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CRITICAL TIME FOR THE OBSERVABILITY OF
KOLMOGOROV-TYPE EQUATIONS

JÉRÉMI DARDÉ†1 AND JULIEN ROYER†2

Abstract. This paper is devoted to the observability of a class of two-di-
mensional Kolmogorov-type equations presenting a quadratic degeneracy. We
give lower and upper bounds for the critical time. These bounds coincide in
symmetric settings, giving a sharp result in these cases. The proof is based on
Carleman estimates and on the spectral properties of a family of non-selfadjoint
Schrödinger operators, in particular the localization of the first eigenvalue and
Agmon type estimates for the corresponding eigenfunctions.

1. Introduction

This paper is devoted to the study of the observability of two-dimensional
Kolmogorov-type equations with a quadratic degeneracy. Let ``, `´ ą 0. We
set I “s ´ `´, ``r and Ω “ Tˆ I, where T is the one-dimensional torus R{p2πZq.
All along the paper, a generic point in Ω will be denoted by px, yq, with x P T and
y P I.

We consider q P C3pĪ ,Rq such that

qp0q “ 0 and min
yPI

q1pyq ą 0.

In particular, qpyq ‰ 0 for y ‰ 0. The model case is qpyq “ y.

Then, for T ą 0, we consider on Ω the Kolmogorov-type equation
$

’

&

’

%

Btu` qpyq
2Bxu´ Byyu “ 0, on s0, T rˆΩ,

upt, ¨q “ 0, on BΩ, for all t Ps0, T r,

u|t“0 P L
2pΩq.

(1.1)

We are interested in the observability properties of the problem (1.1):

Definition 1.1. (i) We say that (1.1) is observable in time T through an open
subset ω of Ω if there exists C ą 0 such that for any solution u of (1.1) we
have

}upT q}2L2pΩq ď C

ż T

0

}uptq}2L2pωq dt. (1.2)

(ii) We say that (1.1) is observable in time T through an open subset Γ of the
boundary Tˆt´`´, ``u of Ω if there exists C ą 0 such that for any solution
u of (1.1) we have

}upT q}2L2pΩq ď C

ż T

0

}Bνuptq}L2pΓq dt. (1.3)
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2 CRITICAL TIME FOR THE OBSERVABILITY OF KOLMOGOROV-TYPE EQUATIONS

Null-controllability and observability properties of non-degenerate parabolic
equations have been investigated for several decades now, since the pioneering
works [Ego63] and [FR71] which proved independently the null-controllability of
the one-dimensional heat-equation. Then [LR95] and [FI96] independently gener-
alized this result in any dimension, showing that the heat equation is observable
through any (interior or boundary) observation set, in any positive time, in any
geometrical setting.

This is not the case for degenerate parabolic equations, which are a more recent
subject of study. These equations may or may not be observable, depending on
the location and the strength of the degeneracy, the geometrical setting, and the
time horizon T . The case of a degeneracy of the equation at the boundary of the
domain is now fairly well-understood (see [CMV16] and the references therein).
In general, this type of degenerate equations are observable for weak degeneracy,
and are not when the degeneracy becomes too strong.

In the case of interior degeneracy, there is no general theory, and equations are
for the moment studied one after another. Interestingly, the known results show
that, for precise strength of the degeneracy, a minimal time appears, under which
observability is lost.

Among parabolic equations with interior degeneracy, the Grushin equation is
so far the best understood: the two-dimensional case is now almost completely
understood, and some partial results have been obtained in multi-dimensional
settings [BCG14, BMM15, Koe17, BDE20, DK20, ABM20]. Other equations have
also been studied, such as the heat equation on the Heisenberg group [BC17].

Finally, we highlight that a minimal time condition for observability might also
appear for systems of parabolic equations, degenerate or not (see, among others,
[AKBGBdT16, Dup17, BBM20]), for degenerate Schrödinger equations [BS19],
and appears naturally for the wave equation (see [RT74, BLR92]).

Regarding the Kolmogorov equation (1.1), observability properties have already
been investigated in the case qpyq “ y, that is for the system

$

’

&

’

%

Btu` y
2Bxu´ Byyu “ 0, on s0, T rˆΩ,

upt, ¨q “ 0, on BΩ, for all t Ps0, T r,

u|t“0 P L
2pΩq.

(1.4)

It is proved in [Bea14] that a critical time Tc appears for the observability through
an open set of the form ω “ Tˆsa, br if 0 Rsa, br:

Theorem 1.2 ([Bea14]). Let ω “ Tˆsa, br with ´`´ ă a ă b ă ``.

(i) If a ă 0 ă b, then the problem (1.4) is observable through ω in time T for
any T ą 0.

(ii) If a ą 0 there exists Tc ě
a2

2
such that

‚ if T ą Tc then (1.4) is observable through ω,
‚ if T ă Tc then (1.4) is not observable through ω.

The model studied in [Bea14] also includes the equation

Btu` y
γ
Bxu´ Byyy “ 0

with γ “ 1. In that case, it is proved that the problem is observable through any
open set ω, for any T ą 0, generalizing the previous study [BZ09] where the sets
of observation were horizontal strips. Theorem 1.2 corresponds to the case γ “ 2.
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The case γ “ 3 is studied in [BHHR15]. It is proved that if 0 ă a ă b ă `` then
the problem is not observable through Tˆ pa, bq in any time T ą 0.

The fact that the observation domain ω is a horizontal strip of Ω may seem quite
restrictive. However, the recent study [Koe18] shows that it is a quasi-necessary
condition for (1.4) to be observable.

Theorem 1.3 ([Koe18]). Let ω “ ωxˆI, where ωx is a strict open set of T. Then
(1.4) is not observable through ω in any time T ą 0.

Furthermore, it is shown that a minimal time is needed for the system to be
possibly observable for most of observation sets ω.

Theorem 1.4 ([Koe18]). Let ω be an open subset of T ˆ I. Suppose that there
exists x̃ P T and a ą 0 such that

tpx̃, yq, y P p´a, aqu X ω “ H.

Then system (1.4) is not observable through ω in any time T ă a2

2
.

In the present paper, we investigate the observability properties of (1.1) with a
more general coefficient qpyq2, when the domain of observation is the boundary

Γ “ BΩ “ Tˆ t´`´, ``u .
We could similarly consider observation through an open subset ω given by hori-
zontal strips of Ω. Our main result is the following:

Theorem 1.5. We set

Tmin “
1

q1p0q
min

ˆ
ż ``

0

qpsq ds,

ż 0

´`´

|qpsq| ds

˙

,

and

Tmax “
1

q1p0q
max

ˆ
ż ``

0

qpsq ds,

ż 0

´`´

|qpsq| ds

˙

.

There exists Tc P rTmin, Tmaxs such that

(i) if T ą Tc, the problem (1.1) is observable through Γ,
(ii) if T ă Tc, the problem (1.1) is not observable through Γ.

In particular, in any configuration for which Tmax “ Tmin, we obtain the critical
time needed for observability of equation (1.1) to hold. This is in particular the
case for symmetric configurations:

Theorem 1.6. Suppose `´ “ `` and q is odd. Let

Tc “
1

q1p0q

ż ``

0

qpsq ds.

Then

(i) if T ą Tc the problem (1.1) is observable through Γ,
(ii) if T ă Tc the problem (1.1) is not observable through Γ.

Note that in the case qpyq “ y, the critical time is Tc “
`2`
2

. This is the analog

for the observation from the boundary of the time a2

2
which appears in Theorems

1.2 and 1.4. Theorem 1.6 is, up to our knowledge, the first result giving the precise
value of the critical time for the observation of a two-dimensional Kolmogorov-type
equation.
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Remark 1.7. By a classical duality argument, Theorem 1.5 is equivalent to con-
trolability properties for the adjoint equation, with a boundary Dirichlet control
acting on Γ. We refer to [TW09] for details on this equivalence.

Outline of the paper. The article is organized as follows. After this intro-
duction, we give in Section 2 the main ideas for the proof of Theorem 1.5. The
details are then given in the following two sections. In Section 3 we discuss the
well-posedness of the problem (1.1) and we prove some spectral properties for the
non-selfadjoint Schrödinger operator Kn “ ´Byy ` inqpyq2 which naturally ap-
pears in the analysis. We prove Agmon-type estimates for the first eigenfunction,
which gives the negative result for T ă Tmin, and we estimate the decay of the
corresponding semigroup. Finally, in Section 4, we prove a Carleman estimate and
deduce an observability estimate in arbitrarily small time which depends on the
frequency n with respect to x. Together with the decay properties of e´tKn , this
will give the observabililty of (1.1) for T ą Tmax.

2. Strategy of the proof

In this section we describe the strategy for the proof of Theorem 1.5. We
only give the mains ideas, and the details will be postponed to the following two
sections.

2.1. Well-posedness and Fourier transform of the Kolmorgorov equa-
tion. Before discussing the properties of the solutions of (1.1), we check that this
problem is well posed.

Proposition 2.1. Let uo P L
2pΩq. Then there exists a unique

u P C0
`

r0, T s, L2
pΩq

˘

X C0
`

s0, T s, H2
pΩq XH1

0 pΩq
˘

X C1
`

s0, T s, L2
pΩq

˘

which satisfies (1.1) with up0q “ uo.

Notice in particular that the equation is regularizing, so we do not have to im-
pose any regularity on the initial condition to get a solution in the strong sense.

Many argument in our analysis, including the proof of Proposition 2.1, will
be based on a Fourier transform. All along the paper, the Fourier coefficients
are taken with respect to the variable x P T. Given u P L2pΩq, we denote by
un P `

2pZ, L2pIqq the sequence of Fourier coefficients of u:

upx, yq “
ÿ

nPZ

unpyqe
inx, unpyq “

1

2π

ż

T
e´inxupx, yq dx.

The same applies if u (and then the un, n P Z) are also functions of the time t.

For n P Z we consider the problem
$

’

&

’

%

Btun ´ Byyun ` inqpyq
2un “ 0, on s0, T rˆI,

unpt,´`´q “ unpt, ``q “ 0, for t Ps0, T r,

unp0q P L
2pIq.

(2.1)

Then the Fourier coefficients of a solution of (1.1) are given by the solutions of
(2.1).
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Proposition 2.2. Let u be a solution of (1.1) and let un, n P Z, be the corre-
sponding Fourier coefficients. Then for all n P Z we have

un P C
0
`

r0, T s, L2
pIq

˘

X C0
`

s0, T s, H2
pIq XH1

0 pIq
˘

X C1
`

s0, T s, L2
pIq

˘

,

and un is the unique solution of (2.1) with unp0q “ uo,n, where uo,n is the n-th
Fourier coefficient of uo “ up0q.

An important property of the problem (2.1) is the following exponential time
decay.

Proposition 2.3. Let

γ ă
q1p0q
?

2
.

There exists C ą 0 such that for n P Z, a solution un of (2.1) and θ1, θ2 P r0, T s
with θ1 ď θ2, one has

}unpθ2q}
2
L2pIq ď C exp

`

´ 2γ
a

|n|pθ2 ´ θ1q
˘

}unpθ1q}
2
L2pIq .

The proofs of Propositions 2.1 and 2.2 will be given in Section 3.1. Proposition
2.3 will be discussed in Section 3.3.

2.2. Positive result: upper bound for the critical time. We begin the proof
of Theorem 1.5 with the first statement and prove observability for (1.1) when
T ą Tmax.

With the trace theorems, the regularity of the solution ensures that the right-
hand side of (1.3) makes sense, even if it could be equal to `8 if the initial
condition is not regular enough. In fact, we are going to prove the following
stronger result for observability (note that with τ1 chosen positive, the right-hand
side of (2.2) is finite).

Proposition 2.4. Let T ą Tmax and τ1 Ps0, T ´Tmaxr. Let τ2 Psτ1, T s. Then there
exists C ą 0 such that for any solution u of (1.1) we have

}upT q}2L2pΩq ď C

ż τ2

τ1

}Bνuptq}
2
L2pBΩq dt. (2.2)

Obviously, Proposition 2.4 implies (1.3). The fact that we observe during an
arbitrarily small time τ2 ´ τ1 might seem contradictory with the minimal time
condition. It is not the case, since only the state at time T ą Tmax is controled by
the observation on the time interval rτ1, τ2s. As we will see below, the dissipation
effect of the Kolmogorov equation plays a key role in obtaining (2.2). Roughly
speaking, we have to wait long enough for the dissipation to fully play is role, and
inequality (2.2) to be true.

By Proposition 2.2 and the Parseval identity, Proposition 2.4 is equivalent to
an observability estimate for (2.1) uniform with respect to the Fourier parameter
n. In other words, it is equivalent to prove the following result.

Proposition 2.5. Let T , τ1 and τ2 be as in Proposition 2.4. There exists C ą 0
such that for any n P Z and any solution un of (2.1) one has

}unpT q}
2
L2pIq ď C

ż τ2

τ1

`

|Byunpt,´`´q|
2
` |Byunpt, ``q|

2
˘

dt. (2.3)
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Note that it is sufficient to prove (2.3) for n P N. The case n P Z then follows
by complex conjugation of (2.1).

The difficulty in Proposition 2.5 is the uniformity with respect to the parameter
n. For n fixed, it is already known that the one-dimensional heat equation with a
complex-valued potential is observable through the boundary in any positive time:

Proposition 2.6. Let T ą 0 and n P N. Let τ1, τ2 Ps0, T s with τ1 ă τ2. There
exists Cn ą 0 such that for any solution un of (2.1) we have

}unpT q}
2
L2pIq ď Cn

ż τ2

τ1

`

|Byunpt,´`´q|
2
` |Byunpt, ``q|

2
˘

dt. (2.4)

A proof of Proposition 2.6 will be given in Section 4.2. With this result, it is
now enough to prove Proposition 2.5 for n large. To do so, we first obtain a precise
estimate of the constant Cn in the asymptotic n large.

Proposition 2.7. Let τ1, τ2 Ps0, T s with τ1 ă τ2 and

κ ą max

ˆ

1
?

2

ż ``

0

qpsq ds,
1
?

2

ż 0

´`´

|qpsq| ds

˙

“
q1p0q
?

2
Tmax.

There exist n0 P N and C ą 0 such that for n ě n0 and a solution un of (2.1) one
has

}unpτ2q}
2
L2pIq ď C expp2κ

?
nq

ż τ2

τ1

`

|Byunpt,´`´q|
2
` |Byunpt, ``q|

2
˘

dt.

The proof of this proposition is based on carefully constructed Carleman esti-
mates, in the spirit of [BDE20]. We refer to Section 4.4 for the details.

The observability estimate of Proposition 2.7 is valid for any non-trivial interval
of time, but it is not uniform with respect to n. As said above, the dissipation effect
has to be taken into account here. More precisely, the second ingredient for the
proof of Proposition 2.5 is the estimate given by Proposition 2.3, which precisely
counterbalances the loss observed in Proposition 2.7 if we wait long enough.

Proof of Proposition 2.5, assuming Propositions 2.3, 2.6 and 2.7. We choose δ P
s0, 1r so small that

p1` δqTmax ă p1´ δq
2
pT ´ τ1q.

Then we set

κ “ p1` δq
q1p0q
?

2
Tmax, γ “ p1´ δq

q1p0q
?

2
.

Proposition 2.3 applied with θ2 “ T and

θ1 “ min
`

τ1 ` δpT ´ τ1q, τ2

˘

gives a constant C1 ą 0 such that for all n P N and un solution of (2.1) we have

}unpT q}
2
L2pIq ď C1 exp

`

´ 2γ
?
np1´ δqpT ´ τ1q

˘

}unpθ1q}
2
L2pIq.

By Propositions 2.6 and 2.7, there exists C2 ą 0 such that for all n P N and un
solution of (2.1) we have

}upθ1q}
2
L2pIq ď C2 expp2κ

?
nq

ż θ1

τ1

`

|Byupt,´`´q|
2
` |Byupt, ``q|

2
˘

ds.
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Since

κ´ γp1´ δqpT ´ τ1q “
q1p0q
?

2

`

p1` δqTmax ´ p1´ δq
2
pT ´ τ1q

˘

ă 0,

these two inequalities give

}unpT q}
2
L2pIq ď C1C2

ż τ2

τ1

`

|Byupt,´`´q|
2
` |Byupt, ``q|

2
˘

dt,

and the proposition is proved. �

We recall that Proposition 2.5 implies Proposition 2.4 and hence the first state-
ment of Theorem 1.5. Thus, it is enough to prove Propositions 2.3, 2.6 and 2.7 to
get the observability of (1.1) through Γ for T ą Tmax. These proofs are postponed
to Sections 3 and 4.

2.3. Negative result: lower bound for the critical time. In this paragraph
we discuss the second statement of Theorem 1.5 about the non-observability of
(1.1) if T ă Tmin. The proof relies on the construction of a particular family of
solutions of (1.1) for which the estimate (1.3) cannot hold if T ă Tmin. In Section
3, we will prove the following result.

Proposition 2.8. For all n P N, there exist λn P C and ψn P H
2pIq XH1

0 pIq such
that }ψn}L2pIq “ 1,

λn “
?
nq1p0qe

iπ
4 ` o

nÑ`8
p
?
nq, (2.5)

and
`

´ Byy ` inqpyq
2
˘

ψn “ λnψn.

Moreover, for any ε ą 0 there exists C ą 0 such that, for all n P N,

|ψ1np´`´q|
2
` |ψ1np``q|

2
ď Cn exp

´

´
?

2np1´ εqq1p0qTmin

¯

. (2.6)

With this proposition we now prove that we cannot have observability through
Γ in time T ă Tmin.

Proof of Theorem 1.5.(ii), assuming Proposition 2.8. Assume that (1.3) holds. For
m P N, t P r0, T s, x P T and y P Ī we set

umpt, x, yq “ e´λmteimxψmpyq,

where λm and ψm are given by Proposition 2.8. This defines a solution um of (1.1).
Then (1.3) gives

2Repλmq ď C
`

e2TRepλmq ´ 1
˘

´

|ψ1mp´`´q|
2
` |ψ1mp``q|

2
¯

.

Let ε ą 0. By Proposition 2.8 there exists C1 ą 0 such that

p
?

2q1p0q ` op1qq
?
m ď C1m exp

´?
2mq1p0q rT ´ p1´ εqTmin ` op1qs

¯

.

This implies
T ě p1´ εqTmin.

Since this holds for any ε ą 0, this implies that T ě Tmin, and the conclusion
follows. �

3. Spectral properties of the Kolmogorov equation

In this section we prove Propositions 2.1, 2.2, 2.3 and 2.8.
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3.1. Well-posedness and Fourier transform of the Kolmogorov equation.
We begin with the well-posedness of the problems (1.1) and (2.1) for all n P Z.
We also show that if u is a solution of (1.1) then its Fourier coefficients un, n P Z,
are solutions of (2.1).

We set

H1
0,ypΩq “

 

u P L2
pΩq : Byu P L

2
pΩq, upx, `˘q “ 0 for almost all x P T

(

.

By the Poincaré inequality, this is a Hilbert space for the norm defined by

}u}2H1
0,ypΩq

“ }Byu}
2
L2pΩq .

We consider on L2pΩq the operator K defined by

Ku “ ´Byyu` qpyq
2
Bxu

on the domain
DompKq “

 

u P H1
0,ypΩq : Ku P L2

pΩq
(

,

where Ku is understood in the sense of distributions. Similarly, for n P Z we
consider on L2pIq the operator

Kn “ ´Byy ` inqpyq
2, (3.1)

defined on the domain (independent of n)

DompKnq “ H2
pIq XH1

0 pIq. (3.2)

We notice that K0 is just the usual Dirichlet Laplacian on I. In particular, it is
selfadjoint and non-negative. However, the operators K and Kn for n ‰ 0 are not
symmetric. We will show that they are at least accretive. For K this means that

@u P DompKq, Re 〈Ku, u〉L2pΩq ě 0.

In fact, they are even maximal accretive. This means in particular that any z P C
with Repzq ă 0 belongs to the resolvent set of K.

Proposition 3.1. (i) The operator K is maximal accretive on L2pΩq.
(ii) For all n P Z, the operator Kn is maximal accretive on L2pIq.

(iii) Let u P DompKq and let punqnPZ be the Fourier coefficients of u. Then un
belongs to DompKnq for all n P Z and the Fourier coefficients of Ku are the
Knun, n P Z.

Proof. ‚ We begin with the second statement. It is easy to see that for n P Z
and u P DompKnq we have

Re 〈Knu, u〉 “ }u1}2L2pIq ě 0, (3.3)

which means that Kn is accretive. Then Kn is an accretive and bounded pertur-
bation of the selfadjoint operator K0, so it is maximal accretive.
‚ Now let u P DompKq and v “ Ku P L2pΩq. We denote by punqnPZ, pvnqnPZ P
`2pZ, L2pIqq the sequences of Fourier coefficients of u and v, respectively. Let
n P Z, φn P C

8
0 pIq and φ : px, yq ÞÑ einxφnpyq. By the Parseval identity we have〈

un,´φ
2
n ´ inqpyq

2φn
〉
L2pIq

“
1

2π

〈
u,´Byyφ´ qpyq

2
Bxφ

〉
L2pΩq

“
1

2π
〈v, φ〉L2pΩq “ 〈vn, φn〉L2pIq .
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This implies that u2n P L
2pIq (hence un P H

2pIq) and

´u2n ` inqpyq
2un “ vn.

On the other hand, it is clear from the definition of un that unp´`´q “ unp``q “ 0,
so un P DompKnq. Then we can write Knun “ vn. This gives the last statement
of the proposition.
‚ As above we can see that the Fourier coefficients of Byu are the u1n, n P Z.
Then, by (3.3) and the Parseval identity we get

}Byu}
2
L2pΩq “ 2π

ÿ

nPZ

}u1n}
2
L2pIq “ 2πRe

ÿ

nPZ

〈vn, un〉 “ Re 〈v, u〉 “ Re 〈Ku, u〉 . (3.4)

‚ We check that the operator K is closed. Let pumqmPN be a sequence in DompKq
such that um Ñ u and Kum Ñ v in L2pΩq, for some u, v P L2pΩq. In the sense of
distributions we have

´ Byyu` qpyq
2
Bxu “ lim

mÑ`8

`

´Byyum ` qpyq
2
Bxum

˘

“ v P L2
pΩq. (3.5)

For m, p P N we have um ´ up P DompKq, so by (3.4) we have

}um ´ up}
2
H1

0,ypΩq
“ Re 〈Kpum ´ upq, um ´ up〉2

L2pΩq ÝÝÝÝÑmÑ`8
0.

This implies that the sequence pumqmPN has a limit in H1
0,ypΩq, which is necessarily

u. By the trace theorem, we see that um also goes to u in L2pBΩq, so u vanishes
on BΩ. Finally, we have proved that u belongs to DompKq and, by (3.5), Ku “ v.
This proves that K is closed.
‚ By (3.4) the operator K is accretive on L2pΩq. Then, for u P DompKq we have

}pK ` 1qu}2L2pΩq ě }Ku}
2
L2pΩq ` }u}

2
L2pΩq , (3.6)

so pK ` 1q is injective with closed range. Now let v P L2pΩq be such that

@u P DompKq, 〈pK ` 1qu, v〉 “ 0.

Then, in the sense of distributions we have

´Byyv ´ qpyq
2
Bxv ` v “ 0.

As above we can check that the operator K̃ “ ´Byy ´ qpyq2Bx, defined on the
domain

DompK̃q “
!

u P H1
0,ypΩq : K̃u P L2

pΩq
)

,

is accretive. This implies that v “ 0 (in fact, K̃ is the adjoint of K). Thus
RanpK ` 1qK “ t0u and pK ` 1q is invertible. By (3.6), its inverse is bounded.
This proves that ´1 belongs to the resolvent set of K, and hence K is maximal
accretive. �

By the Lummer-Philipps Theorem (see for instance [EN00]), the operator p´Kq
generates a contractions semigroup pe´tKqtě0 on L2pΩq. Given uo P DompKq, the
function u : t ÞÑ e´tKu belongs to C0pR`,DompKqqXC1pR`, L2pΩqq. This gives a
strong solution of (1.1). More generally, for uo P L

2pΩq, the function t ÞÑ e´tKuo
belongs to C0pR`, L2pΩqq. This gives a weak solution of (1.1). The same applies
on L2pIq to Kn and (2.1) for any n P Z. In particular, if un is a solution of (2.1)
then for all t1, t2 P r0, T s such that t1 ď t2 we have

}unpt2q}
2
L2pIq ď }unpt1q}

2
L2pIq . (3.7)
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Now, we show that the solutions of (2.1) for n P Z give the Fourier coefficients
of a solution of (1.1)

Proposition 3.2. Let uo P L
2pΩq. For t ě 0 we set uptq “ e´tKuo P L

2pΩq. We
denote by puo,nqnPZ and punptqqnPZ the Fourier coefficients of uo and uptq, t ě 0,
respectively. Then for all n P Z and t ě 0 we have

unptq “ e´tKnuo,n.

Proof. First assume that uo P DompKq. Let n P Z and t ě 0. By differentiation
under the integral sign and Proposition 3.1 we have in L2pIq, for h ą 0,

unpt` hq ´ unptq

h
“

1

2π

ż

T
e´inx

upt` h, xq ´ upt, xq

h
dx

ÝÝÑ
hÑ0

´
1

2π

ż

T
e´inxKupt, xq dx “ ´Knunptq.

The conclusion follows in this case.
In general, since DompKq is dense in L2pΩq, we can consider a sequence pumo qmPN

in DompKq which converges to uo in L2pΩq. For m P N we denote by umo,n, n P Z,

the Fourier coefficients of umo . Then umo,n goes to uo,n in L2pIq for all n P Z. Then

for n P Z we have by continuity of e´tK and e´tKn in L2pΩq and L2pIq respectively

unptq “
1

2π

ż

T
e´inxpe´tKuoqpxq dx

“ lim
mÑ`8

1

2π

ż

T
e´inxpe´tKumo qpxq dx

“ lim
mÑ`8

e´tKnumo,n

“ e´tKnuo,n.

The proposition is proved. �

Before we can state Theorem 1.5, we still have to check that the right-hand
side of (1.3) makes sense (one would not have this difficulty with observabililty
through an open subset of Ω). To do so, we investigate the regularizing effect of
equation (1.1), and prove that even if the initial condition uo merely belongs to
L2pΩq, the solution is smooth enough for the right-hand side of (1.3) to be well
defined. The proof of this result relies on Proposition 2.3, which will be proved in
Section 3.3 below.

Proposition 3.3. For uo P L
2pΩq and τ ą 0 we have

e´τKuo P H
2
pΩq XH1

0 pΩq Ă DompKq.

Proof. ‚ For t ą 0 we set uptq “ e´tKuo. We denote by uo,n and unptq, n P Z,
the Fourier coefficients of uo and uptq, respectively. For n P Z and t ą 0 we have
unptq “ e´tKnuo,n by Proposition 3.2.
‚ By Proposition 2.3 there exists c ą 0 such that for τ ą 0 and k P N we have

nk }unpτq}L2pIq ď
c

τ 2k
}uo,n}L2pIq . (3.8)

This implies in particular that upτq P C8pT, L2pIqq.
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‚ Let τ ą 0. Assume that uo P C
8
0 pΩq Ă DompK2q. Then u P C1pr0, τ s,DompKqq

and un P C
1pr0, τ s,DompKnqq for all n P Z. Let n P Z. Since pBt `Knqun “ 0 we

have

0 “ Re

ż 2τ

τ

pt´ τq 〈pBt `Knqunptq, Btunptq〉L2pIq dt

“

ż 2τ

τ

pt´ τq }Btunptq}
2
L2pIq dt`

ż 2τ

τ

pt´ τqRe 〈Knunptq, Btunptq〉L2pIq dt.

Since

Re 〈Knunptq, Btunptq〉
“ Re 〈´Byyunptq, Btunptq〉` Re

〈
inqpyq2unptq, Btunptq

〉
ě

1

2

d

dt
〈´Byyunptq, unptq〉´ n }q}28 }unptq} }Btunptq}

ě
1

2

d

dt
Re 〈Knunptq, unptq〉´

n2 }q}4
8
}unptq}

2

2
´
}Btunptq}

2

2
,

with (3.7) this gives

ż 2τ

τ

pt´ τq
}Btunptq}

2

2
dt

ď ´
1

2
Re

ż 2τ

τ

pt´ τq
d

dt
〈Knunptq, unptq〉 dt`

n2τ 2 }q}4
8
}unpτq}

2

4
.

An integration by parts gives

´Re

ż 2τ

τ

pt´ τq
d

dt
〈Knunptq, unptq〉 dt

“ ´τRe 〈Knunp2τq, unp2τq〉`
ż 2τ

τ

Re 〈Knunptq, unptq〉 dt

ď ´
1

2

ż 2τ

τ

d

dt
}unptq}

2 dt

ď
}unpτq}

2

2
´
}unp2τq}

2

2
.

On the other hand, since the function t ÞÑ Btunptq is also a solution of (1.1), its
norm is non-increasing, so

1

2

ż 2τ

τ

pt´ τq }Btuptq}
2 dt ě

τ 2 }Btunp2τq}
2

4
.

Finally, with (3.8) we get

}Btunp2τq}
2
`

2 }unp2τq}
2

τ 2
ď

2 }unpτq}
2

τ 2
` n2

}q}4
8
}unpτq}

2

ď
2 }uo,n}

2

τ 2
`
c2 }q}4

8
}uo,n}

2

τ 4
.

Hence, by the Parseval identity,

}Kup2τq}2 “ }Btup2τq}
2
L2pΩq ď

2 }uo}
2

τ 2
`
c2 }q}4

8
}uo}

2

τ 4
. (3.9)
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‚ Let uo P L
2pΩq and puo,mqmPN be a sequence in C80 pΩq which goes to uo in

L2pΩq. For τ ą 0 we set upτq “ e´τKuo and umpτq “ e´τKuo,m, m P N. Let δ ą 0.
umptq converges to uptq for any t ě 0 and the function t ÞÑ u1mptq has a uniform
limit on rδ,`8r. This implies that the function u belongs to C1ps0,`8r, L2pΩqq.
Then, since ´K is the generator of the semigroup e´tK , uptq belongs to DompKq
for all t ą 0 and u1ptq “ ´Kuptq.
‚ Finally, for uo P L2pΩq and τ ą 0 we have p´Byy ´ qpyq2Bxqupτq P L2pΩq
and Bxupτq P L

2pΩq, so ´Byyupτq P L
2pΩq. Since we also have Bxxupτq P L

2pΩq,
this proves that upτq belongs to H2pΩq. The fact that upτq is also in H1

0 pΩq
is a consequence of the fact that it is in DompKq Ă H1

0,ypΩq, and the proof is
complete. �

3.2. General spectral properties for non-selfajdoint Schrödinger opera-
tors. In the rest of this section, we prove Propositions 2.3 and 2.8. They can both
be rewritten in terms of the operator Kn defined by (3.1)-(3.2).

We have seen in Proposition 3.1 that Kn is a maximal accretive operator on
L2pIq. In particular, the resolvent set of Kn is not empty. And since DompKnq is
compactly embedded in L2pIq, the resolvent of Kn is compact. This implies that
the spectrum of Kn consists of eigenvalues which have finite algebraic multiplici-
ties.

We have already said that Kn generates a contractions semigroup on L2pIq (see
(3.7)). However, this is not enough for Proposition 2.3. For n “ 0, the operator
K0 is selfadjoint and the decay of the corresponding semigroup is given by the
functional calculus. If we denote by λ0 the first eigenvalue of K0, then λ0 is
positive and for all t ě 0 we have

›

›e´tK0
›

›

LpL2pIqq
ď e´tλ0 .

For n ‰ 0, the operator Kn is not selfadjoint, and the link between the exponential
decay of e´tKn and the real parts of the eigenvalues of Kn is not that direct.

The purpose of the rest of this section is then to give some spectral properties
for the non-selfadjoint operator Kn. We are interested in the location of the spec-
trum (and in particular the eigenvalue with the smallest real part), the size of the
resolvent pKn ´ zq´1 for z outside this spectrum (for a non-selfadjoint operator,
the resolvent can have a large norm even for z far from the spectrum) and then
an estimate of the propagator e´tKn for t ě 0.

The properties of the operator Kn will be deduced from analogous results for
the classical complex harmonic oscillators and the complex Airy operators.

With the Agmon estimates (see Paragraph 3.4 below), we will see that for large
n the eigenvectors of Kn associated to “small” eigenvalues should be in some sense
localized close to 0. And near 0 we have

inqpyq2 „ inq1p0q2y2.

Thus, it is expected that, at least for a small spectral parameter, the spectral
properties of Kn for large n should be close to those of the harmonic oscillator

Hn “ ´Byy ` inq
1
p0q2y2, (3.10)
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defined on the domain

DompHnq “
 

u P H2
pRq : yu P H1

pRq, y2u P L2
pRq

(

.

It is known (see for instance [Hel13, §14.4]) that Hn defines for all n P N˚
a maximal accretive operator on L2pRq. Its spectrum consists of a sequence of
(geometrically and algebraically) simple eigenvalues, given by

p2k ´ 1q
?
nq1p0qe

iπ
4 , k P N˚,

and for each k P N˚, a corresponding eigenfunction is given by

y ÞÑ Pkpe
iπ
8 αyqe

´
pαyq2

2
?
2
´
ipαyq2

2
?
2 , α “ n

1
4 q1p0q

1
2 , (3.11)

where Pk is a polynomial of degree k. In particular,

inf
σPSppHnq

Repσq “

?
nq1p0q
?

2
.

This is not enough to get a decay estimate for the propagator e´tHn , t ě 0.

However, it is also known that for γ ă q1p0q
2

there exists c ą 0 such that

sup
Repzqďγ

?
n

›

›pHn ´ zq
´1
›

›

LpL2pRqq ď
c
?
n

(3.12)

(in fact we have more precise resolvent estimates [HSV13, KSTV15]). Then we
deduce (see for instance [EN00] for the theory of semigroups) that there exists
C ą 0 such that for all t ě 0 we have

›

›e´tHn
›

›

LpL2pRqq ď Ce´tγ
?
n. (3.13)

Proposition 2.3 precisely says that we have a similar estimate for the propagator
generated by Kn, while Proposition 2.8 shows that for large n the first eigenvalue
of Kn is close to the first eigenvalue of Hn. The decay of the corresponding eigen-
function has the same form as in (3.11), but it depends on the values of q on the
whole interval I, and not only on its behavior in a neighborhood of 0.

For the proofs, we will also compare Kn to some complex Airy operators. Near
y0 P Iz t0u, the potential inqpyq2 looks like inqpy0q

2 ` 2inqpy0qq
1py0qpy ´ y0q, with

qpy0qq
1py0q ‰ 0. It is then useful to recall the properties of Schrödinger operators

with linear purely imaginary potentials.

Given α P Rz t0u, we consider on L2pRq the operator

Aαu “ ´Byyu` iαyu, (3.14)

defined on the domain

DompAαq “
 

u P L2
pRq : p´u2 ` iαyuq P L2

pRq
(

.

This complex Airy operator is now well understood, see for instance [Hel11, KS15]
and references therein. We notice that for α ą 0 we have

Θ´1
α pAα ´ zq

´1Θα “
1

α
2
3

`

A1 ´ zα
´ 2

3

˘´1
,

where Θa is the unitary operator defined on L2pRq by

pΘαuqpyq “ α
1
6u
`

α
1
3y
˘

.
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Moreover, A´α “ A˚α. Then, from the properties of A1 we deduce the following
result.

Proposition 3.4. (i) The spectrum of Aα is empty for any α P Rz t0u.
(ii) Let γ P R. Then there exists c ą 0 such that for all α P Rz t0u we have

sup
Repzqďγ|α|

2
3

›

›pAα ´ zq
´1
›

› ď
c

|α|
2
3

.

To understand the behavior of Kn near the boundary points ˘`˘, we introduce
the complex Airy operator on R`. For α P Rz t0u we consider on L2pR`q the
operator defined by

A`αu “ ´Byyu` iαyu,

on the domain

DompA`α q “
 

u P L2
pR`q : p´u2 ` iαyuq P L2

pR`q and up0q “ 0
(

.

To prove the following proposition, we use in L2pR`q the same dilation Θa as
above and we apply [Hel11, Lemma 5.1]. For the properties of the Airy function
we refer for instance to [VS04].

Proposition 3.5. (i) Let α ą 0. The spectrum of A`α consists of a sequence of
simple eigenvalues. These eigenvalues are given by

λ`k “ α
2
3 e

iπ
3 |µk| , k P N˚,

where ¨ ¨ ¨ ă µk ă ¨ ¨ ¨ ă µ2 ă µ1 ă 0 are the zeros of the Airy function.

(ii) Let γ ă |µ1|
2

. There exists C ą 0 such that for all α P Rz t0u we have

sup
Repzqďγ|α|

2
3

›

›pA`α ´ zq
´1
›

› ď
c

|α|
2
3

.

Of course, we have similar properties on L2pR´q for the operator

A´α : u ÞÑ ´Byyu` iαyu,

defined on the domain

DompA´α q “
 

u P L2
pR´q : p´u2 ` iαyuq P L2

pR´q and up0q “ 0
(

.

3.3. Resolvent estimates. In this paragraph, we prove Proposition 2.3 (see
Proposition 3.7 below) and the first part of Proposition 2.8, about the eigen-
value λn (see Proposition 3.9). The estimate of a corresponding eigenfunction at
the boundary will be given in the next paragraph.

We prove estimates for the resolvent pKn ´ zq´1 when z has real part smaller
than γ

?
n, with γ as in Proposition 2.3. More precisely, we estimate the difference

between pKn ´ zq´1 and the model resolvent pHn ´ zq´1, in a suitable sense. By
the theory of semigroups, this will give Proposition 2.3. This will also give the
existence of an eigenvalue λn which satisfies (2.5).

To compare pKn ´ zq´1 and pHn ´ zq´1, we follow the ideas of [Hen14]. Our
one-dimensional setting is simpler than the general case considered therein so,
for the reader convenience, we provide a complete proof adapted to our problem.
Notice also that (2.5) is not contained in the results given in [Hen14], where the
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imaginary parts of the eigenvalues are not an issue.

We denote by 1I the operator which maps u P L2pRq to its restriction on I:
1Iu “ u|I P L

2pIq. Then 1˚I maps a function v P L2pIq to its extansion by 0 on R.

Proposition 3.6. (i) Let γ P
‰

0, q
1p0q
?

2

“

. There exist n0 P N˚ and c ą 0 such that

for n ě n0 and z P C with Repzq ď γ
?
n we have z P ρpKnq and

›

›pKn ´ zq
´1
›

›

LpL2pIqq
ď

c
?
n
.

(ii) We have
›

›1˚IK
´1
n 1I ´H

´1
n

›

›

LpL2pRqq “ o
nÑ`8

ˆ

1
?
n

˙

.

Proof. The proof consists in using localized versions of the resolvents of the com-
plex harmonic operator Hn and of Airy-type operators to construct an approx-
imation Qnpzq of the resolvent pKn ´ zq´1. We first introduce suitable cut-off
functions, then we define Qnpzq and finally we check that it is indeed an approxi-
mation of pKn ´ zq´1 up to a uniformly bounded operator. The proposition will
then follow from estimates on Qnpzq. For n P N˚ we set

C´n “
 

z P C : Repzq ď γ
?
n
(

.

‚ For n P N˚ and z P C´n we set

Rnpzq “ 1IpHn ´ zq
´11˚I .

This defines a bounded operator on L2pIq. Our purpose is to prove that Rnpzq
gives an approximate inverse of pKn´zq near 0, in the following sense. We consider

ρ P



1

6
,
1

4

„

,

a cut-off function χ P C80 pR, r0, 1sq supported in I and equal to 1 on a neighbor-
hood of 0, and for n P N˚ and y P Ī we set

χnpyq “ χpnρyq.

Then we set
Tnpzq “ RnpzqχnpKn ´ zq ´ χn.

We prove that Tnpzq extends to a bounded operator on L2pIq and

}Tnpzq}LpL2pIqq ÝÝÝÝÑnÑ`8
0, (3.15)

where the convergence is uniform with respect to z P C´n .
Let u P DompKnq. For n P N˚ we have χnu P DompKnq and 1˚Iχnu P DompHnq.

For y P Ī we set
rpyq “ qpyq2 ´ q1p0q2y2.

Then for z P C´n we have

RnpzqpKn ´ zqχnu “ χnu` inRnpzqrχnu.

This gives

RnpzqχnpKn ´ zqu “ χnu` inRnpzqrχn ´Rnpzqχ
2
nu` 2Rnpzqpχ

1
nuq

1. (3.16)

Since |rpyqχnpyq| À n´3ρ, we have by (3.12)

}nRnpzqrχn}LpL2pIqq À n1´3ρ´ 1
2 ÝÝÝÝÑ

nÑ`8
0.
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We also have
}Rnpzqχ

2
n}LpL2pIqq À n2ρ´ 1

2 ÝÝÝÝÑ
nÑ`8

0.

For the last term we observe that for v P L2pRq we have
›

›BypH
˚
n ´ z̄q

´1v
›

›

2

L2pRq

“ Re
〈
pH˚

n ´ z̄qpH
˚
n ´ z̄q

´1v, pH˚
n ´ z̄q

´1v
〉
L2pRq ` Repzq

›

›pH˚
n ´ z̄q

´1v
›

›

2

L2pRq

À
}v}2L2pRq
?
n

.

Taking the adjoint gives

}RnpzqBypχ
1
nuq}L2pIq ď

›

›pHn ´ zq
´1
Byp1

˚
Iχ
1
nuq

›

›

L2pRq

À n´
1
4 }1˚Iχ

1
nu}L2pRq À nρ´

1
4 }u}L2pIq ,

and (3.15) follows.
‚ Then we consider

ρ̃ P



1` 2ρ

6
,
1´ ρ

3

„

.

In particular, ρ̃ ą ρ. For n P N˚ we denote by νn the integer part of 1`p````´qn
ρ̃,

and for j P t0, . . . , νnu we set

aj,n “ ´`´ ` jδn, δn “
`` ` `´
νn

.

We also consider θ P C80 pRq supported in
‰

´ 2
3
, 2

3

“

, equal to 1 on
“

´ 1
3
, 1

3

‰

and
such that θp´yq “ 1´ θp1´ yq for y P r0, 1s. Then for all y P R we have

ÿ

mPZ

θpy ´mq “ 1.

For n P N˚, j P t1, . . . , νnu and y P Ī we set

θj,npyq “ θ

ˆ

y ´ aj,n
δn

˙

p1´ χnqpyq.

Let Aj,n be defined by

Aj,nu “ ´Byyu` inqpaj,nq
2
` 2inqpaj,nqq

1
paj,nqpy ´ aj,nqu

on the domain
DompAj,nq “

 

u P H2
pRq : yu P L2

pRq
(

.

With the notation (3.14) we have

Aj,n “ τaj,nA2npqq1qpaj,nqτ´aj,n ` inqpaj,nq
2,

where τ˘aj,n is the usual translation operator: pτ˘aj,nuqpyq “ upy¯aj,nq. Thus Aj,n
satisfies the properties of Proposition 3.4 with α “ 2npqq1qpaj,nq. We similarly set

A0,n “ τ´`´A
`

2npqq1qp´`´q
τ`´ ` inqp´`´q

2

and
Aνn,n “ τ``A

´

2npqq1qp``q
τ´`` ` inqp``q

2.

Notice that A0,n is an operator on L2p´`´,`8q and Aνn,n is an operator on
L2p´8, ``q. They satisfy the same properties as the model operators (see Propo-
sition 3.5).
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For j P t1, . . . , νn ´ 1u we set 1j “ 1I . We also denote by 10 the operator which
maps u P L2p´`´,`8q to its restriction on I, and by 1νn the operator which maps
u P L2p´8, ``q to its restriction to I. For n P N˚, z P C´n and j P t0, . . . , νnu we
set

Rj,npzq “ 1j
`

Aj,n ´ z
˘´1

1˚j

and

Tj,npzq “ Rj,npzqθj,npKn ´ zq ´ θj,n.

We proceed as above. For j P t0, . . . , νnu we have

Rj,npzqθj,npKn ´ zqu “ θj,nu` inRj,npzqθj,nrj,nu´Rj,npzqθ
2
j,nu` 2Rj,npzqBypθ

1
j,nuq

where

rj,npyq “ q2
pyq ´ q2

paj,nq ´ 2 py ´ aj,nqq
1
paj,nqqpaj,nq.

Let n P N˚ and j P t0, . . . , νnu be such that θj,n ‰ 0. Then |aj,n| Á n´ρ,

2nq1paj,nqqpaj,nq Á n1´ρ and hence, for z P C´n (in particular Repzq ď γn
1
2 !

n
2
3
p1´ρq), Proposition 3.5 gives

}Rj,npzq}LpL2pIqq À n´
2
3
p1´ρq. (3.17)

Then, as above we have |r̃j,npyqθj,npyq| À n´2ρ̃ so

n }Rj,npzqr̃j,nθj,n}LpL2pIqq À n1´2ρ̃´ 2
3
p1´ρq

ÝÝÝÝÑ
nÑ`8

0.

Moreover,
›

›Rj,npzqθ
2
j,nu

›

›

L2pIq
À n2ρ̃´ 2

3
p1´ρq

}u}L2pIq ,
›

›Rj,npzqpθ
1
j,nuq

1
›

›

LpL2pIqq
À nρ̃´

1
3
p1´ρq

}u}L2pIq .

All these estimates being uniform with respect to j P t0, . . . , νnu, we finally get

sup
zPC´n

sup
0ďjďνn

}Tj,npzq}LpL2pIqq ÝÝÝÝÑnÑ`8
0. (3.18)

‚ For u P L2pIq we write

u “ χnu`
νn
ÿ

j“0

θj,nu,

We want to sum (3.15) and the estimates (3.18), for j P t0, . . . , νnu, to get an
approximate inverse for pKn ´ zq. We have seen that each contribution goes to 0,
but the number of terms grows with n.

Let θ̃ P C80 pR, r0, 1sq be equal to 1 on
“

´ 2
3
, 2

3

‰

and supported in s ´ 1, 1r. Then
for n P N˚, j P t1, . . . , νnu and y P Ī we set

θ̃j,npyq “ θ̃

ˆ

y ´ aj,n
δn

˙

,

and then

Qnpzq “ Rnpzqχn `
νn
ÿ

j“0

θ̃j,nRj,npzqθj,n. (3.19)

For u P DompKnq and z P C´n we have θj,nu “ θj,nθ̃j,nu and

θj,npKn ´ zqp1´ θ̃j,nqu “ 0,
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so

}QnpzqpKn ´ zqu´ u}L2pIq ď }Tnpzqu}L2pIq `

›

›

›

›

›

νn
ÿ

j“0

θ̃j,nTj,npzqθ̃j,nu

›

›

›

›

›

L2pIq

.

Moreover θ̃j,nθ̃k,n “ 0 whenever |j ´ k| ě 2, so by almost orthogonaly (twice) we
can write

›

›

›

›

›

νn
ÿ

j“0

θ̃j,nTj,npzqθ̃j,nu

›

›

›

›

›

2

L2pIq

À

νn
ÿ

j“0

›

›

›
θ̃j,nTj,npzqθ̃j,nu

›

›

›

2

L2pIq

À sup
0ďjďνn

}Tj,npzq}
2
LpL2pIqq

νn
ÿ

j“0

›

›

›
θ̃j,nu

›

›

›

2

L2pIq

À sup
0ďjďνn

}Tj,npzq}
2
LpL2pIqq }u}

2
L2pIq .

This proves

sup
zPC´n

sup
uPDompKnq
}u}L2pIq“1

}QnpzqpKn ´ zqu´ u}L2pIq ÝÝÝÝÑnÑ`8
0. (3.20)

Thus for n large enough the operator Kn has no eigenvalue and hence no spectrum
in C´n . Moreover for z P C´n we have

pKn ´ zq
´1
“ BnpzqQnpzq, (3.21)

where

Bnpzq “
`

1`
`

QnpzqpKn ´ zq ´ 1
˘˘´1

is bounded on L2pIq uniformly in z P C´n and n large enough.
‚ Let u P L2pIq and z P C´n . By (3.17), and using again the almost orthogonality,
we obtain

›

›

›

›

›

Bnpzq
νn
ÿ

j“0

θ̃j,nRj,npzqθj,nu

›

›

›

›

›

2

L2pIq

À
}u}2L2pIq

n
4
3
p1´ρq

,

so
›

›pKn ´ zq
´1
´BnpzqRnpzqχn

›

›

LpL2pIqq
À

1

n
2
3
p1´ρq

. (3.22)

With (3.12), this gives the first statement of the proposition.
‚ We now consider the case z “ 0 to prove the second part of the proposition.
By (3.20) we have

}Bnp0q ´ 1}LpL2pIqq “

›

›

›

`

1` pQnp0qKn ´ 1q
˘´1

´ 1
›

›

›

LpL2pIqq
ÝÝÝÝÑ
nÑ`8

0,

so (3.22) and (3.12) give

›

›K´1
n ´ 1IH

´1
n 1˚Iχn

›

›

LpL2pIqq
“ o

nÑ`8

ˆ

1
?
n

˙

. (3.23)
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On suppp1´ χnq we have |y| Á n´ρ, so for u P L2pIq we can write
›

›p1´ χnq1IpH
˚
nq
´11˚Iu

›

›

2

L2pIq
À n2ρ

›

›ypH˚
nq
´11˚Iu

›

›

2

L2pRq

À n2ρ´1
ˇ

ˇ

ˇ
Im

〈
pH˚

npH
˚
nq
´11˚Iu, pH

˚
nq
´11˚Iu

〉
L2pRq

ˇ

ˇ

ˇ

À
}u}2L2pIq

n
3
2
´2ρ

.

Taking the adjoint gives

›

›1IH
´1
n 1˚I p1´ χnq

›

›

LpL2pIqq
“ o

nÑ`8

ˆ

1
?
n

˙

.

With (3.23), the proof is complete. �

Now we are in position to prove Proposition 2.3. It is a direct consequence of
the following result.

Proposition 3.7. Let γ ă q1p0q
?

2
. There exist n0 P N˚ and C ą 0 such that for

n ě n0 and t ě 0 we have
›

›e´tKn
›

›

LpL2pIqq
ď Ce´tγ

?
n.

Proof. Let n0 P N˚ and c ą 0 by given by Proposition 3.6. For n ě n0 we set
K̃n “ ´Kn ` γ

?
n. Then for n ě n0 and z P C with Repzq ě 0 we have z P ρpK̃nq

and
›

›pK̃n ´ zq
´1
›

›

LpL2pIqq
ď

c
?
n
.

Moreover for t ě 0 we have
›

›etK̃n
›

› ď etγ
?
n.

Then we apply [EN00, Th. V.1.11 p. 302] to the operator K̃n. With the notation
used in the proof therein, we have ω0 ď γ

?
n, M ď c?

n
and L “ 2π. We obtain

that the semigroup petK̃nqtě0 is bounded uniformly in t ě 0 and n ě n0, so there
exists C ą 0 such that for all n ě n0 and t ě 0 we have

›

›e´tKn
›

› “ e´tγ
?
n
›

›etK̃n
›

› ď Ce´tγ
?
n.

We also refer to [HS10] to get bounds on a semigroup from bounds on the resolvent
of the corresponding generator. �

Now we turn to the proof of (2.5). A more general version of the following result
is given in [Kat80, §IV.3.5].

Proposition 3.8. Let T be a closed operator on a Hilbert space H . Let λ P C.
Assume that λ is an isolated eigenvalue of T . Let pBmqmPN be a sequence of
bounded operators on H such that }Bm}LpHq Ñ 0 as m Ñ `8. For m P N we
set Tm “ T ` Bm. Let ε ą 0. Then for m large enough the operator Tm has an
eigenvalue λm such that |λm ´ λ| ď ε.

Proof. We set C “ tζ P C, |ζ ´ λ| “ εu. Without loss of generality, we can assume
that ε ą 0 is so small that λ is the only point of SppT q in the disk Dpλ, 2εq. We
set M “ supζPC }pT ´ ζq

´1}. Since

Tm ´ ζ “ pT ´ ζq
`

1` pT ´ ζq´1Bm

˘

,
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we see that C X SppTmq “ H as soon as M }Bm} ă
1
2
. Moreover, in this case, we

have for ζ P C,
›

›pTm ´ ζq
´1
›

› ď 2M.

We set

P “
1

2iπ

ż

C
pT ´ ζq´1 dζ.

We similarly define Pm by replacing T by Tm. Then we have by the resolvent
identity

}Pm ´ P } “

›

›

›

›

1

2iπ

ż

C
pT ´ zq´1BmpTm ´ ζq

´1 dζ

›

›

›

›

ď 2εM2
}Bm}.

Thus for m small enough we have }Pm ´ P } ă 1. By [Kat80, §I.4.6] this implies
that

dimpRanpPmqq “ dimpRanpP qq P N˚.
This proves that Tm has an eigenvalue λm such that |λ´ λm| ă ε. �

Proposition 3.9. For n P N˚ large enough there exists an eigenvalue λn of Kn

such that
ˇ

ˇλn ´ e
iπ
4 q1p0q

?
n
ˇ

ˇ “ o
nÑ`8

`?
n
˘

.

Proof. We consider on L2pRq the unitary operator Θn which maps u to

Θnu : x ÞÑ n
1
8u

´

n
1
4x
¯

.

Then we have Θ´1
n HnΘn “

?
nH1. By Proposition 3.6,

›

›

?
nΘ´1

n 1˚IK
´1
n 1IΘn ´H

´1
1

›

›

LpL2pRqq ÝÝÝÝÑnÑ`8
0.

We set λ “ ei
π
4 q1p0q. Then µ “ λ´1 is an eigenvalue of H´1

1 . By Proposition 3.8,
there exists an eigenvalue µn of

?
nΘ´1

n 1˚IK
´1
n 1IΘn such that µn goes to µ as n

goes to `8. Then n´
1
2µn is an eigenvalue of 1˚IK

´1
n 1I , and hence an eigenvalue

of K´1
n . We conclude the proof by setting λn “

?
nµ´1

n . �

3.4. Agmon estimates. To conclude the proof of Proposition 2.8, it remains
to prove the estimate (2.6) for an eigenfunction ψn of Kn corresponding to the
eigenvalue λn.

This estimate is given by an Agmon estimate. The Agmon estimates measure
how the eigenfunctions corresponding to the smallest eigenvalues of a Schrödinger
operator concentrate near the minimum of the potential. Exponential decay of
eigenfunctions and precise Agmon estimates are classical results for real-valued
potentials (see for instance [Agm85, Hel88]). We refer to [KRRS17] for Agmon
estimates for a general non-selfadjoint Laplacian.

Here, it is expected that for large n an eigenfunction corresponding to the first
eigenvalue λn of Kn will concentrates near 0, where the potential q2 reaches its
minimum. In particular, such an eigenfunction will be small at the boundary, so
it is indeed a good candidate to break an observability estimate like (2.4) when
T ă Tmin.
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Proposition 3.10. Let E ą 0 and ε Ps0, 1r. For n P N and y P Ī we set

Wn,εpyq “
1´ ε
?

2

ˇ

ˇ

ˇ

ˇ

ż y

0

b

`

nqpsq2 ´
?
npE ` εq

˘

`
ds

ˇ

ˇ

ˇ

ˇ

, (3.24)

where for σ P R we write σ` for maxp0, σq. There exists C ą 0 such that for
n P N, u P DompKnq and λ P C with

|Repλq| ` |Impλq| ď E
?
n, (3.25)

we have

›

›eWn,εu1
›

›

2

L2pIq
`
?
n
›

›eWn,εu
›

›

2

L2pIq
ď C

?
n }u}2L2pIq `

C
?
n

›

›eWn,εpKn ´ λqu
›

›

2

L2pIq
.

This result is proved with more generality in [KRRS17]. For the reader conve-
nience we recall a proof in our 1-dimensional setting.

Proof. We denote by Qn the quadratic form corresponding to Kn. It is defined for
f, g P H1

0 pIq by

Qnpf, gq “

ż

I

f 1ḡ1 ` in

ż

I

q2fḡ.

‚ Let u P DompKnq. For ζ P W 1,8pĪ ,Rq, we have〈
u1, pζ2uq1

〉
L2pIq

“ 〈ζu1, 2ζ 1u` ζu1〉L2pIq “ 〈pζuq1 ´ ζ 1u, pζuq1 ` ζ 1u〉L2pIq ,

so

Re
〈
u1, pζ2uq1

〉
L2pIq

“ }pζuq1}
2
L2pIq ´ }ζ

1u}
2
L2pIq .

‚ Let W P W 1,8pĪ ,Rq. Applied with ζ “ eW , this equality gives

Re
`

Qnpu, e
2Wuq

˘

“ Re
〈
u1, pe2Wuq1

〉
L2pIq

“
›

›peWuq1
›

›

2

L2pIq
´
›

›W 1eWu
›

›

2

L2pIq
.

On the other hand, a direct computation shows that

Im
`

Qnpu, e
2Wuq

˘

“ Im
〈
u1, 2W 1e2Wu

〉
L2pIq

` n
›

›qeWu
›

›

2

L2pIq
.

Let α Ps0, 1r. Since
ˇ

ˇ

ˇ
Im

〈
u1, 2W 1e2Wu

〉
L2pIq

ˇ

ˇ

ˇ
“ 2

ˇ

ˇ

ˇ
Im

〈
peWuq1,W 1eWu

〉
L2pIq

ˇ

ˇ

ˇ

ď α
›

›peWuq1
›

›

2

L2pIq
` α´1

›

›W 1eWu
›

›

2

L2pIq
,

we have

Im
`

Qnpu, e
2Wuq

˘

ě n
›

›qeWu
›

›

2

L2pIq
´ α

›

›peWuq1
›

›

2

L2pIq
´ α´1

›

›W 1eWu
›

›

2

L2pIq
,

and hence

Re
`

Qnpu, e
2Wuq

˘

` Im
`

Qnpu, e
2Wuq

˘

ě p1´ αq
›

›peWuq1
›

›

2

L2pIq
`

ż

I

`

nq2
´ p1` α´1

qW 12
˘

|eWu|2.

Finally,
›

›peWuq1
›

›

2

L2pIq
ě
›

›eWu1
›

›

2

L2pIq
`
›

›W 1eWu
›

›

2

L2pIq
´ 2

›

›eWu1
›

›

L2pIq

›

›W 1eWu
›

›

L2pIq

ě
1

2

›

›eWu1
›

›

2

L2pIq
´
›

›W 1eWu
›

›

2

L2pIq
,
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so if we set β “ 2` α´1 ´ α and ε1 “
1´α

2
, we get

Re
`

Qnpu, e
2Wuq

˘

` Im
`

Qnpu, e
2Wuq

˘

ě ε1

›

›eWu1
›

›

2

L2pIq
`

ż

I

`

nq2
´ βW 12

˘

|eWu|2. (3.26)

‚ On the other hand, for λ P C we have

Qnpu, e
2Wuq “ λ

›

›eWu
›

›

2

L2pIq
`
〈
pKn ´ λqu, e

2Wu
〉
L2pIq

.

We take the real and imaginary parts of this equality. With (3.26) this gives

ε1

›

›eWu1
›

›

2

L2pIq
`

ż

I

`

nq2
´ βW 12

´ Repλq ´ Impλq
˘

|eWu|2

ď 2
›

›eW pKn ´ λqu
›

›

L2pIq

›

›eWu
›

›

L2pIq
. (3.27)

‚ Now assume that (3.25) holds. Let δ˘n Ps0, `˘s be such that

r´δ´n , δ
`
n s “

 

y P Ī : nqpyq2 ď
?
npE ` εq

(

.

Let Wn,ε be given by (3.24). We choose α Ps0, 1r in such a way that

β “
2

p1´ εq2
.

On r´δ´n , δ
`
n s, Wn,ε and hence W 1

n,ε vanish, so

βW 1
n,εpyq

2
` Repλq ` Impλq ´ nqpyq2 ď E

?
n,

while on Izr´δ´n , δ
`
n s we have

βW 1
n,εpyq

2
“ nqpyq2 ´

?
npE ` εq,

so

nqpyq2 ´ βW 1
n,εpyq

2
´ Repλq ´ Impλq ě ε

?
n.

Then, by (3.27),

ε1

›

›eWn,εu1
›

›

2

L2pIq
` ε
?
n

ż

Izr´δ´n ,δ
`
n s

ˇ

ˇeWn,εu
ˇ

ˇ

2

ď 2
›

›eWn,εpKn ´ λqu
›

›

L2pIq

›

›eWn,εu
›

›

L2pIq
` E

?
n

ż δ`n

´δ´n

|u|2

ď
ε
?
n

2

›

›eWn,εu
›

›

2

L2pIq
`

2

ε
?
n

›

›eWn,εpKn ´ λqu
›

›

2

L2pIq
` E

?
n

ż δ`n

´δ´n

|u|2 ,

and finally,

ε1

›

›eWn,εu1
›

›

2

L2pIq
` ε
?
n
›

›eWn,εu
›

›

2

L2pIq

ď
ε
?
n

2

›

›eWn,εu
›

›

2

L2pIq
`

2

ε
?
n

›

›eWn,εpKn ´ λqu
›

›

2

L2pIq
` pE ` εq

?
n

ż δ`n

´δ´n

|u|2 .

The proposition is proved. �
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For ε Ps0, 1s and y P I we set

κεpyq “
p1´ εq
?

2

ż y

0

qpsq ds.

We first check that the estimate of Proposition 3.10 still holds with Wn,ε replaced
by
?
nκε.

Proposition 3.11. Let E ą 0 and ε Ps0, 1s. There exists Cε ą 0 such that for
n P N and y P I we have

Wn,ε{2pyq ě
?
nκεpyq ´ Cε. (3.28)

Proof. It is enough to prove the inequality for n large. Let α ě 1 to be fixed large
enough later. For n large enough we consider η˘n Ps0, `˘s such that

qp˘η˘n q
2
“

α
?
n

´

E `
ε

2

¯

.

We have

η˘n “ O
nÑ`8

`

n´
1
4

˘

,

and hence
?
nκεp˘η

˘
n q “ O

nÑ`8
p1q.

In particular, for n large enough the inequality (3.28) holds for y P r´η´n , η
`
n s if Cε

is chosen large enough, since then the right-hand side is negative. On the other
hand, for y ě η`n we have

ż y

η`n

c

nqpsq2 ´
´

E `
ε

2

¯?
n ds ě

?
1´ α´1

?
n

ż y

η`n

qpsq ds.

Then

Wn,ε{2pyq ě
1´ ε

2

1´ ε

?
1´ α´1

?
nκεpyq ` O

nÑ`8
p1q.

For α large enough this gives (3.28). We proceed similarly for y ď ´η´n . �

Combining Propositions 3.10 and 3.11 we obtain the following version of the
Agmon estimates:

Proposition 3.12. Let E ą 0 and ε Ps0, 1s. There exists C ą 0 such that for
n P N, u P DompKnq and λ P C with |Repλq| ` |Impλq| ď E

?
n we have

›

›e
?
nκεu1

›

›

2

L2pIq
`
?
n
›

›e
?
nκεu

›

›

2

L2pIq
ď C

?
n }u}2L2pIq `

C
?
n

›

›e
?
nκεpKn ´ λqu

›

›

2

L2pIq
.

Proof. If we denote by C̃ ą 0 the constant given by Proposition 3.10, then by
Proposition 3.11 we obtain the estimate of Proposition 3.12 with C “ eCεC̃. �

From Proposition 3.12 we deduce the pointwise estimate (2.6).

Proposition 3.13. Let E ą 0 and ε Ps0, 1r. There exists C ą 0 such that for
n P N, an eigenvalue µn of Kn with Repµnq`Impµnq ď E

?
n and ψn P kerpKn´µnq,

we have
›

›e
?
nκεψ1n

›

›

2

L8pIq
ď Cn }ψn}

2
L2pIq .
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Proof. By Proposition 3.12 we have
›

›e
?
nκεψn

›

›

2

L2pIq
À }ψn}

2
L2pIq ,

›

›e
?
nκεψ1n

›

›

2

L2pIq
À C

?
n }ψn}

2
L2pIq . (3.29)

‚ We prove
›

›e
?
nκεψ2n

›

›

2

L2pIq
À n

3
2 }ψn}

2
L2pIq . (3.30)

We have ψ2n “ inq2ψn ´ µnψn. With (3.29) we get
›

›e
?
nκεµnψn

›

›

2

L2pIq
À |µn|

2
}ψn}

2
L2pIq À n }ψn}

2
L2pIq .

For the other term we have by an integration by parts

?
2p1´ εq

›

›e
?
nκεnq2ψn

›

›

2

L2pIq
“

ż

I

2
?
nκ1εe

2
?
nκεn

3
2 q3
|ψn|

2 dy

“ ´

ż

I

e2
?
nκεn

3
2

`

3q2q1 |ψn|
2
` 2q3Repψnψ

1
nq
˘

dy.

On the one hand we have
ˇ

ˇ

ˇ

ˇ

ż

I

e2
?
nκεn

3
2 3q2q1 |ψn|

2 dy

ˇ

ˇ

ˇ

ˇ

À n
3
2

›

›e
?
nκεψn

›

›

2

L2pIq
À n

3
2 }ψn}

2
L2pIq .

On the other hand,
ˇ

ˇ

ˇ

ˇ

ż

I

e2
?
nκεn

3
2 2q3Repψnψ

1
nq
˘

dy

ˇ

ˇ

ˇ

ˇ

ď 2
›

›e
?
nκεnq2ψn

›

›

L2pIq

›

›qe
?
nκε
?
nψ1n

›

›

L2pIq

ď p1´ εq
›

›e
?
nκεnq2ψn

›

›

2

L2pIq
`
}q}2

8

1´ ε

›

›e
?
nκε
?
nψ1n

›

›

2

L2pIq
.

This gives (3.30).
‚ Since ψ1n vanishes on I (we could also use the general trace Theorem) we have
by (3.29) and (3.30)

›

›e
?
nκεψ1n

›

›

2

L8pIq
ď 2

›

›e
?
nκεψ1n

›

›

L2pIq

›

›

`

e
?
nκεψ1n

˘1›
›

L2pIq

À n
1
4 }ψn}L2pIq

´

›

›

?
nκ1εe

?
nκεψ1n

›

›

L2pIq
`
›

›e
?
nκεψ2n

›

›

L2pIq

¯

À n }ψn}
2
L2pIq .

This completes the proof. �

Notice that (3.30) is better that the naive estimate obtained from (3.29) and
the expression of ψ2n. In fact we do not have to be optimal here, since the power
of n in the right-hand side of (2.6) is not important for the proof of the second
part of Theorem 1.5.

4. The Observability estimate in small time

In this section we prove Propositions 2.6 (see Paragraph 4.2) and 2.7 (see Para-
graph 4.4). The proofs rely on some Carleman estimates and the construction of
a suitable weight function.

In this section we will not use an index n for a solution u of (2.1). No confusion
will be possible since we will never consider a solution of the initial x-dependent
problem (1.1). Moreover, we use an index for the partial derivatives, so ut stands
for Btu, uyy for Byyu, etc.
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4.1. A generic Carleman estimate. We begin our analysis with a generic Car-
leman estimate. In the following statement, φ is a Carleman weight function. It
will be applied to w “ e´φu, where u is a solution of a problem of the form (2.1),
possibly with a source term (see (4.12) below). We also impose that w vanishes
at initial and final times.

Proposition 4.1. Let n P N, τ1, τ2 ą 0 with τ1 ă τ2, a, b P R with a ă b,
and g P L2psτ1, τ2rˆsa, brq. Let φ P C4psτ1, τ2rˆra, bs,R`q. We consider w P

C0prτ1, τ2s, H
2pa, bqq X C1prτ1, τ2s, L

2pa, bqq such that

wt ´ wyy ` inqpyq
2w ` φtw ´ 2φywy ´ φ

2
yw ´ φyyw “ g. (4.1)

We assume that w also satisfies the Dirichlet boundary condition

@t Psτ1, τ2r, wpt, aq “ wpt, bq “ 0, (4.2)

and the initial and final conditions

@y Psa, br, wpτ1, yq “ wpτ2, yq “ 0, wypτ1, yq “ wypτ2, yq “ 0. (4.3)

Then we have
ż τ2

τ1

ż b

a

`

Φ0 |w|
2
` Φ1 |wy|

2
˘

dy dt ď ´

ż τ2

τ1

“

φy |wy|
2
‰b

a
dt`

1

2

ż τ2

τ1

ż b

a

|g|2 dy dt,

where

Φ0 “ ´2φ2
yφyy ´

φtt
2
`
φyyyy

2
` 2φtyφy ´

n
3
2 q2q1
?

2
(4.4)

and

Φ1 “ ´2φyy ´
?

2nq1. (4.5)

Proof. We can rewrite (4.1) as
`

´ wyy ` Φw
˘

`
`

wt ´ 2φywy ´ φyyw ` inq
2w

˘

“ g,

where Φ “ φt´ φ
2
y. The identity 2Repαβq ď |α ` β|2 then gives, after integration,

Re

ż τ2

τ1

ż b

a

`

´ wyy ` Φw
˘`

wt ´ 2φywy ´ φyyw ´ inq
2w

˘

dy dt

ď
1

2

ż τ2

τ1

ż b

a

|g|2 dy dt. (4.6)

We estimate the left-hand side with integrations by parts, using (4.2) and (4.3).
The terms involving wt give

Re

ż τ2

τ1

ż b

a

p´wyyqwt dy dt “ 0

and

Re

ż τ2

τ1

ż b

a

pΦwqwt dy dt “ ´
1

2

ż τ2

τ1

ż b

a

Φt |w|
2 dy dt.



26 CRITICAL TIME FOR THE OBSERVABILITY OF KOLMOGOROV-TYPE EQUATIONS

On the other hand, for all t Psτ1, τ2r we have

Re

ż b

a

p´wyyqp´2φywyq dy “
“

φy |wy|
2
‰b

a
´

ż b

a

φyy |wy|
2 dy,

Re

ż b

a

p´wyyqp´φyywq dy “ ´

ż b

a

φyy |wy|
2 dy `

1

2

ż b

a

φyyyy |w|
2 dy,

Re

ż b

a

p´wyyqp´inq
2wq dy “ 2n

ż b

a

qq1Impwywq dy,

and

Re

ż b

a

pΦwqp´2φywy ´ φyywq dy “

ż b

a

Φyφy |w|
2 dy,

Re

ż b

a

pΦwqp´inq2wq dy “ 0.

We integrate these five equalities over t Psτ1, τ2r, and then (4.6) gives

ż τ2

τ1

“

φy |wy|
2
‰b

a
dt`

ż τ2

τ1

ż b

a

ˆ

´
Φt

2
`
φyyyy

2
` Φyφy

˙

|w|2 dy dt

´ 2

ż τ2

τ1

ż b

a

φyy |wy|
2 dy dt` 2n

ż τ2

τ1

ż b

a

qq1Impwywq dy dt ď
1

2

ż τ2

τ1

ż b

a

|g|2 dy dt,

Since

2nqq1Impwywq ě ´
?

2
?
nq1 |wy|

2
´
n

3
2 q2q1 |w|2
?

2
,

the conclusion follows. �

4.2. Observability inequality for a fixed Fourier parameter. In this para-
graph we prove Proposition 2.6 about observability for a fixed Fourier parameter
n P N. As already said, this is nothing but the well-known observability inequality
for a heat equation with a (complex) potential. Nevertheless, we propose a proof
here, both for the sake of self-containment, and because we believe it enlightens
the following paragraph.

The proof of Proposition 2.6 relies on Proposition 4.1. For the time dependence
of the weight φ, we will use the function θ given in the following lemma.

Lemma 4.2. Let τ1, τ2 ą 0 with τ1 ă τ2. There exists θ in C8psτ1, τ2rq such that

(i) θ ě 1 on sτ1, τ2r, θ ” 1 on
“

2τ1`τ2
3

, τ1`2τ2
3

‰

,
(ii) limtÑτ1 θptq “ limtÑτ2 θptq “ `8,

(iii) there exists a constant C ą 0 such that for all t Psτ1, τ2r,

|θ1ptq| ď Cθptq2, |θ2ptq| ď Cθptq3.

Proof. Let χ P C80
`

sτ1, τ2r, r0, 1s
˘

be equal to 1 on
“

2τ1`τ2
3

, τ1`2τ2
3

‰

. For t Psτ1, τ2r

we set

θptq “ 1`
1´ χptq

pt´ τ1qpτ2 ´ tq
.

Then θ verifies all the required properties. �

Now we can prove Proposition 2.6:
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Proof of Proposition 2.6. For y P Ī we set

ψpyq “ ψ1

ˆ

2y ` `´ ´ ``
`´ ` ``

˙

, where ψ1pηq “ ´
η2

2
˘ 2η ` 3, η P r´1, 1s

(the sign in front of 2η is not important here, but it has to be chosen carefully if
we only observe from one side of the boundary, as will be the case in Proposition
4.3 below). In particular, for some c0 ą 0 we have on Ī

ψ2 ď ´c0, |ψ1| ě c0, ψ ě c0. (4.7)

Let u be a solution of (2.1). Let s ą 1 to be chosen large enough later. For
t Psτ1, τ2r and y P Ī we set

φpt, yq “ s θptqψpyq,

where θ is given by Lemma 4.2, and

wpt, yq “ upt, yqe´φpt,yq.

Then w satisfies (4.1)-(4.3) with a “ ´`´, b “ `` and g ” 0. Therefore, Proposi-
tion 4.1 gives

ż τ2

τ1

ż

I

`

Φ0 |w|
2
` Φ1 |wy|

2
˘

dy dt ď ´

ż τ2

τ1

“

φy |wy|
2
‰``

´`´
dt,

with

Φ0 “ s3

˜

´2θ3
pψ1q2ψ2 ´

θ2ψ

2 s2
`
θ ψp4q

2 s2
`

2θ1θpψ1q2

s
´
n

3
2 q2q1

s3
?

2

¸

(4.8)

and

Φ1 “ s

ˆ

´2θψ2 ´

?
2nq1

s

˙

. (4.9)

Thus, by Lemma 4.2 and (4.7) we can fix s so large that Φ0 ě 1 and Φ1 ě 1 on
sτ1, τ2rˆĪ. This gives

ż τ2

τ1

ż

I

|wpt, yq|2 dy dt À

ż τ2

τ1

`

|wypt,´`´q|
2
` |wypt, ``q|

2
˘

dt,

and then, since θ ” 1 on
“

2τ1`τ2
3

, τ1`2τ2
3

‰

and ψ is bounded away from 0,

ż

τ1`2τ2
3

2τ1`τ2
3

ż

I

|upt, yq|2 dy dt À

ż τ2

τ1

`

|uypt,´`´q|
2
` |uypt, ``q|

2
˘

dt.

we have }upT q}2L2pIq ď }uptq}
2
L2pIq for all t P

“

2τ1`τ2
3

, τ1`2τ2
3

‰

. After integration this
gives

}upT q}2L2pIq ď
3

τ2 ´ τ1

ż

τ1`2τ2
3

2τ1`τ2
3

}uptq}2L2pIq dt À

ż τ2

τ1

`

|uypt,´`´q|
2
` |uypt, ``q|

2
˘

dt,

which ends the proof. �

Notice that in this rough proof we have not tried to control the dependence of
Cn with respect to n. It is the purpose of the next paragraph to get a precise
estimate of the cost of observability for (2.1). The interest of Proposition 2.6 is
that it is now enough to consider only large values of n.

To obtain estimates in the high frequency regime, we will use the same strategy,
but we will choose more carefully the parameter s and the phase function ψ (both
should be chosen as small as possible).
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From (4.8), we see that s3 has to be at least of order n
3
2 , while in (4.9), s has

to be of order
?
n. From these observations, we deduce that the correct scaling

should be s „
?
n.

Finally, with s “
?
n, it is then the choice of ψ that will make Φ0 and Φ1 positive

for n large enough. We see from (4.8)-(4.9) that ψ should satisfy

´ 2pψ1q2ψ2 ´
q2q1
?

2
ą 0 and ´ 2ψ2 ´

?
2q1 ą 0. (4.10)

This leads to the construction of the weight function given in the next paragraph.

4.3. A refined Carleman estimate. In this paragraph we prove a refined ver-
sion of Proposition 4.1 for n large and a suitable choice for ψ. As discussed at
the end of Paragraph 4.2, we will choose φ proportional to

?
n. The choice of ψ

satisfying (4.10) will be discussed in Proposition 4.4.

Proposition 4.3. Let a, b P Ī with a ă b and ψ P C4pra, bs,Rq. We assume that
for some ε ą 0 we have on ra, bs:

ψ ě ε, ´2pψ1q2ψ2 ´
q2q1
?

2
ě ε, ´2ψ2 ´

?
2q1 ě ε.

Let τ1, τ2 Ps0, T s with τ1 ă τ2. For t Psτ1, τ2r and y P ra, bs we set ϕpt, yq “
θptqψpyq, where θ is given by Lemma 4.2. Let n P N and u in

C0
`

rτ1, τ2s, H
2
pa, bq XH1

0 pa, bq
˘

X C1
`

rτ1, τ2s, L
2
pa, bq

˘

. (4.11)

We set

f “ ut ´ uyy ` inqpyq
2u, (4.12)

and

w “ ue´
?
nϕ, g “ fe´

?
nϕ.

Then there exist N P N and C ą 0 such that the following statements hold if
n ě N .

(i) If ψ1 ą 0,

ż τ2

τ1

ż b

a

`

n
3
2 θ3
|w|2 `

?
nθ |wy|

2
˘

dy dt

ď C
?
n

ż τ2

τ1

|wypt, aq|
2 dt` C

ż τ2

τ1

ż b

a

|g|2 dy dt.

(ii) If ψ1 ă 0,

ż τ2

τ1

ż b

a

`

n
3
2 θ3
|w|2 `

?
nθ |wy|

2
˘

dy dt

ď C
?
n

ż τ2

τ1

|wypt, bq|
2 dt` C

ż τ2

τ1

ż b

a

|g|2 dy dt.

Proof. We observe that ϕ belongs to C4psτ1, τ2rˆra, bsq, the functions f and g are
in C0prτ1, τ2s, L

2pa, bqq, w extends to a function in (4.11) and we have

wt ´ wyy ` inqpyq
2w `

?
nϕtw ´ 2

?
nϕywy ´ nϕ

2
yw ´

?
nϕyyw “ g.
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Moreover, w satisfies the boundary conditions (4.2) and the initial and final con-
ditions (4.3). Then, by Proposition 4.1 applied with φ “

?
nϕ, we have

ż τ2

τ1

ż b

a

`

n
3
2 Φ0 |w|

2
`
?
nΦ1 |wy|

2
˘

dy dt

ď ´
?
n

ż τ2

τ1

“

ϕy |wy|
2
‰b

a
dt`

1

2

ż τ2

τ1

ż b

a

|g|2 dy dt,

where

Φ0 “ ´2ϕ2
yϕyy ´

q2q1
?

2
´
ϕtt
2n
`
ϕyyyy

2n
`

2ϕtyϕy
?
n

and

Φ1 “ ´2ϕyy ´
?

2q1.

The properties of θ and the boundedness of the derivatives of ψ give, for n large
enough,

Φ0pt, yq ě
εθ3

2
and Φ1pt, yq ě εθ.

Thus,

ε

2

ż τ2

τ1

ż b

a

`

n
3
2 θ3
|w|2 `

?
nθ |wy|

2
˘

dy dt

ď ´
?
n

ż τ2

τ1

“

ϕy |wy|
2
‰b

a
dt`

1

2

ż τ2

τ1

ż b

a

|g|2 dy dt.

Notice that the assumptions on ψ imply that ψ1 does not vanish. If ψ1 takes
positive values then we have

´
?
n

ż τ2

τ1

ϕypt, bq |wypt, bq|
2 dt ď 0,

which gives the first inequality. Otherwise ψ1 ă 0 and we similarly get the second
estimate. �

4.4. Precise estimate of the cost of observation in small time for n large.
In this paragraph we finish the proof of Proposition 2.7.

We could apply directly Proposition 4.3 and observe from one side of I only.
However, we can reduce the cost of observability if we observe from both sides.

More precisely, the part of u in r0, ``s will be controled by the values of uy at
``, and the part of u in r´`´, 0s will be controled by the values of uy at ´`´.
Thus, with the notation of the previous paragraph, we have to choose ψ such that
ψ1 ă 0 on the right and ψ1 ą 0 on the left. Since ψ1 does not vanish, we have to
apply Proposition 4.3 separately on the right and on the left.

Proposition 4.4. Let τ1, τ2 and κ be as given by Proposition 2.7. There exist
N P N˚, ϕ P C0

`

sτ1, τ2rˆĪ ,R
˘

and C ą 0 such that

@t P

„

2τ1 ` τ2

3
,
τ1 ` 2τ2

3



, @y P I, 0 ď ϕpt, yq ď κ, (4.13)
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and for any n ě N and any solution u of (2.1) we have

ż τ2

τ1

ż

I

`

n
3
2 |u|2 `

?
n |uy|

2
˘

e´2
?
nϕ dy dt

ď C
?
n

ż τ2

τ1

`

|uypt,´`´q|
2
` |uypt, ``q|

2
˘

dt.

Proof. ‚ Let β ą 1?
2

and ε0 ą 0 be such that

ε0 ` βmax

ˆ
ż ``

0

`

qpsq ` 3ε0

˘

ds,

ż 0

´`´

`

|qpsq| ` 3ε0

˘

ds

˙

ă κ. (4.14)

Let δ Ps0,minp`´, ``qs be such that maxp|qp´δq| , qpδqq ď ε0. For y P r´δ, ``s we
set

ψ`pyq “ ε0 ` β

ż ``

y

`

qpsq ` 3ε0

˘

ds` c`,

with c` ě 0 to be chosen later. Then we have

ψ` ě ε0, ψ1` “ ´βpq ` 3ε0q ď ´2βε0, ψ2` “ ´βq
1,

so

´2ψ12`ψ
2
` ´

q2q1
?

2
“ 2β3

pq ` 3ε0q
2q1 ´

q2q1
?

2

ě
q1
?

2

`

pq ` 3ε0q
2
´ q2

˘

ě ε2
0 minpq1q

and

´2ψ2` ´
?

2q1 ě 2

ˆ

β ´
1
?

2

˙

q1 ě 2

ˆ

β ´
1
?

2

˙

minpq1q.

Thus ψ` satisfies the assumptions of Proposition 4.3 on r´δ, ``s. Then, for t P
sτ1, τ2r we set

ϕ`pt, yq “ θptqψ`pyq, (4.15)

where θ is given by Lemma 4.2.
‚ We consider χ` P C

8pĪ , r0, 1sq such that χ` “ 1 on r0, ``s and χ` “ 0 on
r´`´,´δs. Then we set u` “ χ`u. It satisfies

@t Psτ1, τ2r, u`pt,´δq “ u`pt, ``q “ 0

and

@t Psτ1, τ2r, @y P r´δ, ``s,
`

Bt ´ Byy ` inq
2
˘

u`pt, yq “ f`pt, yq,

where

f` “ ´χ
2
`u´ 2χ1`uy.

In particular, f`pt, ¨q is supported in r´δ, 0s. We set

w` “ u`e
´
?
nϕ` and g` “ f`e

´
?
nϕ.

We have
?
n |Byu`|

2 e´2
?
nϕ` À

?
n |Byw`|

2
` n

3
2 |w`|

2 θptq2.
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Then, by the second case in Proposition 4.3, we obtain
ż τ2

τ1

ż ``

0

`

n
3
2 |u`|

2
`
?
n |Byu`|

2
˘

e´2
?
nϕ` dy dt (4.16)

À

ż τ2

τ1

ż ``

0

`

n
3
2 θ2
|w`|

2
`
?
n |Byw`|

2
˘

dy dt

À
?
n

ż τ2

τ1

|Byw`pt, ``q|
2 dt`

ż τ2

τ1

ż 0

´δ

|g`|
2 dy dt

À
?
n

ż τ2

τ1

|Byu`pt, ``q|
2 dt`

ż τ2

τ1

ż 0

´δ

|f`|
2 e´2

?
nϕ` dy dt.

‚ For y P r´`´, δs we set

ψ´pyq “ ε0 ` β

ż y

´`´

p|qpsq| ` 3ε0q ds` c´,

with c´ ě 0 to be chosen later, and for t Ps0, T r,

ϕ´pt, yq “ θptqψ´pyq.

Let χ´ P C8pr´`´, ``s, r0, 1sq such that χ´ “ 1 on r´`´, 0s and χ´ “ 0 on
y P rδ, ``s. We set u´ “ χ´u and f´ “ ´χ

2
´u´ 2χ1´uy. Then, as above, but using

the first statement in Proposition 4.3, we obtain
ż τ2

τ1

ż 0

´`´

`

n
3
2 |u´|

2
`
?
n |Byu´|

2
˘

e´2
?
nϕ´ dy dt

À
?
n

ż τ2

τ1

|Byu´pt,´`´q|
2 dt`

ż τ2

τ1

ż δ

0

|f´|
2 e´2

?
nϕ´ dy dt. (4.17)

‚ We set c` “ maxp0, cq and c´ “ maxp0,´cq where

c “ β

ˆ
ż 0

´`´

p|qpsq| ` 3ε0q ds´

ż ``

0

pqpsq ` 3 ε0q ds

˙

,

so that ψ`p0q “ ψ´p0q. Then for t Psτ1, τ2r and y P Ī we set

ϕpt, yq “

#

ϕ´pt, yq if y ď 0,

ϕ`pt, yq if y ě 0.

In particular, by construction, ϕ is continuous on sτ1, τ2rˆĪ and satisfies (4.13).
Moreover, ϕ` ě ϕ on r´δ, 0s, ϕ´ ě ϕ on r0, δs and, on r´δ, δs,

|f`| ` |f´| À |u| ` |uy| .

Then, by summing (4.16) and (4.17),
ż τ2

τ1

ż

I

`

n
3
2 |u|2 `

?
n |uy|

2
˘

e´2
?
nϕ dy dt

À
?
n

ż τ2

τ1

`

|uypt,´`´q|
2
` |uypt, ``q|

2
˘

dt`

ż τ2

τ1

ż δ

´δ

`

|u|2 ` |uy|
2
˘

e´2
?
nϕ dy dt.

For n large enough, the last term is smaller than one half of the left-hand side,
and the conclusion follows. �

We can now prove Proposition 2.7.
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Proof of Proposition 2.7. Let N be given by Proposition 4.4 and n ě N . Let u
be a solution of (2.1). Let ϕ be given by Proposition 4.4. By (4.13) we have in
particular

ż

τ1`2τ2
3

2τ1`τ2
3

ż

I

|u|2 dy dt ď
Ce2κ

?
n

n

ż τ2

τ1

`

|uypt,´`´q|
2
` |uypt, ``q|

2
˘

dt.

By (3.7) we have }upτ2q}
2
L2pIq ď }uptq}

2
L2pIq for all t P

‰

2τ1`τ2
3

, τ1`2τ2
3

“

, so

}upτ2q}
2
L2pIq ď

3Ce2κ
?
n

pτ2 ´ τ1qn

ż τ2

τ1

`

|uypt,´`´q|
2
` |uypt, ``q|

2
˘

dt,

and Proposition 2.7 is proved. �
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[CMV16] P. Cannarsa, P. Martinez, and J. Vancostenoble. Global Carleman estimates
for degenerate parabolic operators with applications. Mem. Amer. Math. Soc.,
239(1133):ix+209, 2016.

https://hal.archives-ouvertes.fr/hal-02471592
https://hal.archives-ouvertes.fr/hal-02471592
https://dx.doi.org/10.1007/BFb0080331
https://dx.doi.org/10.1007/BFb0080331
https://dx.doi.org/10.1016/j.jmaa.2016.06.058
https://dx.doi.org/10.1016/j.jmaa.2016.06.058
https://dx.doi.org/10.1016/j.jmaa.2016.06.058
https://hal.archives-ouvertes.fr/hal-01165713/file/ABGdT_12_06_15.pdf
https://hal.archives-ouvertes.fr/hal-01949391/document
https://dx.doi.org/10.1016/j.jde.2016.12.021
https://dx.doi.org/10.1016/j.jde.2016.12.021
https://www.ems-ph.org/journals/show_abstract.php?issn=1435-9855&vol=16&iss=1&rank=3
https://www.ems-ph.org/journals/show_abstract.php?issn=1435-9855&vol=16&iss=1&rank=3
https://hal.archives-ouvertes.fr/hal-00826116/document
https://aif.centre-mersenne.org/article/AIF_0__0_0_A6_0.pdf
https://aif.centre-mersenne.org/article/AIF_0__0_0_A6_0.pdf
https://hal.archives-ouvertes.fr/hal-01677037/document
https://dx.doi.org/10.1007/s00498-013-0110-x
https://hal.archives-ouvertes.fr/hal-00826117/document
https://dx.doi.org/10.1051/cocv/2014035
https://dx.doi.org/10.1051/cocv/2014035
https://hal.archives-ouvertes.fr/hal-00863056/document
https://dx.doi.org/10.1137/0330055
https://dx.doi.org/10.1137/0330055
https://dx.doi.org/10.1016/j.jde.2015.07.007
https://dx.doi.org/10.1016/j.jde.2015.07.007
https://hal.archives-ouvertes.fr/hal-01082175/document
https://hal.archives-ouvertes.fr/hal-02309020/document
https://hal.archives-ouvertes.fr/hal-02309020/document
https://doi.org/10.1016/j.anihpc.2008.12.005
https://doi.org/10.1016/j.anihpc.2008.12.005
https://dx.doi.org/10.1090/memo/1133
https://dx.doi.org/10.1090/memo/1133


CRITICAL TIME FOR THE OBSERVABILITY OF KOLMOGOROV-TYPE EQUATIONS 33

[DK20] M. Duprez and A. Koenig. Control of the Grushin equation: non-rectangular
control region and minimal time. ESAIM Control Optim. Calc. Var., 26:Art. 3,
18, 2020. HAL.

[Dup17] M. Duprez. Controllability of a 2 ˆ 2 parabolic system by one force with space-
dependent coupling term of order one. ESAIM Control Optim. Calc. Var.,
23(4):1473–1498, 2017. HAL.

[Ego63] Ju. V. Egorov. Some problems in the theory of optimal control. Ž. Vyčisl. Mat
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[KRRS17] D. Krejčǐŕık, N. Raymond, J. Royer, and P. Siegl. Non-accretive Schrödinger op-
erators and exponential decay of their eigenfunctions. Isr. J. Math., 221(2):779–
802, 2017. HAL.
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