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A B S T R A C T

Dengue dynamics are shaped by the complex interplay between several factors, including vector seasonality,
interaction between four virus serotypes, and inapparent infections. However, paucity or quality of data do not
allow for all of these to be taken into account in mathematical models. In order to explore separately the
importance of these factors in models, we combined surveillance data with a local-scale cluster study in the rural
province of Kampong Cham (Cambodia), in which serotypes and asymptomatic infections were documented. We
formulate several mechanistic models, each one relying on a different set of hypotheses, such as explicit vector
dynamics, transmission via asymptomatic infections and coexistence of several virus serotypes. Models are
confronted with the observed time series using Bayesian inference, through Markov chain Monte Carlo. Model
selection is then performed using statistical information criteria, and the coherence of epidemiological char-
acteristics (reproduction numbers, incidence proportion, dynamics of the susceptible classes) is assessed in each
model. Our analyses on transmission dynamics in a rural endemic setting highlight that two-strain models with
interacting effects better reproduce the long term data, but they are difficult to parameterize when relying on
incidence cases only. On the other hand, considering the available data, incorporating vector and asymptomatic
components seems of limited added-value when seasonality and underreporting are already accounted for.

1. Introduction

Dengue is a vector-borne viral disease transmitted by Aedes spp.
caused by any of four dengue virus (DENV) serotypes. Infection can
result in a flu-like illness, and sometimes potentially lethal complica-
tions called Dengue Hemorrhagic Fever (DHF) and Dengue Shock
Syndrome (DSS), although a significant proportion are subclinical or
asymptomatic, causing insufficient discomfort for clinical presentation
(Grange et al., 2014). Dengue is ubiquitous in the tropics and the
subtropics, particularly in Southeast Asia, the Pacific and the Americas
(Guzman et al., 2010). The World Health Organization (WHO) con-
siders that dengue is a major public health issue worldwide, with four
billion people in 128 countries exposed to the dengue virus (Messina

et al., 2013; WHO, 2017), an estimated 390 million infections every
year and about 50–100 million symptomatic cases worldwide and a
high disease burden (Bhatt et al., 2013; Shepard et al., 2016). Nowa-
days, there are more cases of dengue worldwide than any other arbo-
viral disease (Halstead, 2007; Messina et al., 2015; Sharp et al., 2017).

The value of mathematical models and associated statistical tools
for investigating public health policy questions has long been re-
cognized and has provided insights into their transmission and control
for more than one hundred years (Heesterbeek et al., 2015; Reiner
et al., 2013). It is important, however, to adapt them as much as pos-
sible to a specific setting, in order to derive appropriate public health
recommendations and accurately generate the key parameters using
estimation tools, so that they can produce realistic conclusions, in
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accordance with the observed data.
Dengue dynamics are shaped by the complex interplay between

many factors associated with the mosquito vector and human hosts and
their interactions with the virus. Hitherto, the exploration of dengue
dynamics has focused on the urban setting, where the incidence of
dengue is highest (Clapham et al., 2015; Nisalak et al., 2016; Reich
et al., 2013; Salje et al., 2012). Few studies have been carried out in
rural settings (Aldstadt et al., 2012; Mammen et al., 2008; Strickman
et al., 2000), despite growing evidence that rural dengue is an in-
creasing problem. Guha-Sapir and Schimmer (2005) observed shifts in
modal age, rural spread, and social determinants of dengue suscept-
ibility, with major implications for health services. Muhammad Azami
et al. (2011) observed similar dengue seroprevalence rates between
urban and rural samples, showing that dengue is not confined to urban
areas in Malaysia. Chareonsook et al. (1999) showed that DHF in
Thailand, which was originally thought to be an urban disease, has
spread to most areas of Thailand, and is now more common in rural
than urban areas and studies suggest that rural dengue incidence can
surpass urban and semi-urban communities within the same region
(Reller et al., 2012; Vong et al., 2010). In addition, several studies have
stressed that rural settings play an important role in the timing of
dengue epidemics in Southeast Asia, with the seasonal dengue waves
typically arriving later in major urban centers (Cazelles and Cazelles,
2014; Cuong et al., 2013; Teurlai et al., 2012).

In this study, we combine two datasets from rural Cambodia that
provide information on different key factors. We contrast and compare
several mechanistic models, incorporating differing levels of complexity
with respect to vector dynamics, coexistence of several virus strains,
and transmission via asymptomatic infections. Models are adapted to
the observed time series using Bayesian inference, through Markov
Chain Monte Carlo (MCMC) and compared in light of the data, using
statistical indicators to identify the best model (Camacho et al., 2011;
King et al., 2008; Pandey et al., 2013; Reich et al., 2013). In addition,
we also analyze the epidemiological coherence of the estimated models
in simulations. Critically, we do not merely focus on the observed in-
fected individuals but also on other compartments, such as the sus-
ceptible class of individuals. By comparing these models, we try to find
a realistic but parsimonious way of modeling dengue epidemics in rural
Cambodia. The best model may then be used in the study of interven-
tion scenarios or in comparative analyses with other settings. For in-
stance, it could be readily expanded to understand the potential impact
of different vaccination strategies in rural settings.

2. Methods

2.1. Data

2.1.1. Study area
Kampong Cham province is a densely populated rural province

120 km northeast from the capital Phnom Penh. Dengue is endemic and
strongly seasonal, with outbreaks occurring every year from June to
September, during the rainy season. The four virus serotypes co-circu-
late, even though one usually dominates the three others for about 3 to
5 years. We used two different datasets reporting dengue cases in the
province: the results of a punctual study conducted in a 30 km radius
around the city of Kampong Cham (DENFREE data), and the national
surveillance data (NDSS data) in the four districts comprising the
DENFREE study area (Kampong Cham, Kampong Siem, Prey Chhor and
Tboung Khmum, with the administrative divisions of 2012–2013).

2.1.2. DENFREE data
The DENFREE study took place in the Kampong Cham region during

the 2012 and 2013 outbreaks. Patients with acute dengue-like illness
were enrolled in three hospitals in the Kampong Cham province.
Positive DENV cases were considered as index cases, and an outbreak
investigation was initiated in their neighbourhood, in order to detect
additional symptomatic cases but also asymptomatic or mildly symp-
tomatic cases. For both index and outbreak investigation cases, DENV
infection was confirmed by qRT-PCR. The study protocol is extensively
detailed in Duong et al. (2015).

We used the series of the total number of cases per week (index
cases and outbreak investigation cases) between 18th June–5th
November 2012 and 3rd June–30th September 2013 (Table 1). We also
restricted the study to children under 15 years old for two major rea-
sons: most of the reported dengue cases were in this age class (89.6%
and 90.8% in 2012 and 2013 respectively, cf. Appendix B), and it al-
lowed a comparison with other dengue reporting systems in Cambodia,
which are mainly done at paediatric hospitals. Information on the
serotype responsible for infection, and symptomatic/asymptomatic
status of the patients were available (Table 2).

2.1.3. NDSS data
Because the DENFREE data covers only a relatively short period of

time, surveillance data were added to improve the estimations.
Surveillance of dengue is conducted at the national level in Cambodia,
through the National Dengue Surveillance system (NDSS) (Huy et al.,
2010; Teurlai et al., 2012), involving the paediatric departments of
several hospitals throughout the country. Since surveillance is hospital
based, mostly severe cases are observed. Diagnosis is done clinically
and only a small fraction of the cases are confirmed serologically. Be-
cause of the co-circulation of other flaviviruses (Chikungunya, Japanese
Encephalitis) and the relative non-specificity of symptoms, clinical mis-
diagnosis may be frequent. Since surveillance is carried out in paedia-
tric departments, only cases among children under 16 years old are
reported.

We selected all the cases under 15 years old in the four districts
involved in the DENFREE study between January 2002 and December
2015 and aggregated them per week (cases under 15 years old

Table 1
Number of cases under 15 years old in the DENFREE study (index cases and community cases) and in the surveillance system NDSS, and associated
theoretical quantities in models. One case in 2013 was coinfected with DENV-1 and DENV-2 and was not included in models with two strains (serotypes).

Children under 15 years old Total number of observed cases Theoretical quantity Observation rate Model

DENFREE data year 2012 year 2013
Confirmed symptomatic cases 236 574 CI rD All
Denv-1 226 451 CI1 rD SEIR2, SEIR2psi
Denv-2, Denv-3, Denv-4 5 122 CI2 rD SEIR2, SEIR2psi
Unknown serotype 5 0
Confirmed asymptomatic cases 5 28 CA rA SEIAR
Denv-1 5 21
Denv-2, Denv-3, Denv-4 0 7

NDSS data 2002–2015
Surveillance cases 10,780 (10,096 in 2002–2013) CI rN All except SEIAR

CH rH SEIAR
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represent 96.2% of reported cases over the period, cf. Appendix B). In
this area, on average, 770 cases under 15 years old are reported per
year (maximum 1985 cases in 2007, minimum 209 cases in 2014). We
used data from 2002 to 2013 for estimations, and data for 2014 and
2015 as the test set.

2.1.4. Population
We take as the reference population (N=161, 391) the number of

children below 15 years old in four districts of the Kampong Cham
province (Kampong Cham, Kampong Siem, Prey Chhor and Tboung
Khmum, with the administrative divisions of 2012–2013) according to
2008 National Census (National Institute of Statistics, Ministry of
Planning, 2009). Since the DENFREE study was conducted in a subpart
of this area, we calculated the total population for the DENFREE study
(n=65, 208) as the sum of the population of children under 15 years
old in all the villages investigated in either 2012 or 2013 (National
Institute of Statistics, Ministry of Planning, 2009).

2.2. Models

All model parameters are defined in the figures captions and in
Table 3.

2.2.1. One-strain models
We take a Susceptible-Exposed-Infected-Recovered (SEIR) model as

the simplest model (cf. Fig. 1). CI represents the count of new cases and
it is aggregated weekly to be compared with data on both NDSS and
DENFREE symptomatic cases. In this model, the basic reproduction
number, i.e. the number of secondary infections resulting from the in-
troduction of a single infected in an entirely susceptible population, is
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This model is compared with two other models that include the
mosquito vector transmission components. In the first one, which is a
Ross-Mcdonald type model derived from Pandey et al. (2013), the
vector is modelled explicitly with three compartments (Susceptible-
Exposed-Infected) (cf. Fig. 2). In the second one, derived from Laneri
et al. (2010), the vector is modelled implicitly as an external force of
infection including two stages, latent (κ) and current (λ) (cf. Fig. 3). We
derived R0 for each model as = + + +R t( ) β β t στ

γ μ σ μ μ μ τ0
Pandey ( )

( )( ) ( )
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and the

estimation = + +R t( ) β t σ
γ μ σ μ0

Laneri ( )
( )( )H H

(Champagne et al., 2016). In order
to compare these models with the non-vector models, we considered
the same definition (i.e. the number of secondary human infections

resulting from the introduction of a single infected human in a entirely
susceptible population), and not the reproduction ratio per generation
provided through the use of the next generation matrix.

The equations describing the Pandey model are:
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where vs is the proportion of susceptible mosquitoes, vE the proportion
of exposed mosquitoes, and vI the proportion of infected mosquitoes.

The equations describing the Laneri model are:
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2.2.2. Model with explicit asymptomatic individuals (SEIAR)
We also consider a model in which asymptomatic infections are

explicitly taken into account in the transmission process (cf. Fig. 4). In
this model, we assume that, after the incubation period, there are three
possible manifestations of the disease: asymptomatic (HA), mildly
symptomatic not requiring hospitalization (HI) and hospitalized cases
(HH). Asymptomatic cases are defined in the dengue study as asymp-
tomatic or pauci-symptomatic (presence of other symptoms not being
sufficient to classify as symptomatic). Hospital cases are defined as
NDSS cases (reported by the surveillance system in hospitals). We as-
sume that symptomatic DENFREE cases are either (HI) or (HH). We also
assume that asymptomatic cases transmit the disease as much as
symptomatic cases, as recently shown (Duong et al., 2015), and
therefore, = + +R t( ) β t σ

γ μ σ μ0
SEIAR ( )

( )( )H H
. CH, CI, CA represent respectively the

count of new hospitalized, symptomatic and asymptomatic cases, and
each is aggregated weekly to be compared respectively with NDSS data,
DENFREE data on symptomatic cases, and DENFREE data on asymp-
tomatic cases.

Table 2
Comparison of both datasets.

DENFREE NDSS

Time window Observations in 2012–2013 Observations in 2002–2015
No observation during inter-epidemic period, dataset starts during the epidemic peak Observations all year round

Area 30 km radius around Kampong Cham city 4 districts comprising the DENFREE study
Clustered collecting process Stable reporting process over time
An observation rate can be calculated Unknown observation rate

Diagnosis Laboratory confirmation of all cases (qRT-PCR) Clinical diagnosis
Observation of symptomatic infections (index cases and outbreak investigation) and mildly
symptomatic or asymptomatic infections (outbreak investigation)

Symptoms ranging from dengue fever to DHF and DSS
(mostly hospitalized)

Known serotype for both index and outbreak investigation cases Unknown serotype
Primary and secondary infections are not distinguished Primary and secondary infections are not distinguished
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Table 3
Prior distributions of parameters. “Uniform[0,20]” indicates a uniform distribution in the range [0,20]. “Normal(0.44, 0.05) in [0.2, 1]” indicates a a truncated
normal distribution with mean 0.44 and standard deviation 0.05, restricted to the range [0.2,1].

Parameter Prior distribution Reference Models

Infectiousness, incubation and mortality rates
γ−1 Infectious period (days) 4.5 WHO (2017) All
σ−1 Intrinsic incubation period (days) 5.9 Chan and Johansson (2012) Pandey, Laneri
τ−1 Extrinsic incubation period (days) 10 Chan and Johansson (2012) Pandey, Laneri
σ−1 Both incubation periods (days) 15.9 Chan and Johansson (2012) SEIR, SEIAR, SEIR2, SEIR2psi

−μH
1 Age duration (years) 15 Assumed All

−μV
1 Mosquito lifespan (days) 15 Liu-Helmersson et al.

(2014)
Pandey

ρA Proportion of asymptomatic cases Uniform[0, 1] Assumed SEIAR
ρH Proportion of hospitalized cases Uniform[0, 1] Assumed SEIAR

Transmission parameters
R0 Average basic reproduction number Uniform[0, 20] Assumed All
βV Transmission from human to mosquito Uniform[0.1, 2] Pandey et al. (2013) Pandey
ψ inh./enh. of infectiousness Uniform[0.5, 3] Assumed SEIR2psi

Initial conditions
HI(0) Initial number of infected individuals Uniform[0, 100] Assumed SEIR, Pandey, Laneri
HE(0) Initial number of exposed individuals HI(0) Assumed SEIR, Pandey, Laneri, (3HI(0) in

SEIAR)
HS(0) Initial number of susceptible individuals N*Normal(0.44, 0.05) in [0.2, 1] Thai et al. (2005) All
v (0)I or λ(0) Initial number of infected mosquitoes 0 Assumed Pandey or Laneri
v (0)E or κ(0) Initial number of exposed mosquitoes 0 Assumed Pandey or Laneri
HH(0), HA(0) Initial number of asymptomatic and

hospitalized individuals
HI(0) Assumed SEIAR

HS1(0), HS2(0) Initial number of individuals susceptibles to 1
strain

N*Uniform[0.01, 0.5] Assumed SEIR2, SEIR2psi

HI1(0), HI2(0) Initial number of infected individuals Uniform[0, 100] Assumed SEIR2, SEIR2psi
HE1(0), HI21(0), HE21(0) Initial number of infected and exposed

individuals
HI1(0) Assumed SEIR2, SEIR2psi

HE2(0), HI12(0), HE12(0) Initial number of infected and exposed
individuals

HI2(0) Assumed SEIR2, SEIR2psi

Observation process
rN Observation rate for NDSS data Uniform[0, 1] Assumed SEIR, Laneri, Pandey, SEIR2,

SEIR2psi
rH Observation rate for NDSS data 1 Assumed SEIAR
rD Observation rate for DENFREE data

(symptomatic)
Fixed cf. Table 4 All

rA Observation rate for DENFREE data
(asymptomatic)

Fixed cf. Table 4 SEIAR

ϕ Overdispersion Uniform[0, 1] Assumed All

Seasonality parameters
b Amplitude of the sinusoidal forcing Uniform[0, 1] Assumed All
p Phase of the sinusoidal forcing Uniform[−0.5, 0.5] Assumed All
i Import parameter Uniform[0, 10] Assumed All

Total population
N Total population 161391 All

Fig. 1. Graphical representation of SEIR model. HS susceptible individuals;
HE infected (not yet infectious) individuals; HI infectious individuals; HR re-
covered individuals; β(t) is the transmission parameter; σ is the rate at which
HE-individuals move to the infectious class HI; infectious individuals (HI) then
recover at rate γ; individuals leave the children population at rate μH.
HS+HE+HI+HR=N.

Fig. 2. Graphical representation of Pandey model (Pandey et al., 2013).
Squared boxes and circles correspond respectively to human and vector com-
partments. Plain arrows represent transitions from one state to the next. Dashed
arrows indicate interactions between humans and vectors. HS susceptible in-
dividuals; HE infected (not yet infectious) individuals; HI infectious individuals;
HR recovered individuals; βH is the transmission parameter from vector to
human; σ is the rate at which HE-individuals move to the infectious class HI;
infectious individuals (HI) then recover at rate γ; individuals leave the children
population at rate μH; HS+HE+HI+HR=N; vS proportion of susceptible
vectors; vE proportion of infected (not yet infectious) vectors; vI proportion of
infectious vectors; βV(t) is the transmission parameter from human to vector; τ
is the rate at which vE -vectors move to the infectious class vI ; vectors die at rate
μV.
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2.2.3. Model with two virus serotypes
In the 2012 and 2013 epidemics, DENV-1 was highly dominant: the

three other serotypes represented about 2% of the cases reported in the
DENFREE study in 2012 and about 21% in 2013 (cf. Table 1). There-
fore, a two-strain model is also studied, in which we separate DENV-1
cases from DENV-2, DENV-3 and DENV-4 combined (cf. Fig. 5). For
simplicity and parsimony in the number of parameters, the two strains
share the same parameter values. We first assume both strains to be
independent (ψ=1 in Eq. (5), called SEIR2 model). In this context, the

reproduction numbers for each strain are equal,
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We also considered another version of the model including inter-
action between strains (ten Bosch et al., 2016), in order to reflect the
fact that secondary infection with a heterologous serotype leads more
often than primary infection to severe manifestations of the disease
(Halstead, 2007). In our model (called SEIR2psi model), primary and
secondary infections differ in infectiousness, through a parameter ψ
(Ferguson et al., 1999). This parameter is estimated between 0.5 and 3:
values superior to 1 correspond to transmission cross-enhancement
(because of higher virus titers during secondary infections (Ferguson
et al., 1999)) and values inferior to 1 suggest a lower infectivity for
secondary infected individuals (for example because they are hospita-
lized and less in contact with the population (Aguiar et al., 2011)). As in
Ferguson et al. (1999), we define = = + +R t R t( ) ( ) β t σ

γ μ σ μ0
SEIR2

0
SEIR2 ( )

( )( )H H
1 2

the basic reproduction number for each strain.
CI represents the count of new cases for both serotypes and it is

aggregated weekly to be compared with NDSS data. CI1 and CI2 re-
present the count of new cases for strain 1 and strain 2, and are ag-
gregated weekly to be compared with symptomatic cases from the
DENFREE study for DENV-1 and DENV-2/ DENV-3/ DENV-4 respec-
tively.

2.2.4. Seasonality
All models include seasonality through the use of a time-varying

transmission parameter = ⎡
⎣

+ + ⎤
⎦( ( )β t β b π p( ) 1 . sin 2 t

365 , according

to a sinusoidal function whose phase p and amplitude b are estimated.
We also assume that a constant number of cases i are imported.

2.3. Prior distributions

The prior distributions are listed in Table 3.
Dirac priors based on the literature were used for the durations of

infectiousness and incubation, as well as the mortality rates. In models
without vectorial transmission, the incubation period is assumed to be
the sum of the extrinsic (in mosquito) and intrinsic (in human) in-
cubation periods, to reflect the generation time of the disease. For
transmission parameters, we used wide weakly informative priors.

2.3.1. Initial conditions
The initial number of infected individuals is assumed to be equal to

Fig. 3. Graphical representation of Laneri model (Laneri et al., 2010).
Squared boxes and circles correspond respectively to human and vector com-
partments. Plain arrows represent transitions from one state to the next. Dashed
arrows indicate interactions between humans and vectors. HS susceptible in-
dividuals; HE infected (not yet infectious) individuals; HI infectious individuals;
HR recovered individuals; σ is the rate at which HE-individuals move to the
infectious class HI; infectious individuals (HI) then recover at rate γ; individuals
leave the children population at rate μH; HS+HE+HI+HR=N; implicit
vector-borne transmission is modelled with the compartments κ and λ; λ current
force of infection; κ latent force of infection reflecting the exposed state for
mosquitoes during the extrinsic incubation period; β(t) is the transmission
parameter; τ is the transition rate associated with the extrinsic incubation
period.

Fig. 4. Graphical representation of SEIAR model. HS susceptible individuals;
HE infected (not yet infectious) individuals; HA asymptomatic infectious in-
dividuals; HI mildly symptomatic infectious individuals; HH hospitalized in-
fectious individuals; HR recovered individuals; β(t) is the transmission para-
meter; σ is the rate at which HE-individuals move to the infectious classes HI, HA

and HH; a proportion ρA of HE-individuals do not show symptoms during the
infectious period; a proportion ρH of symptomatic individuals go to hospital;
infectious individuals (HI,HA,HH) then recover at rate γ; individuals leave the
children population at rate μH. HS+HE+HA+HI+HH+HR=N.
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the number of exposed individuals and to be lower than 100, as the
model starts in January, during the epidemic trough. Except for the
initial proportion of susceptibles, all priors on initial conditions are
uniform distributions.

The initial proportion of susceptibles is an influential parameter on
the model outputs. It is highly correlated to the transmission parameter
β (and therefore to the basic reproductive number), which makes it
difficult to estimate them both. An informative gaussian prior was
therefore used on HS(0). To date, no large scale seroprevalence study is
available for Cambodia, and we relied on a study conducted among
schoolchildren in rural Vietnam (Thai et al., 2005), which we con-
sidered as the closest setting to be compared with Kampong Cham. We
extrapolated their results on schoolchildren (7 to 14 years old) to a
1–15 years old population as follows, where Sλ is the proportion of
susceptibles among 1–15 year-old children (using their estimation
λ=0.117):

∑= − =
=

S λa1
15

exp( ) 0.44λ
a 1

15

Sλ is used as the mean of the gaussian prior, and the standard de-
viation is fixed at 0.05.

2.4. Estimation

2.4.1. Observation model
The propagation models are related to the observed data using a

negative binomial observation model (Bretó et al., 2009). The observed
number of cases during week k in each dataset, C k

obs
( ), is assumed to be

drawn from a a negative binomial distribution with mean rC(k) and
variance +rC rC ϕ( )k k( ) ( ) 2 , where C(k) is the total number of new cases
simulated by the model during week k, r is the observation rate quan-
tifying the amount of non reported cases and ϕ is an overdispersion
parameter. The quantity C and observation rate r associated to each
dataset are indicated in Table 1.

For each epidemiological model, estimations are performed si-
multaneously on NDSS and DENFREE data (DENFREE data being de-
composed into two time series in SEIAR, SEIR2 and SEIR2psi models).
The observations of all time series are assumed independent conditional
on the underlying disease process, and the model likelihood is the
product of the likelihoods calculated on each series.

The observation rate is estimated for NDSS data but fixed for
DENFREE data, using informations from the sampling scheme (cf.
Table 4), in order to account for the difference in coverage during
outbreak investigation between 2012 and 2013. We assume that index
cases are all reported and that the observation rate for community cases
equals the ratio of people tested over the population of the area. We
then extrapolate this observation rate to the total population of the four
districts.

Different observation rates are used in the SEIAR model. As NDSS
data are interpreted as hospitalized cases, the observation rate is fixed
to 1 (which assumes that all hospitalized cases go through surveillance

and neglects the presence of private hospitals or non reports from
hospitals), but the proportion of hospitalized cases is estimated. For
DENFREE cases, the observation rate for symptomatic and asympto-
matic individuals is fixed as indicated in Table 4.

The overdispersion parameter ϕ is estimated along with the other
parameters.

2.4.2. Estimation with Markov Chain Monte Carlo
Models are considered in deterministic framework and estimations

are made using random walk Metropolis Hastings. SSM software
(Dureau et al., 2013) is used for simulations and calculations. The
covariance matrix of the proposal distribution was initialized using
adaptative MCMC as in Dureau et al. (2013).

Due to unknown initial conditions, the posterior distribution is
multimodal, especially in two strain models. This implies that the
adaptive MCMC remains trapped in local maxima and global explora-
tion of the parameter space was performed with latin hypercube sam-
pling. We ran a simplex algorithm on 10,000 parameter sets sampled
with latin hypercube sampling (with lhs R package (Carnell, n.d.)) and
chose the one with the highest posterior value as initialization of the
adaptive MCMC algorithm. The results associated to this best fitting
equilibrium are displayed in the main text, but other examples of good
fitting equilibria for two-strain models are indicated in Appendix E.

2.5. Model comparison

2.5.1. Statistical indicators
In order to identify the best model, the Deviance Information

Criterion (DIC) (Spiegelhalter et al., 2002) is used. DIC is an indicator
that combines a measure of model fit and a penalty on model com-
plexity, commonly used with MCMC estimations. The best model is the
one with the smallest DIC. As it does not enable comparison of models
with differing number of observations, we also calculate the RMSE (root
mean square error) between observations C k

obs
( ) and simulations of the

model with parameters sampled in the posterior distribution C(k,i), for
weeks k= k0, …, K and simulation i:

∑=
−

−
=K k

C CRMSE 1 ( )i
k k

K
k i

obs
k

0

( , ) ( ) 2

0

We then compute the mean and the 2.5% and 97.5% quantiles of this
indicator among the simulated trajectories. We first calculated them on
the data used for estimation, separating NDSS data and DENFREE data.
For DENFREE data we considered the total number of symptomatic
cases to enable comparison of all models: therefore, for this metric,
asymptomatic DENFREE cases were not taken into account in SEIAR
model, and cases of all serotypes were aggregated in two-strain models.
Then we used these indicators to assess the predictive performance of
the models, comparing projections of the model with NDSS observa-
tions for 2014 and 2015.

Fig. 5. Graphical representation of SEIR2 models.
HS individuals susceptible to both strains; HE1 (resp.
HE2) individuals infected (not yet infectious) to strain
1 (resp. strain 2); HI1 (resp. HI2) individuals in-
fectious to strain 1 (resp. strain 2); HS1 (resp. HS2)
individuals immune to strain 1 only (resp. strain 2);
HE12 (resp. HE21) individuals (not yet infectious) with
a secondary infection to strain 2 (resp. strain 1); HI12

(resp. HI21) infectious individuals with a secondary
infection to strain 2 (resp. strain 1); HR individuals
immune to both strains; β(t) is the transmission

parameter; σ is the rate at which exposed individuals move to the infectious class; infectious individuals then recover at rate γ; ψ is the change in infectivity for
secondary infected individuals in SEIR2psi model (in SEIR2 model, ψ=1); individuals leave the children population at rate μH.
HS+HE1+HE2+HI1+HI2+HS1+HS2+HE12+HE21+HI12+HI21+HR=N.
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2.5.2. Epidemiological indicators
Models are also compared according to several indicators to de-

scribe their epidemiological behaviour. The basic reproduction number,
the observation rate and the initial proportion of susceptibles are esti-
mated using the MCMC chain. In the model with asymptomatic infec-
tions we report the estimated proportions of asymptomatic and hospi-
talized cases.

With parameters sampled in the posterior distribution, we can also
re-simulate the model to study hidden states, such as the susceptible
and infected classes. The effective reproduction number (Re) is calcu-
lated as the seasonal basic reproduction number multiplied by the
proportion of susceptibles at each time step, as indicated in Table 5. We
then calculate the annual incidence proportion as the total number of
infections over one year divided by the total population of susceptibles
at the beginning of the year. In models with two strains, we separate the
annual incidence of primary infections (as the total number of primary
infections over one year divided by the total population of naive in-
dividuals at the beginning of the year) and secondary infections (as the
total number of secondary infections over one year divided by the total
population of susceptibles to one strain only at the beginning of the
year).

Calculations are made using R version 3.2.2 (Team, 2015), and
graphics using ggplot2 (Wickham, 2009).

3. Results

The calculations are based on the MCMC chain associated with the
highest posterior after LHS exploration. In multistrain models, the
posterior distribution is multimodal, and examples of other local pos-
terior modes are displayed in Appendix E.

3.1. Statistical comparison

For single strain models, the SEIR model proved the best with the
DIC criterion (cf. Table 6). For two strain models, the SEIR2psi proved
best. As regards simulation-based indicators on the 2002–2014 data,
SEIR, Laneri, Pandey models have RMSE values in the same order of
magnitude. Indeed, they produce a similar dynamic with respect to the
2002–2014 data (cf. Figs. 6–7), with a period of approximately six

years, and a large overestimation of the 2002 outbreak (the mean RMSE
for 2002 is far higher (> 40) than the average for the other years
(< 25)). Due to the small number of observed asymptomatic cases,
SEIAR model also produces a similar dynamic and the SEIR2 model,
despite a larger number of parameters, does not improve over single-
strain models. The model with two interacting strains (SEIR2psi) out-
performs the other models in terms of RMSE, but the difference is
mainly explained by the first year of simulation (2002). However, the
RMSE indicator does not penalize for the complexity of this more
flexible model, and the differences are not very pronounced given the
variability in RMSE values. When visualizing the simulations compared
to the data (cf. Figs. 6–7), all models underestimate a large number of
epidemic peaks and all models but the one with two interacting strains
overpredict the first epidemic peak (as pointed out in Table 6). SEIR2psi
is the model in which the large epidemic in 2007 is best reproduced and
overall, SEIR2psi is the model that reproduces most accurately the
observed data. Moreover, the estimated overdispersion is lower in this
model (cf. Table 7), indicating that less observation noise is required to
explain the data and that the model explains a larger part of the
variability in the data.

Considering the predictive capacity of the models, all models
overestimate the 2014 small epidemic, and to a lesser extent the one in
2015 (cf. Fig. 8). In the SEIR2psi model, this overestimation is less
pronounced, and the associated RMSE is also smaller (cf. Table 6).

3.2. Epidemiological comparison

The average R0 is estimated to be between 2 and 3 in most of the
models and the maximum value between 3 and 4 (cf. Table 7), except
with the Pandey model, in which it is higher (mean value above 3 and
maximum value above 6). The estimated values are very close in the
SEIR, Laneri and SEIAR models. These values relate to transmission
among children only and we expect therefore the R0 in the whole po-
pulation to be higher, since children represent approximately one third
of the total population, but more than 90% of the total cases observed.
Estimates for R0 in South East Asia in the literature range from 1 to 5
(Imai et al., 2015, 2016), with sometimes values above 10 (Johansson
et al., 2011), displaying large variations in time and space, and in
particular, the estimates for R0 in Cambodia based on age-stratified

Table 4
Calculation of the observation rate for DENFREE data.

Children < 15 years old 2012 2013

Symptomatic Asymptomatic Symptomatic Asymptomatic

Population in investigated villages (n) 65,208 65,208
Population in the 4 districts (N) 161,391 161,391

Index cases (a) 151 0 376 0
Observation rate for index cases 1 . 1 .

Children tested in communities (b) 1722 4119
DENV positive in communities (c) 85 5 198 28
Observation rate for community cases (d= b/n) 0.0264 0.0632
Extrapolated number of community cases (e= c/d) 3219 189 3135 443

Extrapolated total number of cases (f= a+ e) 3370 189 3511 443
Observed total number of cases (g= a+ c) 236 5 574 28
Observation rate (rD=(g/f) * (n/N) and rA= b/N) 0.0283 0.0107 0.0661 0.0255

Table 5
Reproduction numbers calculation in each model. Calculations are based on the next generation matrix method (Diekmann et al., 2010).

SEIR, Laneri, SEIAR Pandey SEIR2 SEIR2psi

R0(t)
+ +

β t σ
γ μH σ μH

( )
( )( ) + + +

βH βV t στ
γ μH σ μH μV μV τ

( )
( )( ) ( ) + +

β t σ
γ μH σ μH

( )
( )( ) + +

β t σ
γ μH σ μH

( )
( )( )

Re(t) (or Re
i, i=1, 2) R t( ) HS t

N0
( ) R t v t( ) ( )HS t

N s0
( ) +

R t( )
HS t H t

N0
( ) Sj( ) +

R t( )
HS t ψH t

N0
( ) Sj( )
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Table 6
Information criteria in deterministic models. DIC is the Deviance Information Criterion (Spiegelhalter et al., 2002). RMSE is the root mean square error (mean and
2.5% and 97.5% quantiles) between simulations and observations: it is calculated separately on the datasets used for estimations (NDSS data for 2002–2013 and
DENFREE data for 2012–2013) and on the test set (NDSS data for 2014–2015). It is also computed on separated years in order to highlight well or badly estimated
years: for example, for each simulation i, + =−(RMSE ) (RMSE ) (RMSE )i i i

1
12

NDSS 2002 2 11
12

NDSS 2003 2013 2 NDSS 2. Calculations are based on the MCMC chain associated with the

highest posterior.

Model SEIR Laneri Pandey SEIAR SEIR2 SEIR2psi

nb parameters 8 8 9 9 11 12
nb observations 665 665 665 704 704 704

ESTIMATION SET
DIC 4343 4360 4364 4472 4492 4446
RMSE NDSS 25 (22–28) 25 (22–29) 26 (23–29) 26 (23–29) 25 (22–29) 21 (19–24)
RMSE NDSS 2002 43 (28–59) 42 (27–58) 45 (29–63) 43 (27–61) 40 (24–61) 17 (12–25)
RMSE NDSS 2003–2013 23 (20–25) 23 (21–26) 23 (21–25) 23 (21–26) 24 (21–26) 22 (19–24)
RMSE DENFREE 24 (19–29) 24 (19–29) 24 (19–29) 24 (19–29) 23 (19–27) 25 (19–31)

TEST SET
RMSE 2014–2015 15 (11–19) 15 (11–19) 16 (12–20) 15 (11–20) 17 (13–22) 13 (10–16)
RMSE 2014 16 (11–23) 16 (11–23) 17 (11–24) 17 (11–24) 17 (11–24) 14 (10–19)
RMSE 2015 13 (9–17) 13 (9–17) 13 (10–18) 13 (10–17) 17 (12–23) 12 (9–16)

Fig. 6. Number of observed cases per week and NDSS data, 2002–2013. Simulations with negative binomial noise using parameters from the MCMC chain
associated with the highest posterior, calculated using both NDSS and DENFREE datasets. Posterior median (solid line), 95% credible intervals (shaded blue area) and
NDSS data points (black dots). A. SEIR model. B. Laneri model. C. Pandey model. D. SEIAR model. E. SEIR2 model. F. SEIR2psi model.
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case-notification data are between 2 and 7 (Imai et al., 2016), so that
our estimates are in the same order of magnitude. Nevertheless, our
estimation of R0 strongly depends on the estimation of the initial pro-
portion of susceptibles (HS(0)), which is unknown in the case of Cam-
bodia and can bias the estimates. It is indeed very difficult to evaluate
R0 via incidence data (Imai et al., 2016), especially for endemic diseases
without information on seroprevalence, and it may be more informative
to study the effective reproductive number (Re), which accounts for the
proportion of immune individuals in the population. The estimated Re

has a mean value around 1 and a maximum value around 1.7 in most
models, but it is higher in the Pandey model (the time-varying beha-
viour of Re is displayed in Appendix D).

In SEIR2psi model, the parameter ψ quantifying the interaction
between strains is inferior to 1, suggesting a reduced infectivity of
secondary infections on average, as in Aguiar et al. (2011), or in
Coudeville and Garnett (2012). This suggests that, as far as

infectiousness is concerned, cross-protection among serotypes is more
important than cross-enhancement to explain the results observed in
the field.

It is estimated in the models that approximately half of the children
are susceptible to the disease, which is close to the informative prior
used, highlighting the difficulty to estimate this quantity due to iden-
tifiability issues. This proportion is lower in the Pandey model. In the
models with two strains, the number of susceptibles differs between
models, but as a whole, at least 50% of children are not totally immune
to the disease and can still suffer infection. The proportion of children
who are susceptible to one or both strains are however correlated in the
MCMC chain (cf. Appendix), indicating that their relative proportions
are not well identified. These values are in the range of the measures of
seroprevalence in several Asian countries (L’Azou et al., 2016, 2018).
As the measures reveal large differences between countries (L’Azou
et al., 2016, 2018; Prayitno et al., 2017; Thai et al., 2005;

Fig. 7. Number of observed cases per week and DENFREE data, 2012–2013. Simulations with negative binomial noise using parameters from the MCMC chain
associated with the highest posterior, calculated using both NDSS and DENFREE datasets. Posterior median (solid line), 95% credible intervals (shaded blue area) and
DENFREE data points (blue dots: symptomatic cases, green dots: asymptomatic cases, red dots: serotype specific symptomatic cases). A. SEIR model. B. Laneri model.
C. Pandey model. D. SEIAR model, symptomatic cases. E. SEIAR model, asymptomatic cases. F. SEIR2 model, cases due to strain 1 and DENV1 observations. G. SEIR2
model, cases due to strain 2 and DENV2/DENV3/DENV4 observations. H. SEIR2 model with interactions, cases due to strain 1 and DENV1 observations. I. SEIR2
model with interactions, cases due to strain 2 and DENV2/DENV3/DENV4 observations. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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Vongpunsawad et al., 2017), a seroprevalence survey in Cambodia
would be particularly useful to evaluate which scenario is more plau-
sible.

The observation rate for NDSS data varies between models, from 6
to 13%. These values indicate that a large proportion of dengue cases
are not reported in national surveillance, likely reflecting mild symp-
toms that do not require hospitalization or misdiagnosis or mis-
reporting.

In the SEIR2psi model, we also plotted the current number of in-
fected individuals for each strain (cf. Fig. 9). In our simulations, the first
strain is responsible for large explosive outbreaks, whereas the second
one has a more regular pattern over the years. Moreover, the two
strains are asynchronous and each one dominates for two or three
years. It is also qualitatively close to the dynamics observed in Thailand
(Reich et al., 2013) or Singapore (Ong et al., 2017).

The proportion of susceptible individuals also displays asynchro-
nous dynamics between strains, as they reflect the history of past epi-
demics. Despite the seasonality and the year-to-year variations, the
total number of susceptibles remains high (cf. Fig. 9 for SEIR2psi and
SEIR models), allowing the possibility for large outbreaks to occur in
the future. However, multi-strain models are difficult to parameterize
due to the uncertainty in the initial conditions, and models with dif-
fering trajectories and parameters may have close performances in
terms of model fitting (cf. Appendix E).

We calculated the annual incidence proportion as the proportion of
new infections over one year among the susceptibles at the beginning of
that year (cf. Fig. 10). The values for primary infections are coherent
with other studies in Vietnam or Indonesia who analyzed ser-
oprevalence data or seroconversion data (Graham et al., 1999; Prayitno
et al., 2017; Thai et al., 2005, 2007; Tien et al., 2010). The incidence
proportion is highly variable from one year to the next, especially in
models with two interacting strains.

4. Discussion

With two datasets reporting dengue cases in the Kampong Cham
region in Cambodia, we compared several models to represent dengue
transmission dynamics in a rural setting. In order to assess the quality of
the models, we compared their statistical properties and analysed their

epidemiological features.
The best model describing the dengue trend over 14 years of data

was the two strain model, with reduced infectivity for secondary in-
fected individuals. Secondary infections being more prone to severe
dengue (Halstead, 2007), these individuals may stay at home or at the
hospital, and be less involved in the spread of the disease than the ones
whose mild symptoms do not alter what Stoddard et al. (2013) call
“house-to-house movement” (Yoon et al., 2012; Perkins et al., 2016).
There is also some indication from studies on the infectiousness of in-
fected people to mosquitoes, that symptomatic infections are less in-
fectious than asymptomatic individuals (Duong et al., 2015). Likewise
there was a small negative impact of IgG on transmission rates that
would be indicative of secondary and potentially more symptomatic
cases (Nguyen et al., 2013). This feature was previously analytically
studied and coherent with dengue incidence time series in Thailand
(Aguiar et al., 2011, 2014).

On the contrary, including vectorial transmission or a compartment
for asymptomatic infections did not seem to improve the model fit
despite the additional complexity. In our models, the role of mosquitoes
in transmission seems well captured by the seasonal forcing im-
plemented in the model. The limited added-value of including vectorial
components has been observed by several authors previously, when
studying one dengue season only (Pandey et al., 2013) or when a sea-
sonal forcing was included in the model (Rocha et al., 2016). Mathe-
matical analyses have suggested that because the time scale of the
mosquito epidemiology is so fast compared to that in humans, it will be
slaved by the slower human epidemiology (Rocha et al., 2013). Thus,
for understanding human disease epidemiology, mainly the dynamics of
the human time scale are essential and inclusion of mosquito dynamics
results in an unnecessary increase in model complexity when vector
data is not available (Dye and Williams, 1995; Rocha et al., 2013,
2016), and when potential seasonal variations are already accounted
for.

Our models account for underreporting, and the lack of additional
improvement when including explicitly the asymptomatic class is likely
due to the very few asymptomatic infections observed, which may be
due to a very strict definition of asymptomatic infections in the
DENFREE protocol. Yoon et al. (2012) also observe many inapparent
cases in their cohort but few strictly asymptomatic cases in their cluster

Table 7
Epidemiological criteria among children under 15 years old. Estimated parameters and indicators based on simulations over 2002–2015 (posterior median and
95% credible intervals). Calculations are based on the MCMC chain associated with the highest posterior.

Model SEIR Laneri Pandey SEIAR SEIR2 SEIR2 psi

Mean R0 Median (95%CI) 2.32 (2.25–2.41) 2.38 (2.3–2.46) 3.32 (3.16–3.47) 2.3 (2.23–2.37) 1.45 (1.42–1.48) 2.47 (2.35–2.57)
Max R0 Median (95%CI) 3.64 (3.51–3.77) 3.66 (3.53–3.8) 5.87 (5.57–6.17) 3.6 (3.48–3.72) 2.29 (2.23–2.35) 3.78 (3.59–3.94)
ψ Median (95%CI) 0.67 (0.62–0.73)

HS(0)/N (%) Median (95%CI) 46 (45–47) 46 (45–47) 37 (36–38) 47 (46–47) 49 (45–56) 35 (30–38)
HS1(0)/N (%) Median (95%CI) 22 (14–25) 14 (10–21)
HS2(0)/N (%) Median (95%CI) 27 (19–30) 4 (1–11)

Observation rate (%) Median (95%CI) 12 (11–13) 12 (11–13) 10 (9–11) 11 (10–12) 7 (6–7)
Hospitalized (%) Median (95%CI) 14 (13–15)
Asymptomatic (%) Median (95%CI) 15 (13–19)
Over-dispersion Median (95%CI) 0.73 (0.59–0.91) 0.75 (0.61–0.93) 0.7 (0.57–0.87) 0.9 (0.74–0.99) 0.73 (0.59–0.91) 0.56 (0.45–0.76)

Median annual incidence
proportion

Primary infection (%) Median 2002–2015
(min–max)

8 (5–16) 8 (4–16) 12 (7–25) 8 (4–16) 6 (3–10) 14 (7–27)

Secondary infection (%) Median 2002–2015
(min–max)

3 (1–5) 7 (3–14)

Mean Re Median (95%CI) 1.03 (1.03–1.03) 1.06 (1.06–1.07) 1.14 (1.13–1.15) 1.03 (1.03–1.03)
Mean Re strain 1 Median (95%CI) 1.03 (1.02–1.03) 1.03 (1.02–1.03)
Mean Re strain 2 Median (95%CI) 1.04 (1.03–1.04) 1.02 (1.02–1.03)
Max Re Median (95%CI) 1.7 (1.66–1.74) 1.72 (1.69–1.77) 2.18 (2.12–2.27) 1.7 (1.67–1.74)
Max Re strain 1 Median (95%CI) 1.73 (1.69–1.77) 1.74 (1.71–1.77)
Max Re strain 2 Median (95%CI) 1.72 (1.69–1.75) 1.69 (1.65–1.73)
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study in Thailand. Therefore, in our model, including a compartment
for asymptomatic individuals had only little influence on the overall
transmission due to their small number.

However, even though the two strain model with interactions re-
produces the observed data more adequately, it is difficult to para-
meterize. Differing model parameterizations may lead to differing dy-
namics that relate closely to the observed data, as shown in Appendix E,
indicating identifiability issues (Miao et al., 2011). Identifiability is
nonetheless a central problem in designing and estimating epidemio-
logical models, that also affects models with vector-borne transmission
(Kao and Eisenberg, 2018) and even simple models (Evans et al., 2002).
In our case, this problem was related to two phenomena. On the one
hand, some parameters values were correlated, and therefore difficult
to distinguish from one another. On the other hand, in some models, the
posterior distribution was multimodal, and therefore both hard to ex-
plore with many inference methods and hard to interpret given the
presence of several possible trajectories. In order to limit these diffi-
culties in all models, we fixed some parameters (in particular the
durations of infection and incubation, or the observation rate in

DENFREE data), and relied on informative priors (in particular for the
initial proportion of susceptibles). In addition, it is possible to rule out
some trajectories that correctly fit the data but display epidemiological
incoherences in the qualitative dynamics of their hidden states (such as
the depletion of the susceptible population or the absence of serotype
asynchrony), in the spirit of pattern matching methods (ten Bosch et al.,
2016). We therefore studied the epidemiological characteristics of the
selected models to ensure such coherence. Other trajectories may,
nevertheless, remain equally plausible given the available information
and require additional data to be further explored. These issues are
even more important when evaluating public health measures, as
models with similar fit may have different responses to control sce-
narios (Kao and Eisenberg, 2018; ten Bosch et al., 2016). Therefore,
care is required when choosing the best model, and the uncertainty in
the model structure must also be taken into account, especially when
the observed data are scarce.

Over the six models that were explored, we also obtained some
insight on the parameters describing transmission. The average annual
R0 in our paediatric population is estimated between 1 and 4 over all

Fig. 8. Projections of the number of observed cases per week and NDSS data, 2014–2015. Simulations with negative binomial noise using parameters from the
MCMC chain associated with the highest posterior, calculated using both NDSS and DENFREE datasets. Posterior median (solid line), 95% credible intervals (shaded
blue area) and NDSS data points (black dots). A. SEIR model. B. Laneri model. C. Pandey model. D. SEIAR model. E. SEIR2 model. F. SEIR2psi model. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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models. These values are within the range observed in urban settings,
suggesting that, despite very different population densities, the rural
dynamics of dengue are not that dissimilar, or that dissimilarities are
hidden by the variations between countries and populations and the
uncertainties due to diverse estimation procedures, as this quantity is
difficult to evaluate using incidence data. The median annual incidence
at primary infection over the period is between 5 and 14, with large
year-to-year variations. The estimated observation rate on surveillance
data varies between models (9–13% in most models and 6–7% in the
model with two interacting strains), indicating in both cases a high
proportion of unreported infections, so that most of the transmission is
due to unobserved infections. These values are in line with the large
underrecognition highlighted in Wichmann et al. (2011), and also with
other studies in South-East Asia (Graham et al., 1999; Thai et al., 2007;

Yoon et al., 2012). These results are also coherent with a recent study
emphasizing that more that 80% of dengue transmission is due to in-
apparent infections (ten Bosch et al., 2018).

This work has however several limitations. Firstly, model compar-
ison was not straightforward between one strain and two strain models,
both statistically and epidemiologically. From the statistical point of
view, the differing number of observations between models led us to
use simulation based-indicators. From the epidemiological point of
view, single strain models, two strain models and observations on four
serotypes may be hard to compare because some indicators cover dif-
ferent interpretations. For example, in single strain models, there is no
distinction in the susceptible class between individuals immune to one
strain only and naive ones, and there is no strain specific reproduction
number or incidence.

Fig. 9. Number of infected and proportion of susceptible individuals. Simulations without negative binomial noise using parameters from the MCMC chain
associated with the highest posterior, calculated using both NDSS and DENFREE datasets. Posterior median (solid line) and 95% credible intervals (shaded blue area).
A. Individuals infected with strain 1 in SEIR2psi model (HI1+HI21). B. Individuals infected with strain 2 in SEIR2psi model (HI2+HI12). C. Proportion of susceptible
individuals in SEIR model (HS/N). D. Proportion of susceptible individuals with immunity to strain 1 in SEIR2psi model (HS1/N). E. Proportion of susceptible
individuals with immunity to strain 2 in SEIR2psi model (HS2/N). F. Proportion of individuals susceptible to both strains in SEIR2psi model (HS/N). (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Annual incidence proportion of first dengue infection (%). Median and credible intervals per year, over 2002–2015, based on simulations without
negative binomial noise using parameters from the MCMC chain associated with the highest posterior, calculated using both NDSS and DENFREE datasets.
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Secondly, the selected model formulations were restricted due to
data availability. In particular, despite the endemicity of the four ser-
otypes in rural Cambodia, we did not consider more than two dengue
serotypes. This was done to limit model complexity, especially in the
number of unknown initial conditions, but has also been previously
shown to adequately describe dengue dynamics (Aguiar et al., 2013).
When two serotypes were considered, we tested only interactions in
terms of enhancement or restriction of infectiousness. We did not in-
clude models with (temporary) cross immunity, because of the too large
increase in the number of parameters with respect to the data. We also
did not include models with a finer spatial scale, even if small scale
transmission plays a decisive role in dengue dynamics (Salje et al.,
2012, 2017). On the one hand, NDSS data were only available at the
district level, which was too large to follow transmission chains and too
small for observing a sufficient number of cases. On the other hand, the
clustered sampling protocol in the DENFREE study abnegated the in-
terpretation of the spatial distribution of community cases. We also
restricted the analysis to children under 15 years old and did not study
the role of adults in transmission.

Thirdly, the projections are not completely able to describe the
observed data, as most models overestimate the dengue epidemic in
2014. Nevertheless, 2014 was a particular year, with the lowest number
of cases in the whole time series, potentially due to particular climatic
conditions. In many countries in South-East Asia, except Malaysia, the
reported incidence was lower than in 2013 (Cheng et al., 2017). Many
provinces of Thailand also reported fewer cases than usual in 2014
(Reich et al., 2016). Our models are deterministic and do not take into
account variations due to demographic stochasticity or environmental
hazards such as climate.

Despite these limitations, combining two datasets permitted us to
overcome some observation biases, such as the fact that surveillance
data did not report serotype and DENFREE data did not reflect the long
term dynamics. Nevertheless, some information is lacking in both da-
tasets, in particular that on seroprevalence. Clearly the parameter es-
timations depend on the immunological status at the beginning of the
simulations, especially in complex multi-strain models. As in our pre-
vious work (Champagne et al., 2016), our modeling study stresses the
importance of seroprevalence data in order to more accurately estimate
the initial conditions of our simulation and reduce identifiability pro-
blems. A seroprevalence survey in Cambodia would be of great value to
evaluate the dengue burden, transmissibility potential and consider
vaccination scenarios.

5. Conclusion

In conclusion, our analyses highlight that two-strain models with
interacting effects better reproduce the long term dengue dynamics, but
they are also difficult to parameterize relying on incidence data only.
On the other hand, incorporating vector and asymptomatic components
seems of limited added-value in this case when seasonality and un-
derreporting are already accounted for. Although model complexity is
framed by the scientific objectives, it must also be driven by the
available data. The unavailability of mosquito data and the difficulty of
observing asymptomatic infections questions their incorporation ex-
plicitly in the models. Another important aspect is related to the com-
parison of models considering the available data. In addition to model
selection based on goodness of fit (Pandey et al., 2013), assessing the
validity of model's outputs in terms of epidemiological features (such as
reproduction numbers, annual incidence, dynamics of the susceptible
classes) is an important step when data are scarce and identifiability
issues are present.
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