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Abstract

We consider a linear Schrödinger equation with an unbounded bilinear control term. The control
term is the derivative of function with bounded variations (impulsive control). Well-posedness
results and regularity of the associated propagators follow from classical theory from Kato. As a
byproduct, one obtains a topological obstruction to exact controllability of the system in the spirit
of the results of Ball, Marsden and Slemrod.

1 INTRODUCTION

1.1 Bilinear Schrödinger equation

The state of a quantum system evolving on a Riemmanian manifold Ω can be represented, in first
approximation at a certain time t, by its wave function, ψ(t) a point of L2(Ω,C). When excited by an
electric field (for instance a laser), the time evolution of ψ is given by the Schrödinger equation with
a bilinear control term

i
∂ψ

∂t
(x, t) = (−∆ + V (x))ψ(x, t) + u(t)W (x)ψ(x, t) (1)

where ∆ is the Laplace-Beltrami operator associated with the metric of Ω, V : Ω → R is a function
accounting for the physical properties of Ω (especially: confining properties) in the absence of excita-
tion, W : Ω → R represents the physical properties of the laser and u : R → R is the control. An
initial condition ψ(0) = ψ0 is assigned once for all.
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The aim of the quantum control is to chose a suitable u in such a way that the solution ψ of (1)
(associated with the initial condition) enjoys some desirable properties, for instance, converges to a
given target.

Under physically reasonable assumptions on the potentials V and W , the linear operator i(∆ −
V + uW ) generates a C0 semi group of unitary operators t 7→ Υu for every u in R. Consequently,
one defines the solution of (1) for piecewise constant control u : [0,+∞) → R by concatenation of
propagators for constant u by

Υu
t,0ψ0 = e(t−tn)(A+unB) ◦ · · · ◦ et1(A+u1)Bψ0

if u =
∑

j≥0 uj1[tj ,tj+1) and t ∈ (tn, tn+1).
This problem of extension of Υ to more general controls (not only piecewise constant) is motivated

by recent technical developments in quantum sciences. It is now technically possible to induce very
short laser pulses ([ABGM05], [CM05]) corresponding to a control u with a very small support in (1).
A natural question is to give a meaning and to prove the existence of solutions to (1) for very irregular
controls u, including sums of Dirac masses. In this case, u is a measure and not a function anymore.

1.2 Impulsive control

The problem of considering measures instead of functions in control problems is not new. A vast
literature of the last century considers finite dimensional systems of the form

y′ = f(y, t) +
n∑

j=1

uj(t)gj(y, t) (2)

where f, g1, . . . , gn are regular vector fields on Rd and uj are the derivatives of functions with bounded
variations (i.e., Radon measures). After considerable efforts, the situation for finite dimensional dy-
namics of the type of (2) (and for others) is now well understood. Let us cite, among many other
contributions, [Sus76], [Mil76], [DMR91], [BR88], [Bre96], [Bre08].

Much less work has been done in the infinite dimensional framework, mostly when the control has
a discrete set of atoms [BKMZ94], or involving continuous control operators [IL18].

1.3 Main results

Let T > 0, u a Radon measure on [0, T ] (basic definitions and properties of Radon measures are
recalled in the Appendix), v a primitive of u with bounded variation such that v(0) = 0, and ψ0 in
L2(Ω,C).

Definition 1. We say that ψ : [0, T ]→ D(W ) is a classical mild solution of (1) with initial condition
ψ0 associated with u if for every t in [0, T ],

ψ(x, t) = e−it(−∆+V (x))ψ0(x)

−
∫ t

s=0
u(s)e−i(t−s)(−∆+V (x))iW (x)ψ(s, x)ds. (3)

Definition 2. We say that ψ : [0, T ] → D(−∆ + V ) is a generalized impulsive mild solution of (1)
with initial condition ψ0 associated with v if for every t in [0, T ],

ψ(x, t) = e−iv(t)W (x)ψ0(x)

−
∫ t

s=0
e−i(v(t)−v(s))W (x)i(−∆ + V (x))ψ(s, x)ds. (4)
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We focus on a class of bilinear equations that are perturbations of the controlled quantum harmonic
oscillator. We consider Ω = R, V : x ∈ R 7→ x2 + V1(x), W : x ∈ R 7→ x + V2(x) for V1 and V2

arbitrary smooth (i.e. C∞) functions with compact support. Equation (1) then reads

i
∂ψ

∂t
(x, t) =

(
−∆ + x2 + V1(x) + u(t)(x+ V2(x))

)
ψ(x, t). (5)

We denote by H2k = D(| − ∆ + x2|k), being the pertubation V1 bounded we have that H2k =
D(| −∆ + x2 + V1(x)|k). Our first result is an existence and uniqueness result for (5) in presence of
impulsive controls.

Theorem 1. Given k > 0 and ψ0 in H2k there exists a unique generalized impulsive mild solution
t 7→ Υdv

t ψ0 of (5) with initial condition ψ0 associated with v. More generally, if a sequence (vn)n∈N of
functions vn : [0, T ]→ R has uniformly bounded total variation and converges pointwise to v : [0, T ]→
R with bounded variation, then for every ψ0 in H2k, the sequence (Υdvn

T ψ0)n∈N converges to Υdv
T ψ0 in

the graph norm of H2k.

Proposition 2. Let k > 0 and ψ0 be in H2k. If v is a absolutely continuous with respect to Lebesgue
measure whose density has bounded variations (i.e., its derivative u = v′ has bounded variations), then
the generalized impulsive mild solution Υdv

T ψ0 of (5) is a classical mild solution.

Theorem 3. For every k > 0, for every ψ0 in H2k, the attainable set of (5) from ψ0 with Radon
measures ⋃

T≥0

⋃
u∈R([0,T ])

⋃
v∈BV
v′=u

{Υdv
t ψ0, 0 ≤ t ≤ T}

is meager in H2k and, hence as an empty interior in the unit sphere of L2(R,C).

A consequence of this result is that the perturbed quantum harmonic oscillator (5) is non-controllable.
The fact that the quantum harmonic oscillator ((5) with V1 = 0 = V2) is not controllable in any rea-
sonable sense by means of piecewise constant controls is a well-known result, see [MR04]. Heuristically,
the system enjoys too many symmetries to be controllable. Here we show that the non-controllability
holds even when enlarging the class of controls. Moreover, Theorem 3 states that every (smooth)
perturbation of the quantum harmonic oscillator is not exactly controllable. This result is in the
spirit of [BMS82], see also [BCC19] for a general discussion on attainable sets associated with L1 con-
trols. However, notice that generically system (5) is approximately controllable by means of piecewise
constant controls [MS10].

1.4 Originality of the contribution

Theorem 1 is mainly based on results of Section 5 in [BCC17]. It is a generalization of a result of
Fujiwara ([Fuj79] and [Car11]) dealing with locally bounded control u (i.e., v is Lipschitz continuous).
The paper [BCC17] is technically involved and addresses the case of systems way more less regular
than (5). The present paper aims to take advantage of the smoothness of the potentials appearing in
system (5) and the abstract results of [BCC17] to give a simpler (and much shorter) presentation of
the rather simple underlying ideas.
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1.5 Content

Some notations used troughout the paper are introduced in Section 2. The main difficulty when
dealing with measures as controls is the possible presence of atoms, as explained in Section 3. In
Section 4 we give the definition of propagators and we present the first properties used in the proofs
of Theorem 1 and Proposition 2 given in Section 5. The proof of Proposition 3 is presented in Section
6.

2 PRELIMINARIES

2.1 Abstract framework

We rewrite equation (1) in a more abstract form as

ψ′ = Aψ + u(t)Bψ (6)

where A = −i(∆+V ) and B = −iW are linear operators on a Hilbert space H (L2(R,C) for Theorem
1) endowed with its Hilbert product 〈·, ·〉 (the standard L2 Hilbert product for the case of Theorem
1). This operator framework is used for the analysis in Sections 3 and 4 below.

2.2 Notations

In what follows, let I be an interval I ⊂ R containing zero. Let PC(I,K) be the set of piecewise
constant functions from I taking value in K and R(I) be the set of Radon measures on I. For the
reader’s convenience, basic facts about Radon measures are presented in Appendix.

3 CONTINUITY WITH RESPECT TO MEASURES

The rationale for the introduction of the notion of generalized impulsive mild solution is topological.
Indeed consider, for instance, two sequences of Radon measures (µn)n∈N and (νn)n∈N, defined for n
in N by

µn = δ1− 1
n

and νn = δ1+ 1
n
.

The two sequences (µn)n∈N and (νn)n∈N converge toward δ1 for the weak and the narrow topologies,
none of them converges to anything for the total variation topology (see Subsection A.4 of Appendix
for definitions). In this section, we use these sequences to present the intuition behind the definition
of solutions.

3.1 Shock modeling

We consider dynamics of the type (6) where A and B are linear operators with domain D(A) ⊂ H and
D(B) ⊂ H, respectively, such that for every u in R, A+ uB is defined on a dense subset D(A+ uB)
of H and generates a C0 semi-group of linear operators. Under these assumption one can define the
propagator u 7→ Υu

T of (6) associated with a piecewise constant control u =
∑

j≥0 uj1[tj ,tj+1) as the
concatenation of propagators

Υu
t ψ0 = e(t−tn)(A+unB) ◦ · · · ◦ et1(A+u1)B

for t ∈ (tn, tn+1).
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Proposition 4. Let T be a positive real, in general, the mapping Υ·T : PC([0, T ],R)→ L(H,H) does
not admit an extension to R([0, T ]) continuous for the weak topology.

Proof. Let us consider the case in which H is finite dimensional. The extension to the general infinite
dimensional framework follows from Hahn-Banach extension theorem. In the finite dimensional case,
any linear operator A : D(A) → defined on any dense subset D(A) of H has a unique continuous
extension to H. It is also the generator of a C0 semi-group of linear operators and the exponential

etA is defined as the convergent sum etA =

∞∑
k=0

Ak

k!
.

For every n in N, define un : [0, 2] → R by un = n1(1− 1
n
,1), that is un(x) = n if and only if

x ∈ (1 − 1
n , 1), and un(x) = 0 otherwise. Similarly, for every n in N, define vn : [0, 2] → R by

vn = n1(1,1+ 1
n

), that is vn(x) = n if and only if x ∈ (1, 1 + 1
n), and vn(x) = 0 otherwise, and

wn = un+vn
2 .

The sequences (un)n∈N, (vn)n∈N and (wn)n∈N, seen as sequences of measures, converge to δ1 in
the weak sense but do not converge in the strong sense.

One computes, for every n in N,

Υun
1 = eB ◦ eA

Υvn
1 = eA

Υwn
1 = e

1
2
B ◦ eA.

The result follows by noting that these limits do not coincide when one chooses B such that eB 6=
IdH.

Proposition 5. Let H be finite dimensional, ψ0 6= 0 in H, A,B : H → H be two linear operators
such that B2eAψ0 6= 0. Define un = n1(1−1/n,1) and ψn by

t 7→ etAψ0 if 0 ≤ t < 1− 1/n

t 7→ e(t−1+ 1
n

)(A+nB)e(1− 1
n

)Aψ0 if 1− 1
n ≤ t < 1

t 7→ e(t−1)AeA/n+Be(1− 1
n

)Aψ0 if t ≥ 1

Then (i) ψn is a mild solution of (6) associated with control un, (ii) un converges weakly (as a Radon
measure) to δ1, (iii) the sequence ψn pointwise converges to a BV function ψ but (iv) ψ is not a
classical mild solution of (6) associated with control δ1.

Even when the ambient space H is one dimensional, it is not easy to give a meaning to (3) when
u = δ0 + δ1 and t = 0 or t = 1: should the bounds 0 and 1 of the integral be included or not?

The common reason underlying this question, as well as Propositions 4 and 5, is the presence of
atoms (“Dirac masses”) in the limit control u. Indeed, the question is always to know whether the
shock (modeled by an atom of u at t) takes place before or after the time t. Recall that, despite the
name “discret part”, such atoms may accumulate. For instance, the set of atoms of Radon measure
may be dense in R. This prevents a point by point treatment of the jumps.

Quite surprisingly, such phenomena do not occur with singular continuous controls without discrete
part.
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3.2 A topological choice

The generalized notion of solution (Definition 2) associates a solution of (1) with a primitive of the
control, not with the control itself. The value chosen for the primitive at atoms of the control is
arbitrary and accounts for the time when the shock occurs. For shocks happening just before the
atom, the chosen primitive will be left continuous. For shocks beginning just after the atom, the
chosen primitive will be right continuous. Other choices of the value of the primitive will account for
more complex situations.

4 MILD COUPLING APPROACH

4.1 Heuristic

The basic idea in our approach is to introduce a variable z(t) = e−v(t)Bψ(t) where v is a primitive of
the control u vanishing at zero, for instance the left continuous one v(t) = u([0, t)). The new unknown
z satisfies the differential equation:

z′(t) = e−v(t)BAev(t)Bz(t)

with initial condition z(0) = ψ0. Then

z(t) = z(0) +

∫ t

0
e−v(s)BAev(s)Bz(s)ds

which provides a generalized impulsive mild solution after the change of variable ψ(t) = ev(t)Bz(t). At
this stage, all these derivations are purely formal. The aim of the following is to provide a rigorous
construction of this heuristic.

4.2 Classical propagator

Since the problem (1) is nonautonomous, the notion of semi-group is replaced by the following

Definition 3 (Propagator on a Hilbert space). A family (s, t) ∈ ∆I 7→ X(s, t) of linear contractions
on a Hilbert space H, strongly continuous in t and s and such that

(i) X(t, s) = X(t, r)X(r, s), for any s < r < t,

(ii) X(t, t) = IdH,

is called a contraction propagator on H.

Following [Kat53] in the construction of propagators, we introduce the following

Assumption 1. Let D be a dense subset of H

1. A(t) is a maximal dissipative operator on H with domain D for every t ∈ I,

2. t 7→ A(t) has bounded variation from I to L(D,H), where D is endowed with the graph topology
associated with A(a) for some a ∈ I,

3. M := supt∈I
∥∥(1−A(t))−1

∥∥
L(H,D)

<∞.
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Theorem 6. If t ∈ I 7→ A(t) satisfies Assumption 1, then there exists a unique contraction propagator
X : ∆I → L(H) such that if ψ0 ∈ D then X(t, s)ψ0 ∈ D and is strongly right differentiable in t with
derivative A(t+ 0)X(t, s)ψ0.

Moreover, with M from Assumption 3,

‖A(t)X(t, s)ψ0‖ ≤MeMTV(A,(I,L(D,H)))‖A(s)ψ0‖

for (t, s) ∈ ∆I and ψ0 ∈ D, and, moreover, X(t, s)ψ0 is left differentiable in s with derivative −A(s−
0)ψ0 when t = s.

In the case in which t 7→ A(t) is continuous and skew-adjoint, if ψ0 ∈ D then t ∈ (s,+∞) 7→
X(t, s)ψ0 is strongly continuously differentiable in H with derivative A(t)X(t, s)ψ0.

4.3 Generalized propagator

Assumption 2. (A,B) is a pair such that

1. A is a maximal dissipative operator on H with domain D(A),

2. there exist c ≥ 0 and c′ ≥ 0 such that B− c and −B− c′ generate contraction semi-groups on H
leaving D(A) invariant,

3. the map t ∈ R 7→ etBAe−tB ∈ L(D(A),H) is locally Lipschitz.

Applying Theorem 6 in the framework of Assumption 2 with A(t) := e−v(t)BAev(t)B, one gets the
existence of generalized impulsive mild solution.

Definition 4. Let (A,B) satisfy Assumption 2. Let u ∈ R[0, T ]. For any v ∈ BV ([0, T ]) with
distributional derivative u let t 7→ Y u

t be the contraction propagator with initial time s = 0 associated
with A(t) := e−v(t)BAev(t)B. We define a generalized propagator associated with A + u(t)B with
initial time zero, to be Υdv

t = ev(t)BY u
t for every t in [0, T ] and v in BV ([0, T ]) such that v′ = u in

the distributional sense.

Proposition 7. With the notations of Definition 4, for every ψ0 ∈ D(A), Υdv
t ψ0 is the unique

generalized impulsive mild solution at time t of (6) associated with v.

Notice that a Radon measure admits an infinity of primitives with bounded variations vanishing
at zero if and only if this measure has atoms. In other words, the generalized propagator defined in
Definition 4 is uniquely defined at every time where u has no atoms. On the atoms of u, the value of
the primitive v is arbitrary.

The result of Proposition 7 can be rewritten in spaces of the form D(Ak) instead of H as soon as
B preserves the the domains of A in the following sense:

Definition 5. Let k be a nonnegative real. A pair of skew-adjoint operators (A,B) is k-mildly coupled
if

(i) A is invertible with bounded inverse from D(A) to H,

(ii) for any real t, etBD(|A|k/2) ⊂ D(|A|k/2),

(iii) there exists c ≥ 0 and c′ ≥ 0 such that B − c and −B − c′ generate contraction semi-groups on
D(|A|k/2) for the norm ‖ · ‖k/2 := ‖|A|k/2 · ‖.
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Under the mild-coupling assumption, Proposition 7 can be extended to higher regularity spaces,
as in Propositions 8 and 9 below.

Proposition 8. Let k be a positive real. Let (A,B) satisfy Assumption 2 and be k-mildly coupled.

Then there exists C > 0 such that for every s ∈ [0, k], ψ0 ∈ D(|A|s/2), for every T ≥ 0, one has

Υdv
T (ψ0) ∈ D(|A|s/2) and

‖Υdv
T (ψ0)‖s/2 ≤ e

s
k
CTV(v,([0,T ],R))‖ψ0‖s/2

for every v in BV ([0, T ],K) with derivative v′ = u ∈ R[0, T ].

Proof. This is Proposition 25 of [BCC17].

Proposition 9. Let T be a positive real, let k be a positive real, let (A,B) satisfy Assumption 2,
and let (A,B) be k-mildly coupled. Then for any s ∈ [0, k), for every ψ0 in D(|A|s/2), the end-point
mapping

Υ(ψ0) : BV ([0, T ],R)→ D(|A|s/2)

v 7→ Υdv
T (ψ0)

is continuous.

Proof. This is Proposition 26 of [BCC17].

5 EXISTENCE OF GENERALIZED IMPULSIVE MILD SOLU-
TIONS

5.1 Scheme of the proof of Theorem 1

We are now ready to prove Theorem 1 and Proposition 2.

Lemma 10. With the Assumptions of Theorem 1, (i(−∆ + V ), iW ) is k-mildly coupled fro every
k > 0.

Proof. First, notice that if V1 = W1 = 0, (i(−∆ + V ), iW ) is k-mildly coupled for every k > 0. The
first condition, item (i) of Definition 5 is ensured by the well known (purely pointwise) spectrum(
ik+1

2

)
k≥0

of the harmonic oscillator.

Assumption 2 and items (ii) and (iii) of Definition 5 are consequences of Lemma 19 in [BCC17]
and Section IV.E of [BCC13].

For general smooth perturbations with compact support V1 and W1, first notice that for every
k > 0, the domain of | −∆ + x2 + V1|k and the domain of | −∆ + x2|k coincide. Then, notice that
the multiplication by W1 is bounded from | −∆ + x2|k to itself. Conclusion follows from Lemma 19
in [BCC17].

The proof of Theorem 1 is now a simple consequence of the results of Section 4. Since (i(−∆ +

V ), iW ) is k-mildly coupled for every k > 0, we use Definition 4 in D(| −∆ + V |
k
2 ) for every k and,

by Theorem 6, Y dv
t from Definition 4), lets D(| −∆ + V |

3
2 ) invariant and satisfies

Y dv
t ψ0 = ψ0 +

∫ t

0
e−iv(s)W (−∆ + V )eiv(s)WY dv

s ψ0ds. (7)

Theorem 1 follows by multiplication by eivW .
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5.2 Link with classical mild solution

Since the multiplication by W is bounded with respect to −∆ + V with bound zero, Theorem 6
applied with A(t) = A+ u(t)B ensures that, if u has bounded variation (for instance if u is piecewise
constant), and the initial condition ψ0 belongs to D(−∆ + V ), then the system (5) admits a unique
strong solution (which is also a classical mild solution). Since the generalized propagator introduced
in Definition 3 coincides with classical mild solutions for piecewise constant controls, then the same is
true by continuity for control with bounded variations, which proves Proposition 2.

6 A TOPOLOGICAL OBSTRUCTION TO CONTROLLABILITY

6.1 BMS obstructions

In the general case in which X is a Banach space, assume that PC(K) is endowed with a topology
for which u 7→ Υu

Tψ0 is continuous for every T > 0 and every ψ0 in X , and that u 7→ Υu
Tψ0 admits a

(necessarily unique) continuous extension to Z ⊃ PC(K). If Z0 ⊂ Z, endowed with a topology finer
than the one induced by Z, is sequentially compact (for its own topology), then for every ψ0 in X , for
every T > 0, the attainable set at time T from ψ0 with controls in Z0, {Υu

Tψ0|u ∈ Z0} is compact.
If (Zk)k∈N is a countable covering of Z, Z = ∪k∈NZk, Zk is sequentially compact for every i, and

the topology of Zi is finer than the topology induced by Z, then the attainable set at time T from ψ0

with controls in Z, {Υu
Tψ0|u ∈ Z} = ∪i∈N{Υu

Tψ0|u ∈ Zk} is a countable union of compact sets in X
(hence is a meager set in the sense of Baire as soon as X is infinite dimensional).

Notice that if the input-output mapping PC(K) 3 u 7→ Υuψ0 ∈ C0([0, T ],X ) is continuous, then
the above results can be generalized to show that the attainable set from ψ0 at time less than T :
∪0≤t≤T {Υu

t ψ0|u ∈ Z} = ∪k∈N ∪0≤t≤T {Υu
Tψ0|u ∈ Zk} is a union of relatively compact sets.

This principle is an abstraction of the proof of of the following result by Ball, Marsden, and
Slemrod.

Theorem 11 (Theorem 3.6 in [BMS82]). Let X be an infinite dimensional Banach space, A generate
a C0 semi-group of bounded linear operators on X , and B be a bounded linear operator on X . Then for
any T ≥ 0, the input-output mapping u 7→ Υu

T admits a unique continuous extension to L1([0, T ],R)
and the attainable set ⋃

r>1

⋃
T≥0

⋃
u∈Lr([0,T ],R)

{Υu
t ψ0, t ∈ [0, T ]} (8)

is contained in a countable union of compact subsets of X , and, in particular, has dense complement.

In this case, for any T ≥ 0, Z = ∪r>1L
r([0, T ],R) endowed with weak-∗ topology, Zk,j =

∪r≥1+ 1
j
{f ∈ Lr([0, T ],R), ‖f‖Lr([0,T ]) ≤ k} and the sequential-compactness of Zk,j is granted by

Banach–Alaoglu–Bourbaki Theorem. The main difficulty in [BMS82] is to prove the continuity of the
input-output mapping u 7→ Υuψ0 for the weak-∗ topology.

Remark 1. The above argument does not hold anymore if one considers controls in L1, since L1

is not a reflexive space. This is the content of [BMS82, Remark 3.8], where the question of possible
extensions of the above result to r = 1 is left open except in the so-called (see [BMS82]) diagonal case,
see [BMS82, Theorem 5.5].
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6.2 Mild coupling

From Proposition 9, the input-output mapping associated with the control systems appearing in
Theorem 1 is continuous from the set of Radon measures to H2k. From Helly’s selection theorem, we
deduce that, for every j, k in N, the attainable set from ψ0 in time less than j, with Radon measures
having a primitive with total variation less than K,⋃

0≤T≤j

⋃
u∈R([0,T ])

⋃
v∈BV

v′=u,TV(v)<K

{Υdv
t ψ0, 0 ≤ t ≤ T}

is relatively compact in H2k, hence has empty interior by Baire’s theorem.

7 CONCLUSION

We introduced an extension the classical notion of mild solutions to impulsive control systems with
an unbounded bilinear term. Deep topological obstructions, already known for infinite dimensional
bilinear control system with more regular controls in the spirit of [BMS82], still hold true with impulsive
controls. As a consequence we proved a general non-controllability result for a class of quantum
harmonic oscillators.

A RADON MEASURES

The aim of this appendix is to recall basic facts and definitions about Radon measures.

A.1 Definitions

Definition 6. A subset of R is a Borel set if it can be obtained through countable union, countable
intersection and relative complements of open sets.

Definition 7. A measure on R is inner regular if the measure of any Borel set B is the supremum
of the measures of all the compact subsets of B.

Definition 8. A measure on R is outer regular if the measure of any Borel set B is the infimum of
the measures of all open sets containing B.

Definition 9. A measure on R is locally finite if the measure of any compact set is finite.

Definition 10. A measure on R is a Radon measure if it is inner regular, outer regular and locally
finite.

Definition 11. A point x of R is an atom of a Radon measure µ if µ({x}) 6= 0.

A.2 Convergences of Radon measures

Let E ⊂ X for X Banach space. A family t ∈ I 7→ u(t) ∈ E is in BV (I, E), i.e. is a bounded variation
function from I to E, if there exists N ≥ 0 such that

n∑
j=1

‖u(tj)− u(tj−1)‖X ≤ N,
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for any partition (tj)
n
j=0 of the interval I. The mapping

u ∈ BV (I, E) 7→ sup
(tj)j

n∑
j=1

‖u(tj)− u(tj−1)‖X

is a semi-norm on BV (I, E) denoted by TV(·, (I, E)) and it is called total variation.
The space BV (I, E) endowed with the norm ‖ · ‖BV (I) := ‖ · ‖L1 + TV(·, (I, E)) is a Banach space.
In what follows we consider, on BV (I, E), the topology associated with the convergence given

below: (un)n∈N ∈ BV (I, E) converges to u ∈ BV (I, E) if (un)n∈N is a bounded sequence in BV (I, E)
pointwise convergent to u ∈ BV (I, E).

Notice that convergence in the norm ‖ · ‖BV (I) implies pointwise convergence.
The Jordan Decomposition Theorem provides that any bounded variation function is the difference
of two nondecreasing bounded functions. This fact, together with Helly’s Theorem provides the well-
known Helly’s Selection Theorem (see for example [Hel12, Nat55]).

A.3 Helly’s selection theorem

Theorem 12 (Helly’s selection theorem). Let I be compact and (fn)n∈N be a sequence in BV (I,R).
If

(i) there exists M > 0 such that for all n ∈ N, TV(fn, (I,R)) < M ,

(ii) there exists x0 ∈ I such that (fn(x0))n∈N is bounded.

Then (fn)n∈N has a pointwise convergent subsequence.

A.4 Convergence of measures

As antederivatives of Radon measures coincide with bounded variation functions, the set of finite
Radon measures on X, denoted by R(X), inherits of a total vation topology provided by the norm:

‖µ‖R(X) := sup

∑
j∈N
|µ|(Bj) : {Bj} is a partition of X

 .

As any vector space, it can be endowed with its weak topology, the roughest toplogy making
bounded linear functional on (R(X), ‖ · ‖R(X)) continuous. Nonetheless, we adopt here a different
notion of weak convergence. We consider that µn converges to µ if and only if∫

f dµn →
∫
f dµ

for every continuous function f : X → C with compact support as in [EG92, Section 1.9].
If X is a topological space the narrow topology is such that µn converges to µ if and only if∫

f dµn →
∫
f dµ

for every bounded continuous function f : X → C.

11
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