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Abstract

For managing production at the scale of crop fields, maps of
plant pests are used to support farmer decisions. Such maps
are costly to obtain since they require intensive surveys in
the field, most of the time performed by human annotators or
with human-controlled Unmanned Aerial Vehicles (UAVs).
In this paper, we look at the next challenge from an AI plan-
ning point of view: flying fully autonomous UAVs equipped
with online sequential decision-making capabilities for pests
sampling and mapping in crop fields. Following existing
work, we use a Markov Random Field framework to repre-
sent knowledge about the uncertain map and its quality, in or-
der to compute an optimised pest-sampling policy. Since this
planning problem is PSPACE hard, thus too complex to be ex-
actly solved either offline or online, we propose an approach
interleaving planning and execution, inspired by recent works
on fault-tolerant planning. From past observations at a given
time step, we compute a full plan consisting in a sequence of
observed locations and expected observations till the end of
the pest-sampling phase. The plan is then applied until the
number of actual observations that differ from expected ones
exceeds a given threshold, which triggers a new replanning
episode. Our planning method favourably compares on the
problem of weed map construction against an existing greedy
approach – the only one working online – while adding the
advantage of being adapted to autonomous UAVs’ flying time
constraints.

Introduction
Flying UAVs to help farmers map crop fields. An im-
portant tool in precision agriculture for supporting the man-
agement of production in crop fields is a map of pest abun-
dance spatial distribution. However, such maps are costly
to obtain since they require intensive pest sampling in the
field, until now mainly performed by human annotators; un-
der these conditions, the whole field cannot generally be
sampled and a complete abundance map is estimated from
samples in sub areas of the field. Remote sensing tools are
emerging as a promising alternative due to their flexibility to
gather information on large areas. So far, the primary remote
platforms for collecting images in agriculture have been pi-
loted aircraft and satellites. Such platforms are giving way
to Unmanned Aerial Vehicles (UAVs) that provide a better
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spatial and temporal resolution for the image analysis at a
lower cost, and offer an ideal point of view for the acqui-
sition of ground-based data. Moreover, UAVs can operate
below cloud covers – which is impossible for higher altitude
aircraft and satellites – and can be deployed quickly and re-
peatedly, which permits an almost continuous monitoring of
an area. Even with UAVs, a sampling strategy has to be
determined because of the limited flight time, and the exten-
sion of the area to map, generally too big for an exhaustive
monitoring.

Autonomous systems are well-suited to exploit dynamic
information from images and for in-flight optimisation of
navigation between areas to sample. The same operations
cannot be easily performed by piloted UAVs, as computa-
tions and heuristic evaluations to choose the best trajectory
and altitude for optimal pest sampling are generally non triv-
ial. So, the next challenge is to use completely automated
UAVs, with on-board computation capabilities.

On the other side, autonomous UAVs should be deployed
on demand, without heavy logistics as side effects of au-
tonomy capabilities; this includes expensive ground compu-
tational units or hours-long night computations to optimise
exploration strategies before the flight. Therefore, strategy
optimisation must be conducted on-board, during the flight,
at a low computational cost: farmers actually expect auto-
mated techniques to be as easy as possible, with UAVs ready
to be used with no external computations nor solution strate-
gies uploaded to the on-board memory, that may force to
foresee weather conditions several days before the flights.

A decision-theoretic approach based on Markov random
fields. Adaptive sampling techniques have been developed
in the context of manual sampling done by humans, with the
purpose of mapping invasive species or weeds in large areas
(Peyrard et al. 2013; Bonneau et al. 2014). These approaches
rely on a Markov Random Field model (MRF) (Geman and
Geman 1984) of the abundance map to estimate, and on
methods for sequential decision-making under uncertainty.
A map is divided into plots of ground (or sites) and the MRF
enables to model marginal abundance distributions at each
site, which are updated after each new sampled observation.

In (Peyrard et al. 2013), observations result from sampled
sites chosen greedily, without considering the future sam-
pling steps and with no consideration of total sampling bud-



get. As a consequence, this adaptive sampling technique is
rather fast, but does not optimise resources such as remain-
ing flying time, which in turn have an impact on the quality
of the resulting map.

(Bonneau et al. 2014) improved the previous approach by
including in the adaptive sampling design the full sampling
horizon and the sampling budget. By casting this problem
into the framework of Markov Decision Processes (MDPs),
they derived a Reinforcement Learning approach to con-
struct parametric sampling policies. The drawback of this
approach is the very long off-line computation time required
to compute the parameters of the sampling policy (can be
several hours). Therefore, this approach does not match our
needs for on-line and on-board computations as required in
the context of on-demand UAV-based pest sampling with
light logistics.

Moving to a decoupled allocation and replanning ap-
proach. Our objective, in this paper, is to propose a non-
greedy approach for sampling in MRF, improving sampling
quality compared to the greedy approach of (Peyrard et al.
2013), but without requiring as much computation time and
efforts as the RL approach of (Bonneau et al. 2014). In or-
der to achieve this challenging time-constrained objective,
we propose to dissociate the problem of selecting the obser-
vation sites from the one of planning their visiting order.

Therefore, we model the task of finding an efficient sites
visiting sequence as a classical planning problem, and use
a planner to synthesise the sampling strategy based on the
observed values on the ground, while guaranteeing that the
plan is always executable by the UAV given its remaining
flight time. Concretely, from past observations history at a
given time step, we compute a full plan till the end of the
sampling phase, considering that moving and information
gathering actions differ in cost. This plan consists in a se-
quence of locations and expected observations. The plan is
then executed until the number of actual observations that
differ from expected ones exceeds a given threshold. Only
then, a new plan is computed, then executed until its en-
vironmental assumptions become too much violated. This
replanning approach is close in spirit to fault-tolerant plan-
ning (Domshlak 2013) and planning under assumptions (Al-
bore and Bertoli 2006), with the difference that in this prob-
lem, no execution dead ends can occur.

Note that the planning model here is still not a variant of
the well-known travelling salesman problem, even if there
are some points in common; here, the information obtained
when sampling a plot has the side effect of reducing the
expected rewards from neighbouring plots. This influence
is to be considered when producing a visiting order, and a
planner is more suitable to heuristically consider such causal
links: namely, observing a given site prevents from explor-
ing nearby locations because it may not substantially im-
prove the knowledge of the map.

In the following, we first recall the modelling of the prob-
lem of optimal pest sampling for mapping in MRF as de-
scribed in (Bonneau et al. 2014) and explain why the solu-
tion based on MDPs is not suitable for online mapping with
UAVs. We then present our original approach based on in-

terleaving planning and execution. Its performance is em-
pirically illustrated on a problem of weeds sampling in crop
fields, and compares favourably, in terms of quality and re-
source consumption, to the greedy approach, which is the
only existing online solution to this problem.

Modelling UAV-based sampling as a sequential
decision-making problem under uncertainty

We will consider that the crop field to map is divided into a
regular grid of N plots of small area. Observing a plot pro-
vides the weed abundance there (discretised in K classes)
and we assume no measurement error. It is impossible to
use the UAV to acquire an observation in each site, due to
limited battery capacity. Only a sample of the total plots
can be observed, and from this sample we want to provide a
full map of the field by estimating the value at unobserved
sites. To do so, we consider the problem of designing an
adaptive sequence of sampled plots (an adaptive plan) that
maximises the quality of the estimated map, reconstructed
from the gathered observations, under UAV’s physical con-
straints. An adaptive plan implies that the sequence of plots
is not defined beforehand, and the next site where to sample
may depend on the history of previous observations (posi-
tions and values) and it is determined dynamically. We fol-
low the work of (Peyrard et al. 2013) where MRF are used
to model weed abundance maps distributions, and the defi-
nitions of estimation and quality are based on the remaining
uncertainty in the estimated complete map.

MRF modelling of abundance maps
The MRF model for abundance map is defined as follows.
To each site i ∈ V = {1, . . . , N} of the field is attached a
discrete random variable Xi with domain D = {1 . . .K},
where K is the number of abundance classes. The joint dis-
tribution of the whole map X = (X1, . . . , XN ) is assumed
to be expressed as a pairwise MRF: ∀x ∈ DN ,

P(X = x) =
1

Z

N∏
i=1

fi(xi)
∏

(i,j)∈E

fi,j(xi, xj) (1)

The set E is the set of all pairs of order 1 neighbours in the
grid of sites and Z is a normalising constant. The fi andfi,j
are non negative functions called respectively order 1 and
order 2 potential functions. Roughly speaking, the order 1
potential functions weight the relative proportions of the K
abundance classes while the order 2 potential functions en-
code spatial correlation between abundance values at differ-
ent sites. The choice of an appropriate MRF model amounts
to the choice of these potential functions. We will provide
an example of such a choice in the case of weeds maps.

The problem of optimal adaptive sampling in MRF with
an objective of map reconstruction has been modelled in
(Bonneau, Peyrard, and Sabbadin 2012) as the problem of
finding a policy tree that optimises a given criterion. It relies
on the following elements.

Reconstruction. When an output xA is available (for A,
a subset of V ), the Maximum Posterior Marginals (MPM)



criterion, classically used in image analysis, is used to derive
an estimator x∗ of the hidden map x:

x∗ =
{
x∗i
∣∣ i ∈ V, x∗i = argmax

xi∈D
P(xi | xA)

}
.

Note that one of the main difficulties when using the
MPM criterion is to compute the values of all conditional
marginals P(Xi = k|XA = xA). Exact inference algo-
rithms, like junction tree and Monte Carlo methods, cal-
culate exact marginal probability distributions. We tested
such approaches, with the conclusion that only approximate
computation is adapted to our application: the junction tree
algorithm requires too much memory space, while Monte
Carlo methods are overly time consuming. The classical
Loopy Belief-Propagation (LBP) algorithm (Murphy, Weiss,
and Jordan 1999) is often used to approximate inference in
MRF. LBP provides no theoretical guarantees on conver-
gence, even so it is largely used for its good behaviour in
practice and its rapidity. Note that guaranteed approxima-
tions are NP-hard to obtain for marginals computation in
MRF (Roth 1996).

Adaptive sampling policy. In adaptive sampling, the sam-
ple A is chosen sequentially. The sampling sequence is
divided into H steps. Ah ⊆ V is the set of sites ex-
plored at step h ∈ {1, . . . ,H} and xAh is the sample out-
put at step h. The choice of sample Ah depends on the
previous samples and outputs. An adaptive sampling pol-
icy δ = (δ1, . . . , δH) is then defined by an initial sam-
ple A1 and functions δh specifying the sample chosen at
step h ≥ 2, depending on the results of the previous steps:
δh((A1, xA1), . . . , (Ah−1, xAh−1)) = Ah.

The relevant information in a trajectory followed when
applying δ can be summarised by the pair (A, xA), where
A =

⋃
hA

h.

Sample cost. For UAV based sampling, the cost of a tra-
jectory will be directly related to the energy consumption of
the UAV. In the case where one site is sampled at a time, it
is defined as:

c
(
(a1, xa1) . . . , (aH , xaH )

)
= c1(a1, xa1) +

+

H−1∑
h=1

c2(ah, ah+1, xah+1),

with c2(ah, ah+1, xah+1) = d(ah, ah+1) + c1(ah+1, xah+1)
and c1(a, xa) is the energy needed to tell that site a is in
state xa (this energy consumption may depend on the ob-
servation), with d(ah, ah+1) the energy required to fly from
site ah to site ah+1. This energy is related to the distance,
the wind direction and force, etc.

Quality of a sampling policy. The quality of a policy δ is
measured as the expected quality of the estimator x∗ that can
be obtained from δ. In practice, we first define the quality
of a trajectory ((Ah, xAh))h=1..H as a function of (A, xA),
where A =

⋃
hAh:

U
(
A, xA

)
=
∑
i∈V

[
max
xi∈D

{
P(xi | xA)

}]
. (2)

U
(
A, xA

)
can be interpreted as the expectation of the num-

ber of well-classified sites, when allocating their values to
the modes of the marginals P(xi | xA).

We note τδ the set of all possible trajectories that can be
followed by executing δ, which represents a policy tree (see
Fig. 1). The quality of a sampling policy δ is then defined
as an expectation over all possible trajectories:

V (δ) =
∑

((Ah,xAh ))h∈τδ

P
(
xA
)
· U
(
A, xA

)
.

The problem of optimal adaptive sampling is to find the
policy of highest quality under sampling budget constraint :

δ∗ = argmax
c(δ)≤B

V (δ). (3)

Here, c(δ) is defined as the maximum of the costs of all tra-
jectories in τδ , and B is a fixed budget for sampling. In the
UAV case, B is the battery total energy and a policy is ad-
missible only if none of the trajectories it can generate use
more energy than available. Apart from the cost constraint,
our problem is similar to a Partially Observable Markov
Decision Process with terminal rewards U(A, xA), which
generally prevents to solve it online on-board the UAV for
limited-CPU and time reasons. The approximate solution
methods we will describe next allow to verify, on-line, that
the policy currently generated is admissible.

Figure 1: Example of a policy tree for a binary MRF of pres-
ence/absence map. The red dot is the observed site, and Yes/No
branches are the possible observations. A site colour encodes the
value of the marginal probability of presence, that is updated after
each new observation. A plan is a path in this tree representation.

Approximate solution methods
The sampling policy optimisation problem defined above is
too hard to solve exactly for two independent reasons:
• (Bonneau, Peyrard, and Sabbadin 2012) have shown that

it was PSPACE-complete to determine whether there exists
an adaptive sampling policy whose utility is above a given
threshold. Furthermore, representing such a policy tree
takes exponential space in the problem description.



• Computing the MPM for a given sampling observation
is #P-complete and NP-hard to approximate (Roth 1996).
This computational cost has to be paid by any plan-
ning method tackling this problem, which means that we
should opt for an online approach visiting as few states
and evaluating as few actions as possible.
Several approaches have been proposed to approximately

solve this problem, but none seems to fit the needs of our
application-oriented framework. The greedy approach men-
tioned before (Peyrard et al. 2013) fails in considering nei-
ther future sampling steps nor the available sampling bud-
get. A reinforcement learning (RL) type approach (Barto,
Sutton, and Watkins 1989; Bonneau, Peyrard, and Sabbadin
2012), together with a dedicated value-function approxima-
tion method, would require excessive “off-line” computation
resources to solve the RL problem.

A replanning-based approach for efficient pest
sampling and field mapping

The original approach proposed here to solve the optimisa-
tion problem stated above, uses a replanning framework to
generate a pest sampling strategy – in fact a partial MDP
policy – synthesised by means of several calls to a classi-
cal (deterministic) planner. There are mainly three flavours
of this approach. The first variant is purely reactive (Yoon,
Fern, and Givan 2007; Brafman and Shani 2012): it assumes
that the environment is deterministic so that it generates a
plan from the current state of the world which is thrown
away and replaced by a new one as soon as its execution
deviates from the expected state sequence. The second one
relies on the same deterministic relaxation of the environ-
ment, but constructs a beam of plans that are merged into
a partial policy (Teichteil-Königsbuch, Kuter, and Infantes
2010), or helps to optimise a Bellman-based policy (Yoon
et al. 2010). These are not the best candidate variants for
our problem: the first would use a static model of the field,
either too optimistic or too generic, that wouldn’t take into
account the possible observations; the second, on the other
side, would require to compute too many marginals for each
plan, which would take too much time and need too much
computational resource to be used online and on-board the
UAV. The third flavour, which we will rely on next, gener-
ates a single plan from the current state, and executes it like
the first variant, except that the representation of the envi-
ronment is updated when the observations deriving from the
execution of the plan deviate too much from the expected
values. The tolerance to a certain amount of error between
the representation used for planning and the real world is re-
lated to the idea of fault-tolerant planning (Domshlak 2013;
Albore and Bertoli 2006), where a maximum number of un-
expected effects can comply with the planning execution.

The planning problem of reconstructing a pest abundance
spatial distribution map with an UAV is built and executed
in a closed-loop fashion. First, we generate a set of n plots
to sample1 that maximise the expected quality gain, a quan-
tity defined below and derived from the MRF model. Then,

1We decide here to select a number n of plots depending on
the UAV’s autonomy, and on planning performances. Using all

a planner is called to solve the task of finding a trajectory
that minimises the navigation cost while visiting all the n
sampling sites. The synthesised plan is then executed by the
UAV, and the observations collected. We monitor the execu-
tion so to stop it and replan whenever the accumulated dif-
ference between the quality gain observed and the expected
one is too high. In this case, we also update the expected
quality gain for all the sites.

After a given set of observations, (A, xA), we define, for
each variable Xi of the MRF, the expected quality gain as
an optimistic approximation of the increase of the updated
utility U(A ∪ {i}, xA, Xi) − U(A, xA). For a variable Xi,
we define the expected quality gain q̄(Xi, xA) as:

q̄(Xi, xA) = max
k

( ∑
dist(i,j)≤r

max
xj

P(xj |Xi = k, xA)
)

+

−
∑

dist(i,j)≤r

max
xj

P(xj |xA). (4)

A Classical Planning Model for the navigation task
The navigation problem in an unknown field can be
modelled as a deterministic planning model with action
costs. Such model can be characterised as a tuple S =
〈S, s0, SG, A, f, c〉 where S is a finite set of states, s0 ⊆ S
is the initial state, SG is the set of goal states, A is a set of
actions with A(s) denoting the actions in A that are applica-
ble in the state s. An action a applicable in a state s changes
the state to s′ = f(a, s), with f : A× S → S the transition
function. The cost function c for actions is c : A→ R+

0 .
An action sequence π = a0, . . . , an is applicable in a state

s0 if ai ∈ A(si), 0 ≤ i ≤ n, and there exists a sequence of
states s0, . . . , sn+1 , such that si+1 = f(ai, si); in such a
case we say that π achieves sn+1 when executed in s0. π is
a plan for P if it achieves a state g in G, when executed in
the initial state. The cost of a plan π is c(π) =

∑
a∈π c(a).

For the UAV’s navigation problem, the planning space
consists in states encoding an UAV’s pose, and the status
of the sites (observed/not observed). The initial state is
given by the UAV’s initial pose, while the goal is to have
performed an observation in all the sites given in a set that
maximises the expected quality gain. We consider two kinds
of actions: goto actions move the agent between neighbour
sites, and each observation action flags a plot and its neigh-
bours in the field as observed. This causal relation between
observed sites and their neighbours is dictated by the result
of updating a site i in the MRF with an observation: the max
marginal values of the neighbour sites vary more for sites
closer to i. This implies that the quality gain expected from
observing the value of a site is small if it is close to a plot
that has already been observed.

Moving between two adjacent sites has unit cost, which
corresponds to measuring the Manhattan distance for dis-
tant sites, while sampling has a slightly higher cost, as we

possible plots would reduce the problem to visit all the field’s plots
in a given order, which is practically unfeasible, while using only
the best valuated site would end up being very close to the greedy
adaptive sampling technique described above.



consider that stabilising the UAV to take a picture consumes
more resource than flying between two adjacent plots.

Interleaving planning and execution The map recon-
struction task is separated in two clear parts: (1) selection of
observation sites; (2) search of a visiting order that optimises
the flying time constraints of the UAV. This decoupling per-
mits to observe and update the knowledge model within a
robotic platform in real time while moving to the next site.

To guarantee that distance constraints (reflected in the fly-
ing time) are respected, the states that violate the given con-
straints are pruned from the search space, in a very similar
way to what (Ivankovic et al. 2014) do using global numer-
ical state constraints (but without considering them yet in
the heuristic evaluation), or what the planner MBP (Bertoli
et al. 2001) does with problem invariants coded as the
verification of invariant properties in the NuSMV model
checker (Cimatti et al. 2000). To track the distance flown,
we use a numerical variable that is updated along with the
state and which value is monitored at planning-time.

On top of this constraint, replanning occurs when the
quality requirements are not met at execution-time. We il-
lustrate this behaviour in the following pseudo-code:

Algorithm 1: Main (re)planning loop.
1 Function ReplanningLoop(s0):

Input: initial state s0
2 s←− s0;
3 goals←− ∅;
4 repeat
5 goals←− bestPlots();
6 π ←− plan(s, goals);
7 s←− execute(π, s);
8 until π = ∅;

Algorithm 2: Plan execution.
1 Function Execute(π, s′):

Input: plan π, state s′

Output: current state s
2 s←− s′;
3 ō←− ∅;
4 foreach a in π do
5 s←− f(a, s);
6 if isObservation(a) then
7 q̄ ←− updateMRF(sampleResult(a, s));
8 ō←−sampleResult(a, s);
9 if q̄ > ε then /* replanning condition */

10 recalculateQGains(ō);
11 break;

12 return s;

Routine Replanning-loop(init) takes the initial state of the
planning problem as input and obtains n sampling locations
by selecting the sites with the biggest expected quality gain
in the MRF at step 5. This list is set to be the goals of the
planning problem: at step 6 the planner synthesises a plan
consisting in goto and observation actions. Step 7 updates
the current state with the outcome of executing the plan π.

The loop repeats until all the sites are visited, or no plan is
synthesisable under the given constraints (step 8).

Routine Execute(π, s) applies the actions a in the plan π
(step 4), and updates the current state. If a is an observa-
tion action, then the evidence obtained by the observation in
the real world is used to update the MRF (step 6) and the
cumulated difference in expected quality gain q̄, which must
remain smaller than a fixed value ε, otherwise a replanning
episode is triggered, and expected quality gains are recalcu-
lated from the past observation history (step ??).

Empirical evaluation of the platform
We illustrate our online replanning approach on the problem
of sampling for weeds mapping in crop fields. Weeds com-
pete with crop for resources and can be hosts for parasites
and diseases, but they also play an important role in biodi-
versity conservation. To design novel management strate-
gies to maintain weeds and local biodiversity, while control-
ling production, weeds maps are an essential support tool
that help understanding weeds spatial distribution.

We implemented the previously described replanning al-
gorithm within the Robot Operating System (ROS) frame-
work (Quigley et al. 2009), a robotic meta-operating system
that provides hardware abstraction, low-level device control,
implementation of commonly-used functionality, message-
passing between processes, and package management. The
evaluation of marginals in the MRF and the planner are inte-
grated on the same platform, taking advantage of the libDAI
implementation of the LBP algorithm (Mooij 2010), and for
the (re)planning loop, we used the Lightweight Automated
Planning Toolkit (Ramirez, Lipovetzky, and Muise 2014)
run with a Serialized Iterated Width algorithm (Lipovetzky
and Geffner 2012), that we adapted as a ROS independent
planning package.

We ran all empirical evaluations using the MORSE sim-
ulator for academic robotics (Echeverria et al. 2011), which
enables to perform software architecture-in-the-loop (SAIL)
realistic simulations, i.e. to test the exact same functional ar-
chitecture as the one that will be implemented on-board the
real UAV, but replacing the physical sensors and actuators by
simulated data. Interestingly, we can feed simulated sensors
like cameras with real data such as true images, meaning that
the image analysis algorithm can deal with the same kind of
images in the simulation as during the real flight. We get
weeds abundance classes in the field plots from the standard
semantic camera sensor of MORSE (cf. Fig. 2) set to 50mm
focal length. From a planning point of view, SAIL simula-
tions allow us to test the planning algorithm in very realistic
conditions. The memory limit was set to 1GB and the time-
out at 20 minutes, using an Intel Xeon CPU at 3.70GHz.
The relation between the UAV sensors and actuators, and
the ROS nodes is shown in Fig. 3.

The execution within ROS starts with i) the planner syn-
thesising a plan, i.e. an ordered sequence of instructions for
the UAV, ii) the next waypoint to reach is sent to the UAV,
iii) GPS coordinates (the pose) are sent back to the planner
node, so that if an observation site is reached, the relative
data can be gathered from the camera and used both to up-



Figure 2: Platform simulation on MORSE. At the upper right cor-
ner, the UAV’s semantic camera framing weeds.

date the MRF and to check the replanning conditions, and
the cycle continues.

We considered crop fields of size corresponding to an av-
erage crop field. A field was divided into a regular grid of
425 plots. Weeds can be structured into patches and de-
pending on the weed species, the crop and the period of the
year, these patches can be more extended into tillage direc-
tion (Johnson, Mortensen, and Gotway 1996), since disper-
sion is made easier. Therefore, we considered two MRF
models of weeds spatial distribution: an isotropic model
(M1) and its anisotropic version (M2), defined by the order
2 potential functions in Eq.1 that encode spatial correlation.

M1 : log[fi,j(xi, xj)] = β ·
(
1− |xj − xj |

K

)
, β ∈ R

M2 : log[fi,j(xi, xj)] = βt ·
(
1− |xi − xj |

K

)
·1(i,j)∈Et+

+ βo ·
(
1− |xi − xj |

K

)
· 1(i,j)∈Eo , (βt, βo) ∈ R2

where for model M2, Et denotes the set of neighbours sites
in the direction of tillage, while Eo is the set of neighbours
sites in the orthogonal direction.

With these two models, assuming no prior information is
available about a dominant abundance class in the map, we
considered that all order 1 potential functions, fi(xi), are
equal to one. Then, the maximal order 2 weight is given
when neighbouring sites i and j are in the same state, and
this weight decreases when the absolute difference between
xi and xj increases. We considered 4 abundance classes
(K = 4) and the parameters were fixed to the values of
β = 2, and {βt, βo} to {4, 1}, corresponding to realistic
values for weeds maps split in plots of 9m2. Then, using the
Gibbs sampling algorithm (Koller and Friedman 2009), we
generated 150 abundance maps of weeds for model M1 and
for model M2. On each map we applied our online plan-
ning approach and we compared the map estimated from
data sampled during the UAV trajectory with the real one.
Obtaining the expected quality gain as in Eq. 4, for each pos-
sible sample in each site is a costly operation, as it implies

Figure 3: Graph of the ROS nodes interacting during a simulation.
The communication with the sensors and the actuators happens
via messages, here indicated as camera, waypoint (the destination
plot), and pose (the current position of the UAV). Data are pro-
cessed in nodes morse (simulation) and planner node (planning).

generating a new set A of sampling sites; hence we limit
these calculations in two ways. First, when updating the
probability distribution after an observation, we update only
those sites that have their maximum marginal probability af-
fected by more than 1% by the observation; this corresponds
to sites in a radius of 12 m from the plot currently being ob-
served. Second, we elaborate the new expected quality gains
only when the accumulated error εA =

∑
Ai∈A |xAi−x

∗
Ai |,

where xAi and x∗Ai are respectively the observed and the
expected values in site Ai, exceeds a given threshold. The
threshold has been empirically determined as a compromise
between the on-line replanning time and the overall quality
of the reconstructed map, and is fixed here to 0.6 ∗N , with
N the total number of plots in the field. The optimisation of
this threshold is still an open problem. An excessive quality
threshold would result in observations more “useful”, but
would also trigger many replanning episodes, consuming
useful flight time, and finally reducing the total number of
performed observations. Considering a “dynamic” thresh-
old would imply to integrate the remaining execution and
planning time in the planning problem itself (Burns, Ruml,
and Do 2013); an intermediate solution is also possible, us-
ing an architecture permitting to manage time by paralleling
execution and on-board decision, as in (Chanel, Lesire, and
Teichteil-Königsbuch 2014).

For each planning phase, which does not necessarily cor-
respond to a new evaluation of the expected quality gain, we
plan to visit a number n = 21 of sampling sites; this value
corresponds to 5% of the total number of plots in the field.

We compared the performances of our replanning plat-
form to the greedy approach of (Peyrard et al. 2013) on sim-
ulated crop fields. We extracted a reconstructed map at each
5% fraction of the total number of sites being observed, end-
ing when half of the field was sampled. Tables 1 and 2 show
the figures relative to the spatial models M1 and M2 respec-
tively. There, sampling is the percentage of observed sites,
εA/N is the mean difference between the estimated abun-
dance class and the true one, the mean being computed over
all 425 sites and all 150 test fields (a lower εA/N indicates
a better overall quality of the map), CES (for Correctly Esti-
mated Sites) is the mean value of the ratio to N of the sites
estimated to the correct abundance class, replans is the av-



M1 Planning Greedy Greedy-constrained
sampling εA/N CES dist (m) replans εA/N CES dist (m) εA/N CES dist (m)
0% 0.77 0.37 0 0 0.71 0.39 0 0.76 0.37 0
5% 0.71 0.41 540 1 0.66 0.41 3498 0.71 0.41 3648
10% 0.67 0.45 1032 2 0.62 0.45 6219 0.66 0.45 6393
15% 0.63 0.48 1539 4 0.57 0.49 8232 0.61 0.49 8283
20% 0.58 0.52 2094 5 0.52 0.53 10044 0.57 0.53 10410
25% 0.54 0.55 2625 6 0.48 0.56 11829 0.53 0.56 12552
30% 0.49 0.59 3144 7 0.44 0.60 13785 0.48 0.60 14739
35% 0.45 0.62 3699 8 0.41 0.63 15816 0.44 0.63 17211
40% 0.41 0.66 4242 9 0.37 0.66 17784 0.42 0.65 18501
45% 0.40 0.67 4653 15 0.33 0.69 19677 0.42 0.65 18516
50% - - - - 0.42 0.72 21795 0.42 0.65 18516

Table 1: Performances of the planning approach vs. greedy adaptive sampling, on 150 test fields built on the M1 model.

M2 Planning Greedy Greedy-constrained
sampling εA/N CES dist (m) replans εA/N CES dist (m) εA/N CES dist (m)
0% 0.74 0.38 0 0 0.71 0.37 0 0.75 0.37 0
5% 0.72 0.41 537 1 0.70 0.42 3429 0.69 0.42 3630
10% 0.69 0.43 1026 3 0.67 0.45 6297 0.67 0.45 6297
15% 0.66 0.46 1533 4 0.64 0.48 9051 0.63 0.48 8460
20% 0.63 0.48 2091 6 0.60 0.51 10947 0.60 0.51 10551
25% 0.61 0.51 2631 7 0.56 0.54 12789 0.57 0.54 12681
30% 0.58 0.53 3159 8 0.53 0.57 14661 0.54 0.57 14895
35% 0.55 0.55 3780 10 0.49 0.60 16710 0.50 0.60 17322
40% 0.53 0.57 4440 11 0.45 0.63 18774 0.48 0.61 18561
45% 0.42 0.66 4635 15 0.42 0.66 20748 0.48 0.61 18588
50% - - - - 0.38 0.69 23031 0.48 0.61 18588

Table 2: Performances of the planning approach versus greedy adaptive sampling, on 150 test fields built on the M2 model.

erage number of replanning episodes, dist is the travelled
distance in meters. To evaluate the actual quality of the re-
constructed map, we compare it to the real abundance map.
While the quality, measured in terms of εA and CES, is bet-
ter for the greedy approach, it is even so comparable to the
results obtained by the planning platform, which can still
be improved by lowering the threshold for triggering the re-
planning episodes. But most importantly the flying time,
which is measured in terms of the distance flown, is signifi-
cantly smaller with the planning approach.

The sampling driven by the planner generally ends up
when 40% of the plots are observed, while the greedy ap-
proach continues until stopped at 50%. We recall that the
planning model we use encodes the neighbours of an ob-
served site as not worth visiting: the goal is thus reached
when an observation action has been performed in all the
plots or in one of their close neighbours. The result is a
much smaller flying time, for a quality of the map close to
the one obtained by the greedy adaptive sampling algorithm.
We then improved the greedy model to include a similar
modelling of the sampling: when selecting the next-to-visit
site, the close neighbours of sites already visited were ruled
out, even if observing the weed density there would lower
the remaining uncertainty in the estimated complete map.
We show the figures for the distances and the corresponding
quality in Fig.4, comparing the three approaches on model

M1 only (we observed the very same trend with M2), with
a numerical constraint on distance of 4500m, which roughly
corresponds to 20 minutes of flight time.

This greedy-constrained algorithm ends up having similar
quality performance on the final map, even if the quality esti-
mated online is worse. The flown distance however is even-
tually smaller than the original greedy algorithm, and the
sampling process stops when 40-45% of the plots have been
observed, as for the planning approach, even if the flown dis-
tance is still significantly higher compared to it. Crucially,
the replanning approach ends up with a much better map
quality at the distance limit.

The different behaviours in terms of ratio quality/distance
of the two approaches can be ascribed both to the difference
in the visiting sequence, clearly less expensive when using
a planner, and to the selection criterion. Minimising the un-
certainty in the abundance classes in the map generates a
more expensive visiting sequence, in part because the fur-
ther away the sites are from previous observations, the big-
ger the uncertainty on their value is: this yields to paths that
fly the UAV along the borders, away from the middle of the
field. The opposite behaviour can happen when maximising
the expected gain: observing close to the middle of the field
has more chances to bring larger gains from the neighbours
sites; this trend is reduced by the limits we put on sampling
neighbours. Fig.5 shows an execution on a M1 field of the



Figure 4: Plot of quality versus distance for model M1. Dot-
ted line is the initial greedy approach, dashed line is the updated
greedy approach, plain line is the replanning approach. The grey
area shows the distance limit set at 4500m.

planning algorithm. We can see how the UAV samples sites
in small steps order, moving from the bottom to the top, and
lingering in the middle. Long distances are flown when sam-
ples have covered a big part of the area, and when still non
observed sites can bring some small quality gain. In compar-
ison, the trajectory followed using the greedy method would
appear quite disordered because it always moves to the next
most informative site, without considering the distance and
thus ignoring the potential impact on the total number of
sampling sites that can be observed within the time budget.
It is then obvious that such an efficient execution pattern can
be certainly obtained by optimisation techniques.

Conclusions
We have described here a novel AI planning-based approach
to deploy autonomous UAVs on demand without any heavy
logistics, in order to sample pests in a crop field and map
their spatial distribution. Currently, the most common sam-
pling method relies on a fixed choice of sampled plots in
the field, visited by humans that assess the abundance class.
This solution is time consuming and in practice only a lim-
ited number of plots can be sampled. On the contrary, our
approach autonomously produces an estimated map of pest
abundance in the fields. The platform integrates Markov
random fields for knowledge representation, updated at run-
time by the observations of the UAV’s embarked sensors.

AI planning has been recently used with success for UAV
mission planning, i.e. Search-And-Rescue problems with
low-cost quadcopters (Bernardini, Fox, and Long 2014) or
Multi-Target Detection and Recognition with middle-size
UAVs (Chanel, Teichteil-Königsbuch, and Lesire 2013).
While the former application is more oriented towards target
tracking, the latter is focused on dynamic data acquisition
and environmental knowledge optimisation like the applica-
tion we present in this paper. But while they rely on rather
complex POMDP techniques, our approach assumes the use
of small UAVs with limited resources, which requires light

Figure 5: An execution path on the model M1. The square is the
initial pose, the circles are observation sites. Clarity in the stroke
indicates the advance in the execution.

planning capabilities like our determinization-based replan-
ning method. The same authors proposed as well a flexible
replanning framework for probabilistic POMDP-like plan-
ners and robotic architectures (Chanel, Lesire, and Teichteil-
Königsbuch 2014), which could be worth adapted in a near
future to our deterministic fault-tolerant-like approach in or-
der to have a finer control over planning and execution times
as well as replanning strategies.

We have illustrated the planning approach to the problem
of weeds mapping in crop field, on a realistic SAIL simu-
lation platform. When compared to a greedy approach that
selects the next sites to be visited by the UAV without ac-
counting for the future flight duration, we observe that the
planning approach leads to results of similar quality but at
much less cost (measured as the distance covered during the
flight). This means that if the same distance is allocated to
the two approaches, the planner will enable to sample more
plots, and therefore to provide better quality estimated maps.

Another advantage of the planning approach for UAVs,
not yet exploited, is that the flight height can also be adapted
in order to modify the images resolution. One could imagine
starting the pest sampling with low resolution images and
then focusing on areas of particular interest in the field, with
higher resolution images for a better quality map estimation.
We plan to represent such model with hierarchical MRFs, as
a future development of the approach.

The next step is now to test the planning approach in real
field conditions. In particular, the information gathered by
the UAV will not be anymore directly the abundance classes
in the sampled plots, but a true image of the plot. An image
analysis step will be embedded into our approach to estimate
the class from this image. Experiments will be conducted
with an AscTec Firefly UAV for either weeds or phoma stem
canker mapping in sunflower fields.
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