
(D + iN )− (D − iN )

)
= −i(I + U).

If we assume that t ∈ R is such that N + tD is not invertible, then there exists x ∈ Rd, x 6= 0 such that
(N + tD)x = 0. Left-multiplying this equality by (D + iN )−1 an using the above relations we end up
with (

t− i
t+ i

I − U
)
x = 0,

which proves that (t − i)/(t + i) is an eigenvalue of U . This can only happen for a finite number of
values of t.
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