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We numerically study the retraction of an axisymmetric viscous filament in a passive surrounding fluid. The analysis focuses on the evolution of the tip velocity, from the early stage of the filament retraction until it reaches its final equilibrium spherical shape. The problem is governed by two control parameters: the Ohnesorge number, Oh, which measures the relative importance of viscous and surface tension effects, and the initial aspect ratio of the filament, A. We investigate the influence of Oh over a wide range of aspect ratios. The small-Oh regime is characterized by the occurrence of a spherical blob at the extremity of the filament. This feature has a key impact on the tip dynamics, which moves with an oscillating velocity whose mean value is close to the Taylor-Culick prediction. The oscillatory behavior of the tip velocity is explained through a simple mass-spring model. This regime is also characterized by the presence of capillary waves, with a phase velocity slightly larger than the Taylor-Culick velocity. Surface oscillations are also observed when the filament reaches its final spherical shape; the corresponding period agrees well with predictions of the linear theory. At intermediate Oh and large A, the tip velocity reaches a value close to the Taylor-Culick prediction. However, for smaller aspect ratios, the maximum tip velocity is much smaller than this prediction, and does not exhibit any oscillation. The recoil dynamics is qualitatively and quantitatively different at high Oh. In this case, the radius of the filament grows uniformly over time and no blob forms, making the tip velocity decrease after a short transient. A self-similar solution is found to closely match the numerical results in this regime.

I. INTRODUCTION

The capillary-driven retraction of liquid ligaments is involved in a broad variety of natural phenomena and industrial applications, such as break-up of ocean spume, atomization in fuel injectors or the ink-jet printing technology, to mention just a few [START_REF] Eggers | Physics of liquid jets[END_REF]. Of particular interest in these applications is the prediction of the ligament's fate: will it break in a series of droplets or maintain its integrity and retract as a single drop. This information may be qualitatively obtained by equating the time needed for the capillary instability to develop to the time required for the filament to recoil [START_REF] Driessen | Stability of viscous long liquid filaments[END_REF]. Clearly, the tip velocity is a key quantity in such a model. However, despite much recent progress in the understanding of the retraction of viscous filaments, the detailed evolution of this velocity remains unclear. Improving the understanding of the mechanisms governing the tip velocity in various flow regimes is the primary goal of this paper.

Taylor [START_REF] Taylor | The dynamics of thin sheets of fluid. III. Disintegration of fluid sheets[END_REF] and Culick [START_REF] Culick | Comments on a ruptured soap film[END_REF] independently showed that the tip velocity of a capillary-driven retracting inviscid planar sheet reaches a steady value, now referred to as the Taylor-Culick velocity. This formula was obtained by balancing surface tension and inertia effects, assuming that the mass of the retracting sheet accumulates in a circular rim.

McEntee and Mysels [START_REF] Mcentee | Bursting of soap films. i. an experimental study[END_REF] confirmed the Taylor-Culick prediction for soap films with a thickness larger than 1µm. In the limit where viscous effects are dominant, Brenner and Gueyffier [START_REF] Brenner | On the bursting of viscous films[END_REF] showed numerically that the retraction process changes dramatically: no rim forms, and the thickness of the entire sheet continuously increases over time. Despite this change of shape, the Taylor-Culick velocity is recovered in the long-time limit [START_REF] Sünderhauf | The retraction of the edge of a planar liquid sheet[END_REF][START_REF] Savva | Viscous sheet retraction[END_REF]. However, recent experiments by Murano and Okumura [START_REF] Murano | Bursting dynamics of viscous film without circular symmetry: The effect of confinement[END_REF] in a Hele-Shaw cell shed a new light on the range of validity of the Taylor-Culick model. In the viscously-dominated regime, the retraction velocity is governed by a capillary-viscous balance rather than a capillary-inertia balance. These results support in some sense the experimental findings of McEntee and Mysels [START_REF] Mcentee | Bursting of soap films. i. an experimental study[END_REF] since the latter did not recover the Taylor-Culick prediction with very thin films (less than 1µm-thick) for which viscous effects dominate.

Pre-stretched axisymmetric filaments are prone to breaking up into a series of droplets provided viscous effects are small enough. Indeed, Notz and Basaran [START_REF] Notz | Dynamics and breakup of a contracting liquid filament[END_REF] and Schulkes [START_REF] Schulkes | The contraction of liquid filaments[END_REF] showed numerically the dramatic effect of the Ohnesorge number Oh on the retraction dynamics. For large Oh, i.e. effects of viscosity in the bulk and at the interface significantly larger than capillary effects, the filament may recoil and turn into a spherical drop without breaking up. In contrast, for small Oh, it frequently breaks into a series of droplets. A large stream of work has focused on the corresponding breakup mechanisms. Recently, Anthony et al. [START_REF] Anthony | Dynamics of contracting filaments[END_REF] performed an extensive numerical investigation of the retraction dynamics over a wide range of Ohnesorge number and initial aspect ratio A, and proposed a classification of the different breakup modes as a function of these two control parameters. The endpinching mechanism [START_REF] Stone | An experimental study of transient effects in the breakup of viscous drops[END_REF][START_REF] Stone | Dynamics of drop deformation and breakup in viscous fluids[END_REF] prevails at low Oh, while the classical Rayleigh-Plateau mechanism dominates at high Oh. For low Oh and intermediate A, a different breakup mode, recently described by Wang et al. [START_REF] Wang | A fate-alternating transitional regime in contracting liquid filaments[END_REF], may occur. This 'capillary wave breakup' mode, results from interactions of capillary waves travelling at the filament surface and originating from its ends. Still for low Oh, Hoepffner and Paré [START_REF] Hoepffner | Recoil of a liquid filament: escape from pinch-off through creation of a vortex ring[END_REF] observed that the filament may escape from end-pinching due to the formation and detachment of a Venturi-like flow inside the blob. This escape from pinching, which may occur at multiple times, results in a discontinuous variation of the critical aspect ratio leading to breakup as a function of Oh [START_REF] Anthony | Dynamics of contracting filaments[END_REF][START_REF] Hoepffner | Recoil of a liquid filament: escape from pinch-off through creation of a vortex ring[END_REF].

The situation in which a filament recedes without breaking has received less attention. Keller [START_REF] Keller | Breaking of liquid films and threads[END_REF] extended the initial analysis of Taylor and Culick for planar sheets to the case of axisymmetric filaments. His model was revisited by Hoepffner and Paré [START_REF] Hoepffner | Recoil of a liquid filament: escape from pinch-off through creation of a vortex ring[END_REF] and Pierson and Magnaudet [START_REF] Pierson | Inertial settling of a sphere through an interface. Part 2. Sphere and tail dynamics[END_REF] who pointed out that the original prediction for the corresponding 'Taylor-Culick' retraction velocity has to be lowered by a factor of √ 2. Notz and Basaran [START_REF] Notz | Dynamics and breakup of a contracting liquid filament[END_REF] showed that the blob velocity does not reach a steady value but rather oscillates about the Taylor-Culick velocity for Oh ≤ 0.1. Recently, Contò et al. [START_REF] Contò | Shape of a recoiling liquid filament[END_REF] made use of a matched asymptotic expansion approach to determine the long-time filament profile. They identified three distinct regions, namely a steady section far from the tip, a growing spherical blob and an intermediate matching region. However, their analysis assumes the blob velocity to be given by the Taylor-Culick prediction, which significantly limits the generality of their conclusions. That the Taylor-Culick prediction provides a poor estimate of the actual tip velocity was recently emphasized in experiments performed by Planchette et al. [START_REF] Planchette | Breakup of asymmetric liquid ligaments[END_REF] using inkjet printer heads. In these experiments, the tip velocities were consistently found to be significantly smaller than this prediction, and an empirical model accounting for viscous effects had to be designed to better fit the measured velocities.

The above review suggests that observations reported in the recent literature seriously question the actual range of validity of the Taylor-Culick prediction as a function of the Ohnesorge number and initial aspect ratio of the filament. The present paper is the first part of a detailed investigation aimed at shedding some light into this question. A companion paper [START_REF] Deka | Revisiting the Taylor-Culick approximation[END_REF] is devoted to the recoil velocity of a viscous planar sheet. In the present contribution, we focus on the recoil velocity of an axisymmetric filament, considering inertia-dominated and viscous-dominated regimes. To address the above question, we use a combination of physical arguments and fully-resolved simulations for three distinct values of the Ohnesorge number, namely Oh = 0.1 (inertia-dominated regime), Oh = 1 for which inertial and viscous effects have a similar magnitude, and Oh = 10 (viscously-dominated regime). The next section of the paper presents the problem under consideration, the foundations of the Taylor-Culick approximation, and the numerical methodology. The open source solver Basilisk is used to solve the axisymmetric governing equations of the two-phase medium with surface tension at the interface. The characteristics of this numerical approach are summarized in Sec. II D. Sections III and IV analyse the computational results obtained for Oh = 0.1 and Oh = {1, 10}, respectively. For low-and high-Oh values, the retraction velocity is compared with analytical models obtained using the longwave approximation of the Navier-Stokes equations pioneered by Eggers and Dupont [START_REF] Eggers | Drop formation in a one-dimensional approximation of the Navier-Stokes equation[END_REF]. Our main findings are summarized in Sec. V. We consider the retraction of a Newtonian viscous filament with initial length 2L 0 immersed in another Newtonian viscous fluid. Initially, the filament is assumed to be a long cylindrical column of radius R 0 with semi-spherical ends, referred to as tips, and a mid-section located in the plane z = 0 (Fig. 1). We assume that both fluids are initially at rest. In real experiments, e.g. atomization of a jet, the filament has a more complex initial shape and the velocity within it is nonzero. Nevertheless this simple initial configuration, already widely used in previous investigations [START_REF] Notz | Dynamics and breakup of a contracting liquid filament[END_REF][START_REF] Schulkes | The contraction of liquid filaments[END_REF][START_REF] Anthony | Dynamics of contracting filaments[END_REF], provides a reference starting point to understand more realistic situations. Influence of the initial shape on the successive stages of the dynamics is discussed in Appendix A. The inner and outer fluids have densities ρ and ρ s and dynamical viscosities µ and µ s , respectively, and their common interface has an interfacial tension γ. The problem is characterized by four dimensionless parameters: the geometrical aspect ratio A = L 0 /R 0 , the Ohnesorge number Oh = µ/ √ ρR 0 γ, and the viscosity and density ratios ρ s /ρ and µ s /µ, respectively. To encompass both viscous-capillary and inertia-capillary regimes, the Ohnesorge number is selected in the range 0.1 ≤ Oh ≤ 10. The lowest limit, Oh = 0.1 is chosen to avoid complete pinching of the filament. The aspect ratio is varied in the range 5 ≤ A ≤ 40, which makes the long-wave approximation developed in [START_REF] Eggers | Drop formation in a one-dimensional approximation of the Navier-Stokes equation[END_REF] legitimate.

II. PROBLEM AND METHODS

A. Problem description

r z R0 R(z, t) Rn(t) R b (t) L0 L(t)
Although a surrounding fluid is always present in experiments [START_REF] Mcentee | Bursting of soap films. i. an experimental study[END_REF][START_REF] Murano | Bursting dynamics of viscous film without circular symmetry: The effect of confinement[END_REF][START_REF] Hoepffner | Recoil of a liquid filament: escape from pinch-off through creation of a vortex ring[END_REF][START_REF] Planchette | Breakup of asymmetric liquid ligaments[END_REF], its effects are not considered in most available numerical studies [START_REF] Notz | Dynamics and breakup of a contracting liquid filament[END_REF][START_REF] Schulkes | The contraction of liquid filaments[END_REF]. An exception is Song and Tryggvason [START_REF] Song | The formation of thick borders on an initially stationary fluid sheet[END_REF] who considered a retracting sheet in the small-Oh regime. For ρ s /ρ ≤ 0.1 and µ s /µ ≤ 0.1, they found the effect of the surrounding fluid to be minor. In the present work, the viscosity and density ratios are chosen such that the surrounding fluid has no influence on the retraction velocity. For this purpose, a density ratio ρ s /ρ = 0.01 and a viscosity ratio µ s /µ = 0.001 are selected. The same density ratio was used in [START_REF] Hoepffner | Recoil of a liquid filament: escape from pinch-off through creation of a vortex ring[END_REF] with a numerical approach similar to the one employed here.

B. Scaling analysis for a slender filament

Before performing a parametric numerical study, it is useful to define some characteristic quantities related to the retraction process. A suitable framework is the long-wave model derived by Eggers and Dupont [START_REF] Eggers | Drop formation in a one-dimensional approximation of the Navier-Stokes equation[END_REF]. Assuming that the drop is slender (i.e. its current radius R(z, t) and length L(t) are such that R L), and neglecting effects of the surrounding fluid, the governing equations may be reduced to a pair of partial differential equations, namely

∂R 2 ∂t + ∂u z R 2 ∂z =0 ( 1 
)
∂u z ∂t + u z ∂u z ∂z = - γ ρ ∂κ ∂z + 3 µ ρR 2 ∂ ∂z R 2 ∂u z ∂z . (2) 
In ( 1) and ( 2), u z is the axial fluid velocity and κ denotes the local mean curvature whose definition reads

κ = 1/R 1 + (∂R/∂z) 2 1/2 - ∂ 2 R/∂z 2 1 + (∂R/∂z) 2 3/2 . (3) 
To leading order, κ tends toward 1/R when R/L → 0. Except for the mean curvature κ, the above set of equations is the lowest-order result of an asymptotic expansion of the axisymmetric Navier-Stokes equations with respect to the radial coordinate [START_REF] Eggers | Drop formation in a one-dimensional approximation of the Navier-Stokes equation[END_REF]. The longitudinal velocity u z does not depend on the radial coordinate, while the radial velocity is assumed to be small but nonzero. To make this model valid in the tip vicinity, where the slope of the interface is very large, the full expression (3) of κ is employed in (2), instead of its lowest-order approximation κ ≈ 1/R. This combination is not the result of a formal asymptotic procedure, as the flow within the filament remains essentially one-dimensional. Nevertheless, the above model successfully describes the breakup of a liquid jet and the release of a drop from a circular orifice [START_REF] Eggers | Drop formation in a one-dimensional approximation of the Navier-Stokes equation[END_REF], as well as the retraction of a liquid ligament for Oh = 1 [START_REF] Notz | Dynamics and breakup of a contracting liquid filament[END_REF]. For Oh = 0.01, the latter authors pointed out that this model is unable to capture the pinching location. Indeed the occurrence of a vortex ring (which cannot be predicted in the framework of the long-wave approximation due to the limitation evidenced above) makes the ligament escape from pinch-off, as evidenced by [START_REF] Hoepffner | Recoil of a liquid filament: escape from pinch-off through creation of a vortex ring[END_REF]. In the present investigation, Oh is chosen large enough to prevent the occurrence of this phenomenon.

Equation ( 2) is normalized by defining dimensionless (starred) quantities as

u z = U u * z , κ = κ * /R 0 , z = L 0 z * , R = R 0 R * and t = T t * = (L 0 /U )t * .
The characteristic scale U for the velocity is a priori unknown and must be determined a posteriori. The dimensionless form of (2) then becomes

ρR 0 U 2 γ ∂u * z ∂t * + u * z ∂u * z ∂z * = - ∂κ * ∂z * + µU γA 3 R * 2 ∂ ∂z * R * 2 ∂u * z ∂z * . (4) 
In ( 4) the capillary term is chosen of order unity since it drives the whole motion in the regimes considered hereinafter. Two distinct asymptotic regimes take place when either inertia or viscous effects are negligible. If inertia effects balance the capillary force, (4) implies

U ≡ U i = (γ/(ρR 0 )) 1/2 , (5) 
which is the usual Taylor-Culick velocity [START_REF] Taylor | The dynamics of thin sheets of fluid. III. Disintegration of fluid sheets[END_REF][START_REF] Culick | Comments on a ruptured soap film[END_REF][START_REF] Hoepffner | Recoil of a liquid filament: escape from pinch-off through creation of a vortex ring[END_REF][START_REF] Pierson | Inertial settling of a sphere through an interface. Part 2. Sphere and tail dynamics[END_REF]; the associated time scale is T = At i , with t i = (ρR 3 0 /γ) 1/2 the inertia-capillary time scale. In this regime, (4) may be re-written as

∂u * z ∂t * + u * z ∂u * z ∂z * = - ∂κ * ∂z * + Oh A 3 R * 2 ∂ ∂z * R * 2 ∂u * z ∂z * . (6) 
In ( 6) the viscous term is negligible provided Oh A. Hence with Oh = O(1), inertia effects remain dominant if the initial aspect ratio of the filament is large enough. The second asymptotic limit corresponds to the situation in which viscous effects balance the capillary force. In this case, the characteristic velocity is U = (γ/µ)A = U v A, which is merely the product of the capillary velocity, U v = γ/µ, with the filament aspect ratio. The characteristic time scale is then the viscous-capillary time, i.e. T ≡ t v with t v = (µ/γ)R 0 . Inserting these scalings in (4) yields

A 2 Oh 2 ∂u * z ∂t * + u * z ∂u * z ∂z * = - ∂κ * ∂z * + 3 R * 2 ∂ ∂z * R * 2 ∂u * z ∂z * . (7) 
According to [START_REF] Sünderhauf | The retraction of the edge of a planar liquid sheet[END_REF], inertia is negligible only if Oh A. Hence, even for large Oh, inertia remains significant if the initial aspect ratio is large enough.

C. Foundations of the Taylor-Culick approximation

For future purpose, it is useful to remind the governing set of equations and fundamental assumptions underlying the classical Taylor-Culick prediction. Details may be found in [START_REF] Savva | Viscous sheet retraction[END_REF] for the two-dimensional case, and in appendix C of [START_REF] Pierson | Inertial settling of a sphere through an interface. Part 2. Sphere and tail dynamics[END_REF] for the axisymmetric geometry. In the latter reference it was showed that, provided assumptions to be detailed below are satisfied, integration of (1)-(3) from the symmetry plane (z = 0) to the tip (z = L) yields the evolution of the total momentum of the filament P = πρ

L 0 R 2 u z dz in the form dP dt = γπR(z = 0) = γπR 0 . ( 8 
)
This result is obtained provided (i) µ∂u z /∂z ≈ 0 at z = 0, so that viscous effects have no influence even though viscosity is nonzero; and (ii) the filament radius is uniform far from the tip, making the mean curvature reduce to 1/R 0 in the midplane z = 0. While the former assumption is not severe when the Ohnesorge number is small, it becomes more questionable as Oh increases, since z = 0 is the origin of the extensional flow that takes place along the filament. Assumption (ii) is valid when the tip is far from the symmetry plane i.e. in the early stages of the retraction process, but it cannot hold during the late stages. Assuming in addition that (iii) the entire mass of fluid set in motion by the recoil process feeds a spherical blob in the tip region (see Fig. 1), while the cylindrical body of fluid in between the blob and the symmetry plane stays at rest, implies that P reduces to the blob momentum, M b U b , where M b stands for the mass of fluid enclosed within the blob and U b is the velocity of the blob centre of mass. Assumption (iii) is questionable because a transition region necessarily stands in between the spherical blob with mean curvature 2/R b and the cylindrical body of the filament with mean curvature 1/R [START_REF] Contò | Shape of a recoiling liquid filament[END_REF][START_REF] Gordillo | Asymptotic behavior of a retracting two-dimensional fluid sheet[END_REF]. A final assumption is required to link U b and L(t). Obviously, the simplest connection between the two is achieved by assuming that (iv) the velocity within the blob is uniform, in which case U b = -dL/dt. Actually, the velocity distribution cannot stay uniform, as the growth of the blob implies the existence a source-type flow within it. Nevertheless this assumption may be considered valid provided the blob radius grows at a rate much slower than R -1 0 dL/dt. Using (iii) and (iv), the mass flow rate entering the blob is Ṁb ≈ πρU b R 2 0 . Integrating over time and noting that the initial mass of the blob is 2πρR 3 0 /3 implies that at any time M b (t) = πρR 2 0 (L 0 -L(t)) + 2πρR 3 0 /3. The blob momentum being initially zero, integration of (8) yields

dL dt L 0 -L + 2 3 R 0 + γt ρR 0 = 0 . ( 9 
)
Making use of the initial condition L(t = 0) = L 0 , integration of ( 9) provides the blob velocity as

U b = U i t t 2 + 4 9 t 2 i 1/2 . (10) 

D. Governing equations and numerical method

The variable-density and viscosity Navier-Stokes equations with surface tension are written in the form

∇ • u = 0 , (11) 
ρ ∂u ∂t + u • ∇u = -∇p + ∇ • (2µD) + f γ , (12) 
∂ρ ∂t + ∇ • (ρu) = 0 , (13) 
where u denotes the fluid velocity, p the pressure, D the strain-rate tensor, and f γ is the local density of the capillary force per unit volume. Equations ( 11)-( 13) are solved thanks to the approach implemented in the Basilisk open source code [START_REF] Popinet | A quadtree-adaptive multigrid solver for the Serre-Green-Naghdi equations[END_REF]; see http://basilisk.fr. The corresponding finite-volume spatial discretization makes use of a graded quadtree partitioning. All variables are collocated at the cell center. A piecewise-linear geometrical Volume of Fluid method is used to solve (13) [START_REF] Popinet | An accurate adaptive solver for surface-tension-driven interfacial flows[END_REF]. Time advancement of the viscous term in the momentum equation is achieved with an implicit scheme, while the advection equation is solved using the Bell-Colella-Glaz algorithm [START_REF] Bell | A second-order projection method for the incompressible Navier-Stokes equations[END_REF]. Incompressibility is enforced at the end of the time step through a projection technique. The heat equation and the Poisson equation respectively resulting from the implicit treatment of viscous terms and from the projection technique are solved thanks to a multigrid solver, the relative tolerance of which is chosen to be less than 1 × 10 -5 in all cases. A consistent discretization of the pressure and the capillary force is also used to avoid parasitic currents (see Popinet [START_REF] Popinet | Numerical models of surface tension[END_REF] for more details). Axisymmetric computations are performed on a fixed grid in a cylindrical domain with a square cross section. The outer boundaries are located sufficiently far away from the filament to avoid confinement effects. For this purpose the length of the domain is set to L 0 + 5R 0 (Fig. 2). Rotational symmetry is imposed on the filament axis (r = 0), while standard symmetry conditions are imposed on all other boundaries. The grid is more refined in the central region corresponding to the filament and its immediate surroundings, 0 ≤ r ≤ 3R 0 -4R 0 (depending on the initial aspect ratio), so as to properly describe the flow within the filament and the boundary layers on both sides of the interface. Depending on Oh, at least 20 cells (for large Oh) and up to approximatively 80 cells (for low Oh) per initial filament radius are uniformly distributed in this region. In comparison, 16 radial elements stand along the filament radius in the simulations of Anthony et al. [START_REF] Anthony | Dynamics of contracting filaments[END_REF]. In the outer region, r ≥ 3R 0 -4R 0 , the grid is uniform in the axial (z) direction but the cell size increases with r. More specifically, this size doubles every time r increases by 0.5R 0 , until a maximum cell size of approximatively R 0 /2 is reached. A specific refinement aimed at capturing the filament dynamics in the late stages (i.e. when the tip gets close to the symmetry plane z = 0) is achieved in the region 0 ≤ z ≤ 3R 0 -4R 0 for r ≤ 6R 0 . Figure 2 illustrates these choices in the case A = 5. A specific script used to run the simulations presented in this paper may be found in [START_REF] Pierson | Basilisk script[END_REF].

III. LOW OHNESORGE NUMBER: Oh = 0.1
In what follows we examine the tip velocity of a retracting filament, from the very beginning of the recoil until the stage where the filament has virtually recovered its equilibrium spherical shape. In this section we focus on the low-but-finite value Oh = 0.1, with four initial aspect ratios, A = {5, 10, 20, 40}. In the next section, we shall consider two higher values of the Ohnesorge number, namely Oh = {1, 10}. It must be stressed that under such conditions, the filament is not expected to break up according to the regime map provided by [START_REF] Anthony | Dynamics of contracting filaments[END_REF].

We start by considering the low-but-finite Oh conditions under which viscous effects are expected to play only a secondary role in the blob region during the retraction process. The 'secondary role' terminology must not be misunderstood. Indeed, the simulations in [START_REF] Notz | Dynamics and breakup of a contracting liquid filament[END_REF] and [START_REF] Anthony | Dynamics of contracting filaments[END_REF] reveal dramatic differences in the ultimate fate of filaments with a given A in the range 0 < Oh ≤ 0.1. Nevertheless, as none of the ligaments considered here is expected to break up, this terminology is relevant for the problem on which the present paper focuses. Figure 3 displays the early evolution of the interface. As the filament recedes, most of its surface retains its initial cylindrical shape while a spherical blob forms at the tip, as observed in previous low-Oh investigations, especially the pioneering simulations by Notz and Basaran [START_REF] Notz | Dynamics and breakup of a contracting liquid filament[END_REF]. Thus present low-Oh results support assumptions (ii) and (iii) discussed in Sec. II C. Figure 4 different initial aspect ratios. Numerically, this velocity is obtained by determining the tip position (z = L) using the height function defined in [START_REF] Popinet | An accurate adaptive solver for surface-tension-driven interfacial flows[END_REF], combined with a simple upwind scheme. Except at the very beginning of the recoil, say 0 ≤ t/t i ≤ 0.4, U t is found to be independent from the initial aspect ratio, since all curves collapse onto a master curve. Hence, for small Oh, A does not influence the evolution of U t ≈ U b , as [START_REF] Notz | Dynamics and breakup of a contracting liquid filament[END_REF] predicts. Significant oscillations of the tip velocity are observed at the very beginning of the recoil process, making the initial evolution of U t depart from [START_REF] Notz | Dynamics and breakup of a contracting liquid filament[END_REF]. These oscillations have two distinct origins. First, given the selected initial shape of the ligament, an abrupt 1/R 0 -jump in the mean curvature takes place in the plane where the cylindrical column connects to the hemispherical end. Then, for numerical reasons similar to those discussed in [START_REF] Popinet | An accurate adaptive solver for surface-tension-driven interfacial flows[END_REF] in the case of a static drop, there is a transient imbalance between the computed capillary force evaluated from the prescribed initial shape and the computed pressure gradient. The disturbances resulting from these two sources generate capillary waves which are gradually damped by viscous effects within the ligament. The oscillations observed in Fig. 4 are not specific to the initial geometry selected here. In Appendix A, we show that selecting a different initial shape (corresponding to a prolate spheroidal tip region) also yields the generation of such oscillations. The two evolutions of the tip velocity are found to be markedly different for t t i , but become very close to each other beyond this initial transient. Another indication that this transient does not affect significantly the upcoming behavior is provided by the comparison with results from Notz and Basaran [START_REF] Notz | Dynamics and breakup of a contracting liquid filament[END_REF] obtained with a finite-element discretization. As Fig. 4 shows, the evolution of the tip velocity extracted from the figure 22 of the latter reference (with A = 15) is very close to that observed in the present simulations for t t i .

Another entirely physical mechanism makes [START_REF] Notz | Dynamics and breakup of a contracting liquid filament[END_REF] unable to predict the early evolution of U t . Considering that the blob radius grows uniformly with radial velocity Ṙb , the tip recedes with velocity U b -Ṙb , while the front of the blob recedes with velocity U b + Ṙb , resulting in an entering flow rate πR 2 0 (U b + Ṙb ). At very short times, the blob is still almost a half-sphere, the volume of which changes at a rate 2πR 2 0 Ṙb , implying Ṙb = U b . Hence, radial velocities at the blob surface are initially of the order of U b , making the velocity distribution within the blob significantly not uniform and therefore contradicting assumption (iv) in Sec. II C. Nevertheless, [START_REF] Notz | Dynamics and breakup of a contracting liquid filament[END_REF] is seen to reduce to U b /U i ∼ 3t/(2t i ) in the short-time limit t/t i 1, and the corresponding prediction for the acceleration, Ub = γ/(ρR 2 0 ), closely agrees with the numerical evolution shown in Fig. 4 beyond the initial oscillation period. It is quite surprising that the pre-factor in the right-hand side of (8) and the assumption of an initially spherical blob geometry provide a good estimate of the initial tip acceleration, despite the fact that all conditions required for (8) to hold are not satisfied. This makes us suspect that this agreement is partly fortuitous. Indeed, in Appendix A we show that the initial tip acceleration highly depends on the initial geometry of the tip region. More computations are thus required to properly delineate the effect of the initial geometry of the end region on the initial tip acceleration.

B. Intermediate stage

Beyond the acceleration stage, Fig. 4 reveals a striking characteristics: whatever the filament aspect ratio in the considered range, the long-term tip velocity does not reach the Taylor-Culick prediction U i . Rather this velocity starts to decrease for t 2t i . To further investigate the mechanisms that govern this evolution, it is desirable to introduce a time scale that properly normalizes the duration of the recoil process irrespective of the aspect ratio. Since U t has been found to be independent from A, the relevant time scale is At i ; this is also the time scale ensuring the balance between capillary and inertial effects in [START_REF] Brenner | On the bursting of viscous films[END_REF]. Figure 5 displays the tip velocity from the beginning of the retraction until the moment at which the tip approaches the midplane z = 0. The evolution of the neck radius R n , defined as the minimum radius located just in front of the blob (see Fig. 1), is also displayed. This representation makes new features apparent. For A = 5, the tip velocity reaches a maximum close to 0.9U i and starts decreasing for t/At i ≈ 0.3. In contrast, for A > 10, U t oscillates about an average value which, over the time interval displayed in the figure, is close to 0.9 but slowly increases over time (this is especially clear for A = 40). These observations are in line with those of Notz and Basaran [START_REF] Notz | Dynamics and breakup of a contracting liquid filament[END_REF] who, for the same Oh and A = 15, found the tip velocity to exhibit damped oscillations about an average value U t ≈ 0.83. While the magnitude of the oscillations seen in Fig. 5 does not significantly depend on A, the number of periods increases with A. The frequency of the oscillations is also found to be independent from the aspect ratio when A is large enough. Indeed, once expressed with respect to t i instead of At i , the time period is found to be ≈ 9 and 8.8 for A = 40 and A = 20, respectively. Figure 5 also shows (for A = 40) that this oscillatory behavior is associated with small oscillations in the neck radius, with some phase shift between the tip velocity and neck radius oscillations. The amplitude of the latter is approximately 0.02R 0 . Injecting this value in [START_REF] Mcentee | Bursting of soap films. i. an experimental study[END_REF] as if the radius of the filament were oscillating at every longitudinal position in the same way as the neck, yields oscillations of the tip velocity of the order of 0.01U i , which is typically 2 -3 times smaller than the amplitude observed in Fig. 5. Moreover, the figure reveals that the two quantities approximately oscillate in quadrature, while [START_REF] Mcentee | Bursting of soap films. i. an experimental study[END_REF] predicts that they should oscillate phase-opposed. Hence, while there is little doubt that variations of the tip velocity and oscillations of the neck radius are closely connected, the coupling between them cannot be understood directly through [START_REF] Mcentee | Bursting of soap films. i. an experimental study[END_REF]. In other words, the framework of the Taylor-Culick approximation is too simple to account for this coupling.

The mechanism responsible for the tip oscillations may be understood and quantified through the following simple mass-spring model. From t 0 = t i /3 until t = t i , we assume that the velocity of the blob center of mass is

U b (t) ≈ 3 2 U i t-t0
ti , which corresponds to the dotted line in Fig. 4. Then U b (t) stays close to U i for t i ≤ t ≤ 2t i , beyond which the oscillations set in, starting with a decrease of U b (t) (see Figs. 4 and5). The mass increase of the blob from

t = t 0 up to t = 2t i is πρR 2 0 2ti t0 U b (t)dt = 4π
3 ρR 3 0 . Since the initial mass of the hemispherical blob is 2π 3 ρR 3 0 , its total mass at time t = 2t i has increased to 2πρR 3 0 . Assuming that the blob has reached an almost spherical shape at t = 2t i and keeps it at later times, any further variation of the blob radius by an amount x changes the restoring capillary force in the plane of the forming neck by 2πγx. In the reference frame of the neck, it also changes the tip , a prediction which agrees within 2% with the periods determined from Fig. 5 for A = 20 and 40. Although this excellent agreement is certainly partly fortuitous, given the rough assumptions of the model, this prediction gives a strong support to the mechanism on which this model is grounded. That is, assuming that the variations of the blob radius dictate those of both the tip velocity and the capillary force at the neck for t 2t i is sufficient to predict quantitatively the frequency of the oscillations observed in the former. It is worth noting that the radius of a spherical drop with a volume 2πR 3 0 corresponding to that of the blob at time t = 2t i is (3/2) 1/3 R 0 so that, according to the dispersion relation [START_REF] Wang | A fate-alternating transitional regime in contracting liquid filaments[END_REF] below, its fundamental oscillation frequency is 2 2/3 ≈ 1.63 times larger than Ω. Hence, the tip is found to oscillate with a frequency approximately 40% lower than that of the capillary oscillations of the drop 'equivalent' to the blob. Additional computations with a different initial tip geometry, such as those reported in Appendix A, indicate that the influence of this initial condition extends over a transient that ends in the range 1 t/t i < 2. This suggests that the above conclusions, expected to apply only for t > 2t i , hold irrespective of the details of the initial shape of the filament.

The tip oscillations play the role of a wavemaker and trigger the formation of capillary waves upstream of the growing blob. The propagation of these waves along the cylindrical part of the filament is illustrated in Fig. 6. Positive and negative vortical regions alternate on both sides of the interface, as already noticed by Gordillo et al. [START_REF] Gordillo | Asymptotic behavior of a retracting two-dimensional fluid sheet[END_REF] (for 2D sheets) and Wang et al. [START_REF] Wang | A fate-alternating transitional regime in contracting liquid filaments[END_REF]. The origin of this vorticity pattern is readily understood by noting that the vorticity at the free surface is directly proportional to the product of the axial curvature and tangential velocity [START_REF] Batchelor | An Introduction to Fluid Dynamics[END_REF]. The former changes sign every half wavelength while the latter does not, yielding the observed alternate pattern. It is to be noticed that in the above scenario, alternation of positive and negative vorticity is seen as a consequence of the existence of capillary waves, themselves resulting from tip oscillations. This differs from (but does not contradict) the mechanism suggested in [START_REF] Song | The formation of thick borders on an initially stationary fluid sheet[END_REF] and [START_REF] Wang | A fate-alternating transitional regime in contracting liquid filaments[END_REF], according to which the interaction between the positive vorticity at the blob surface and the negative one in the neck region yields a tertiary vortex carrying positive vorticity upstream of the neck, which imposes a local increase in the radius of the filament. This process being self-repeating, [START_REF] Song | The formation of thick borders on an initially stationary fluid sheet[END_REF] and [START_REF] Wang | A fate-alternating transitional regime in contracting liquid filaments[END_REF] proposed that the alternation of positive and negative vorticity produces the capillary wave train. Thus, what is seen as a consequence of the oscillations of the tip velocity in the mechanism proposed here is considered as the origin of the capillary waves in the aforementioned two studies which ignored these oscillations.

Simulations with A = 20 and A = 40 yield the same wavelength for the capillary waves, λ ≈ 3.25R 0 . With Oh = 0.01 and A = 25, Wang et al. [START_REF] Wang | A fate-alternating transitional regime in contracting liquid filaments[END_REF] also observed capillary waves that keep an almost constant wavelength, λ ≈ 3R 0 . Gathering the two sets of results suggests that the wavelength is independent from the filament aspect ratio when A is large enough, and only weakly depends on Oh for Oh ≤ 0.1. It must be observed that in both cases λ is less than 2πR 0 , the shortest wavelength that may become unstable due to the Rayleigh-Plateau instability. The corresponding inviscid dispersion relation for small stable disturbances [START_REF] Chandrasekar | Hydrodynamic and Hydromagnetic Stability[END_REF] may be written in the form

c U i 2 = (kR 0 ) 2 -1 kR 0 I 0 (kR 0 ) I 0 (kR 0 ) , (14) 
where c(k) is the phase velocity of the disturbance with wavenumber k = 2π/λ and I 0 denotes the zeroth-order Kelvin function. Inserting the observed value of λ in ( 14) yields c ≈ 1.18U i , which suggests that the capillary waves are travelling slightly faster than the tip. This prediction is confirmed quantitatively by comparing the distance travelled by a crest or a trough of the wavetrain in between the top and bottom panels of Fig. 6 with the distance travelled by the tip during the same time lapse. It turns out that the former is approximately 1.17 times larger than the latter. The oscillation period of the capillary waves may be estimated as λ/c ≈ 2.75t i , a value approximatively 3 times smaller that the oscillation period of the tip (8.89t i ). This reinforces our statement that the tip oscillation triggers the formation of capillary waves and not the other way around. 

U i 1 -(6t i /t) 2/3 .
To close the loop, let us finally come back to the origin of the deviation between the evolution of the tip velocity and the Taylor-Culick prediction for t > t i . In the long-term limit t t i , the blob radius R b (t) is much larger than R 0 . The blob volume now results essentially from the cumulated flow through the neck since the beginning of the recoil, so that 4 3 πR 3 b ≈ πR 2 0 U b t, assuming that the blob velocity stayed approximately constant in the meantime. The rate of change of the blob radius then obeys approximately 4πR 2 b Ṙb ≈ πR 2 0 U b which, assuming U b ≈ U i , implies Ṙb ≈ (6t i /t) 2/3 U i . Therefore the tip velocity is expected to approach the Taylor-Culick value following the law

U t (t) = U i -Ṙb (t) ≈ U i 1 -(6t i /t) 2/3
. As Fig. 7 shows, this prediction is in fairly good agreement with the numerical evolutions observed with long filaments. This agreement makes the origin of the deviation U i -U t (t) clear: as far as the growth of the blob induces a significant radial velocity Ṙb , the fluid velocity within the blob cannot be uniform, contradicting assumption (iv ) in the Taylor-Culick argument (see Sec. II C). Sünderhauf et al. [START_REF] Sünderhauf | The retraction of the edge of a planar liquid sheet[END_REF] reported similar observations for a retracting planar sheet in the low-Oh regime. In this case, the tip velocity first reaches a plateau corresponding to U t ≈ 0.8U i , before tending gradually toward U i . So, in all cases, the Taylor-Culick velocity is reached only after the recoil has lasted long enough for the assumption of a uniform velocity within the blob to become realistic. Obviously this requires the initial aspect ratio A to be large enough for the condition t t i to be met without the filament breaking up in the meantime or already collecting into an approximately spherical drop. At this point, it is probably relevant to quote Keller who concluded his extension of the Taylor-Culick model to cylindrical threads in [START_REF] Keller | Breaking of liquid films and threads[END_REF] as follows (using present notations): The present analysis [...] cannot be viewed as a precise theory, but rather as an indication of the way in which the various parameters influence the motion of the edge [...]. However its results are probably asymptotic to the exact hydrodynamic results for gradually varying threads and films for times long compared to some characteristic time. For an initially uniform thread of radius R 0 [...], the characteristic time is t i = (ρR 3 0 /γ) Provided the filament does not break up at some point of the recoil, the final stage of its evolution starts when the dimensionless time t/(At i ) becomes of order unity. Then the filament aspect ratio becomes of O(1) and the surface oscillates before the spherical equilibrium shape is recovered. Figure 8 (top) displays the evolution of the dimensionless tip velocity U t /U i for four different initial aspect ratios. Whatever A, the tip velocity surpasses the Taylor-Culick prediction at some instant of time such that t = O(t i A), reaching values U t /U i ≈ 1.8 before abruptly falling down to U t /U i ≈ -1. These positive and negative peaks in the tip velocity may be interpreted in terms of capillary pressure. This is made clear by comparing the evolution of U t (top row in Fig. 8) and that of the pressure distribution within the filament (bottom row). In the left frame, the latter is made of a quasi-spherical blob connected to what remains of the cylindrical column, the length of which is of O(R 0 ). The capillary pressure inside the blob is approximately constant. In the next two frames, the cylindrical column is gone and a wave starting from the top of the blob and moving toward its axis makes the curvature within the (z, r) plane become locally negative. The increased curvature in the tip region results in a pressure maximum there, yielding a strong increase in the tip velocity. The wave then propagates in the opposite direction (last frame in the bottom row), making the pressure reach a minimum on the axis, which yields a strong decrease in the tip velocity. This process repeats itself but viscous damping makes the oscillation amplitude decrease and the filament eventually relaxes toward its equilibrium spherical shape. The period and decay rate of the observed oscillations may be compared to the classical predictions of the linear Rayleigh-Lamb theory, namely [START_REF] Lamb | Hydrodynamics[END_REF] 

ω l = γ ρR 3 f (l -1)l(l + 2) , β l = µ(l -1)(2l + 1) ρR 2 f ( 15 
)
where l is the considered mode of oscillation in the usual nomenclature of spherical harmonics, ω l and β l are the radian frequency and decay rate of mode l, respectively, and R f is the final equilibrium radius of the filament (R f /R 0 ≈ (3A/2) 1/3 , assuming A 1). For obvious symmetry reasons, only even modes can exist in the present configuration. Moreover, in the early stage of the recoil, the curvature changes sign in the transition region between the cylindrical body of the filament and the blob. Since the surface would keep a positive curvature everywhere if only the mode l = 2 were present, mode l = 4 is necessarily involved. Indeed, expanding the interface position in the (r, z)-plane into spherical harmonics reveals that these two modes dominate the deformation of the interface. More specifically, mode l = 4 is initially dominant but is gradually superseded by mode l = 2. For the latter, predictions (15) yield

T o t i = π 3A 4 , βt i = 5 3 2 A -2/3
Oh . Figure 9 compares the numerical results obtained for t At i with the above predictions. The observed period agrees well with the first of ( 16), even though the oscillation amplitudes are large. The agreement on the decay rate is quite poor for t ≤ 2At i , presumably because the nonlinearities dissipate a substantial part of the kinetic energy of the oscillations. At later times, the oscillation amplitudes are much reduced and the observed decay rate is in better agreement with the predictions provided by the second of ( 16). The same prediction also gives insight into the subtle dependence of the decay rate with respect to A, as observed in Fig. 8. Selecting t i as the time scale, the decay rate is found to be a decreasing function of A. In contrast, normalizing β with At i makes the dimensionless decay rate proportional to A 1/3 . This weak increase of At i β with the filament aspect ratio is the reason why in Fig. 8 the oscillations have a slightly smaller amplitude for A = 40 than for A = 5 at a given dimensionless time.

IV. MODERATE AND HIGH OHNESORGE NUMBERS

A. Oh = 1

Figure 10 displays the evolution of the tip velocity at Oh = 1 for four initial aspect ratios. According to the left panel, the initial acceleration process is only weakly dependent on the aspect ratio, and becomes virtually independent from it for t/t i 0.7. It is strikingly different from the evolution predicted by [START_REF] Notz | Dynamics and breakup of a contracting liquid filament[END_REF]. Indeed, with Oh = 0.1, Fig. 4 indicates that the maximum tip velocity is reached at t/t i ≈ 1.5, while in the present case, it takes twice as long to reach this maximum in the case of the shortest filament, and even longer for the more slender ones. Beyond a short initial transient, say for t/t i 0.5 with A = 40, the computed evolutions for long enough filaments (A ≥ 10) are in excellent agreement with those reported in [START_REF] Notz | Dynamics and breakup of a contracting liquid filament[END_REF] for A = 15. The right panel displays the complete evolution of the tip velocity vs. the dimensionless time At i throughout the 'life' of the filament. For sufficiently high A, the tip velocity almost reaches a plateau where it is close to the Taylor-Culick prediction. In contrast, no such plateau takes place for A ≤ 10. No oscillations are observed during the final stage with such short filaments. Instead, the tip velocity monotonically tends to zero. Only for A ≥ 20 is a reversal of the tip velocity observed, before the filament comes to rest. This might seem paradoxical at first glance, since the second of ( 16) predicts a slight increase of the decay rate with the aspect ratio, once normalized with At i . However, the shape oscillations result from a conversion of kinetic energy into surface energy and vice versa, and the figure indicates that the larger A the larger the maximum of the tip velocity is. Therefore, the longer the filament the larger the available kinetic energy at the beginning of the final short-time prediction [START_REF] Notz | Dynamics and breakup of a contracting liquid filament[END_REF], : numerical results from [START_REF] Notz | Dynamics and breakup of a contracting liquid filament[END_REF] for A = 15.

stage is. This influence of the aspect ratio on the kinetic energy turns out to surpass that on the decay rate, making long filaments more prone to oscillate during the final stage.

B. Early stage of recoil for Oh 1

When the Ohnesorge number is large, the recoil is mostly slowed down by viscous effects rather than inertia. Therefore the tip velocity is primarily dictated by a balance between contributions of viscosity and surface tension, as discussed in Sec. II B. However, starting from rest, the fluid velocity cannot jump abruptly to a quasi-stationary distribution. For this reason, the time rate-of-change term ∂u z /∂t in ( 7) cannot be omitted during the early stage of the recoil. The relevant momentum equation thus reads

∂u z ∂t = - γ ρ ∂κ ∂z + 3 µ ρR 2 ∂ ∂z R 2 ∂u z ∂z . (17) 
To determine the initial evolution of the tip velocity, we follow the approach pioneered by Savva and Bush [START_REF] Savva | Viscous sheet retraction[END_REF] for a retracting planar sheet. To this end, several assumptions are required. (i ) The initial filament is made of a long cylindrical column with a hemispherical end; (ii) the filament may be considered as infinitely long, and its radius remains uniform and constant during the initial stage of the recoil; (iii) the velocity in the hemispherical blob is uniform. (iv ) Last, the filament is set in motion by the 1/R 0 discontinuity in the mean curvature at the matching point between the hemispherical end and the cylindrical column, and this discontinuity persists throughout the initial stage. Equation ( 17) then reduces to

∂u z ∂t = - γ ρR 0 δ(z) + 3 µ ρ ∂ 2 u z ∂z 2 , ( 18 
)
where δ is the Dirac delta function resulting from the discontinuity of the mean curvature, and we provisionally consider that the origin of the z-axis is shifted to the position at which the column connects to the hemispherical end. Integrating ( 18) from z = -ε to z = +ε and considering the limit ε → 0 yields

∂u z ∂z (z = 0 -, t) = - 1 3 γ µR 0 . (19) 
Hence, for z ≤ 0, i.e. within the cylindrical column, (17) reduces to

∂u z ∂t = 3 µ ρ ∂ 2 u z ∂z 2 . ( 20 
)
This governing equation is subject to [START_REF] Contò | Shape of a recoiling liquid filament[END_REF] for z →= 0 -, to the boundary condition u z (z, t) → 0 for z → -∞ (as the fluid is still at rest far from the discontinuity), and to the initial condition u z (z, 0) = 0 for all z < 0. Since the filament is considered infinitely long, its radius R 0 is the only geometrical length scale left in the above problem. Therefore, the time scale involved in the heat equation ( 20) is the diffusive time t d = ρR 2 0 /µ = t 2 i /t v characterizing viscous diffusion at the scale of the filament cross section, with t v = (µ/γ)R 0 the characteristic viscous-capillary time defined in Sec. II B. Since surface tension only appears in the boundary condition [START_REF] Contò | Shape of a recoiling liquid filament[END_REF], t d is a purely diffusive time scale. The solution of the above problem reads [START_REF] Carslaw | Conduction of Heat in Solids[END_REF] 

u z U v = 2 √ 3π t t d exp - z 2 /R 2 0 12t/t d + z/R 0 3 erfc -z/R 0 2 3t/t d , (21) 
with U v = γ/µ. Thus the tip velocity U t = u z (z = 0 -, t) evolves as

U t U v = 2 √ 3π t t d . (22) 
The tip velocity still scales linearly with surface tension but is now inversely proportional to the square root of the fluid viscosity. Figure 11 displays the evolution of the tip velocity in the early stages of the recoil. For 0 ≤ t/t d 5, all curves collapse on the same master curve which is accurately predicted by [START_REF] Eggers | Drop formation in a one-dimensional approximation of the Navier-Stokes equation[END_REF]. In contrast, for t/t d 5, an increasing departure from the theory is observed for the shortest filament (A = 5), the tip velocity of which weakly decreases over time beyond t/t d 12. With A = 10, the evolution of the tip velocity departs from ( 22) only for t/t d 15, while no significant departure is observed for the largest two aspect ratios over the time window shown in the figure. These observations may be rationalized by coming back to [START_REF] Keller | Breaking of liquid films and threads[END_REF] and considering that the filament has actually a finite length. In this case, the time rate-of-change term is of the same order as the viscous term up to a time of O(A 2 t d ) after the recoil starts. Therefore, the longer the filament the larger the time period over which [START_REF] Eggers | Drop formation in a one-dimensional approximation of the Navier-Stokes equation[END_REF] holds, as Fig. 11 confirms.

C. Long-time behavior for Oh 1

Figure 12 displays the evolution of the tip velocity throughout the recoil. Following the analysis performed in Sec. II B, the velocity is normalized by the viscous-capillary scale AU v . Similar to what was observed with Oh = 1, the tip velocity reaches a maximum, say U tm , after the initial transient examined above. However, no plateau is observed here. Instead, the tip velocity starts to decrease just after the maximum is reached. Keeping in mind that AU v /U i = A/Oh, it turns out that U tm ranges from ≈ 0.65U i for the longest filament to ≈ 0.14U i for the shortest one. Hence U tm is much lower than the Taylor-Culick prediction in all cases. For short enough filaments, the recoil is already quasi-steady by the time the maximum is reached. In such cases, U tm scales as AU v , in line with the conclusions of the dimensional analysis. In contrast, U tm /(AU v ) is found to decrease significantly with A for the longest two filaments, an indication that the corresponding stage is not governed by a pure viscous-capillary balance.

In other words, inertia is still important at this stage of the evolution of sufficiently long filaments. This is in line with the scaling analysis performed on [START_REF] Sünderhauf | The retraction of the edge of a planar liquid sheet[END_REF], which led to the conclusion that inertia can only be neglected provided Oh A. A direct consequence of this limitation of the pure viscous-capillary balance is that U tm cannot grow linearly with A for long enough filaments. Instead, the larger the aspect ratio the stronger the influence of fluid inertia. Therefore, for a given Oh and filaments such that A/Oh is not small, the longer the filament the closer the maximum tip velocity is to the Taylor-Culick prediction. Here for instance, U tm /U i increases from ≈ 0.45 for A = 20 to 0.65 for A = 40. Figure 13 displays successive snapshots of the filament surface for an initial aspect ratio A = 10. The initial shape made of a cylindrical column with a hemispherical end is found to survive throughout the 'life' of the filament, suggesting a self-similar evolution. In problems dominated by a viscous-capillary balance, the relevant similarity variables are [START_REF] Eggers | Post-breakup solutions of Navier-Stokes and Stokes threads[END_REF][START_REF] Eggers | Singularities: Formation, Structure, and Propagation[END_REF] 

η = - z γ µ (t + t 0 ) , u z (η) = γ µ U (η), R(η, t) = γ µ (t + t 0 )R(η) , (23) 
where it is assumed that z = 0 corresponds to the tip position and t 0 is the time shift required to ensure that R(z, t = 0) = R 0 far from the tip, i.e. for η → ∞. Inserting the above definitions into the mass and momentum governing equations yields a coupled set of differential equations. Although no closed-form solution can be obtained, it may be shown that, to leading order, R(η) → 1/6 for η → ∞ [START_REF] Eggers | Post-breakup solutions of Navier-Stokes and Stokes threads[END_REF]. Therefore [START_REF] Song | The formation of thick borders on an initially stationary fluid sheet[END_REF] predicts that, far from the tip, the filament radius evolves as Figure 14 shows how this prediction compares with the numerical evolution observed in the midplane z = 0. After an initial transient, the duration of which is only significant for the longest two filaments, the radius of the column is found to increase linearly in time. The corresponding slope closely follows the theoretical prediction [START_REF] Gordillo | Asymptotic behavior of a retracting two-dimensional fluid sheet[END_REF]. Assuming that the blob remains hemispherical and making use of the conservation of the filament volume 2πR 2 (L-R)+4/3πR 3 , the tip velocity (here equal to the blob velocity) is found to be

R(η → ∞, t) = γ µ (t + t 0 ) 6 = R 0 1 + 1 6 t t v . (24) 
dL dt = U v 3 1 6 - A -1/3 (1 + t/(6t v )) 3 . (25) 
Therefore, with U t = -dL/dt, (25) predicts U t /U v → A/3 for t/t v 1, and Figure 15 compares the numerical evolutions of the tip velocity obtained for the four initial aspect ratios with the prediction [START_REF] Popinet | A quadtree-adaptive multigrid solver for the Serre-Green-Naghdi equations[END_REF]. The agreement is excellent for the shortest two filaments, including the estimate of the maximum velocity, which corresponds to the short-time limit of [START_REF] Popinet | A quadtree-adaptive multigrid solver for the Serre-Green-Naghdi equations[END_REF]. The agreement deteriorates as the aspect ratio increases. The larger A the longer it takes for the tip velocity to follow the above viscous-capillary prediction, a direct effect of the persistence of significant inertial effects for long filaments that do not satisfy the condition Oh A.

U t /U v → 72A(t v /t) 3 for t/t v 1, assuming A 1 in both cases.

V. SUMMARY AND CONCLUDING REMARKS

Using fully-resolved numerical simulations, we examined the evolution of the tip velocity U t (t) of a capillary-driven retracting viscous filament over a wide range of values of the Ohnesorge number, i.e. of the relative magnitude of viscous and capillary effects. For small Oh-values, no matter what the initial aspect ratio of the filament is, the Taylor-Culick prediction matches the tip velocity observed beyond the initial acceleration stage pretty well. Only a slight overestimate is noticed, mainly because the velocity within the blob is nonuniform, which contradicts one of the assumptions involved in the Taylor-Culick model. Still at low Oh, oscillations of the tip velocity are observed throughout the recoil process. A simple mass-spring model considering how a change in the blob radius modifies the blob inertia and the capillary restoring force allows the period of these oscillations to be quantitatively predicted. These oscillations trigger the formation of capillary waves which form and propagate slightly faster than the tip at the surface of filaments with a sufficiently large aspect ratio. The final stage of the recoil is characterized by damped oscillations of the filament surface as it relaxes toward its equilibrium spherical shape. Beyond the initial period of their existence, during which their amplitude is large, these oscillations are found to obey predictions of the linear theory corresponding to the fundamental l = 2 mode. For Oh = O(1), viscous effects significantly delay the retraction process. The initial acceleration stage lasts for a longer time than in the low-Oh regime, and the larger A the longer the duration of this first stage. Then the evolution of the tip velocity dramatically depends on the filament aspect ratio. For 'short' filaments, say A 10, U t reaches a maximum significantly lower than the Taylor-Culick value, before decreasing monotonically to zero. In contrast, the tip velocity of 'long' filaments such that A 20 reaches a plateau close to the Taylor-Culick prediction, before decreasing to zero after having changed its sign. This single change of sign during the final stage of the recoil is what is left of the damped oscillations observed during the same period in the low-Oh regime. The filament evolution becomes strikingly different when the Ohnesorge number is made one order of magnitude larger. In this regime, no blob forms and the filament radius grows almost uniformly as the recoil goes on. For short enough filaments, the tip velocity obeys a viscous-capillary scaling and its maximum increases linearly with A. In contrast, inertial effects remain significant during most stages of the recoil of long enough filaments such that A/Oh 1. The dynamics of filaments governed by a viscous-capillary balance was shown to obey a self-similar evolution. The corresponding theoretical solution accurately predicts both the maximum of of the tip velocity (reached during the early stage) and the power law characterizing its decay in the long-time limit.

In real applications, the initial shape of the filament is more complex than the canonical cylindrical column+ hemispherical end geometry considered here [START_REF] Planchette | Breakup of asymmetric liquid ligaments[END_REF]. Therefore one can question the generality of the results reported in the present study, as well as those of previous studies based on the same intial geometry. In the low-Oh regime, the evolutions of U t discussed in Appendix A and Sec. III A show that the initial tip acceleration dramatically depends on the initial geometry and volume of the blob. However, the corresponding dynamics become virtually indistinguishable beyond a time period of the order of the inertia-capillary time scale. This makes the later stages of the evolution of the tip velocity, especially its gradual approach to the Taylor-Culick prediction, robust with respect to slight changes in the initial geometry. The recoil dynamics being essentially driven by inertia and capillary forces in the blob region, details of the boundary condition at the opposite end of the ligament do not matter. The situation is dramatically different when the Ohneorge number is large. In this regime, the self-similar nature of the evolution makes the initial geometry drive entirely the long-term shape of the filament. Moreover, viscous forces being of primary importance, this evolution is influenced by the boundary condition at the opposite end of the tip , i.e. by the elongational strain rate at the position at which the filament is held. This point is discussed in more detail in the companion paper [START_REF] Deka | Revisiting the Taylor-Culick approximation[END_REF] focused on a viscous retracting sheet. 16 for Oh = 0.05.

Figure 16 displays the evolution of the tip velocity for the two different initial end shapes in the case the Ohnesorge number is set to 0.1. The two evolutions exhibit large differences at the beginning of the recoil process, with a much sharper increase in the case of the prolate end. This is no surprise since the two distributions of the interface curvature in the tip region differ. Strong oscillations are observed with both geometries, due to the two sources of disturbances associated with the initial condition (see the discussion in Sec. III A). Nevertheless, both evolutions converge for t t i and only tiny differences subsist beyond t ≈ 1.2t i . To determine how much the above conclusions are influenced by small viscous effects, we repeated the above two computations with Oh = 0.05. The results are displayed in Fig. 17. Again, the initial shape is seen to play a major role during the initial stage of the recoil. The overshoots noticed in the tip velocity within this early period have a larger magnitude than those found with Oh = 0.1, a direct consequence of the weaker viscous damping resulting from the twice as small viscosity. Nevertheless, the two evolutions become very close to each other beyond t/t i ≈ 1.7, although some tiny differences in amplitude and phase remain at later times between the two series of oscillations. Therefore the critical time beyond which the initial geometry does not keep a significant influence on the filament dynamics is found to increase with Oh -1 = t d /t i , where t d is the diffusive time introduced in Sec. IV B. Not unlikely, this increase suggests that the dynamics of long filaments corresponding to very small values of Oh, say Oh = O(10 -2 ) or less, may still be influenced by the initial shape over much longer periods of time. Since break-up is likely to occur through the end-pinching or capillary wave mechanisms at a quite early stage under such extreme conditions [START_REF] Anthony | Dynamics of contracting filaments[END_REF], there is little doubt that the corresponding dynamics remains influenced by the initial shape throughout the 'life' of the filament. Coming back to the flow conditions considered in the present study, the results reported in Figs. [START_REF] Hoepffner | Recoil of a liquid filament: escape from pinch-off through creation of a vortex ring[END_REF] and 17 indicate that the dynamics observed beyond an O(t i )-long initial stage are robust with respect to the choice of the initial shape. This strengthens the validity of the reasoning underlying the Taylor-Culick prediction, as well as the physical
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 1 FIG.1: Sketch of the physical configuration, with the definition of the geometrical and physical parameters used throughout the paper.
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 2 FIG.2: Sketch of the computational domain for A = 5. Each grey region corresponds to a specific level of grid refinement. The cell size varies by a factor of 2 in between two successive levels.
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 3 FIG.3: Successive shapes of a retracting filament with Oh = 0.1 and A = 10 (assuming R 0 = 1). The time step between two successive snapshots is ∆t = 2t i .
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 4 FIG.4: Tip velocity versus time during the early stages of the retraction process for Oh = 0.1 and different initial aspect ratios. -+-: A = 5, -× -: A = 10, - * -: A = 20, --: A = 40, -: prediction (10), --: guide for the eye with slope 3U i /(2t i ), : numerical results from[START_REF] Notz | Dynamics and breakup of a contracting liquid filament[END_REF] for A = 15.

FIG. 5 :

 5 FIG. 5: Tip velocity and neck radius vs. time for Oh = 0.1 and different aspect ratios -+-: A = 5, -× -: A = 10, - * -: A = 20, --: A = 40. : neck radius for A = 40.

FIG. 6 :

 6 FIG. 6: Interface and vorticity contours for Oh = 0.1 and A = 20 at: (a) time t/t i = 10, and (b) time t/t i = 12; the azimuthal vorticity ω θ is normalized with U i /R 0 .

FIG. 7 :

 7 FIG. 7: Tip velocity vs. time for Oh = 0.1 and different initial aspect ratios. - * -: A = 20, --: A = 40, -: U i 1 -(6t i /t) 2/3 .

FIG. 8 :

 8 FIG. 8: Late evolution of the filament for Oh = 0.1 and different aspect ratios. Top row: tip velocity. : A = 5, -× -: A = 10, - * -: A = 20, --: A = 40. Bottom row: distribution of the normalized pressure p/(ρU 2 i ) within the filament for A = 5. Snapshots in the bottom row are taken at time instants (increasing from left to right) identified with a vertical dotted line in the top figure; the time step between two successive images is 0.6t i .

FIG. 9 :

 9 FIG. 9: Characteristics of capillary oscillations during the final stage for Oh = 0.1. Left: period of the oscillations vs. the initial aspect ratio, A; +: Simulation results, -: linear prediction (16) for mode = 2. Right: final decay of the oscillations vs. time; -× -: A = 10, --: A = 40, dotted line: linear prediction (16) for mode l = 2.

FIG. 10 :

 10 FIG. 10: Tip velocity vs. time for a filament with Oh = 1 and different initial aspect ratios. Left: early stage of recoil; right: intermediate and late stages. -+-: A = 5, -× -: A = 10, - * -: A = 20, --: A = 40; -:short-time prediction[START_REF] Notz | Dynamics and breakup of a contracting liquid filament[END_REF], : numerical results from[START_REF] Notz | Dynamics and breakup of a contracting liquid filament[END_REF] for A = 15.

FIG. 11 :

 11 FIG. 11: Tip velocity vs. time for Oh = 10 and different initial aspect ratios during the initial transient. -+-: A = 5, -× -: A = 10, - * -: A = 20, --: A = 40, --: prediction (22).

FIG. 12 :

 12 FIG. 12: Tip velocity vs. time for Oh = 10 and different initial aspect ratios. . -+-: A = 5, -× -: A = 10, - * -: A = 20, --: A = 40.

FIG. 13 :

 13 FIG.13: Successive shapes of a retracting filament with Oh = 10 and A = 10 (assuming R 0 = 1). The time step between two successive snapshots is ∆t = 1.2t v .

FIG. 14 :

 14 FIG. 14: Evolution of the filament radius in the midplane z = 0 for Oh = 10. -+-: A = 5, -× -: A = 10, - * -: A = 20, --: A = 40, --: theoretical prediction (24).

FIG. 15 :

 15 FIG. 15: Evolution of the tip velocity for Oh = 10. -+-: A = 5, -× -: A = 10, - * -: A = 20, --: A = 40; dotted lines: theoretical prediction (25).

FIG. 16 :

 16 FIG. 16: Tip velocity versus time for Oh = 0.1 and A = 20. (left): early stage stage of the recoil process; (right): intermediate stage. --: prolate spheroidal end; - * -: spherical end; -: prediction (10); : numerical results from [10] for A = 15.
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Appendix A: Effect of the initial shape of the filament on the recoil process in the low-Oh regime Tong and Wang [START_REF] Tong | Relaxation dynamics of a free elongated liquid ligament[END_REF] performed numerical simulations of retracting filaments with different initial end shapes. They observed an important influence of the end shape on the likelihood of the filament pinch-off. However, they did not investigate the corresponding potential effects on the tip velocity. With this objective in mind, we performed computations for several additional end shapes in the low-Oh regime. Here we focus on the case where the initial shape of the filament consists in a long cylindrical column ended with a prolate spheroid of half-length 2R 0 and radius R 0 . The initial aspect ratio of the filament is set to A = 20. Thanks to this prolate spheroidal end, the transition from a mean curvature κ = 1/R 0 along to column to a larger curvature at the tip is more gradual than in the case of a spherical end, for which κ jumps abruptly from κ = 1/R 0 to κ = 2/R 0 .