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BOUNDARY NULL-CONTROLLABILITY OF ONE-DIMENSIONAL COUPLED
PARABOLIC SYSTEMS WITH KIRCHHOFF CONDITION

KUNTAL BHANDARI*, FRANCK BOYER*!, AND VICTOR HERNANDEZ-SANTAMARIA*}

Abstract. The main purpose of this paper is to investigate the boundary controllability of some 2 X 2 one-
dimensional parabolic systems with both interior and boundary couplings: the interior coupling is chosen to be linear
while the boundary one is considered by means of a Kirchhoff condition. We consider here the Dirichlet boundary control
on either one of the two state components. In particular, we show that controllability properties change depending on
which component of the system the control is being applied. Regarding this, we point out that the choices of interior
coupling coefficient and the Kirchhoff parameter play a crucial role to deduce the positive or negative controllability
results. Finally, we present a numerical implementation allowing us to illustrate our controllability results and extend
the discussion to some other examples.

Key words. Boundary control, parabolic systems, Carleman estimate, moments method, spectral analysis, Kirchhoff
condition
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1. Introduction.

1.1. Motivation and the problem under study. In this article, we discuss about the boundary
null-controllability of some parabolic systems coupled in the interior as well as on the boundary with
less number of control than the equations in dimension 1. One motivation for studying these kind of
systems is coming from the following prototype of 2 x 2 general boundary controllability system,

Oy + Ay + Meoupy =0 in (0,7) x (0,1),
Doy(t,0) + No-22-(1,0) = Bu(t) in (0,T),
(1.1) %”27
Dly(t, 1) +N17(t7 1) =0 in (OvT)»
Ov~
y(07 ) = yO() in (Ov 1)3

where y := (y1,y2) is the unknown and yo := (y0,1, yo,2) is the initial data from some suitable Hilbert
space and A stands for some diffusion operator with its formal expression

=0z (110g) 0
(1.2) A'( 0 —azwzam))’

where the diffusion coefficients 71,2 are chosen in such a way that
(1.3) v: € C1([0,1]) with 0 < Yin < Yi(%) < Ymax < +00, Yz € [0,1], i = 1,2.

The precise form of the normal derivative on the boundary points « € {0, 1} is 367": = (’yl%, ’)’2%),
where v is the normal vector.

We consider here the interior coupling by means of some 2 x 2 real matrix Moy, and the boundary
coupling via the 2 x 2 real coefficient matrices D;, Nj, for j = 0,1 mentioned in (1.1). One may consider
here v as a scalar control from some suitable space and B as some real vector.

We further make the following assumptions in our setting.

AssuMPTION 1.1. For each j € {0,1},
1. The 2 x 4 matriz (D;,N;) has the mazimal rank.
2. The matriz DiN} is self-adjoint.

The first assumption ensures the sufficient number of boundary conditions in (1.1), whereas the second
one is important for the differential operator A defined by (1.2) to be self-adjoint in its domain

(1.4) D(A) == {u € (H*(0,1))* | Dou(0) +N083T“(0) =0, Dyu(1) +J\/18—“(1) = o}.
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Note that the domain of the operator A considered in (1.1) is not exactly same as (1.4) due to presence
of Bv # 0 on the boundary, but we keep the same notation A if there is no confusion.

Now, we must mention that studying a more general system like (1.1) is really intricate and widely
open. Indeed there are some negative results also (even if Assumption 1.1 satisfied): it can be shown
that a linear coupled system in the cascade form is not even approximately controllable for either

Dj:((l) 8),/\@2(8 (1)) or’Dj:<8 2),/\/]:((1) 8),j:1,2andforB:(é);seefor

instance, [5, Remark 2.17].

In our present work, we will study some particular class of problems that fit in the framework of
(1.1) from both the theoretical and numerical point of view; moreover, in Section 5.2 we shall provide
a discrete setting for the general system (1.1).

We hereby choose the interior coupling

(1.5) Meoup = My = <2 8) ,

for some a € R, and two different kind of the boundary coefficient matrices:
(1.6a) either Dy = Ioxa, Ny= Osxa,

(1.6b) or Dy = Ooyxs, Ny=Toxo,

where in both the cases, we assume

(1.7) Dy = (; _01> N = <(1) ?)

for some a > 0. In what follows, we have the following coupled parabolic systems with Dirichlet or
Neumann boundary control at left and the Kirchhoff condition at right which actually plays the role
of boundary couplings.

e Two Dirichlet control problems. The problems of interest under (1.6a)—(1.7) are

Oy — 0zx(710zy1) =0 in (0,7) x (0,1),

Ozy2 — Oz (120:y2) +ay1 =0 in (0,7) x (0,1),
(1.8) yi(t,1) =y2(t,1) in (0,7),

Y1(1)0zy1(t, 1) + 72(1)0zy2(t, 1) + @y (t,1) =0 in (0,7),

y1(0,7) =w0,1(), ¥2(0,°) = vo,2(") in (0,1),

with a Dirichlet control at the left end point either on the second or first component depending

on the choices of B = <0> or <1), that is to say

1 0
(1.9a) either y1(,0) =0, v2(t,0)=v(t) in (0,7),
(1.9b) or yi(t,0) =v(t), y2(t,0)=0 1in (0,7).

e Two Neumann control problems. By taking into consideration (1.6b)—(1.7), we have two Neu-
mann boundary control systems, that is the same system (1.8) along with the following two

different kind of Neumann control at = 0, depending on the choices of B = 75(0) (?) or

~1(0) (é), that is

(1.10a) either 9,y1(t,0) =0, 0,y2(¢,0) =v(t) in (0,7),
(1.10b) or Juy1(t,0) =wv(t), 0sy2(¢t,0)=0 1in (0,7).

In this context, we mention that a null-controllability result has been proved in [7] for the linear
Kuramoto-Sivashinsky equation on star-shaped trees with a Kirchhoff type boundary conditions. Of
course in our setting, we can not assume a graph domain for any non-trivial interior coupling M,.
Beside this, in [3, Remark 3.6] the authors mention a particular kind of boundary control system (with
Dirichlet control) of type (1.8) when @ = 0 and « = 0; in particular, a = 0 immediately tells us that
there is no interior coupling and in that case choosing a boundary control on either y; or y, does not
make any difference in the system.

But as soon as a # 0, the two types of control systems (1.8)—(1.9a) or (1.9b) (also (1.8)—(1.10a)
or (1.10b)) are certainly different in nature. In fact, we have the following two situations.
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e Case 1. The boundary controllability of the system (1.8)—(1.9a), that is when we consider a
control on the second component ys, can be establish by means of global Carleman estimate
(and then to find an observability inequality) for any interior coupling coefficient a € R and
boundary parameter o > 0 which is precisely Theorem 2.6 (same tool can be adapted to the
corresponding Neumann control case, that is to (1.8)—(1.10a)).

e Case 2. Surprisingly, when we consider our control to be acted on the first component y1,
it appears that the same tool can not be applied to the system (1.8)—(1.9b) (similarly, for
the Neumann case (1.8)—(1.10b)), and in this situation a moments approach will be used.
Moreover, we shall show in Theorem 2.7 that depending on the choices of quantities («, a),
the controllability issues significantly changes; indeed, in this situation we also find a class of
negative results (see Remark 2.8) which is not alike the previous one.

1.2. Overview of the paper. For the theoretical part, we mainly study the two Dirichlet control
systems under Case 1 and 2 above.

We prove the boundary controllability of the system (1.8)—(1.9a) in Section 3.1, where we establish
a global boundary Carleman estimate to find an observability inequality for any ¢ € R, a > 0 and
different diffusion coefficients 7;,72. But as we mentioned earlier, we can not apply the Carleman
stuffs in the situation when the control is acting on y; instead of ys, that is the system (1.8)—(1.9b)
(see Remark 3.5 for details) and so in this situation, we take the advantage of applying the so-called
moments technique to construct a control. In this case, we shall restrict ourselves to constant diffusion
coefficients 73 = 5 = 1 to simplify the spectral properties of the adjoint to the corresponding elliptic
operator, which we discuss in Section 4.1.2 in detail. This, together with the observation estimates in
Section 4.2, we shall construct a control via moments method in Section 4.3. We also discuss the fact
that how the controllability phenomena changes with respect to the choices of o and a.

To conclude, in Section 5 we introduce a discrete setting for the general control system (1.1). This
will help to illustrate the controllability properties associated to systems (1.8) with boundary controls
(1.9) or (1.10).

Notations. Throughout the paper we shall make use of following notations. The inner product
and norm in the scalar space L?(0,1) will be simply denoted by (-,-)rz and | - ||z respectively. We
also denote the space E := (L%(0,1))?, its inner product and the norm by (-,-)g and || - || g respectively.
Moreover, we use the notation (-, -) x/ x to express the duality pair between a space X and its dual X".
Beside this, we sometimes write (-,-)yy with U = R? or C?, d > 1, to specify the usual inner product
inU.

Further, we declare R* := R\ {0} and R} := R* U {0}, where R* denotes the set of all positive
real numbers. _

We use the letter C' and subsequently C', C’, C” to denote some positive constants (those may vary
from line to line) which do possibly depend on 71,72, @, a but not on T" and yo. Sometimes, we shall
express some constants by Cy, p,.... p,. to specify its dependency on the quantities pi,pa,- -+, pp.

We often use the symbol M* to denote the adjoint of a matrix or an operator M.

2. General settings and main results. In this section, we shall discuss briefly about the well-
posedness of our systems (1.8)—(1.9a) and (1.8)—(1.9b) with L? boundary data. Also we will provide
the main results concerning boundary null-controllability which are the main concerns of this paper.

2.1. Well-posedness of our systems.

2.1.1. The system with homogeneous Dirichlet data. Let us begin with the following cou-
pled parabolic system with Kirchhoff condition at right end point and homogeneous Dirichlet conditions
at left end point.

Ory1 — 0x(m102y1) = f1 in (0,7) x (0,1),

Oy2 — 0z(720:y2) + ay1 = fo in (0,7) x (0,1),
2.1) y1(t,0) = ya2(¢,0) =0 in (0,7),

y1(t, 1) = ya(t, 1) in (0,7),

Y1(1)0zy1(t, 1) +72(1)0wy2(t, 1) + ayi(t,1) =0 in (0,T),

y1(0,9) = v0,1(), ¥2(0,) = vo,2(-) in (0,1),

where regularity of yo = (yo.1,Y0,2) and f = (f1, f2) will be specified later.
We introduce the self-adjoint and positive elliptic operator A4, corresponding to the above system
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without interior coupling with its formal expression

(2.2a) Ao = (-895(0%335) 31((;23@)) ’

with its domain
(2.2b) D(Aw) ={u = (un,u2) € (B0, 1))? [ 11(0) = ua(0) =0, w1 (1) = ua(1),

(1) (1) +72(Dup(1) + au (1) = 0}

Let us consider the space H, := D( Y ?) as a completion of D(Aq,) with respect to the norm

P 1/2

(2.3) e, = (Aar, u)” = (Z/ %(fﬂ)UQ(x)Fdferalul(l)Q) ; Yu € D(Aq),
i=170

and one can prove that

(2.4) H, = {u = (ur,uz) € (H(0,1))% | u1(0) = us(0) = 0, uy (1) = u2(1)}.

Moreover, we denote the dual space of H, by H_, with respect to the pivot space F.
Recall the coupling matrix M, defined in (1.5) and we further denote

(2.5) Ao g = Ao + M, with the same domain D(A, ,) := D(Ay).

In particular, A, = Aq.
By definition, it is clear that A, . is not self-adjoint anymore, more precisely, Aq, has been
obtained by a bounded perturbation M, to the self-adjoint operator A,.

PROPOSITION 2.1 (Existence of analytic semigroup). The operator (—Aq,q; D(Aa,q)) defined by
(2.5), generates an analytic semigroup in E.

Proof. Let us first introduce the following densely defined bilinear form h; for all u := (uy,us), ¢ :=
(p1,p2) € Hy (defined by (2.4)), we consider

2 1 1
20 b =3 [ @@l dta [ @) de +an D)

It is clear that A is continuous in H, with

|h(u7§0>‘ < KIHUHHQH@HHM Vu?@ € Ha,

where k1 > 0 depends on the diffusion coefficients v;, i = 1,2, and the coupling coefficient a. On the
other hand, we have

hu,u) 2 ||ullz, —la| Jullf, Yu € Ha.

Then, by [17, Proposition 1.51 and Theorem 1.52], the negative of the operator associated with h
generates an analytic semigroup in E of angle (77/ 2 — arctan /@1). One can show that this operator
is indeed A, , with its domain D(Aq,) = D(A,) (as defined in (2.5)). Henceforth, the proof is
complete. ]

PROPOSITION 2.2 (Regularity). Let f = (f1, f2) € L?(0,T; E) be any given source term.

1. For any given initial data yo = (Yo,1,%0.2) € E, there exists a unique weak solution y =
(y1,y2) € CO([0,T); E) N L2(0,T; Ha) satisfying the following energy estimate
27 Nylleoqorie) + l9llz2 om0 + 10wl 2010y < Cra (lvollz + 1 Fll220,m:)) -

2. For any initial data yo € Ha, the weak solution y belongs to the space C°([0,T];Ha) N
L?(0,T; (H?(0,1))?) and satisfies
(2.8)  lylloo,1570) + lllz2(0,7502(0,1))2) + 10yl 20,1 )

< Cr.a (lvollr. + 112 0,7:5)) -
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Proof. 1. The existence of unique weak solution y € C°([0,T]; E) to (2.1) for given data
Yo € E and source term f € L?(0,T; E) can be concluded by Proposition 2.1.
Below, we provide the sketch of the proof for estimate (2.7). We shall prove the result with
initial data yo € D(A4) and the source term f € C([0,T]; E), which indeed gives us the
existence of unique strong solution y € C*([0,T7]; E)NC°([0,T]; D(A4)), and then by the usual
density argument we deduce the final result in point 1.
e Let us test the first and second equations of (2.1) again y; and yo respectively, we obtain
after an addition, for all ¢ € [0, 71,

L L O1% + (Aap (0. 90 + ala(8),10(0)) 2= = (F0),y(1))
and finally
(2.9) %II@/(UII% +ly®)IE, < Ca(lFOIE + ly@®IE), ¥t € [0,T].

By applying Gronwall’s lemma (see [10, Appendix B.2]) then by integration over [0, 7],
we obtain the first two required estimates of (2.7).

e Next, to obtain the estimate of 9,y € L?(0,T;H_,), let us pick any ¢ := (¢1,(2) € Ha
and observe that

<8ty(t)7<:>7-l7a,7{a + (-Aay(t)ac:)E + a(yl(t)a C?)L2 = (f(t)a C)E7 vt e [07T]7

which implies

[0 (®), On_arte| < Cally®llaee + 1F O E) €]l

and the claim follows from the previous estimates.

2. We shall now prove the point 2 of our theorem, with the given data yo € D(A2) and f €
C([0,T); D(Ay)), and then again a density argument will give the required estimate (2.8) for
any yo € Ho and f € L2(0,T; E).

e We begin by testing the first and second equations of (2.1) by d;y; and d;y5, and by

addition we observe that for any ¢ € [0, 7],
1d
(2.10) 10y ()% + 3 ¢ Aay(®),y(1) e = —a(y1(t), Oeya(t)) 2 + (f (1), ey (t) ) -

We now make use of Cauchy-Schwarz inequality to deduce

la(y1(t), Oey2(t)) 2 + (f (1), Ory(1)) Bl < %Ilt?ty(t)ll% + Ca(lly®)IE + I1F(BIIE)-

Implementing this bound in (2.10) we respectively obtain the third and first estimate of
(2.8).
e The L%(0,T;(H?(0,1))?) estimate for y simply follows from the bound

||5§y||L2(o,T;E) <\ fllzzc0,7:8) + 19yl L20,7,2) + YllL2 0,73 E)5
and the previous two estimates. 0

2.1.2. The system with non-homogeneous Dirichlet data. We consider here a similar cou-
pled system as in the previous paragraph but with non-smooth Dirichlet boundary data; the system
under study is the following

Oryr — 0 (1 0zy1) = f1 in (0,7) x (0,1),
Oryo — Oz (71202y2) +ayr = fo in (0,7) x (0,1),
y1(t,0) = g1 in (0,7),

(2.11) (t,0) = g2 in (0,7),
yi(t,1) = ya(t, 1) in (0,7),
11(1)0zy1(t, 1) +72(1)0zy2(t, 1) + @y (t,1) =0 in (0,7),
y1(0,9) = v0,1(+), 92(0,7) = vo,2(*) in (0,1),
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In this context, it is worth introducing the adjoint of the operator A, o (introduced in (2.5)), with
its formal expression

* _ * * _81(7181) a
(212) Aa,a - ‘Aa + Ma - < 0 _6;8(728;8)) ,

with its domain D(A}, ,) = D(Aa.a) = D(As) (given by (2.2b)).

REMARK 2.3. We could have replaced A}, simply by A, as this operator is self-adjoint, but in order
to be consistent with the non self-adjoint case (that is when a # 0), we decide to keep the notation A,
in several places.

Observe that the operator —A7, , also generates an analytic semigroup in E, thanks to Theorem
2.1 and we denote this semigroup by (e*tA:;’a)DO. Indeed, the solution to the adjoint system of (2.1),

for any given ¢ € H,, satisfies the regularity result proved in point 2 of Theorem 2.2. Using this, one
can classically obtain the well-posedness of the solution to (2.11) in a dual sense as in [8, 18].

PROPOSITION 2.4. For any yo := (Y0.1,Y0.2) € Ha, f := (f1, fo) € L*(0,T; E) and g := (g1, 92) €
L?(0,T;R?), there exists a unique y € C°([0,T); H_o) NL2(0,T; E), solution to (2.11), in the following
sense: for any t € [0,T] and ¢ := ((1,(2) € Ha, we have

t
W), Om_ o e = Wore Ao m, +/0 (f(s),e" (9 40al) pds

- [ {56) (G (=500 )

Y

ol ®

2.2. Main results. We shall now formulate the null-control problems in terms of following propo-
sition.

PROPOSITION 2.5. Let yo € H_qn, a € R, a > 0 and any finite time T > 0 be given. Also recall
the set U as defined in Proposition 2.4.
1. A function v € L*(0,T;R) is a null-control for the problem (1.8)—(1.9a), if and only if it
satisfies: for any ¢ € Hq
)t
z=0/ R2

(213)  —(yo,e o)y . = 72(0) /OTU(t)< ((1)) ; (81 (6_(T_t)A;’aC) (x))

2. A function v € L*(0,T) is a null-control for the problem (1.8)—(1.9b), if and only if it satisfies:
for any ¢ € H,
), dt
=0/ R?

T
_A* 1 (T—t)A*
218 =t 4O, =10) [ 00 (o) (0T ) )
0
Here, it is convenient to denote the observation operator (that does not depend on the quantities a or

«) as follows

(2.15a) B} tu = (uy,u) € (H*(0,1))* = 72(0)u5(0),
(2.15b) By :u = (u1,uz) € (H*(0,1))% = v1(0)u; (0).

Now, we present the main theorems regarding the null-controllability issues for our problem (1.8)
with both cases: the boundary-control to be applied on either y; or ys; we shall also achieve some
suitable estimates of the controls, depending on the coupling coefficient a, the boundary parameter «,
as well as the diffusion coefficients =1, ~s.

e Case 1. To show the boundary null-controllability of the problem (1.8)—(1.9a), that is when
we consider the control applied on y», we prove a suitable observability inequality, and since
we are in linear case so this will be obtained by a Carleman estimate, detailed in Section 3.1.
Our main theorem is the following.

THEOREM 2.6. Let any («,a) € RS’ X R and T > 0 be given. Then, for any yo € H_., there
exists a null-control v € L*(0,T;R) for the problem (1.8)—(1.9a), that satisfies the estimate

[ollz20,m) < Ce“ T llyolln_..,

with the constant C := C(v1,72, @, a) > 0 which does not depend on T > 0 and yo.
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e Case 2. As we mentioned earlier, the above strategy of using Carleman estimate to prove
the boundary controllability will no more be applicable for the problem (1.8) with boundary
control on y1, that is precisely (1.9b). This is because, the source integral due to the interior
coupling in our Carleman estimate can not be observable, with our choices of weight functions.
The exact technical point behind this will be specified later in Remark 3.5 in Section 3.1.
Due to this obstacle, the next immediate idea is to investigate the spectral analysis of the
adjoint to the corresponding elliptic operator and try to develop the moments method to
construct a control by hand; here we shall restrict the diffusion coefficients v; = 72 = 1 to
ease the understanding of the spectrum. Indeed, by developing the spectral analysis, we will
observe that the choices of coupling coefficient a and the boundary parameter « really have a
crucial role for the controllability of (1.8)—(1.9b), which is not alike the case when we consider
our control applied on the second component y,, as per Theorem 2.6.

Henceforth, it is reasonable not to find a good observability inequality using Carleman estimate
in the case (1.8)—(1.9b), when the control input is assumed to be applied on the first component
y1. Let us state more precisely the controllability theorem concerning this case.

THEOREM 2.7. We fix v1 = 72 = 1. Then, there exists a set R C Rar x R* such that
1. for each pair (a,a) ¢ R, there is a null-control to the problem (1.8)—(1.9b), for any given
data yo € H_q,
2. for each pair (o, a) € R, there exists a subspace Voo C H_q of co-dimension 1, such that
there exists a null-control to the problem (1.8)—~(1.9b), if and only if Yo € Va,a-
In addition, in the controllable cases we can choose such a null-control v € L?(0,T;R) that
satisfies the bound

(2.16) loll 20,7y < Caa e/ llyolla_.,
where Cy o > 0 is independent on T > 0 and yo.

The set R and the space YV, o will be specified later, namely in (4.29) and (4.31), while proving
Lemma 4.7 in Section 4.2.1.

REMARK 2.8. In the case when (a,a) € R, the problem (1.8)—(1.9b) is not even approzimately
controllable if we choose our initial data yo & Va,a-

In the next sections, we develop the required results to prove the controllability of both the
problems, namely the Theorem 2.6 and 2.7.

3. Boundary controllability of the system with control in the second component. This
section is devoted to prove the existence of a null-control of the coupled system (1.8)—(1.9a), in terms
of finding a proper observability inequality, and so the Carleman estimate is the main ingredient to
obtain.

3.1. A global boundary Carleman estimate. Let us first write the adjoint system to (1.8)—
(1.9a), with homogeneous Dirichlet conditions at the left end point.

—0vqh — Ox(MO0zqn) +agqa =0 in (0,T) x (0,1),
—0tq2 — 0x(720,q2) =0 in (0,7) x (0,1),
ql(t O):(JQ(t O):O n

5

@ (t,1) = g2(t, 1)
71(1) 0pq1(t,1) +72(1)02q2(t, 1) + @qa(t,1) =0 in
ql( ) ()a 2( a') = <2() in (07 1)a
where the regularity of ¢ := ({1, (2) will be imposed later when needed and for simplicity sometimes

we shall use the notation @Q := (0,7") x (0,1).
Now, we introduce the following space

Q:= {qz (@1.92) € (C*(@))° | 1(t,0) = ¢2(£,0) = 0, u (t,1) = g2(t, 1),

) )

oo ooco
R R eI

) )

(0,7)
(0,7)
(0,7,
(0,7)
(0,7)

sz 02qi(t,1) + aqu(t,1) = 0, ¥t € (0, T)}

Before introducing the main theorem regarding Carleman estimate, we define some standard weight
functions which are the main ingredients to obtain the Carleman inequality.
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Construction of the weight functions. Let pg € (0,1) close enough to 1 such that

21610
(1= )3 2

We consider the following affine functions

(3:2) (1) - 7i1)| = 1.

Bi(z) =2+ c¢i(x—1), Vxel0,1],

(3.3) -6

with ¢ =1, CQ:ﬁ’ for 0 < pg <1,
— Mo

that satisfy the following properties

(3.4) B2 > P1 >0, in [0,1], B2(1) = Bi(1).

REMARK 3.1. We will see while proving a Carleman estimate (namely the Theorem 3.2 stated
later), that the above assumption (3.2) is very sharp and crucial to absorb some unusual boundary
integrals sitting in the right hand side of the Carleman estimate.

Now, we assume that A > 1 and K = 2max{||f1]|co, [|52llcc} and define the weight functions ¢;
and n;, for 1 = 1,2, as follows
eBi() MK _ ABi(w)

(3.5) pi(t,T) = HT —t)’ ni(t,x) = w,

Y(t,z) € Q.
From the properties of 81 and (s in (3.4), we have that the functions ¢; and 7; are positive and satisfy

(36) cpl(tv 1) = @Z(ta 1) and 771(157 1) - 772(t7 1)a

since 31(1) = Ba2(1).

We also have the following relations in @, for i = 1,2,

Op0i = Apici, Oy = —Apicy,

o — o 2T g 2T
(37) tPi = szt(T — t)’ tTi = nzt(T — t)’
32t —-T)*+ 17
Ry =
O T A

Now, we write the main theorem of this section concerning the Carleman estimate.

THEOREM 3.2 (A Carleman estimate). Let the weight functions ¢1,p2 and m1,1n2 be defined as in
(3.5). Then, there exists A1 := A1 (71,72, @) > 0, 81 := (T*+T )01 > 0 with some o1 := o1 (71,72, @) > 0
and a constant C' := C'(v1,v2, @) > 0, such that the following Carleman estimate holds true

2 T gl 2 Tl
(3.8) s\ Z / / e 253 | g |Pda dt + s\? Z / / e 25,0, q; | Pda dt
i=170 /0 i=170 JO

T 2 T ,l
+53/\3/ <p1(t,1)6_25”1(t’1)|q1(t,1)|2dtSC’{Z/ / e=2om
0 — Jo Jo

T
+ A / ot 0)e= 210 |9,go (4 0Y2dt |,
0

0:qi + 6@:(7i8xqz‘)|2d$ dt

for s > s1, A > A\ and for all (q1,¢2) € Q.

Before going to the proof of the theorem above, we let any s > 0, A > 1 and (q1,¢2) € Q and we
write f; = 0;q; + 0,(Vi02q;), then f; € L?(Q), for i = 1,2. We also set

Vit x) = e 1Dt x), V(t,x)€Q, fori=1,2.
Observe that,

(39) "/}i(tv O) =0,i=1,2, and 1/11(% 1) = 1/)2(75, 1)7
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using (3.6) and the properties of ¢;, i = 1,2 in Q. Also look that

(3.10) Opi(t, x) = e 109, q;(t, ) + sABl(x)pi(t, x)hi(t, ), V(t,x) € Q,
so that we have
2
(3.11) Z% Outbi(t,1) = —atbr (1) + A (3 eomi(1) )or (8 1)ebr (8, 1),
=1

thanks to the boundary condition Z?Zl 7i(1)02qi(t, 1) + g1 (t, 1) = 0, the properties of ¢; in (3.6) and
¥; in (3.9), and the fact that 8, = ¢;, for i =1, 2.

Next, we see that the functions v; satisfies the following relations in @
My + Moty = Fj, fori=1,2,
with
Myt = 8, (vi0uti) + SN2 @i vinhi + s(Oms )i,
(3.12) Moty = 9ypi — 25cipi(1i0nthi) — 28N piryinhi,
Fi=e " fi+ 3)\02"71{901'1/]1 — 5\? 2902'717[)2
We have for i = 1,2,

(3.13) IVl gy + 1Mt gy + 2(Mathe, Math) 1) = iy

Now, we present the following auxiliary lemma which is important to prove the main result in
Theorem 3.2.

LEMMA 3.3. Let the functions @;, 1n;, Vi, My, Maws in Q, for i = 1,2, and the quantities c1,co
be as introduced earlier. Then there exists \g := Ao(71,72) > 0, so := (T? + T)og > 0 with some
oo = 0o(71,72) > 0 and a constant C"”" = C"(y1,v2) > 0 such that we have the following inequality

(3.14) *ZHMﬂ/hHLz ots Z||M21/JZHL2(Q)

+Zs3A4/ /goz|wz|2dwdt+ZsA2/ /sozlaww da dt
2 2
+Z%(1)/ 8xwi(t,1)8twi(t,1)dtfsAch-/ @it 1) |7:(1)0u1i(t, 1)|dt
i=1 0 i=1 70

2 T 2 T
—&-s)\Zci / gpi(t,0)]'yi(0)8xwi(t,0)‘2dt—25)\2203%2(1) / o1, 1)bs(£,1) D5 (1, 1) dit

0

T
3»”32% /%m)thu?dt 2A2cm /mt,1><amz-><t,1>\wi<t,1>|2dt
0

2
<C"Y e fillie ).

i=1
for all A > Ao, s > sg.

In this paper, we decide to omit the full proof for this auxiliary result in Lemma 3.3, as the
computations we need to perform are more or less of standard fashion. We now focus on obtaining the
Carleman estimate (3.8) which is the main concerned of this section.

Proof of Theorem 3.2.

The main idea to prove this theorem is to play with the boundary integrals of the inequality (3.14),
so that we can absorb the lower order integrals by some leading terms and then to observe the proper
observation term which will be eventually shifted in the right hand side.

We make use of the following notations: denote the all six boundary terms respectively by Jy,
1 <k <6, by maintaining the same order as in (3.14).
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o We have (using (¢, 1) = ¢1(¢, 1))
T
N ::/0 (1(1)0:91(t, 1) + 72(1)02tp2(t, 1)] Optpr (¢, 1) dt

:—a/o wl(t,l)atwl(t,l)dt—i—SA(Zci%(l))/0 or (£, 1) (6 1)Opn (1 1) dt

s 2 T
= -3 (X en) [ @po v vea,

due to the condition (3.11) and the fact that ¢1(0,-) = ¢1(T,-) = 0. Now, using 91| <
Tp? < 2T3¢p3, we obtain

T
(3.15) \MSCMW/’ﬁmmmeW%
0

for some constant C' > 0.
e Next, we write the second boundary term of (3.14) as Jy := Jo; + Jog, where we keep the
second integral in the left hand side of (3.14) since

T
(3.16) Jog = —s)\CQ/ @2(t71)172(1)am¢2(t71)y2dt >0
0

due to the fact that co < 0. Later, we will see that the integral Jyo will be used to absorb
some lower order terms.
On the other hand, the first integral of the second boundary term Js is

T
J21 = 7SA Cl/ (pl(t, 1)|’}/1(1)8x’¢)1 (t, 1)|2dt,
0

where ¢; > 0 and so Jo; < 0. So, we need to absorb those integrals by some higher order
terms in the left hand side. Let us recall (3.11) to express

2
N (D01 (t,1) = =ty (t,1) — 2(1)0ata(t, 1) + S)\(Zci%‘(l))@l(t’ D (t,1),

i=1

so that we have the following,
T T )
(317) |J21| S 35)\0&261 / ¥1 (t, 1)|¢)1(t, l)lzdt + 35)\01 / ®1 (t, 1)|")/2(1)8x’l/)2(t, 1)| dt
0 0

2 T
+Wﬂ%2&ﬁw4¢%mmwww:&+a+a,
=1

with a simple observation (since o < 4T%4¢3),
T

(3.18) JL < GsraT / St D (8, 1),
0

e Now, we look into the third boundary term, Js := J31 + J32, where we have

T
oy = sher / 16,0 1 (0)8, 1 (£, 0)2dt > 0,
0

since ¢; > 0 and the function ¢ > 0, and so one can discard this term from the left hand side
of (3.14).
On the other hand, we have

(3.19)

T T
|&ﬂ:&x@/'mumme@wwmﬁﬁscﬂ/’wumwﬂw@%m@mmﬁm
0 0

following the expression of 0,19 given by (3.10) and using the fact that 15(¢,0) = 0.
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e Thereafter, we write the fourth boundary integral of (3.14) by Jy := Jy1 + Ji2, and we obtain
the following

T
(3.20)  [Jaa] 225)\20%7%(1)/0 @1(t, 1) |1 (¢, 1) 001 (8, 1) |dt

T ~ T
. c
< Ces)\/ 1 (8 )| (1) (2, 1)|2dt+:s>\3T4/ S D) (£ D2 dt,
0 0

where we have used the Young’s inequality and the fact 1 < 2T*¢3. Now, for the first integral
in the right hand side of (3.20), we use the estimate for Jo; given by (3.17) to obtain

T
321 ul < Ces [ or(t. Dna()osvae, 1) de
0
Sl o323 ot Losray [T s 2
+ C(es®X° + esAa®T* + =sA*T) o1 (t, )| (t, 1)]7dt.
€ 0
On the other hand, a similar computation as in (3.20) gives that

T ~ T
~ C
(3:22)  |Ja2| < Ce SA/ @2(t, 1) |72(1)0x (2, 1)|2dt+ :3A3T4/ ©3(t, 1)ha(t, 1)|2dt.
0 0

e The fifth and the leading boundary term in the left hand side of (3.14) is

T
(3.23) Js = X (—h2(1) — 42(1) / St D)l (1 1) 2 d,

by writing p2(t,1) = ¢1(¢,1).
e Finally, the sixth boundary term Jg satisfies

T
(3.24) sl < CsAT / S D) (1, 1) dt,
0

due to the facts that pa(t, 1) = @1(t, 1), Oma(t, 1) = O (t, 1) and |9y | < T3

e Let us first try to show that the coefficient of the boundary integral fOT O3 (t, 1)|v1(t,1)]? dt is
positive in the left hand side of the main inequality (3.14). To deduce this, recall the quantities
Js from (3.23) and J3; from (3.17) and take those quantities in the left hand side of the main
inequality (3.14), we see

(3.25)
T
Js — Jay = Kls?’x“’/ 1 (t, D) (¢, 1)]Pdt, with Ky = ¢395(1) (|ea| — 6¢1) — Teiri(1).
0

Recall that we haven chosen ¢; =1,co = ﬁ (see (3.3)), so that we calculate
20600 )
K= |——=7(1) - )| >1
L= | s - )] 2 1

thanks to the condition (3.4).
e Next, we recall Jog and J3; respectively given by (3.16) and (3.17), use ¢1(¢,1) = ¢2(t, 1), and
we write the other leading boundary integral in the left hand side as follows

T
2 .
(326) J22 — J221 = KQS)\/ 4,02(157 1)”}/2(1)8301/@(157 1)’ dt, with K2 = (|62| - 301),
0
where we compute Ko = 3((11;";‘00)) > 0, using the values of ¢y, ca.

e Now, we gather the leading boundary terms J5 — J3; and Jap — J2; given by (3.25) and (3.26)
respectively, in the left hand side of our main inequality (3.14), and in the right hand side we
consider all the estimates of the lower order terms namely, .J; from (3.15), Ji; from (3.18), J3;
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from (3.19), Jy; from (3.21), Jyo from (3.22) and Jg from (3.24), so that the inequality (3.14)
follows

(3.27) 3/\42/ /cpz|1/12|2dxdt++s/\22/ /%\aﬂm?dxdt

+K153/\3/ O3 (t, 1) (t, 1)\2dt+Kgs)\/ ©2(t,1)|y2(1)8atha(t, 1) } dt
0 0

T2 T o1 ,
g [
;o 0

T
+C’cs3>\3/ go?(t,l)h/)l(t,1)|2dt+26’es/\/ ©2(t,1)|y2(1)8atha(t, 1) ‘ dt
0

T
fi|? da dt + s\ / o (t,0)e™ 212105 go(t, O)|2dt]
0

T
+ Ce(SAT® 4+ sA®T* + sA°T* + s°AT) / O3 (t, 1)1 (¢, 1)]dt.
0

By choosing € > 0 to be small enough, taking A\ > \; := A\; (71,72, a) and s > s := (T? +
T)o1(y1,7v2, @) > 0, where A\; and o7 are large enough so that all the boundary integrals, except
the observation term, in right hand side can be absorbed by the corresponding integrals in left
hand side of (3.27), which leads us

2 T a1 2 T ,1
(3.28) sWZ/ /@f|1/zi|2dxdt+s)\22/ /goi|8xz/)i\2dzdt
i=17/0 70 =170 Jo
T 2 T [,
+s3>\3/ <p1(t,1)|¢1(t,1)|2dt<C’[Z/ / e 25| £, da dt
0 =170 Jo

T
LA / ot 0)e=2(40) |, a0 (1 02t
0

for all A > Ay, s > s; with the constant C’ := C’(y1, 72, @). Now, we recall the expression of
0,1 from (3.10), so that we have

e 2|0, |* < 200010i|* + 25 N2(ci)? @} Ji?, for i = 1,2,

and that implies
2 T gl
(3.29) s)\QZ/ /6725”i<pi|6zqi|2dxdt
i=170 /0
_ 2 T rl _ 2 T .1
SCS)\QZ/ /gpi|8wwi\2dmdt+C’s3)\4Z/ /¢?|wi|2dxdt.
i=170 0 i=1 70 0

Finally, combining (3.28) and (3.29), and replacing f; = 0¢q; + 0. (7:0:¢:), i = 1,2, we obtain
the required Carleman inequality (3.8). 0

3.2. Null-controllability in terms of a boundary observability inequality. The Carleman
estimate indeed leads us to obtain the following observability inequality which is in fact a necessary
and sufficient condition for null-controllability.

PROPOSITION 3.4 (observability inequality). For any ¢ := ((1,(2) € Ha, the associated solution
q = (q1,q2) € C°[0,T); Ho) NL2(0,T; (H?(0,1))?) to (3.1) satisfies the following observation estimate

T
1) 3., < Ce/T / 1Baa(t,0) P,
0

for some constant C := C(y1,72, @, a) > 0 that does not depend on T > 0 and (.

Proof. We shall prove the required observability inequality for 0 < T' < 1 to show the existence
of a control in (0,7) for the system (1.8)—(1.9a); this will not loose the generality since for any time
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T > 1, a continuation of a control in (0,1) by 0 in (1,1:) will do the job. Let us now focus on the
proof.

For any given ¢ € H,, one can apply the Carleman inequality given by Theorem 3.2 to the solution
q of (3.1), with 0:q1 + 0(7110:q1) = aq2 and 0:ga + 92 (120:¢2) = 0 to deduce

2 T A1 2 T ,1
(3.30) 33)\42/ / 6_25"1g0§’|qi|2dxdt+s)\22/ / e 2 0,10, q; |2 da dt
i=170 J0 -1 /0 Jo
T T 1
+33)\3/ @1(t, 1)e25mED gy (¢,1)2dt < C'[/ / e 2N |agy|? da dt
0 o Jo
T
T\ / a1, 0)e 200, (1,0 2t .
0

Now, we use 1 < 8T6<p§ to see the first term in right hand side of the above estimate as

T 1 T 1
3.31 e~ %M |agy|? da dt < 8a2T° 303 e 2 |qo|? da dt
2
o Jo o Jo

T 1
< 8a2T6/ / 03 e 22 gy |? dx dt =: X,
0 0

since 2 > B and so 1y < 71 by construction (see (3.5)) which implies e=2" < ¢=252 for any s > 0.

We see that the term X can be absorbed by the term s3* foT fol e~ 25203 go|? dx dt in left hand
side of the estimate (3.30) for some choice of s > s; = (T2 + T)o; in Theorem 3.2, possibly with some
different o1 > 0, and also using the fact that s3A\3 > s\2a, for any A > \; (may be with some larger
A1 := A1(71, 72, @), we obtain

2 T 1 T
(3.32)  sA? Z/ / e 0,10,q;|*d dt + s)\Qoz/ 1 (t, 1)e”2m D gy (¢, 1) 2dt
—Jo Jo 0

T
< Cs\ / pa(t,0)e22(00)|9,go (2, 0)|dt,
0

with some constant C' > 0 that now depends on 71, vz, « and a.

Let us now restrict the integrals in left hand side in (7'/4,37/4) x (0,1). We observe that for any
x € [0, 1], the minimum of the functions ¢;(t, z)e 25" (%) exists at t = T/4, i = 1,2, and the maximum
of the function s (t,0)e™2572(40) exists at t = T/2; we see

pie 2 > % A mIn0,1) Bi o =(328/3T2) (X =AU 1 p g 34y (0, 1),
©a(t,0) e~ 2sm2(t,0) < % eMB2lleo ef(SS/TQ)(ekK*e/\”ﬁZ”“) in (0,T) x (0,1).

Implementing this in (3.32) and by fixing A = A1, we deduce that

3T /4 , (T )
// (1owar ()12 + [02a2(0) 22 + a8 D))t < Ce/ [ forn(t, 0 e,
T/4 0

that implies

3T/4 , (T )
(3.33) [l < 0e™ [ o0t
T/4 0

Now, thanks to the point 2 of Theorem 2 (which is also valid for the adjoint system (3.1) with source
term f = 0), we have [|q(0)[13, < Callq(t)||F,, for any 0 <t < T(< 1). Using this and by choosing
s =51 = (T? + T)o1 > 0 the inequality (3.33) reduces to

T
2 2
Mwaswwfmﬁéﬁmmw%,

which gives the required inequality in the proposition with the constant C' > 0, independent on T" and

¢. O
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Proof of Theorem 2.6 (Null-controllability). Once we have the above observability estimate, then
by some standard duality argument, see for instance [12], one can prove the existence of a boundary
null-control v € L2(0,T) for the problem (1.8)-(1.9a), and the estimation of the control cost Ce®/”
follows from the sharp observability inequality in Proposition 3.4. ]

REMARK 3.5. For the other system, that is for (1.8)—(1.9b), the observation term is Biq(t) =
71(0)0,q1(¢,0), and so to obtain a good Carleman estimate one has to choose the functions B;, i = 1,2
with ¢ = ﬁ and co = 1 (which is opposite to the previous case), to construct the suitable weight
functions.

In that case, a Carleman estimate similar to (3.8) still holds with the observation integral

T
SA / ©1(t,0)e=2mED |9 ¢, (¢,0)|2dt,
0

but we cannot hope for a good observability inequality with observation term v1(0)0,q1(t,0). The reason
behind this is the following: in this case, we have e=25™ > e~25"2 (since 1 > (2 now and consequently

m < n2), which will prevent us from absorbing the source term fOT fol e~ 25 |aqy|? dzdt appeared in the
right-hand side, by the term s3\4 fOT fol e~ 252 3| qo|? dadt in left-hand side.

The above remark tells us that the Carleman trick is no more applicable to prove the boundary
null-controllability of the system (1.8)—(1.9b).

In fact, it is not a technical since, as we previously mentioned, the controllability property of the
system will depend on the valuess of the coupling coefficient a and of the boundary parameter c. This
will be investigated in the next section.

4. Boundary controllability of our system with control in the first component. This
section is devoted to find a control for the prescribed problem (1.8)—(1.9b) with v; = 72 = 1, using
the moments technique; and as we know, the key point to develop and solve the moments problem is
to obtain sharp estimates on spectral elements of the adjoint to the corresponding elliptic operator.

4.1. Description of spectrum of the underlying elliptic operator. In this section, we
investigate some important spectral properties of the elliptic operator A7, , having the formal expression
in (2.12) with v; =75 = 1.

REMARK 4.1. Fory, = v2 = 1 also, we keep the same symbol Ao and A}, , (for anya € R,a > 0)
to denote the corresponding elliptic operator and its adjoint respectively.

Below, we present the eigenvalue problem A7, ,u = Au, for A € C, that is explicitly

—ul + aug = Ay in (0,1),
—uf = dug in (0,1),
(4.1) u1(0) =0, uz(0) =0,

ur(1) = uz(1),

wh (1) + uh(1) + auq (1) = 0.
We recall from (2.12) that for a # 0, the operator A}, , is no more self-adjoint and here we develop
the spectral analysis of this operator (more precisely of its complex version) using some perturbation
argument of linear operators which we discuss in Section 4.1.2. That’s the reason why, we first need
to describe the spectrum of the self-adjoint operator A%, which we discuss in the subsequent section.

4.1.1. Spectrum of the self-adjoint operator A. We directly start with the eigenvalue
problem A,u = A u = Au, u # 0, where one may assume that A is real since A, is self-adjoint,

—uf = Auy in (0,1),
—uf = Aug in (0,1),
(4.2) u1(0) =0, u2(0) =0,

ul(l) = U2(1)7
uy (1) + u5(1) + aui (1) = 0.

Observe first that we necessarily have A > 0. Indeed, multiplying the first and second equations
by w1 and us respectively, then upon an integration by parts and using the boundary conditions, one
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has
1

/ (e (@) 2 + [y (@) ) d + afur ()] = A / (@) + Jua()?) dir,
0 0

which certainly tells us that A > 0 since a > 0. We shall set y = V.

Let us now solve (4.2). We start by observing that if u; = 0 then the equation for uy along with
the boundary conditions gives uy = 0. Therefore, by using the boundary condition at = 0, we expect
the solution to be of the form

ui(z) = Cysin(uz), we(z) = Cysin(uz), Vz €[0,1],

for some C1,C2 € R. On the other hand, the conditions u;(1) = ua(1) and v} (1) + uh(1) + cui (1) =0
respectively provides

(4.3a) (C1 —Cy)sinpy =0 and
(4.3b) 1Ct cos pu + uCs cos i+ aCy sin = 0.

e First, when sin y # 0, then C; = Cy # 0 from (4.3a), so that from (4.3b) we end up with
(4.4) 2ucos p+ asinp = 0.

— If a =0, then ) ; := (k + 1/2)m for k > 0 are the positive roots of the above equation.
A first family of eigenvalues of (4.2) is thus given by )\271 = (k+1/2)*7%, k > 0.
— If @ > 0, we rewrite the equation (4.4) as

2
g(u) :=tanp+ —pu=0.

We calculate that ¢’'(u) = sec® u + 2/a > 0, and so in particular, ¢’(z) > 0 in ((k +
1/2)w, (k + 3/2)7), for any k > 0. Beside this, we have

g(p) = -0, g((k+1m)==(k+1)m>0.

ol

lim
p—=((k+1/2)m)+

So, there exists exactly one root of g in ((k + 1/2)m, (k4 1)), for each k > 0, and given
a > 0. Let us denote the roots of g by u¢, and the eigenvalues by ¢, := (u&)?, for all
k > 0 and given any o > 0. ’ ’ 7

Note that an associated set of normalized eigenfunctions is given by

(4.5) yp (z) := <Sin(“gle)) .

sin(pf; 1 )
e Assume now that sinpy = 0 (see (4.3a)), from which we deduce that p = (k + 1) for some
k > 0. By (4.3b) we have Cy = —Cy. Now, to be consistent with the notation, we shall

denote this second set of eigenvalue-eigenfunction pairs by {)‘%,27 Dy even if they are

5,2]’1@07
not depending on «, with Ay, = (k + 1)272 and

(4.6) g, (@) = (Sls?r(llzkfig:m) |

REMARK 4.2. Since the operator A}, is self-adjoint, the family {‘I’Ag P indeed forms an

,z}kZO
orthonormal basis of E.

REMARK 4.3. For any a > 0, we deduce the following asymptotic formula of A ;.

1
g,l = (k+ 5)2?2 +a+ Oa(l), for k large,

To obtain the above asymptotic, we express ug , = (k + 1/2)m + 6y with 6, € (0,7/2) for o > 0.
Then we see from g(ug: ) = 0 that
2
tan((k +1/2)m +071) + —((k +1/2)7 +8¢,) =0,

cos 0
C1 = 2 (- 1/2)m + 57)

4. . €.
(4.7) bC sin o |
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of which, the right hand side goes to +oo as k — 400, and so, for any fivred o > 0, o3 — 0r.
Consequently, sindy', ~ 0y 1 and cosdyy ~ 1 for large k. So, by taking into account (4.7), we have

«

T for k large.

«
5k,1 ~

Henceforth, we deduce that

N 1,2 N 1 N 1
a0t 37 = (= (e ) (i + (4 )
=01 ((2k + )7 + 6 1)
— a.
k— oo
4.1.2. Spectrum of the main operator A}, ,. We begin with our main problem of interest,
that is the system of odes (4.1). For our use, we first denote the set of all eigenvalues of A}, , by Aqa.q
for any a € R and a > 0.
Let us choose a € R* and a > 0 and we pursue some detailed analysis step by step as follows.

— Localization of the spectrum.
We observe that

(4.8) Moo C |J DO 2la)),
AEAa 0

where A, o is the set of all eigenvalues of the self-adjoint operator Ay, = Aq 0.

Indeed, if £ € C is such that |{ — A| > 2|a| for any A € A, then in particular A} , — &I is
invertible and satisfies the resolvent estimate
1 1

Fo—EDTH = sup < —.
H( ,0 ) H NeAoo |é~7 >\| 2‘a|

It follows that
A = €1 = Al o = &1+ Mg = (A7 o = &1) (T = (AL — £1) 7" M7)
and thus £ lies in the resolvent set of A7, , since

1

(A% 0 — €D M < (I(AL o — €D THIIMEI < oa]

la] < 1.

In particular, A}, , has compact resolvent since the self-adjoint operator A, o has so, which ensures
that the spectrum of/Aa,a is discrete.

— Multiplicity.

Observe now that all eigenvalues have geometric multiplicity 1. Assume that it is not the case,
then we can find one associated eigenfunction u = (uy,us) such that uy(1) = 0. By the boundary
condition at x = 1, we also have uz(1) = 0. Note that u5(1) # 0 since if it were not the case, we would
have ug = 0in (0,1) and then u; = 0 in (0, 1) which is not possible.

From (4.1), we see that us satisfies a second order ode with homogeneous Dirichlet boundary
conditions from which we deduce that A = (k + 1)?72 for some k > 0 and, up to a multiplicative
constant, us(x) = sin(k + 1)wx, Vo € [0, 1]. In particular, A is real.

Now, we multiply the differential equation of u; by us and integrate, i.e.,

1 1 1
/ —u ()us(z) dz + a/ lug ()| do = )\/ uy (z)uz(x) de.
0 0 0
Performing integration by parts and u;(0) = u;(1) =0 (for ¢ = 1,2), we get

[ -t o [ = [ s

Now, since —uf = Aug in (0,1), and a # 0, we deduce from the above equality that us = 0 in [0, 1]
which is not possible as discussed above. The claim is proved.
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— The case A = 0.

We observe that A = 0 is an eigenvalue if and only if a + 3ac 4+ 6 = 0. Take A = 0 in (4.1).
Then solving the set of odes along with the homogeneous boundary condition at = = 0, one obtain
us(z) = ez and ug(x) = cl‘%s + cox. Now, thanks to the Kirchhoff boundary condition at z = 1, we
obtain ¢ = ¢1(1 — §) and

c1(a+3a+6)=0,

which shows that ¢; = 0 (consequently, ¢co = 0) provided a + 3« + 6 # 0; in that case, A = 0 is not an
eigenvalue of A, .

But, as soon as we have a + 3a + 6 = 0 (then fix ¢; = 1), we see that A = 0 is an eigenvalue with
the eigenfunction

axs a
(4.9) By (z) = (6 + (; - 6)95) ., vzelo1].
— The case A # 0.
As we have seen above we cannot have us = 0 in (0,1). We take u € C such that p? = X and we
observe that the solution of (4.1) is necessarily of the form

CLK1[E m s . s
ui(z) = —— (™ + 7M7) + Ky (e — e,
o (o) = 5 )+ Kol )

us(z) = K (ei“w - e_i’”),

for some K7, Ky € C. Thereafter, the two boundary conditions at £ = 1 provides us the following two
equations

(4.11) K (acy, — 2ips,) + K2 (2ips,) =0 and
. Ki(—2p2c, + aips,, + ac, + 2iaps,) + Ko(—2p2c,) = 0,
where we introduced s, := (e’ — e~ %) and ¢, := (e"* 4+ e~ ). Now, for the existence of non-zero

solution (K, K3) of the above system, the following condition should necessarily be satisfied:
8uZi(s,c,) + 2,ua(si - ci) — 2ai(sucy) + 404,usi =0,

which is actually the determinant of the coefficient matrix of system (4.11). Since we have assumed
that u # 0, the condition above implies that s, # 0.

Using the relations s,,c,, = 2isin 2y, 5. = —4 sin? p and 5% —c;, = —4, the above equation simplifies
as
(4.12) (4p* — a) sin 2 + 2ap + dapsin® = 0.
Now, from the first equation of (4.11), we have Ko = K; (1 - 2?;‘; ) =K (1 + ﬁifjﬁ) . Next we fix

Sp s
K1 = 1/2i and deduce from (4.10) that the eigenfunction associated with A\ = p? is given by
419 oate) o= [ CoR) + (14 55 ) s
sin(px)

as soon as p € C satisfies (4.12).

— Real solutions of the transcendental equation (4.12).
We set

f(p) == (4p* — a) sin 2p + 2ap + 4oy sin® .
Our goal is to prove the following lemma.

LEMMA 4.4. Let a € R* and o > 0. There exists some koo € NU{0}, and Cy,q > 0 such that for
each k > kg o, the function f has:
e one real root, denoted by iy, in the interval

((k + 1/4)m, (k + 3/4)7),

and that satisfies

20 + a

4.14 ot = (k+1/2
(414) pp = (b 1/2)m+ =0

)

+ 0a,a(1/k),
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e one real root, denoted by jui;’y, in the interval
((k+3/4)m, (k+5/4)T),

and that satisfies
a

(4.15) ps = (ko m — o

+ 04.4(1/K).
Proof. e Let e = F7/4. A straightforward computation gives
f((k+1/2)m + €) ~ —4sin(2¢)k*7?,  for large k.

Hence, for k large enough, f((k+1/4)7) and f((k+ 3/4)m) have different signs, which proves
the existence of a root pp'y € ((k+1/4)m, (k + 3/4)7).
Let 0y = pyy — (k+1/2)m € (—7/4,7/4). The equation f(u ) = 0 gives

(4.16)  — (4((k+1/2)7 + 61)* — a) sin(26x) + 2a((k + 1/2)7 + &)
+4a((k 4 1/2)m + 63) cos® 5y, = 0,
and in particular we get for some C, , > 0,

Ca,a
k )

| sin(26,)] <

which implies that d; — 0 as k — 400 and coming back to (4.16), one can deduce that

(2a+a) 3
O0p = ———= + Oa.a(1/k°).
k= T Oaall/k)
e Similarly, we have

f((k+ 1)1+ €) ~ 4sin(2e)k*7?,  for large k,

and by the similar trick as previous we get the existence of a root py'y € ((k+3/4)m, (k+5/4)7).
Setting now 0y := '’y — (k+1)7 € (=7 /4,7/4), the equation f(u’y) = 0 gives

(4.17)  (4((k + 1)m + 6)* — a) sin(26;,) + 2a((k + 1)7 + 6k)
+ da((k + 1)7 + 6;,) sin? 65, = 0,

again from which we first deduce that J; tends to 0 (using the similar argument as before)
and then

S = + Ou.a(1/K?). 0

a
4k
COROLLARY 4.5. For any k > ka,q, the operator A, , has two real eigenvalues A’y and N’y that

satisfy
Agf = (k+1/2)*7% + (a4 a/2) + 0a.a(1),

Mg = (k+1)°7% — a/2 4 0a,4(1).

a,a

Moreover, for each k > ke o (possibly some larger ko, than earlier) and i € {1,2}, /\lm‘ is the unique
eigenvalue of A3, , in the following disk of the complex plane

DA 2lal),

where conventionally )\g’? = AL ;s the eigenvalues of our self-adjoint operator A, .

a,a

Proof. The solutions p;7;" of the transcendental equation f (1) = 0 are the square roots of the

. 2
eigenvalues of our operator. Thus we can set A} = (up7t)”.

Moreover, for k large enough, we have for ¢ = 1,2, that

a(Npfs Bao \ NELY) > 4lal,
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so that, we have the resolvent estimate

* — 1 «
(AL —€D)7H| < Sl Vé € OD(AY,2lal),

and thus

* * — 1 87
IMENIAL —€D7HI < 5, Y6 € OD(XTY, 2lal).

From [14, Theorems IV-3.16 and 3.18, and V-§4.3], we know that the perturbed operator A}, , and
the self-adjoint operator A% have the same number of eigenvalues in the disk D()\Z‘V’?, 2|al). Therefore,
in this disk, A7, , has only one eigenvalue which is A}’}". O

— Conclusion on the structure of Aq q.
Using the fact given by (4.8) and the Corollary 4.5, we deduce that the spectrum of A}, , can be
split into two disjoint parts
(4.18) Aoa =AY, UAY

a,a’

where Agya is finite, with possibly some complex eigenvalues, and satisfy

(4.19) Nec U U pO 2,

i=1,2 0<k<ka.a

and A%, C (0,+00) and is defined by
(4.20) Ay = {ATE B2 Faa fU{NES, B2 Kaa } -

The situation is illustrated in Figure 1.

— T
AS, A,
10 - x X X ‘ *
x l
X |
= |
5 |
X |
L |
—10 | |5, X ‘ .
|

| | | | |
0 200 400 600 800 1,000
R

F1a. 1. A numerical description of a part of the spectrum: for a = 30, « = 0.1

We can summarize the above analysis as follows

PROPOSITION 4.6. Let a € R and a > 0 be any two parameters.
e The spectrum of the operator Aj, , is discrete, made only of simple eigenvalues, and has the
structure given in (4.18).
o Moreover, the associated family of eigenfunctions {®x}xea, , is complete in E and H.

Note that we considered here the complex version of the spaces E and H,. Everything was proved
above, except the completeness property of the eigenfunctions which comes as a consequence of a
theorem of Keldysh, see for instance [15, Chapter 1-Theorem 4.3], since the perturbation M is
bounded.
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4.2. Observation estimates and bounds on norms of eigenfunctions . In this section,
we analyze the size of the observation terms |B5®,| for A € A, (B3 is defined by (2.15b)). If
those quantities do not vanish then the approximate controllability of the problem (1.8)—(1.9b) will
be guaranteed by means of Fattorini-Hautus test (see [11, 16]). Moreover, suitable lower bound for
those quantities combined with upper bounds of |®y ||, will let us build and estimate a null-control
in L2(0,T) via moments technique.

4.2.1. Approximate controllability. We prove the following lemma (recall that we have as-
sumed the diffusion coefficients y; = yo = 1).

LEMMA 4.7. Let any a € R and o > 0 be given. Then there exists a non-empty set R C Rar X R*,
such that we have the following properties:
1. If (a,a) ¢ R, the problem (1.8)—(1.9b) is approximately controllable at any time T > 0 in
H_q.
2. On the other hand, if (a,a) € R, there exists a subspace Voo C H_o of codimension one,
such that the problem (1.8)—(1.9b) is approzimately controllable at any time T > 0 if and only
if the initial data belongs to Vo q.

The set R and the spaces V,,, are defined by (4.29) and (4.31) respectively inside the proof of
this lemma.

Proof of Lemma 4.7.
We recall that the observation operator Bj is given in (2.15Db).
e In the simplest case when a = 0, for any a > 0, one can immediately see that the eigenfunctions
in (4.5)—(4.6) satisty

(4.21) Bi®ae = /AL, #0, Bi®ap, = /A0, = (k+ )7 £0, Vk>0.

e The case A = 0 can only happen if a + 3a 4+ 6 = 0 (so that in particular a < 0) and it follows
from (4.9) that

B;@O:If%>0.

e Let us assume that a # 0 and A # 0 be an eigenvalue of A7, ,. The associated eigenfunction
®) is given in (4.13).
An immediate computation gives

acos i

a
4.22 B5®), = —— .
( ) 27 21 i 2sin p

From now on, we suppose that B5®, = 0. Since p # 0 and sin p # 0, this is equivalent to the
relation

(4.23) (24 — a) sin 1 + ajucos p = 0.

This equation has to be satisfied in addition to the transcendental equation (4.12). If we
suppose that cos = 0, then (4.12) and (4.23) show that this can occur if and only if we have

(4.24) a+2a =0, and p? = —a,

this last equation not being compatible with the condition cos u = 0.

Therefore, we can assume that cos 1 # 0. Multiplying (4.23) by cos p and using straightforward
trigonometry we obtain that the two equations (4.12) and (4.23) can be equivalently written
as follows

(4p? —a) 4dau sin2p)  (—2ap
(4.25) ((2,u2 —a) —2ap) \sin’p)  \—2ap)"
Denote the coefficient matrix in the left hand side of (4.25) by M, € M2yx2(C) and we calculate
the determinant:

det M,, = 2au(a + 2a) — 8% (a + ).
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— Let us prove that det M, # 0 if u satisfies (4.25).
The claim is clear if a + 2aa =0 or a + a = 0.
From now on we assume a + 2a # 0 and a + a # 0. The determinant of M, cancels if

and only if p = £,/ “4((‘2 125)) € C and, if that happens, the matrix becomes

ala+2a)
oo a‘fTaa +2a (ata)
H 1 a2 a(a+2a) ’

T 2ata Fa (a+a)

and a straightforward computation shows that

“ a
Ker M, = Span { <2a> } .

We deduce from (4.25) that 1 belongs to the range of M,,, which implies that it should

(1) + ()

This is a contradiction since a + 2« # 0 and the claim is proved.
— Solving (4.25).
From the previous point, we know that M, is invertible, so that we can solve (4.25) to

be orthogonal to Ker M, that is

get
2 2
sin2p = ap(a + 204) ,
(4.26) ala+ 2a) — 4p?(a + «)
' 22 *40,“2
sin” p =

2a(a +2a) — 8u2(a+ )’
Using the standard trigonometric relation sin? 2y = 4sin? p(1 — sin? 1), we can deduce from
(4.26) that

4% = a(a + 20+ 2).

Since the sign of p is unimportant, we conclude that this situation can only occur for the

particular value
1
B=fg.q = 5V a2+ 2a0 + 2a.

2
To summarize, we have finally obtained that if B5®, = 0, then we necessarily have

2 2
(4.27) A=, = w_
This is a necessary condition and we still have to check whether or not this value of A (or w)

does satisfy (4.26), that is to say if @ and a satisfy

20)vVa? +2 2
.234a sin(v a“ + 2aa + a:_a Qva ao a
4.28 i 242 2 ( + ) * +

(a% + a + 3aa + 2a2)

.9 (\/a2+2aa+2a> (a® + 2ac + 2a)
sin =

)

(4.28D)

2 ~ 2(a? +a+ 3aa + 2a2)
This leads us to introduce the critical set R as follows
(4.29) R = {(a,a) € Ry x R*, s.t. (4.28) holds}.

The set R is the set of solutions to the two equations (4.28). We recall that those two equations
were obtained from (4.26) by eliminating the value of u and therefore, are not independent
one from the other. Thus, we observe that any solution (4.28b) necessarily satisfies

20)vVa? + 2 2
(4.30) sin(va? 4 2ac + 2a) = €44 (a+2a)va® + 2aa + a,

(a® 4+ a + 3aa + 2a2?)
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for €4, € {—1,1}. On any connected component of the set of solutions of (4.28b), we have

either €4, = —1 (in which case (4.28a) is satisfied) or €4, = 1 (in which case (4.28a) is not
satisfied).

We have plotted in Figure 2 the solution curves of (4.28b) in two colors: in blue the ones for
which €4, = —1 and in red the ones for which €4, = 1. The set R is thus the union of the

blue curves. The blue dot corresponds to the particular pair (o, a) = (1,3.1931469) that is
used in the numerical results of Section 5.3.

12

F1G. 2. In blue: the set R of critical pairs (a,a). In red: The solutions to (4.28b) that are not solution of (4.28a).

e To sum up the previous analysis, we have identified the set R of parameters («,a) for which
there exists a single critical eigenvalue A{, , given by (4.27) for which the associated eigenfunc-
tion is not observable, that is B5®yc = 0.

We can now find out the approximate controllability properties of our problem.

L. For any given pair (o, a) ¢ R all the eigenfunctions of A}, , are observable, and henceforth,
the Fattorini-Hautus criterion is satisfied (see [11, 16]) which implies the approximate
controllability of the system in the space H_,,.

2. If a given pair («, a) belongs to R, then the system (1.8)—(1.9b) can not be approximately
controllable in the full space H_, since for the particular eigenvalue given in (4.27), we
have B5®,. = 0; thus the Fattorini-Hautus criterion fails.

However, it is not difficult to observe that if the initial data belongs to the smaller space

defined by
(4.31) Va,a = {yo €Hoo | (Yo, Pre )1 0, = 0}»
then the approximate controllability of the system holds true. ]

4.2.2. Estimates on the eigenfunctions. We will gather here the estimates we need on the
eigenfunctions, namely a bound from below for the observation terms B;®, and a bound from above
for the norms ||®y]|3,, -

LEMMA 4.8. Let a € R and o > 0 be given. Then, there exists some Cy o such that we have

||q))\||7~£a S Ca,a(]- + V |>\|)7 Ve Aa,aa

and moreover, the observation terms enjoy the following estimate
1. When (a,a) ¢ R, we have

1
(4.32) [Bi®a| = m—(1+ VIAD, YA€ A

a,a
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2. On the other hand, for any pair (a,a) € R, we have the same estimate (4.32) for all A €
Aoa \{NG.0}, where NG, , is given in (4.27).
Proof. We first observe that, thanks to the structure of the spectrum of our operator given in (4.18),

it is enough to establish the required estimates for A € AZ’,, in which case we can take advantage of

the explicit asymptotic behavior of the eigenvalues that we have established above. Moreover we only
treat here the case a # 0 since the case a = 0 can be treated easily in the very same way by using
formulas (4.5)-(4.6) instead of (4.13).
e For the case A = 0, (which is possible only when a + 3+ 6 = 0) it is easy to see from (4.9)
that there exists some Cy o > 0 such that

”(I)O”HO, < Ca,a~
e Next, we suppose A # 0 and observe that

[PAl5, = (Aa,0®r, Pr)E
= (ALa®r, PA)E — (MG, PN)E
= A @rlI7 — (M;Dx, ) e
< (la| + [AD @A

Therefore, we are reduced to find a uniform estimate of the norm in E of ®,.
Using the explicit expression (4.13) of the eigenfunction ®) we get that

1
ENPESeA (1 S ) ,
sin gl

and so we finally simply need to show that

sup [Preelle + Sup [@rgellz < +oo.

— Concerning the first family of eigenvalues, by the asymptotics (4.14), we have that
|sin(y,)| is close to 1 for k large enough. Therefore it is clear that [Preallp is a
bounded quantity when k goes to infinity. 1

— For the second family of eigenvalues, using (4.15) we see that sin(u;’y) is now close to 0
for k large. However, the precise asymptotics shows that the product

a,a . a,a
) Sln(uk72) )
is close to |a|/4 for k large, and thus |[®e.a || g is also bounded.

e Concerning the observation terms, we start from (4.22) and separate again the study for the
two families of eigenvalues.
— By the same argument as before, we see that [sin(x;}")| is close to 1 and |cos(uyy)] is
close to 0, so that we get

* a,a a,a
By®ape ~ gy =4/ A

— Concerning the second family of eigenvalues, we need to carefully study the last term in
(4.22), that gives

acos(puss —1)k+1
: (Mz i) N (l( ) _ — 9%k ~ _QN?;‘
28111(”,6)’2) +oo 2(—1)k+1 (ﬁ) +o0 ’

Coming back to (4.22), we conclude that
B;(I))\::; +f\oJo 7;1,3:5 = 7\/)\;’;.
This, along with Lemma 4.7 gives the required results in points 1 and 2 of our Lemma. a0

4.3. Null-controllability. We now focus on obtaining a null-control for the system (1.8)—(1.9b).
We recall again that the diffusion coefficients are y; = vy, = 1.
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4.3.1. The moments problem. The set of eigenfunctions {®x}rea,, of A, is a complete
family in #H,, on account of Proposition 4.6, so it is enough to check the controllability equation (2.14)
for ®, for each A € A, ,. This indeed tells us that, for any yo € H_,, the input v € L?(0,T;C) is a
null-control for (1.8)—(1.9b) if and only if we have

[ T S —
(433) 767)‘T<y0, ®A>H_Q,Ha = B;(I)A/ U(t) efA(Tft) dt, VA S Aa,a~
0

where we used the fact that e *Aaad, = e~tA Dy, for any A € Ay 4.
The above set of equations are the moments problem in our case, that we need to solve.

4.3.2. Existence of bi-orthogonal family. From the set of moments problem, we shall find a
control v built upon a suitable bi-orthogonal family to the time-dependent exponential functions. In
this context, it is worth mentioning [2, Theorem 1.5] where the authors proved the existence of bi-
orthogonal families to {t/e=*'}; >0 0<j<y (1 € N) for a complex sequence {oy, }>0 with non-decreasing
modulus. This proof is based on a proper gap condition of |0}, — 0,,| for all k¥ # n and some property
of the counting function associated with {0 }r>0. In fact, concerning this hypothesis on the counting
function, a slightly modified version has been introduced in [1, Remark 4.3] and we indeed make use
of this fact in our case.

Here, we show that the set of eigenvalues A, , satisfies all the assumptions of [2, Theorem 1.5].
First, that theorem needs all the elements of A, , to have positive real part. So, if needed, one could
choose some mg 4 > 0, such that (A + mg,q) has positive real part for all A € A, 4, and we shall then

focus on finding the bi-orthogonal family for {e_()‘*‘m%a)(T_t)})\eA .

1. We know that the set of eigenvalues A, , is discrete, and that only a finite number of them
are possibly non-real, see (4.18). Therefore, we clearly have the estimate

ISOV)| < Caay/RO) + Maa, YA E A

2. The gap condition. B _
Since the set of eigenvalues A, , is discrete, one has |\ — A| # 0 for any two elements A # A
of Ag,q. So, it is enough to obtain a proper gap condition for large eigenvalues where we can
take the advantage of having only real eigenvalues.

In this context, it is important to recall the set of all real eigenvalues defined in (4.20) and for
simplicity one may re-denote the sequence {AZ,,?}k>ka Lic1o BY {A2ktitkzka wiz1,2 (ka,q has
been introduced in Corollary 4.5), in increasing order as follows

A2k a1l < A2kq o2 < A2k ot )41 <77

with

Aok41 7= ALy Azkr2 = ALy, VE > ko
For the re-defined sequence above, we start with the index 2k, o + 1, since we have that the
set A , C Aq.a (see (4.19)) consists of exactly 2kq,, eigenvalues.

Let us take into account the asymptotic formulas given by Corollary 4.5 and compute the

following,
a,a a,a 2_2 1 2,2
Aotz — Aopr1 = Ay — Ay = (B +1)m" — (b + 5) 7 + Oa,a(1)
> Coa ki, for large k > ko.a,
71_2
> Caa [(2k+2)7 = (2k+1)7],
as also,

a,a a,a 1
Ao(ki1)+1 — Azkr2 = Mgty — M = (k+1+ 5)%2 — (k+ 1?72 + O4a.0(1)

> Caa (K + 1)772, for large k > ko q,

71'2

: [2(k+1)+1)* = (2k +2)?],

> Ca,a
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for some constant ¢q,, > 0. Now, from the above two inequalities, it is not difficult to obtain

k>n>kaa i,j€{1,2},
ko

(4.34) Aokti = A2t = Pasa [(2k +14) = (2n+5)?], v{ =
k=n>

ar 1> ],

With pa,q = Ca,a 72/7, independent of the choices of eigenvalues. Hence, the requirement of
gap condition satisfies.

3. The counting function.
Let N be the counting function associated with the set of eigenvalues A, ,, defined by

Nr)=#{A € Aga: [N <1}, Vr>0.

We have that, the function N is piecewise constant and non-decreasing in the interval [0, +-00).
Also for every r € (0,400) we have N(r) < +oo and lim,_, 1 oo N(r) = +00.

Without loss of generality, one can start with some sufficiently large number 7 > 0, such that
Vr > 7, the eigenvalue Ay, is real. Assuming this N(r) to be an odd number, we have, from
the definition of N, that

N(r)=2k+1 <= Aogy1 <rand Agpq2 > 7, for k> ko,
e, vV Aorpr < VP <V Aokya, for k> kaa,

which yields, by Lemma 4.4,

1
(k+1)w§ﬁ<(k+g)ﬂ, for k > kg, and Vr > 7 > 0.

Replacing k£ by w, we determine that
2 3 2 1

(4.35) “Vr——<Nr) < =Vr+=, Y7r>7>0.
T 2 s 2

Similarly, for even N(r), we shall have similar estimate for N(r), possibly with different con-
stants in both sides.

Now, for smaller 0 < 7 < T, it is obvious that there always exists some constant ¢, , > 0,
sufficiently large and independent of 0 < r < 7 such that

(4.36) N(r) < Caulvr+1),

since N is bounded function in (0, 7).
The above inequalities (4.35) and (4.36) are the required conditions for counting functions.

So, by virtue of [2, Theorem 1.5], we can ensure the existence of a family {gx}rea.., € L*(0,T;C),
bi-orthogonal to {e*()‘“"ava)(T’t)})\eA ,t € (0,7T), that is to say

T - = ~
/0 aa(t) = Omed T=0 dt = 6, 5, WA X € Ag.

In addition, this family satisfies the following estimate
(4.37) laxllzz0,1) < Caa ¢Coely %(’\Hm“’ﬁ%)? VA € Aaa,
for some C, , > 0 which only does depend the constants obtained in the point 1, 2, 3 in the above

discussions but definitely not on the eigenvalues A € Aq 4.

4.3.3. Existence of a control. Now we are in the situation to prove the null-controllability
result, typically the following proof.

Proof of Theorem 2.7.
_ Without loss of generality, we prove the theorem for given time 0 < 7" < 1. Since for any time
T > 1, we know that a continuation by 0 of a control in (0, 1) will still be a control in (0, 7).
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o We first suppose (a,a) ¢ R and consider

(4.38a) v(t)= > wuat), Vte(0,T), with
AEAG o
e—AT
(438b) ’U)\(t) = —*: <y0, @A>’H7Q)’Ha Q)\(t), Vt (S (O,T),
B30,

for A € Aq,q, any given yo € H_, and any 0 < T' < 1. The above construction of vy is
well-defined since we have, by Lemma 4.7, that B5®y # 0, VA € Aq q.

With this choice of v, we can observe that the set of moments problem (4.33) is formally
satisfied. It remains to show the convergence of the series, and then we need to find the
L?(0,T) norm of vy for each A € A, . We see that

e
4.39 Al L2 < ra lWolla_ o [P ll2. lax |l L2
(4.39) loallz2 (0,1 Bidy| lyolle—o 1®x 9. llanll L2 o,m)

Ca.a P
< Cma@ 7 o~ TR Caay/R(A)+ma,a HyOHH—a H i\HHa7
‘BQ(I)A|

thanks to the estimate of bi-orthogonal family in (4.37).
Thereafter, an application of Cauchy-Schwarz inequality gives

T 2.
2

Ca a 3%()\) + Mea,a < (m(A) =+ ma,a) + 2T )

s

so that one has
(4.40) e~ TRO) (Caa /RN +maa < ecgvugma,a o~ TR

Ca,a T
< Chae T 27N W€ AL,

where we have used that 0 < T < 1 to write eTMaa < Cly 4 for some constant Cy, , > 0 (which
may differ from the previous one).
Next, we use the estimates of the eigenfunctions from Lemma 4.8 to deduce

(k3N ER
— 2 < Chay, VAE AL,
B3| — ’

Now, taking the sum over A € A, 4 in (4.39), using the above bounds and applying (4.40), we
get

Caya T
S Joallzzom < Caae P lyollae, S e RO
AeAGa N

We finally get that

Ca,a
(4.41) [vllz20,7) < Caae™ ™ [[yollae_..

with a constant Cy , > 0 does not depend on T'.
On the other hand, when («,a) € R, we consider our control as

(4.42) o(t) = > na), Ve (0,7),

A€Aa,a\MAG o}

with the same formulation of vy as prescribed in (4.38b).

Since we have assumed that yg € Va,q (the space YV, o has been defined in (4.31)), we see that
the moments problem (4.33) is actually satisfied for any eigenvalue (in the case A = A, ,, both
sides of the equality are zero).

The L2-bound of this control alike (4.41) can be then obtained by a similar approach as
previous. 0
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5. Some numerical studies. We devote this section to illustrate numerically the controllability
results shown in the previous sections. We begin by presenting some facts about the classical penalized
Hilbert Uniqueness Method (see e.g. [13] and [6]) and then we will introduce a general methodology to
incorporate the effect of the boundary conditions into the discretization of the problem. We conclude
by presenting several controllability experiments.

5.1. Preliminaries about the penalized HUM. Following the well-known penalized HUM
approach, we shall look for the control v minimizing the primal functional given by

1

T
(51) Fw) =5 [ ORI

where we used the same notation y = (y1,y2) to denote the unique weak solution to the system (1.8)
either with the boundary conditions (1.9a) or (1.9b). For the sake of exposition, we assume in what
follows that (1.9b) are satisfied.

Observe that, for any € > 0, the functional (5.1) has a unique minimizer in L?(0,T;R) since F, is
continuous, strictly convex and coercive. Hereafter, we denote this minimizer by v..

Using Fenchel-Rockafellar theory (see, for instance [9]), we can identify an associated dual func-
tional, more precisely, for any € > 0, consider

1 T 2 € 2
(52) 10 =3 [ 100 OP ar+ §ICIEz, + (n.a(0))r,

for given initial data yo € F, where ¢ = (q1, ¢2) is the solution to the adjoint system (3.1) with given
data ¢(T) = ¢ = (C1,C2) € Ha-

For any € > 0, the dual functional (5.2) also has a unique minimizer, that we denote by (€. Note
that, in this case the coercivity comes from the term £|¢ H%a which corresponds, by duality, to the
penalty term introduced in Ff.

Also, by following the arguments in [13, Sections 2.1-2.2], we can obtain the following result
relating the corresponding minimizers of F, and J..

PROPOSITION 5.1. For any € > 0, the minimizers ve and (¢ of the functionals Fe and J. respec-
tively, are related through the formula

(53) Ue(t) = az‘]i (tv 0);

(5.4) yo(T,) = —eAnCS,

where ¢¢ = (q5, ¢5) is the solution to (3.1) with given data (¢, and y¢ stands for the solution to (1.8)-
(1.9b) with control ve. Consequently, we have

. inf F,=F.(v) =—J.(¢) = —inf J..
(5.5) o g e (ve) = —Je(¢%) = —inf J

The following result allows us to relate the controllability properties of system (1.8)—(1.9b) with
the behavior of the minimizers shown above. More precisely, we write the following theorem.

THEOREM 5.2. Let ve and y© be as in Proposition 5.1. Then we have the following.
o System (1.8)—(1.9b) is approximately controllable at time T if and only if

(5.6) y(T) =0, as e€—0.

o System (1.8)—(1.9b) is null controllable at time T if and only if

(5.7) M? = 2sup ( inf FE) < 400.
e>0 \L2(0,T5R)
In this case, we have
(5.8) [vellz2o,rmy < M,y (Tl < MVe

The proof of such result follows from an adaptation of [6, Theorem 1.7]. Let us remark that the
supremum in (5.7) corresponds actually to the limit as e — 0 of infr2 rr) Fe.
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The main relevance of this theorem is that allow us to recover the controllability results presented
in the previous sections using the constructive approach of the penalized HUM instead of other more
involved arguments. At the numerical level this will be important since we expect that upon discretiza-
tion the corresponding system maintains its controllability properties and Theorem 5.2 will help to
conclude and illustrate this fact.

Now, we discuss some details about the implementation we follow to obtain the controls for problem
(1.8)=(1.9b). A straightforward computation yields

(5.9) VJe(¢) = AC+ Aal +9(T),

where 9 := (91, 92) is the free solution to (1.8)—(1.9b) that is the solution when we consider v = 0 in
(1.9b) and A stands for the Grammian operator defined by

AH, — H_.
¢ = w),

where w(T) = (w1 (T),w=(T")) that is actually the solution w at time T' to the following system: for
given ¢ € H,, we first solve the adjoint system (3.1) and then

Opwy — O (110, w1) =0 in (0,7T) x (0,1),
Opwy — Oz (120, w2) + awy =0 in (0,7) x (0,1),
w1 (tv 1) = wQ(ta 1) in (07 T)a

3101 6‘w2 o .
’yl(l)%(t,l) +"}’2(1)%(t,1) +awi(t,1) =0 in (0,7),
’LUl(O, ) = ’lUQ(O, ) =0 in (0, 1),

along with the conditions at = 0 as
w1y (t70) = 87:(]1 (t70)7 w?(t70) =0 in (O7T)

In this way, the control we are looking for, can be obtained as follows: for any given € > 0, we
compute (¢ = ((§, ¢5), which is solution to the linear problem

(5.10) eAaC + AC = —§(T)

and then compute the solution to the adjoint equation with this initial data. Since A is a symmetric
(w.r.t the duality product between H,, and H_,), positive semi-definite operator, the conjugate gra-
dient algorithm is a good candidate to solve the linear problem (5.10). We refer to [13, Section 2.2]
for the implementation of such algorithm.

Once we have computed the minimizer, we use formula (5.3) to obtain the desired result and by
means of Theorem 5.2, the expected controllability properties can be tested by analyzing the involved
quantities with respect to the parameter e.

5.2. Numerical implementation for the general system (1.1). For the numerical tests, the
systems (1.1) and its adjoint are discretized in time by using a standard implicit Euler scheme with
a uniform time step given by §t = T/M where M is the number of steps on the mesh. The PDEs
are discretized in space by a standard finite-difference scheme, adapted to the corresponding boundary
conditions, with a constant discretization step of size h = 1/(N + 1), where N is the chosen number
of steps. More precisely, we consider fully discrete systems of the form

n+1 n

u n+l _ n+1 _
(5.11) 50 TARYTT =Bt ne 0, M 1},

where y) € R?Y is an approximation of the given initial data y(0,-), A, € R?2V*2N ig a suitable
approximation of the elliptic operator A and B;, € R?Y stands for the corresponding approximation of
the control operator.
As usual, we denote by y; (j = 1,2), each of the components of system (1.1).
1. Using a standard finite-difference method, we construct the matrix Aj, p € R2V*2N " which
is composed by two tridiagonal matrix coming from the discretization of the operator —v; 02,
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j = 1,2, with homogeneous Dirichlet boundary conditions and y; > 0 is a constant diffusion
coeflicient, i.e.,

A0
(5.12) Ahp:( 0 A2 )

where for each j = 1,2, (.Aflyj)l = —%(yjﬂgrl — 2y +Yji-1), ¢ = 1,...,N. At this point,
we impose that y;0 = y;,n+1 = 0. In the subsequent steps we will compute and add the
contribution of the boundary conditions to the discretization scheme.

2. To incorporate the effect of the boundary condition at the left point, we compute

(5.13) Ano = *(*NoJrh'Do)_lNo.

This corresponds to writing the boundary unknowns y; 0 in terms of the values of y;; and
yields a 2 x 2 matrix. The result will be then used to construct the auxiliary matrix:

~ 1 0 0
(5.14) A =Anp — ﬁflhp &
: . 0

NXxN

where ® denotes the Kronecker product, i.e., for matrices S € R™*™ and T € RP*? the
product S ® T is the mp X ng matrix given by

$11T e SlnT
(5.15) SeT = :

SlmT s SmnT
3. In a similar fashion, for adding the contribution of the boundary at x = 1, we compute
(5.16) Ana = (M +hD1) "N

This will give the coefficients obtained by expressing y; ny4+1 in terms of the values y; n. We
add the resulting matrix to the one obtained in the previous step as follows

~ ~ 1 0
(5.17) Ap = Ay — ﬁAhJ ®
.0 0

NXxN

4. To conclude, we need to add the internal coupling terms. This can be easily done by computing
(5.18) An = Ap 4+ Meoup @ Inxn-

Observe that in our theoretical results, we have considered the simple case where the control v is applied
to one of the equations of system (1.8) through the boundary conditions (1.9a) or (1.9b). However,
observe that in the general system (1.1), the control can be applied in fact to any linear combination
of boundary values. To take into account this in our discretization, we propose the following:

1. We obtain the auxiliary vector

(5.19) Eh = h(-No + hDo)ilB,

where one might consider B as the canonical vector (1,0) or (0, 1), depending on which equation
the control is being applied.
2. We obtain the control operator by setting

1
1 ~ 0
0
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REMARK 5.3. Some remarks are in order.

e In the general case, under the conditions of Assumption 1.1, the invertibility of the matrices
shown in formulas (5.13), (5.16) and (5.19) is guaranteed for any h > 0 small enough, see
Lemma A.1 in appendix.

o The discretization of system (1.8) with either boundary conditions (1.9a), (1.9b) is a particular
case of the scheme presented above. Indeed, we readily see that for such cases we have Ap o =
02><2;

Y1 2
h h
(5.21) Apy = ( L AR )
Y1+vy2+ah  yi+y2+ah

Meoup = My and By, = ( 0 1 )T for the boundary condition (1.9a) (resp. ( 10 )T for
(1.9b)). In this case, we note that since o > 0, (5.21) holds for any value of h > 0.

We denote by Ep, H_an, U and L%,(0,T;Uy) the discrete spaces associated to E, H_,, R
and L?(0,T;R), respectively. We denote by F/9* the discretization of the functional F., v©"% the
corresponding minimizer and y©"%t = (yi’h’&, yg’h’ét) the associated controlled solution.

As usual in this context, to connect the discretization to the control problem, we use the penal-
ization parameter ¢ = ¢(h) = h*. This choice is consistent with the order of approximation of the
finite difference scheme. We refer the reader to [6, Section 4] for a more detailed discussion on the
selection of the function ¢(h) in the context of the null-controllability of some parabolic problems and
its implications.

To concentrate on the dependency of the numerical experiments with respect to the mesh size h,
in the following we will always set M = 4000. This is due to the fact that the results do not depend
too much on the time step (as soon as it is chosen to ensure at least the same accuracy as the space
discretization). This was observed in [6] and the same still applies here.

5.3. Numerical experiments.

5.3.1. Dirichlet boundary control.
The case a = 0. Using our computational tool, we begin by obtaining the solution to system
1.8)—(1.9b) without any control. We consider the set of parameters
522) T= 0.4, Y1 =2 = 1,
5.23) a=0, a=1,
5.24) Yo,1(z) = sin(mz), yo2(x) = L(0.3,0.8)(T)

~ o~ o~ o~

and plot the time evolution of the uncontrolled system in Figure 3. We observe that the solution of
both components is damped over time, however they are far from the desired null target.

T=04 T=04
(a) The state (¢, z) — y1(t, ) (b) The state (t,z) — y2(t, z)

F1G. 3. Ewvolution in time of the uncontrolled solution of system (1.8)—(1.9b).

In Figure 4, we show the solution (y1, y2) obtained after applying the HUM control v(t) (see Figure
5) computed by algorithm (5.9)—(5.10). We observe, that due to this action, both components reach
zero at the prescribed time T' = 0.4. Notice that, since we have chosen a = 0 in (1.8)—(1.9b), the action
of the control acts indirectly on the second just by means of the boundary coupling. Intuitively, this



BOUNDARY CONTROLLABILITY OF KIRCHHOFF PROBLEMS 31

S,

(a) The state (¢,z) — y1(t, =) (b) The state (¢, ) — y2(t, x)

Fi1c. 4. Evolution in time of the controlled solution of system (1.8)—(1.9b).

problem is harder to solve than other classical problems where the coupling is made in the internal
domain.

As far as the asymptotic of the method, we present in Figure 6 the behavior of various quantities
of interest as the mesh size goes to 0. We observe that the control cost ||vg((,5f) 22, 0.7:0,) (—4=) as well
as the optimal energy inf F(;L(Z; (—@—) remain bounded as the mesh size h tends to 0. Also, we see that

the norm of the state ||(y?’5t(T), yg"st (T)|1%_.., (—8=) behaves like ~ C\/¢(h) = Ch?. This behavior
is in agreement with Theorem 5.2 and illustrates our null controllability result.

|
0 0.1 0.2 0.3 0.4

time

Fi1G. 5. Control function v(t).

The case a # 0. According to our main controllability results, Theorems 2.6 and 2.7, the con-
trollability of system (1.8) is guaranteed depending on the selection of the parameters («,a) and the
way the control enters the system. When the control enters through the first equation, that is, when
(1.9b) is verified, we know from Lemma 4.7 that there exist values of (a,a) for which system (1.8) is
not even approximately controllable, this is described by means of the set R defined in (4.29). We
illustrate this fact below. By using a numerical algorithm, we can determine that the approximate
pair (ag,ap) = (1,3.1931469) belongs to R (see Figure 2) and corresponds to the critical eigenvalue
Ao .o R 5.7421936. Therefore, the eigenfunction ® ¢ o0 fails to verify the Fattorini-Hautus criterion.
The next figure will elaborate this phenomena.

In Figure 7, we plot the eigenfunction corresponding to the critical eigenvalue Ay, , . We observe
that the first component of the eigenfunction, that is the one in blue color, is almost flat as it approaches
to the boundary point x = 0 and in fact, numerically we can compute the size of the normal derivative
which is of order 10~°. We expect that this is somehow reflected during the penalized HUM procedure.



32 K. BHANDARI, F. BOYER AND V. HERNANDEZ-SANTAMARIA

10 | o ] | —4— Cost of the control
‘:‘:‘:.=Q§, —m— Size of target
—o— Optimal energy

1071 .
slope 2

1073 .

1075 - h

10_7 [ (| (| ]

1073 10-2

h

F1G. 6. Convergence properties of the HUM method.

1072

0 0.2 0.4 0.6 0.8 1

x

c

Fic. 7. Eigenfunctions corresponding to the critical eigenvalue Aao,a0

We set the parameters

T:037 71:'72:13
(5.25) aop = 3.1931469, ag =1,
yo.1(x) = 10sin(272)?,  yoo(z) =5 x 1¢0.3,0.8) (),

and apply our computational tool to obtain boundary controls. In Figure 8 we observe the asymptotic
behavior of the algorithm. Unlike the previous case, we observe that the optimal energy (—@—) blows up
as ¢(h)~! = h* while the size of the target () remains constant. This indicates that for the selection
of the initial data, system (1.8)—(1.9b) is neither null-controllable or approximately controllable, which
is in accordance with our theoretical results.

A further validation of this result can be done by adapting [6, Theorem 1.11], which gives a hint
of the general behavior of the penalized HUM method in the limit. In our case, it can be shown
that as h — 0, A;}hyh(T) should converge towards a nonzero function which belongs to the space of
unobservable modes. As we have seen in Section 4, this space consists only one element which is the
eigenfunction associated to the critical eigenvalue. Thus, we expect to see this at the numerical level.

In Figure 9, it can be seen that as N increases (and therefore h | 0) the target is converging
towards some function instead of going to zero. In this case, it is clear that the target converges to
the critical eigenfunction (up to a constant) shown in Figure 7 which validates the discussion above.

At this point, we shall mention that the approximation of the critical parameter ag plays an
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10° | :
10% | 1
10% |- )
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1073 1072
h

Fic. 8. Convergence properties of the HUM method for the critical case. Same legend as in Figure 6.

1072

(a) y1(T) (b) y2(T)

F1G. 9. Convergence of the .A;lhyh(T) as h 0.

important role in the numerical experiments. In Figure 10 we present a series of experiments where
the parameter ag is approximated by truncating up to a certain number of decimals. For a fixed value
of h, We see that for a rough approximation (two decimals) the convergence of the target is not as good
as for the finer ones (in the experiments shown h = 1/1600). We recall that the critical parameters
come from obtaining a simultaneous solution to (4.28), therefore the non-controllability result is very
sensitive to even small changes of such values. The behavior shown in Figure 10 is therefore consistent
with this fact.

We finish the discussion here by emphasizing that the behavior shown in Figure 8 comes from the
fact that the control is placed on the boundary of the first component, namely the condition (1.9b). If
instead we consider the boundary control on the second component as (1.9a), Theorem 2.6 indicates
that regardless the choice of (o, a) € Rf x R, system 1.8-(1.9a) is null-controllable at any time 7. We
illustrate this fact in Figure 11, where consider the same parameters as in (5.25) with the difference
that the control is applied on the boundary of the second equation. We observe that as h — 0 the
size of the target decreases as \/¢(h) = h and both the control cost and the optimal energy remain
bounded, which is in concordance with the theoretical controllability result.

5.3.2. Neumann boundary control. The goal of this section is to show that our computation
tool can be used to illustrate other cases not covered in the theoretical results presented in this paper.
This is possible thanks to the general methodology we introduced in Section 5.2.

We will discuss about the controllability of system (1.8) in the case when the boundary conditions
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Fic. 10. Convergence of the target for different approximations of the critical value ag.
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Fic. 11. Convergence properties of the HUM method with critical values but control applied on the second equation.
Same legend as in Figure 6.

at x = 0 are replaced by the Neumann conditions
(526) aacyl (ta 0) = ’U(t), azyZ(tv 0) = Oa in (07 T)

Even though this change is quite simple to understand, our results require several non straightforward
adaptations for this case, especially the ones at the heart of the moment’s method technique.

However, at the numerical level, using the discretization scheme shown in Section 5.2, we just have
to set the matrices

(o0 (00

(527) NO( O 72 ), ’DO* < 0 0 >?
0 0 1 -1

(5.28) NlZ(% 72), Dl:(a 0),

and compute the formulas given in (5.12)—(5.20). This simple idea actually allows to test for many
configurations and test for different values of a and a. We consider the following simulation parameters

T:O57 ’YlZ’YZ:L
(5.29) a=2, «a=4,
Yo1(z) =sin(rz), yo2(r) = 1(0.3,0.8)(@,

and use our tool to obtain numerical results for two different configurations. In Figure 12a, we show
the convergence result for the case where v is applied on the first equation, that is, (5.26). We can see
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that as h tends to zero, the size of the target decreases as \/¢(h) = h? and both the optimal energy
and the control cost remain bounded.

On the other hand, we show in Figure 12b the result by changing the control to the second equation,
i.e., we consider

(5.30) Oxy1(t,0) =0, 0,y2(¢,0) =v(¢t), in (0,T).

We observe that the behavior of the convergence of the method is exactly the same as in the previous
example.

102 — T T T — T T T
: : h 102 L "’“\’_\_‘ |
100 | y \. ¢ ¢ —
100 1
10—2 - . — |
slope 2 _—
L/// 10721 leopc 2 ///// )
//
1074 F . -
1074 1
1076 |- . )
L1l L1l 1076 L L1l L1l i
1073 1072 1073 1072
h h
(a) Control applied on the first equation (b) Control applied on the second equation

Fic. 12. Convergence properties of the HUM method with Neumann control applied in different equations. Same
legend as in Figure 6.

Both simulations point toward a positive null controllability result, nevertheless one should be
cautious with such conclusion. In fact, in the case where the control is applied on the second equation,
some adaptations can be made to our Carleman estimate presented in Theorem 3.2 to deduce a result
for the Neumann condition and thus we can expect null controllability for any a and a.

On the other hand, as we have seen in Section 4.1, a detailed analysis of the spectral behavior of
the underlying operator is required when the control is applied on the first equation and the answer
of whether the system is null-controllable or not in the whole L? space is far from obvious.

Numerical evidence presented in Figure 13 shows that as in the Dirichlet case, there exists at
least one couple (a,a) for which the observation of one eigenfunction is zero. We can approximate
numerically this pair to (ae,a.) = (0.1,1.2369289). In Figure 14 we are plotting the first eigenfunction
associated to this pair and from there, it is clear that such eigenfunction is non observable.
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F1G. 13. Size of the observation in the Neumann control case (5.26) for o = 0.1 and a € [0.8, 3].
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Using the new couple («, a) for simulation purposes, we can use our computational tool to test
for controllability. In Figure 15 we present the convergence of the method and as in the Dirichlet case
we observe that the size of the target is not decreasing while the optimal energy is blowing up. This
points towards a non-controllable result.
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F1c. 15. Convergence properties of the HUM method for the critical value in the Neumann case. Same legend as
in Figure 6.

Following with the discussion of the Dirichlet case, we see in Figure 16 that the target is indeed
converging towards the critical eigenfunction (up to some constant) which is consistent with the lack
of controllability. In view of these results, a deeper study of the Neumann control case is needed to
conclude.

We would like to finish this section by emphasizing that as in the Dirichlet case, we need a good
approximation of the critical parameter a. to observe the lack of controllability of the system. In
Figure 17, we see the convergence of the target for h = 1/1600 and different approximations of a..
This experiment seems to be more sensitive than the previous case since we need a four decimal
approximation of the parameter to obtain a good convergence of the target for the given value of h.

Appendix A. An intermediate result.
LEMMA A.1. Let D and N be two real d x d matrices such that

(A1) (D,N) is full rank,
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F1a. 17. Convergence of the target for different approximations of the critical value ac

and
(A.2) DN™ is self adjoint,

then N+ tD is invertible for any t € R except perhaps for a finite number of values of t.

Proof. We follow the same computations as in [4, Theorem 1.4.4]. More precisely, we first observe
that, under the assumptions of the lemma, we have that D + i is invertible. Indeed,
e by (A.1), we know that (ker D*) N (ker N'*) = {0},
e by (A.2), for any z € C? we have
I(D* = iN*)z|? = D" || + IV x|,

so that ker(D* —iN*) C (ker D*) N (ker N*) = {0} and the claim is proved.
We can now can define U = —(D + iN)~1(D — iN) (which is actually a unitary matrix but we don’t
need this fact here). It satisfies

2(D +iN) D = (D +iN) YD +iN +D—iN)= (I -U),

2(D +iN) N = —i(D +iN) (D +iN) — (D —iN)) = —i(I + U).

If we assume that ¢ € R is such that N +tD is not invertible, then there exists z € R?, z # 0 such that
(N +tD)x = 0. Left-multiplying this equality by (D +iN)~! an using the above relations we end up

with '
(t_Z_I—LI>x:O,
t+1

which proves that (¢t —4)/(t + ¢) is an eigenvalue of ¢. This can only happen for a finite number of
values of ¢. ad
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