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CRITICAL TIME FOR THE OBSERVABILITY OF
KOLMOGOROV-TYPE EQUATIONS

JEREMI DARDE AND JULIEN ROYER 2

ABSTRACT. This paper is devoted to the observability of a class of two-di-
mensional Kolmogorov-type equations presenting a quadratic degeneracy. We
give lower and upper bounds for the critical time. These bounds coincide in
symmetric settings, giving a sharp result in these cases. The proof is based on
Carleman estimates and on the spectral properties of a family of non-selfadjoint
Schrédinger operators, in particular the localization of the first eigenvalue and
Agmon type estimates for the corresponding eigenfunctions.

1. INTRODUCTION

This paper is devoted to the study of the observability of two-dimensional
Kolmogorov-type equations with a quadratic degeneracy. Let ¢,,¢_ > 0. We
set I =] —/¢_ ¢ [ and Q =T x I, where T is the one-dimensional torus R/(27Z).
All along the paper, a generic point in €2 will be denoted by (z,y), with € T and
yel.

We consider g € C3(I,R) such that
q(0) =0 and ming'(y) > 0.
yel

In particular, g(y) # 0 for y # 0. The model case is ¢(y) = y.

Then, for T' > 0, we consider on {2 the Kolmogorov-type equation

w4 q(y)*0,u — Oyyu = 0, on |0, T[xQ,
u(t,-) =0, on 0%, for all ¢t €]0, 77, (1.1)
U|t:0 € LQ(Q)

We are interested in the observability properties of the problem (1.1):

Definition 1.1. (i) We say that (1.1) is observable in time 7" through an open
subset w of Q if there exists C' > 0 such that for any solution u of (1.1) we
have

T
rwﬂﬁmn<cL\mm@Mdv (1.2)

(ii) We say that (1.1) is observable in time 7" through an open subset I' of the
boundary T x {—¢_, ¢} of 2 if there exists C' > 0 such that for any solution
u of (1.1) we have
T

wﬂﬁmn<0Ln@mmmmdt (1.3)
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Null-controllability and observability properties of non-degenerate parabolic
equations have been investigated for several decades now, since the pioneering
works [Ego63] and [FR71] which proved independently the null-controllability of
the one-dimensional heat-equation. Then [LR95] and [F196] independently gener-
alized this result in any dimension, showing that the heat equation is observable
through any (interior or boundary) observation set, in any positive time, in any
geometrical setting.

This is not the case for degenerate parabolic equations, which are a more recent
subject of study. These equations may or may not be observable, depending on
the location and the strength of the degeneracy, the geometrical setting, and the
time horizon T'. The case of a degeneracy of the equation at the boundary of the
domain is now fairly well-understood (see [CMV16] and the references therein).
In general, this type of degenerate equations are observable for weak degeneracy,
and are not when the degeneracy becomes too strong.

In the case of interior degeneracy, there is no general theory, and equations are
for the moment studied one after another. Interestingly, the known results show
that, for precise strength of the degeneracy, a minimal time appears, under which
observability is lost.

Among parabolic equations with interior degeneracy, the Grushin equation is
so far the best understood: the two-dimensional case is now almost completely
understood, and some partial results have been obtained in multi-dimensional
settings [BCG14, BMM15, Koel7, BDE20, DK20, ABM20]. Other equations have
also been studied, such as the heat equation on the Heisenberg group [BC17].

Finally, we highlight that a minimal time condition for observability might also
appear for systems of parabolic equations, degenerate or not (see, among others,
[AKBGBAT16, Dupl7, BBM20]), for degenerate Schrédinger equations [BS19],
and appears naturally for the wave equation (see [RT74, BLR92]).

Regarding the Kolmogorov equation (1.1), observability properties have already
been investigated in the case ¢(y) = y, that is for the system

Oru+ y20,u — dyyu =0, on |0, T[xQ,
u(t,) =0, on 09, for all ¢t €]0, T, (1.4)
Uje=0 € LQ(Q)
It is proved in [Beal4] that a critical time T, appears for the observability through
an open set of the form w = Tx]a, b[ if 0 ¢]a, b]:
Theorem 1.2 ([Beald]). Let w = Tx]a,b| with —¢_ <a <b<{,.

(i) If a < 0 < b, then the problem (1.4) is observable through w in time T for
any T > 0.
(ii) If a > O there exists Tc = “2—2 such that
o if T > T, then (1.4) is observable through w,
o if T < T, then (1.4) is not observable through w.

The model studied in [Beal4] also includes the equation
Oru 4 Y7 0pu — Oyyy = 0

with v = 1. In that case, it is proved that the problem is observable through any
open set w, for any 7' > 0, generalizing the previous study [BZ09] where the sets
of observation were horizontal strips. Theorem 1.2 corresponds to the case v = 2.
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The case v = 3 is studied in [BHHR15]. It is proved that if 0 < a < b < ¢, then
the problem is not observable through T x (a,b) in any time 7" > 0.

The fact that the observation domain w is a horizontal strip of {2 may seem quite
restrictive. However, the recent study [Koel8] shows that it is a quasi-necessary
condition for (1.4) to be observable.

Theorem 1.3 ([Koel8]). Let w = w, x I, where w, is a strict open set of T. Then
(1.4) is not observable through w in any time T > 0.

Furthermore, it is shown that a minimal time is needed for the system to be
possibly observable for most of observation sets w.

Theorem 1.4 ([Koel8]). Let w be an open subset of T x I. Suppose that there
exists £ € T and a > 0 such that

{(jay)v Yy € (—CL,CL)} Nw = @
Then system (1.4) is not observable through w in any time T' < %

In the present paper, we investigate the observability properties of (1.1) with a
more general coefficient ¢(y)?, when the domain of observation is the boundary

T =0Q=Tx{—(_(}.

We could similarly consider observation through an open subset w given by hori-
zontal strips of 2. Our main result is the following:

Theorem 1.5. We set

Tiax = —— max f q(s ds,J q(s ds).
e ([ e [ )
There exists Te € [Trin, Tmax] Such that

(i) if T > Ty, the problem (1.1) is observable through T,
(i) if T < Ty, the problem (1.1) is not observable through T.

and

In particular, in any configuration for which Ty, = Tmin, We obtain the critical
time needed for observability of equation (1.1) to hold. This is in particular the
case for symmetric configurations:

Theorem 1.6. Suppose {_ = {, and q is odd. Let

L")
1. = —J q(s)ds.
7(0) Jo
Then

(i) if T > T¢ the problem (1.1) is observable through T,
(i) if T < T¢ the problem (1.1) is not observable through T".

2
Note that in the case ¢(y) = y, the critical time is T, = %. This is the analog

for the observation from the boundary of the time % which appears in Theorems
1.2 and 1.4. Theorem 1.6 is, up to our knowledge, the first result giving the precise
value of the critical time for the observation of a two-dimensional Kolmogorov-type
equation.
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Remark 1.7. By a classical duality argument, Theorem 1.5 is equivalent to con-
trolability properties for the adjoint equation, with a boundary Dirichlet control
acting on I'. We refer to [TW09] for details on this equivalence.

Outline of the paper. The article is organized as follows. After this intro-
duction, we give in Section 2 the main ideas for the proof of Theorem 1.5. The
details are then given in the following two sections. In Section 3 we discuss the
well-posedness of the problem (1.1) and we prove some spectral properties for the
non-selfadjoint Schrédinger operator K, = —d,, + ing(y)*> which naturally ap-
pears in the analysis. We prove Agmon-type estimates for the first eigenfunction,
which gives the negative result for T' < Ty, and we estimate the decay of the
corresponding semigroup. Finally, in Section 4, we prove a Carleman estimate and
deduce an observability estimate in arbitrarily small time which depends on the
frequency n with respect to x. Together with the decay properties of e~*%» this
will give the observabililty of (1.1) for T' > Tpax-

2. STRATEGY OF THE PROOF

In this section we describe the strategy for the proof of Theorem 1.5. We
only give the mains ideas, and the details will be postponed to the following two
sections.

2.1. Well-posedness and Fourier transform of the Kolmorgorov equa-
tion. Before discussing the properties of the solutions of (1.1), we check that this
problem is well posed.

Proposition 2.1. Let u, € L*(Q2). Then there exists a unique
ue CO([0,T], L*()) n C°(]0,T], H*(Q) n Hy(Q)) n C*(]0,T], L*(Q))
which satisfies (1.1) with w(0) = u,.

Notice in particular that the equation is regularizing, so we do not have to im-
pose any regularity on the initial condition to get a solution in the strong sense.

Many argument in our analysis, including the proof of Proposition 2.1, will
be based on a Fourier transform. All along the paper, the Fourier coefficients
are taken with respect to the variable z € T. Given u € L*(2), we denote by
u, € (*(Z, L*(I)) the sequence of Fourier coefficients of u:

u(z,y) = Z U (1)e™, un(y) ! JTe_mT’u(x,y) dr.

neZ 2m

The same applies if u (and then the u,, n € Z) are also functions of the time ¢.

For n € Z we consider the problem
Ortn — Oyt + 1nq(y)*u, = 0, on ]0,T[x1,
up(t,—0_) = u,(t, 0y) =0, for t €]0, T, (2.1)
u,(0) € L*(I).

Then the Fourier coefficients of a solution of (1.1) are given by the solutions of
(2.1).
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Proposition 2.2. Let u be a solution of (1.1) and let u,, n € Z, be the corre-
sponding Fourier coefficients. Then for all n € Z we have

u, € C°([0,T7, L*(1)) n C°(J0, T], H*(I) n Hy (1)) n C*(]0,T1], L*(1)),
and wuy, is the unique solution of (2.1) with u,(0) = uo,, where uq,, is the n-th

Fourier coefficient of u, = u(0).

An important property of the problem (2.1) is the following exponential time
decay.

Proposition 2.3. Let

¢'(0)

7

There exists C > 0 such that for n € Z, a solution u, of (2.1) and 6,,05 € [0,T]
with 01 < 0y, one has

[t (02) 72y < Cexp (=27 /1) (Bz — 61)) n(61) 121y

The proofs of Propositions 2.1 and 2.2 will be given in Section 3.1. Proposition
2.3 will be discussed in Section 3.3.

v <

2.2. Positive result: upper bound for the critical time. We begin the proof
of Theorem 1.5 with the first statement and prove observability for (1.1) when
T > Thax-

With the trace theorems, the regularity of the solution ensures that the right-
hand side of (1.3) makes sense, even if it could be equal to +oo if the initial
condition is not regular enough. In fact, we are going to prove the following
stronger result for observability (note that with 7 chosen positive, the right-hand
side of (2.2) is finite).

Proposition 2.4. Let T > Ty and 71 €0, T — Trax|[. Let 72 €]y, T]. Then there
exists C' > 0 such that for any solution u of (1.1) we have

T2

D)y < € | 10(0) 32 . (2.2
T1

Obviously, Proposition 2.4 implies (1.3). The fact that we observe during an
arbitrarily small time 7, — 73 might seem contradictory with the minimal time
condition. It is not the case, since only the state at time T" > T,,,,, is controled by
the observation on the time interval |7, 72]. As we will see below, the dissipation
effect of the Kolmogorov equation plays a key role in obtaining (2.2). Roughly
speaking, we have to wait long enough for the dissipation to fully play is role, and
inequality (2.2) to be true.

By Proposition 2.2 and the Parseval identity, Proposition 2.4 is equivalent to
an observability estimate for (2.1) uniform with respect to the Fourier parameter
n. In other words, it is equivalent to prove the following result.

Proposition 2.5. Let T', 71 and 15 be as in Proposition 2.4. There exists C' > 0
such that for any n € Z and any solution u, of (2.1) one has

Dl <C [ (Ot~ P + Bt LOP) e (23)
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Note that it is sufficient to prove (2.3) for n € N. The case n € Z then follows
by complex conjugation of (2.1).

The difficulty in Proposition 2.5 is the uniformity with respect to the parameter
n. For n fixed, it is already known that the one-dimensional heat equation with a
complex-valued potential is observable through the boundary in any positive time:

Proposition 2.6. Let T > 0 and n € N. Let 7,15 €]0,T| with 7 < 7. There
exists C, > 0 such that for any solution u, of (2.1) we have

)y < Co | (10t~ 4100t LYt (2

A proof of Proposition 2.6 will be given in Section 4.2. With this result, it is
now enough to prove Proposition 2.5 for n large. To do so, we first obtain a precise
estimate of the constant C), in the asymptotic n large.

Proposition 2.7. Let 7,7 €]0,T] with 11 < 15 and

> max (% L " i) ds. \/% ﬁ |q(s)|ds) _ qumax.

There exist ng € N and C > 0 such that for n = ny and a solution u, of (2.1) one
has

T2

tn (72) 721y < Cexp(%\/ﬁ)f (10yun(t, =€) + [0yun(t, 4)]?) dt.
T1
The proof of this proposition is based on carefully constructed Carleman esti-
mates, in the spirit of [BDE20]. We refer to Section 4.4 for the details.

The observability estimate of Proposition 2.7 is valid for any non-trivial interval
of time, but it is not uniform with respect to n. As said above, the dissipation effect
has to be taken into account here. More precisely, the second ingredient for the
proof of Proposition 2.5 is the estimate given by Proposition 2.3, which precisely
counterbalances the loss observed in Proposition 2.7 if we wait long enough.

Proof of Proposition 2.5, assuming Propositions 2.3, 2.6 and 2.7. We choose § €
10, 1[ so small that

(14 6)Tiax < (1 —=0)*(T — 7).
Then we set

_ 70) _1_570
/<;—(1+5)\/§Tmax, v=(1 (5)\/5

Proposition 2.3 applied with #; = T and

0, = min (7‘1 + (T — 7'1),7'2)
gives a constant C'; > 0 such that for all n € N and u,, solution of (2.1) we have

lun(T)|Z2ry) < Cr exp (= 29v/n(1 = O)(T — 1)) |un(01) |22 r)-

By Propositions 2.6 and 2.7, there exists C5 > 0 such that for all n € N and u,
solution of (2.1) we have

01

B = Coexp(ev) | (8ult, ~)F + 0yu(t, £))ds.

T1
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Since

k—v(1—=0)(T—-m) = (1 +8)Tmax — (1 = 6)*(T — 7)) <0,

these two inequalities give
T2

Hun(T)H%Q(I) < Clcgj (Joyu(t, —C-))* + [Qyult, €4) ) dt,

T1
and the proposition is proved. Il
We recall that Proposition 2.5 implies Proposition 2.4 and hence the first state-
ment of Theorem 1.5. Thus, it is enough to prove Propositions 2.3, 2.6 and 2.7 to

get the observability of (1.1) through I' for 7" > T},.«. These proofs are postponed
to Sections 3 and 4.

2.3. Negative result: lower bound for the critical time. In this paragraph
we discuss the second statement of Theorem 1.5 about the non-observability of
(1.1) if T' < Tpin- The proof relies on the construction of a particular family of
solutions of (1.1) for which the estimate (1.3) cannot hold if 7" < Ti,. In Section
3, we will prove the following result.
Proposition 2.8. For alln € N, there exist A, € C and ¢,, € H*(I) n Hy(I) such
that HwnHLQ(I) = 17 ,

M = Vg (0)eF + o (V). (2.5)

n—-+0oo

and
( — Oyy + @nq(y)Q)wn = A\n.
Moreover, for any € > 0 there exists C' > 0 such that, for all n € N,

WL (P + () < On exp (~vV2(1 — ) (O)Twin) - (26)
With this proposition we now prove that we cannot have observability through
I'in time T < Thin.

Proof of Theorem 1.5.(ii), assuming Proposition 2.8. Assume that (1.3) holds. For
meN, te[0,T],ze T and y € I we set

U (t, @, y) = e P (y),

where \,,, and v, are given by Proposition 2.8. This defines a solution u,, of (1.1).
Then (1.3) gives

2Re(An) < C(R0 1) (Juf, (~) + [0, ().
Let € > 0. By Proposition 2.8 there exists C'; > 0 such that
(V24(0) + o(1))v'm < Cymexp (V2mg (0)[T = (1= £)Tia + 0(1)])

This implies

T = (1 - S)Tmin-
Since this holds for any ¢ > 0, this implies that T" > T,, and the conclusion
follows. U

3. SPECTRAL PROPERTIES OF THE KOLMOGOROV EQUATION

In this section we prove Propositions 2.1, 2.2, 2.3 and 2.8.



8 CRITICAL TIME FOR THE OBSERVABILITY OF KOLMOGOROV-TYPE EQUATIONS

3.1. Well-posedness and Fourier transform of the Kolmogorov equation.
We begin with the well-posedness of the problems (1.1) and (2.1) for all n € Z.
We also show that if u is a solution of (1.1) then its Fourier coefficients u,, n € Z,
are solutions of (2.1).

We set
H;, () = {ue L*(Q) : due L*(Q), u(x,ly) = 0 for almost all z € T} .
By the Poincaré inequality, this is a Hilbert space for the norm defined by
[ullzy @) = 10yulz2)-
We consider on L%(€2) the operator K defined by
Ku = —0y,u + q(y)*0u

on the domain

Dom(K) = {ue H;,() : Kue L*(Q)},
where Ku is understood in the sense of distributions. Similarly, for n € Z we
consider on L*(I) the operator

K, = =0y, + inq(y)?, (3.1)
defined on the domain (independent of n)
Dom(K,) = H*(I) n Hy(I). (3.2)

We notice that Kj is just the usual Dirichlet Laplacian on I. In particular, it is
selfadjoint and non-negative. However, the operators K and K, for n # 0 are not
symmetric. We will show that they are at least accretive. For K this means that

Vue Dom(K), Re(Ku,u)pq) = 0.

In fact, they are even maximal accretive. This means in particular that any z € C
with Re(z) < 0 belongs to the resolvent set of K.

Proposition 3.1. (i) The operator K is mazimal accretive on L*(SQ).
(i) For all n € Z, the operator K, is mazimal accretive on L*(I).
(iii) Let u € Dom(K) and let (uy)nez be the Fourier coefficients of u. Then u,
belongs to Dom(K,,) for all n € Z and the Fourier coefficients of Ku are the
K,u,, neZ.

Proof. ¢ We begin with the second statement. It is easy to see that for n € Z
and u € Dom(K,,) we have

Re (Kyu,u) = [u]727) > 0. (33)

which means that K, is accretive. Then K, is an accretive and bounded pertur-
bation of the selfadjoint operator K, so it is maximal accretive.

e Now let u € Dom(K) and v = Ku € L*(Q)). We denote by (uy)nez, (Vn)nez €
(*(Z, L*(I)) the sequences of Fourier coefficients of u and v, respectively. Let
nez,p, e CP(I) and ¢ : (x,y) — €™ ¢,(y). By the Parseval identity we have

1
o (u, =0y — a(y)?020) 11

<um _qbilz - iHQ(y)2¢n>L2(]) = o

1
= or {0, 0) 12() = (Vns ) () -
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This implies that u” € L*(I) (hence u, € H*(I)) and
—up + inq(y)*tn = vn.
On the other hand, it is clear from the definition of w,, that u,(—¢_) = u,(¢;) = 0,
so u, € Dom(K,). Then we can write K,u, = v,. This gives the last statement
of the proposition.

e As above we can see that the Fourier coefficients of d,u are the u), n € Z.
Then, by (3.3) and the Parseval identity we get

2
[0yull 72y = 27 X [un 7o) = 27Re Y | (vn, un) = Re (v, u) = Re (Ku,u). (3.4)
nez nez
e We check that the operator K is closed. Let (t,)men be a sequence in Dom(K)
such that u,, — u and Ku,, — v in L*(Q), for some u,v € L*(Q2). In the sense of
distributions we have
— Oyt + q(y)?0pu = lim  (=0yytm + q(y)*0pu) = v e L*(Q). (3.5)

m—+00

For m,p € N we have u,, — u, € Dom(K), so by (3.4) we have

|t — usz&y(Q) = Re (K (um — up), U, — up>iz(m — 0.
This implies that the sequence (i, )men has a limit in Hg ,(Q2), which is necessarily
u. By the trace theorem, we see that u,, also goes to u in L*(0), so u vanishes
on 0N2. Finally, we have proved that u belongs to Dom(K') and, by (3.5), Ku = v.
This proves that K is closed.
e By (3.4) the operator K is accretive on L?*(€2). Then, for u € Dom(K') we have

(K + 1)“‘&2(9) = HKUHi?(Q) + HUHiQ(Q)’ (3.6)
so (K + 1) is injective with closed range. Now let v € L?(2) be such that
Vu € Dom(K), ((K + 1)u,v) =0.
Then, in the sense of distributions we have
—0,yyv — q(y)?0,v + v = 0.

As above we can check that the operator K = —0yy — q(y)?0y, defined on the
domain

Dom(K) = {ue H},(0) : Kue L*(®)},

is accretive. This implies that v = 0 (in fact, K is the adjoint of K). Thus
Ran(K + 1)+ = {0} and (K + 1) is invertible. By (3.6), its inverse is bounded.
This proves that —1 belongs to the resolvent set of K, and hence K is maximal
accretive. U

By the Lummer-Philipps Theorem (see for instance [EN00]), the operator (—K)
generates a contractions semigroup (e "),~o on L*(Q). Given u, € Dom(K), the
function u : t — ey belongs to C°(R, Dom(K)) n C*(R,, L*(f2)). This gives a
strong solution of (1.1). More generally, for u, € L*(€2), the function t — e ",
belongs to C°(R,, L*(Q2)). This gives a weak solution of (1.1). The same applies
on L*(I) to K, and (2.1) for any n € Z. In particular, if u,, is a solution of (2.1)

then for all ¢1,t; € [0,7T] such that ¢; <t we have
lttn (£2) 7201y < N (E0) 721y (3.7)
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Now, we show that the solutions of (2.1) for n € Z give the Fourier coefficients
of a solution of (1.1)

Proposition 3.2. Let u, € L*(Q). Fort > 0 we set u(t) = e u, € L2(Q). We
denote by (Uon)nez and (uy(t))nez the Fourier coefficients of u, and u(t), t = 0,
respectively. Then for allmn € Z and t = 0 we have

U, (t) = e g,

Proof. First assume that u, € Dom(K). Let n € Z and ¢t > 0. By differentiation
under the integral sign and Proposition 3.1 we have in LZ(I), for h > 0,
un(t +h) —u,(t) 1 Cina W+ hyx) —u(t, x)
=— e
h 21 Jr h
1

7 "o Tre_m””Ku(t,x) dr = —Kpu,(t).

dx

The conclusion follows in this case.

In general, since Dom(K) is dense in L%(£2), we can consider a sequence (4”) e
in Dom(K) which converges to u, in L*(Q2). For m € N we denote by u’,, n € Z,
the Fourier coefficients of u'. Then w]', goes to ue, in L*(I) for all n € Z. Then
for n € Z we have by continuity of e™** and e~*%» in L?(Q2) and L?*(I) respectively

The proposition is proved. U

Before we can state Theorem 1.5, we still have to check that the right-hand
side of (1.3) makes sense (one would not have this difficulty with observabililty
through an open subset of ). To do so, we investigate the regularizing effect of
equation (1.1), and prove that even if the initial condition u, merely belongs to
L?(€2), the solution is smooth enough for the right-hand side of (1.3) to be well
defined. The proof of this result relies on Proposition 2.3, which will be proved in
Section 3.3 below.

Proposition 3.3. For u, € L*(Q) and 7 > 0 we have
e ™u, e H*(Q) n Hy (Q) < Dom(K).

Proof. ¢ For t > 0 we set u(t) = e " u,. We denote by u,,, and u,(t), n € Z,
the Fourier coefficients of u, and u(t), respectively. For n € Z and ¢t > 0 we have
un(t) = e, ,, by Proposition 3.2.

e By Proposition 2.3 there exists ¢ > 0 such that for 7 > 0 and k € N we have

&
' Jun () 2y < 5 (ol - (3.8)

This implies in particular that u(7) € C*(T, L*(I)).
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e Let7 > 0. Assume that u, € CF(2) € Dom(K?). Then u € C*([0, 7], Dom(K))
and u, € C1([0,7],Dom(K,)) for all n € Z. Let n € Z. Since (0; + K,)u, = 0 we
have

0=Re J (=)0 + Ko )un(®), Ortun (1)) gy dt

-
2T

_ f -7 Oyt () 22y it + f (t — ) Re (Kt (t), () 2 .

T T

Since

= Re <_ayyun<t)v atun(t» + Re <ZTLQ(y)2un(t)a atun(t)>
1d
> 5 2 (= Ouytin () un (1)) — 1] [un (D] | run (8)]
1d 1 gl [un(®)® [ra(t))”
with (3.7) this gives
2T 2
[0l
Lo [ d 7 gl (7))
< —§ReL (t = 7) 3 (Kt (£), wa(8)) dt -+ - .

An integration by parts gives

fReJ " 4)% (Kt (1), un(t)) dt

2T

= —7Re <Knun(27)u un(27>> + f Re <Knu”<t)’ un(t)> dt

1 2T d )
< —z — |un ()| dt
ARl

- [un (P Jun(20)]*

2 2

On the other hand, since the function ¢ — dsu,(t) is also a solution of (1.1), its
norm is non-increasing, so

1 sz 72 Oy (27) |

2
Finally, with (3.8) we get
2 2w 27)[* _ 2 Jun(n)]”

(t =7) [owu(t)|* dt > 1

T

4 2
|0vun (27)) o < g+l Jun(7)]
2 4 2
< 2lonl”  |lglls, [[von]
= 2 4 :
T T

Hence, by the Parseval identity,

2[uol® ¢ gl ol
2 2
[ Ku2r)|” = |owu(2r) L2 < — o 2ol

72 T4
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o Let u, € L*(2) and (Uom)men be a sequence in CF(2) which goes to u, in
L*(Q). For 7 > 0 we set u(1) = e ™®u, and u,, (1) = e g, me N. Let 6 > 0.
um(t) converges to u(t) for any t > 0 and the function ¢ — u/ (¢) has a uniform
limit on [§, +oo[. This implies that the function u belongs to C*(]0, +oo[, L*(£2)).
Then, since —K is the generator of the semigroup e %, u(t) belongs to Dom(K)
for all t > 0 and u/(t) = —Ku(t).

e Finally, for u, € L*(Q) and 7 > 0 we have (—0,, — q(y)?d.)u(r) € L*(Q)
and d,u(r) € L*(Q), so —0,,u(r) € L*(Q). Since we also have d,,u(r) € L*(Q),
this proves that u(7) belongs to H?(Q). The fact that u(r) is also in Hj ()
is a consequence of the fact that it is in Dom(K) < H;,(2), and the proof is
complete. Il

3.2. General spectral properties for non-selfajdoint Schrodinger opera-
tors. In the rest of this section, we prove Propositions 2.3 and 2.8. They can both
be rewritten in terms of the operator K, defined by (3.1)-(3.2).

We have seen in Proposition 3.1 that K, is a maximal accretive operator on
L*(I). In particular, the resolvent set of K, is not empty. And since Dom(K,) is
compactly embedded in L?(I), the resolvent of K, is compact. This implies that
the spectrum of K, consists of eigenvalues which have finite algebraic multiplici-
ties.

We have already said that K, generates a contractions semigroup on L?(I) (see
(3.7)). However, this is not enough for Proposition 2.3. For n = 0, the operator
K is selfadjoint and the decay of the corresponding semigroup is given by the
functional calculus. If we denote by Ay the first eigenvalue of Kj, then Ay is
positive and for all £ > 0 we have

—tKo —tAo

le <e

Hc(L?(J))
For n # 0, the operator K, is not selfadjoint, and the link between the exponential
decay of e » and the real parts of the eigenvalues of K, is not that direct.

The purpose of the rest of this section is then to give some spectral properties
for the non-selfadjoint operator K,,. We are interested in the location of the spec-
trum (and in particular the eigenvalue with the smallest real part), the size of the
resolvent (K, — z)~! for z outside this spectrum (for a non-selfadjoint operator,
the resolvent can have a large norm even for z far from the spectrum) and then
an estimate of the propagator e *%» for t > 0.

The properties of the operator K, will be deduced from analogous results for
the classical complex harmonic oscillators and the complex Airy operators.

With the Agmon estimates (see Paragraph 3.4 below), we will see that for large
n the eigenvectors of K, associated to “small” eigenvalues should be in some sense
localized close to 0. And near 0 we have

ing(y)* ~ ing'(0)%y*.

Thus, it is expected that, at least for a small spectral parameter, the spectral
properties of K, for large n should be close to those of the harmonic oscillator

H, = —0d,, + ing (0)*y?, (3.10)
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defined on the domain
Dom(H,) = {ue H*R) : yue H'(R),y*ue L*(R)}.

It is known (see for instance [Hell3, §14.4]) that H,, defines for all n € N*
a maximal accretive operator on L?(R). Its spectrum consists of a sequence of
(geometrically and algebraically) simple eigenvalues, given by

(2k — Dv/ng (0)e®, ke N*,
and for each k € N*, a corresponding eigenfunction is given by

_(on)? _ i(aw)? 1,

y— PueSay)e >z i, a=nig(0)2, (3.11)

where P is a polynomial of degree k. In particular,

ng' (0
inf Re(o) = M
eSp(Hy) V2
This is not enough to get a decay estimate for the propagator e tfn t > 0.
However, it is also known that for v < q ) there exists ¢ > 0 such that

c
sup ||(H, — ,z)_1 < —
Re(2) G/ H HE(LQ(R)) NG
(in fact we have more precise resolvent estimates [HSV13, KSTV15]). Then we
deduce (see for instance [ENO0O] for the theory of semigroups) that there exists
C > 0 such that for all £ > 0 we have
e

(3.12)

—tyy/n
| czomy < Ce™Y™ (3.13)

Proposition 2.3 precisely says that we have a similar estimate for the propagator
generated by K, while Proposition 2.8 shows that for large n the first eigenvalue
of K, is close to the first eigenvalue of H,,. The decay of the corresponding eigen-
function has the same form as in (3.11), but it depends on the values of ¢ on the
whole interval I, and not only on its behavior in a neighborhood of 0.

For the proofs, we will also compare K,, to some complex Airy operators. Near
Yo € I\ {0}, the potential inq(y)?* looks like ing(yo)* + 2inq(yo)q (vo)(y — vo), with
q(v0)q (yo) # 0. It is then useful to recall the properties of Schrodinger operators
with linear purely imaginary potentials.

Given «a € R\ {0}, we consider on L?(R) the operator
Ayu = —0yu + ioyu, (3.14)
defined on the domain
Dom(A,) = {ue L*(R) : (—u" + iayu) € L*(R)}.

This complex Airy operator is now well understood, see for instance [Helll, KS15]
and references therein. We notice that for a > 0 we have

07 (A0 — )10, = 5 (A — za73) 7,
a3

where O, is the unitary operator defined on L*(R) by
(Oau)(y) = atu(asy).
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Moreover, A_, = A%*. Then, from the properties of A; we deduce the following
result.

Proposition 3.4. (i) The spectrum of A, is empty for any a € R\ {0}.
(ii) Let v € R. Then there exists ¢ > 0 such that for all o € R\ {0} we have

sup(Aa = 2)7' < —
Re(z)é’y|oz\% |Oé|

To understand the behavior of K,, near the boundary points +/,, we introduce
the complex Airy operator on R,. For a € R\ {0} we consider on L*(R,) the
operator defined by

Afu = —0yyu + ioyu,

on the domain
Dom(Af) = {ue L*(Ry) : (—u" + iayu) € L*(Ry) and u(0) = 0} .

To prove the following proposition, we use in L?(R,) the same dilation ©, as
above and we apply [Helll, Lemma 5.1]. For the properties of the Airy function
we refer for instance to [VS04].

Proposition 3.5. (i) Let o > 0. The spectrum of A} consists of a sequence of
simple eigenvalues. These eigenvalues are given by

)‘l—ci_ ZO{%G% |1uk|7 kEN*y

where -+ < pp < -+ < pg <y < 0 are the zeros of the Airy function.
(i) Let v < 1'. There ezists C' > 0 such that for all o € R\ {0} we have

sup (45 = =) <

Re(z)<7\a|12‘> ‘a|7

Of course, we have similar properties on L*(R_) for the operator

At u v —0yu + ioyu,

a

defined on the domain
Dom(A,) = {ue L*(R_) : (—u" + iayu) € L*(R_) and u(0) = 0} .

3.3. Resolvent estimates. In this paragraph, we prove Proposition 2.3 (see
Proposition 3.7 below) and the first part of Proposition 2.8, about the eigen-
value A, (see Proposition 3.9). The estimate of a corresponding eigenfunction at
the boundary will be given in the next paragraph.

We prove estimates for the resolvent (K, — z)~! when z has real part smaller
than y4/n, with v as in Proposition 2.3. More precisely, we estimate the difference
between (K, — z)~! and the model resolvent (H, — z)~!, in a suitable sense. By
the theory of semigroups, this will give Proposition 2.3. This will also give the
existence of an eigenvalue A, which satisfies (2.5).

To compare (K, — z)~! and (H, — 2z)~!, we follow the ideas of [Henl4]. Our
one-dimensional setting is simpler than the general case considered therein so,
for the reader convenience, we provide a complete proof adapted to our problem.
Notice also that (2.5) is not contained in the results given in [Henl4], where the
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imaginary parts of the eigenvalues are not an issue.

We denote by 1; the operator which maps u € L*(R) to its restriction on I:
1;u = u|; € L*(I). Then 1% maps a function v € L*(I) to its extansion by 0 on R.

Proposition 3.6. (i) Let € |0, q%)[. There ezist ng € N* and ¢ > 0 such that

forn = ng and z € C with Re(z) < v4/n we have z € p(K,,) and
c

| (K — Z>71Hc(L2(1)) < vn
(ii) We have

* T _ 1
|13, - Hancm(R)) = o (\/—ﬁ) :

Proof. The proof consists in using localized versions of the resolvents of the com-
plex harmonic operator H, and of Airy-type operators to construct an approx-
imation @, (z) of the resolvent (K, — z)~'. We first introduce suitable cut-off
functions, then we define @, (z) and finally we check that it is indeed an approxi-
mation of (K, — 2)~! up to a uniformly bounded operator. The proposition will
then follow from estimates on @, (z). For n € N* we set

C, ={z€C : Re(z) <v/n}.
e For neN* and z € C,, we set
Rn(2) = 1;(H, — 2)"'1%.

This defines a bounded operator on L?*(I). Our purpose is to prove that R,(z)
gives an approximate inverse of (K, —z) near 0, in the following sense. We consider

E11
p 6747

a cut-off function y € C°(R, [0, 1])_supp0rted in [ and equal to 1 on a neighbor-
hood of 0, and for n € N* and y € I we set

xXn(y) = x(n"y).
Then we set
To(2) = Ru(2)xn(Kn — 2) — Xn-
We prove that Ty,(2) extends to a bounded operator on L?*(I) and

1T () 222y —— 0, (3.15)

n—+ao0

where the convergence is uniform with respect to z € C,.
Let u € Dom(K,,). For n € N* we have x,,u € Dom(kK,) and 1}x,u € Dom(H,).
For y € I we set

r(y) = a(y)” — 4 (0)%”
Then for z € C,, we have
R,(2)(K, — 2)Xnu = Xnu + inR,(2)rx,u.
This gives
Ry (2)xn(Kp — 2)u = xou + inR,(2)rxn — Ru(2)Xou + 2R, (2)(Xu).  (3.16)
Since |r(y)xn(y)| < n™37, we have by (3.12)

1—3p—l
InRn(2)rxnl rziry S 7 2 ——0.
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We also have

" 2p—1 N
||Rn(Z)XnHE(L2(I)) sn ’ n—+o0 0.

For the last term we observe that for v € L?(R) we have
e o1 |2
|6y (Hy; = 2) IUHL2 R)
= Re ((Hy; — 2)(Hy — 2)""v, (Hy; — 2)7'0) o + Re(2) |[(Hy —

_ 2
n UHL2(]R)

2
ol
vn
Taking the adjoint gives
| R (2)0, (6w 2y < || (H. Ay(17 x5 0) HL2
_1
<n- 4 H]lIXnU’HLQ(R) <nfa HUHLQ(I) )

and (3.15) follows.
e Then we consider

6 = 3
In particular, p > p. For n € N* we denote by v, the integer part of 1+ (£, +£_)n?,
and for j € {0,...,v,} we set

1+2p 1-—
]

0+ 0

jp = A+ Jop, 0p = ”

We also consider § € C§°(R) supported in ] — g, 2[, equal to 1 on [— %, %] and

such that (—y) =1 —6(1 —y) for y € [0,1]. Then for all y € R we have

Z Oy —m) = 1.

MEZL
For ne N* je{l,...,v,} and y € I we set

ajn
bial) =0 (1552 ) (= )0
Let A, ,, be defined by
Ajnu = =0yu + ing(a;n)® + 2ing(aj.)q (aj.)(y — ajn)u
on the domain
Dom(4;,) = {ue H*(R) : yue L*(R)}.

With the notation (3.14) we have

n)?,

Ajin = Ta;n Aon(aq) ajn) T=ajn T 1G(050
where 7, , is the usual translation operator: (74q4,,u)(y) = u(y Fa;,). Thus 4;,
satisfies the properties of Proposition 3.4 with o = 2n(qq’)(a;,,). We similarly set
Aon = T,LA%(qq,)(_L)TL +ing(—(_)?
and
Avn = T Aoy T4 + ing(Ly)?

Notice that Ag, is an operator on L?*(—¢_,+o0) and A, , is an operator on
L?(—o0,¢,). They satisfy the same properties as the model operators (see Propo-
sition 3.5).
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For je{l,...,v, — 1} weset 1; = 1;. We also denote by 1, the operator which
maps u € L*(—{_, +o0) to its restriction on I, and by 1,, the operator which maps
u € L*(—o0,0,) to its restriction to I. For n € N*, z € C, and j € {0,...,1v,} we
set

ij(Z) = ]lj (A]n — Z)_l]l;(

and
Tjn(2) = Rjn(2)8jn(Kn — 2) = Ojn.
We proceed as above. For j € {0,...,v,} we have
Rjn(2)0jn(Ky — 2)u = O50u + inR;, (2)0; 5750t — Rjn(2)05 ,u + 2R;,(2)0, (0 ,u)
where
rian(y) = () = ¢*(aj0) — 2(y — a52)d (a5,0)q(a;,0)-
Let n € N* and j € {0,...,v,} be such that 6;, # 0. Then |a,,
2nq'(a;)q(a;,) = n'=? and hence, for z € C; (in particular Re(z) <
n31-°)) Proposition 3.5 gives

_20_
”RJW( )Hg (1)) <n s p)- (317)

n-"*,

<
1
Tnz <«

Then, as above we have |}, ()0, (y)| <n ™" so

N || Rjn(2)7n05n

1-25—3(1-p) ,
(xS0 Pl

Moreover,
HRJTL 0” UHLQ(I S n2’57§(17p) HUHL2(I) )

| Ry (2) (8 < P30

W' ppay
All these estimates being uniform with respect to j € {0,...,v,}, we finally get

sup sup HTJm( )”L(L2(I)) — 0. (3-18)

2eC;; 0<j<vn —+®

e For u e L?(I) we write

U= XpU + Z 0, nu,
7=0
We want to sum (3.15) and the estimates (3.18), for j € {0,...,v,}, to get an
approximate inverse for (K, — z). We have seen that each contribution goes to 0,
but the number of terms grows with n.
Let 6 € CP(R, [0,1]) be equal to 1 on [ — 2, 2] and supported in | — 1, 1[. Then
forne N* je{l,...,v,} and y € I we set

; (Y= ajn
Bial) = (1552,

Qu(2) = Rul2)xn + 3 B0 Ry (2)05,0 (3.19)
j=0

and then

For u € Dom(K,) and z € C; we have 6;,u = 6, ,0,,,u and

Gjm(Kn - Z)(l — éj,n)u = O,



18 CRITICAL TIME FOR THE OBSERVABILITY OF KOLMOGOROV-TYPE EQUATIONS

SO

1Qn(2) (K — Z)U_UHL2 < |To(z UHL2(I 293 nTjn (2 Jnu

L2(1)

Moreover 0;,0x., = 0 whenever |j — k| > 2, so by almost orthogonaly (twice) we
can write

2
2

QJNITJ” Jnu

Z

Z‘gjnT’]n ]nu

2
L2(1) J=0 e
Vn )
< sup [Ti.(2)| H@nu
ogjgn [ Js ( )HL(L2(I))§] P L2
2 2
S S W Tin @y lelzea
This proves
sup s Qu()(Ky — 2)u — uf yaggy —— 0. (3.20)
2eC;,; ueDom(Ky,) e
lullp2(py=1

Thus for n large enough the operator K, has no eigenvalue and hence no spectrum
in C,,. Moreover for z € C.; we have

(K — Z)_l = B, (2)Qn(2), (3.21)
where
Bu(z) = (14 (Qu(2)(K, —2) — 1))

is bounded on L?(I) uniformly in 2 € C,, and n large enough.
e Letue L*(])and z € C,. By (3.17), and using again the almost orthogonality,

] .

ng(l—/’)
L3(I)

?

Un
(2) 2, G2}t

SO

1

(K, —2) 7" = Bn(z)Rn(Z)Xan(mu)) S n20-p)

(3.22)

With (3.12), this gives the first statement of the proposition.
e  We now consider the case z = 0 to prove the second part of the proposition.
By (3.20) we have

1Ba(0) = U ggzaqry = | (1 + @uO) K =)' =1 ——0,

(L2(I)) n—+w

0 (3.22) and (3.12) give

1
HKn_l - ]lIHn_l]l;XnHﬁ(L%I)) = o (\/_ﬁ) . (323)

n——+ao0
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On supp(1 — x,,) we have |y| = n™", so for u € L*(I) we can write
_ 2 _ 2
H(l — Xn) 11 (Hy) 117“”9(1) <n® H?/(H;) 11?“”9(&@)
< 2 im (RS CHE) ™ o, () ) |

2
HUHL2(1)
ns=2

~

Taking the adjoint gives

_ 1
H]l[Hn 1]1?(1 - XH>H[;(L2([)) = n—>0+oo (\/_ﬁ) .
With (3.23), the proof is complete. O

Now we are in position to prove Proposition 2.3. It is a direct consequence of
the following result.

Proposition 3.7. Let v < q%). There exist ng € N* and C > 0 such that for
n=ng andt = 0 we have

—tKn

He 9 < Cetvr,

lewea

Proof. Let ng € N* and ¢ > 0 by given by Proposition 3.6. For n = ng we set

K, = —K, + v4/n. Then for n > ng and z € C with Re(z) = 0 we have z € p(K,,)

and
c

[0 = 2) " prory < Jn

Moreover for ¢t > 0 we have )
o] < e

Then we apply [EN0O, Th. V.1.11 p. 302] to the operator K,. With the notation
used in the proof therein, we have wy < y4/n, M < \/Lﬁ and L = 2m. We obtain

that the semigroup (e”?”)tz(] is bounded uniformly in ¢ > 0 and n > ng, so there
exists C' > 0 such that for all n > ng and ¢t > 0 we have

ot = et < et

We also refer to [HS10] to get bounds on a semigroup from bounds on the resolvent
of the corresponding generator. U

Now we turn to the proof of (2.5). A more general version of the following result
is given in [Kat80, §IV.3.5].

Proposition 3.8. Let T be a closed operator on a Hilbert space 7. Let \ € C.
Assume that X is an isolated eigenvalue of T. Let (By)men be a sequence of
bounded operators on A such that |Bp|yqy — 0 as m — +00. For m € N we
set T,, =T + B,,. Let ¢ > 0. Then for m large enough the operator T,, has an
eigenvalue A, such that |\, — | < e.

Proof. We set C = {C € C,|¢ — A| = £}. Without loss of generality, we can assume
that ¢ > 0 is so small that A is the only point of Sp(T) in the disk D(\,2¢). We
set M = supgce [ (T — ¢)7"|. Since

T —C=(T =1+ (T=¢) "' Bn),
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we see that C N Sp(T},) = & as soon as M | B,,| < 5. Moreover, in this case, we
have for ( € C,

(T, — O < 2M.

We set
1
P=—|[(T-¢"d.
We similarly define P,, by replacing T" by 7},. Then we have by the resolvent
identity

1 _ _
(PPl = |t [ (027 Bl = )7 ] < 2200713,

Thus for m small enough we have |P,, — P| < 1. By [Kat80, §1.4.6] this implies
that

dim(Ran(P,,)) = dim(Ran(P)) € N*.
This proves that T,, has an eigenvalue \,, such that |A — \,,| < e. O

Proposition 3.9. For n € N* large enough there exists an eigenvalue \, of K,
such that

Aa = Fq(0)Vn] = o (V).

n—+aoo

Proof. We consider on L?(R) the unitary operator ©,, which maps u to
O,u: T — nsu <n%$> )
Then we have ©,'H,0,, = \/nH;. By Proposition 3.6,

Ve, "1 K, 1,0, — 0.

—1
o ey 75
We set A = €'7¢/(0). Then p = A~! is an eigenvalue of H;'. By Proposition 3.8,
there exists an eigenvalue p,, of \/nO©; ' 1*K 11,0, such that u, goes to u as n
goes to +00. Then n-2 {tn is an eigenvalue of 13K 1, and hence an eigenvalue
of K 1. We conclude the proof by setting A\, = \/nju. " . O

3.4. Agmon estimates. To conclude the proof of Proposition 2.8, it remains
to prove the estimate (2.6) for an eigenfunction 1, of K, corresponding to the
eigenvalue \,,.

This estimate is given by an Agmon estimate. The Agmon estimates measure
how the eigenfunctions corresponding to the smallest eigenvalues of a Schrodinger
operator concentrate near the minimum of the potential. Exponential decay of
eigenfunctions and precise Agmon estimates are classical results for real-valued
potentials (see for instance [Agm85, Hel88]). We refer to [KRRS17] for Agmon
estimates for a general non-selfadjoint Laplacian.

Here, it is expected that for large n an eigenfunction corresponding to the first
eigenvalue ), of K, will concentrates near 0, where the potential ¢? reaches its
minimum. In particular, such an eigenfunction will be small at the boundary, so
it is indeed a good candidate to break an observability estimate like (2.4) when
T < Tmin-
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Proposition 3.10. Let £ > 0 and £ €]0,1[. Forne N and y € I we set

f V (ra(s)2 = Vn(E +2)) , ds|, (3.24)

where for 0 € R we write o, for max(0,0). There exists C' > 0 such that for

neN, ue Dom(K,) and X € C with
[Re(A)] + [Im(A)] < Ev/n, (3.25)

1—6

W (y

we have

et gy + Ve

2 . 2
‘L2 C\/ﬁ Hu”LQ(I) We, (Kn - )‘)UHLZ([)

\/7 He
This result is proved with more generality in [KRRS17]. For the reader conve-
nience we recall a proof in our 1-dimensional setting.

Proof. We denote by @),, the quadratic form corresponding to K,,. It is defined for
f.g€ Hy(I) by

w(f:9) f 'y +inLq2fg-

e Let ue Dom(K,). For ( € Wh*(I,R), we have

()Y gy = (G260 + ol gy = 4(Cu) = Gy (Cu) + €'y
SO

Re (4!, (C2u))pagy = €Y agry — 103

e Let We WY*(I,R). Applied with ¢ = ¢V, this equality gives

Re(Qn(u e ) = Re (', (")) gy = [ ) [pagyy = W7l
On the other hand, a direct computation shows that

Im(Qn(u, e®u)) = Im (v, 2W'e*" u)

Let a €]0, 1[. Since

2y T quwuH;(n
‘Im (u',2W'e 2W“>L2(1 ’ ‘Im {(e"uy, W’ewu>L2 ‘
S H e u HL2(1) +at HWlewuHL2(1) ;

we have
I (Qu(, V) > 0 el ) — o () [y — 0 WMy
and hence
Re(Qn(u, e w) +Im(Qn(u, e u))
> (1= a) (" u) [z + L (ng® — (1 + a~HYW™) W ul®.
Finally,
) Ly 2 10 gy + IVl = 200 gy W76,

1
= B) Hewuluim) - ”W/‘EWUHLQ(I) ’
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1

soif weset =24+ a” —aandalz%,weget

Re(Qn (11,2 u)) + Im (Qu(u, ™)
> e e}, ot L (ng® — BW"?) |e"ul?. (3.26)
e On the other hand, for A € C we have
Qnlu, ) = MV ull Ly + (Ko = N, ) -

We take the real and imaginary parts of this equality. With (3.26) this gives

£1 HeWu'HiQ(D + L (ng® — BW"™ — Re(A) — Im(X)) [e" ul?
<2 HeW(Kn — )\)uHLQ(I) HeWUHLQ(I) . (3.27)
e Now assume that (3.25) holds. Let 6 €]0, /] be such that
[—6,,6] ={yel : ngly)’ <vn(E+e)}.
Let W, . be given by (3.24). We choose « €]0, 1] in such a way that

2
(1-¢)

On [—6,,6,7], Wy and hence W), _ vanish, so
BW,-(y)” + Re(X) + Im() = ng(y)* < Ev/n,
while on I\[—0d,, ;"] we have
B, (y)* = na(y)” — vn(E +¢),

b=

SO

na(y)? — B, (5 — Re() — Im(X) > e/
Then, by (3.27),

L PR I G
I\[=65 6]

< 2 e (K — N gy [

5
2
’LQ(I) + E\/ﬁj - |u)

2

/N

EA/T
< SV ety

S
’i2(1) + HeWn,s(Kn - )\)UHiQ(I) + E\/ﬁf{s |u|27

and finally,

o N R

2
’L2(I)

2 5
[ (K = M|y + (B + ) L uf?.

g/ N

ea/n 2
< N e eu |L2(I) T

The proposition is proved. U
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For € €]0,1] and y € I we set

We first check that the estimate of Proposition 3.10 still holds with W), . replaced

by \/nke.

Proposition 3.11. Let E > 0 and € €]0,1]. There exists C. > 0 such that for
neN and y € I we have

Wiepa(y) = Vnre(y) — Ce. (3.28)

Proof. Tt is enough to prove the inequality for n large Let o = 1 to be fixed large
enough later. For n large enough we consider n- €]0, ¢, ] such that

i) = (E f) .
We have
i _ 1
nn n—g-oo (n 4>7
and hence

Vik(tnf) = 0 (1).

n—+00

In particular, for n large enough the inequality (3.28) holds for y € [—n,,, 1] if C.
is chosen large enough, since then the right-hand side is negative. On the other
hand, for y > nt we have

J\/nq E+>\7dsm\f‘[

Then
1-¢
Waepaly) > VI -a Wak(y) + O (1).
- n——+aoo
For a large enough this gives (3.28). We proceed similarly for y < —n,,. U

Combining Propositions 3.10 and 3.11 we obtain the following version of the
Agmon estimates:

Proposition 3.12. Let E > 0 and ¢ €]0,1]. There exists C > 0 such that for
neN, ue Dom(K,) and A € C with |Re(\)| + |Im(\)| < Ey/n we have

C
Vel |2, ) + vl ™l CﬁllUllimﬁ\/_ﬁHeﬁ“(Kn_M“E%n

Proof. If we denote by C' > 0 the constant given by Proposition 3.10, then by
Proposition 3.11 we obtain the estimate of Proposition 3.12 with C = e“C. O

From Proposition 3.12 we deduce the pointwise estimate (2.6).

Proposition 3.13. Let E > 0 and € €]0,1]. There ezists C > 0 such that for
n e N, an eigenvalue p,, of K, with Re(u,)+Im(w,) < Ey/n and ¥, € ker(K,,— ),
we have

He\/ﬁnsw;Hin) < Cn H%Him)
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Proof. By Proposition 3.12 we have
€ £ 2 2
H‘Q\F"i @Z)nHL2(1) |wnHL2(1) ) He\/ﬁri @Z};ZHLQ(I) < C\/ﬁ |‘77Z)n‘|L2(I) : (329)

e We prove
nke 2 3 2
eVt 5 0d [l (3.30)
We have ¢ = ing*, — pntb,. With (3.29) we get

NKe 2 2 2 2
Hef annHL2(I) < ‘:un’ ”wnHLQ(I) sSn “¢n||L2(I) :

For the other term we have by an integration by parts

V2(1 = &)|eV™ g vn 1) = 2Vt il dy
)

_ f eV (362 |a]? + 20°Re(Pl)) dy.
I
On the one hand we have
ke 2 3 Nke 2 3
[[evmntagg o dy‘ < ey, < nd el
I

On the other hand,

J 23 20 Re(Pn1ll)) dy‘ < 2|eY™ ngPep| Lz(z)quﬁHE\/ﬁ%HB(I)
I

2
< (U eV™eng Ly + 112 ot

This gives (3.30).
e Since ¢/, vanishes on I (we could also use the general trace Theorem) we have

by (3.29) and (3.30)
Heﬁ”E%Hiwu) < 2H€ﬁ"‘E%HLz(I)H (eﬁ%%)/”LZ(D
< ni H@Z’nHLz(I) (H\/HKQGWRE@D;HM(I) + H‘eﬁRE@bZHLQ(IO

2
< nllvnliey
This completes the proof. O

Notice that (3.30) is better that the naive estimate obtained from (3.29) and
the expression of ¢". In fact we do not have to be optimal here, since the power
of n in the right-hand side of (2.6) is not important for the proof of the second
part of Theorem 1.5.

4. THE OBSERVABILITY ESTIMATE IN SMALL TIME

In this section we prove Propositions 2.6 (see Paragraph 4.2) and 2.7 (see Para-
graph 4.4). The proofs rely on some Carleman estimates and the construction of
a suitable weight function.

In this section we will not use an index n for a solution u of (2.1). No confusion
will be possible since we will never consider a solution of the initial x-dependent
problem (1.1). Moreover, we use an index for the partial derivatives, so u; stands
for dyu, uy, for dy,u, etc.
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4.1. A generic Carleman estimate. We begin our analysis with a generic Car-
leman estimate. In the following statement, ¢ is a Carleman weight function. It
will be applied to w = e~%u, where u is a solution of a problem of the form (2.1),
possibly with a source term (see (4.12) below). We also impose that w vanishes
at initial and final times.

Proposition 4.1. Let n € N, 7,75 > 0 with m, < 7, a,b € R with a < b,
and g € L* (|1, ma[x]a,b]). Let ¢ € C*(|m,m[x[a,b],Ry). We consider w €
C([r1, 2], H*(a, b)) n C([1, 2], L*(a, b)) such that

Wy — Wy, + inq(y)*w + drw — 2¢,w, — gb;w — Py = g. (4.1)
We assume that w also satisfies the Dirichlet boundary condition
Vtelm, o, w(t,a)=w(tb) =0, (4.2)
and the initial and final conditions
vyelabl, wiry) = w(rmy) =0, w,ln,y) =w,lmy) =0 (43)

Then we have

T b To
f J((I)O\w|2+q)1]wy]2)dydt<—J (6, [w, |’ ] dt + = J f|g[ dy dt,
T1 a

T1

where
b O 2¢%¢
o = —20,0y, — — + 58 + 2040, — [ (4.4)
and
Py = —2¢,, — V2nq'. (4.5)

Proof. We can rewrite (4.1) as
( — Wyy + @w) + (wt — 20wy — Gyyw + ianw) =g,

where ® = ¢, — ¢2. The identity 2Re(af) < |a + B then gives, after integration,

b
Ref J ( — Wy + <I>w) (Wt — 20yWy — Gy W — inq2@) dy dt

1 (™ b
<§J J\g|2dydt. (4.6)

We estimate the left-hand side with integrations by parts, using (4.2) and (4.3).
The terms involving w; give

To b
Rej f (—wyy) Wy dy dt =0

To b 1 To b
Rej J (Dw)w; dy dt = _QJ J O, |w|? dydt.
T1 a T1 a

and
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On the other hand, for all ¢ €]r, 73] we have

b b b
Ref (_wyy)(_2¢yw_y) dy = [st |wy|2]a - J Oyy |wy|2 dy,

a

b - b 1 b
Ref (—wyy ) (—dyw) dy = _J Gyy ‘wy‘2 dy + EJ Byyyy ‘w‘z dy,

a
b

Rejb(—wyy)(—inq%) dy = 2nJ qq'Im(w,w) dy,

a a

and
b

b
Re | (@) (=20, — o) dy = | B0, fu dy,

a a

b
Ref (®w)(—ing*w) dy = 0.

a

We integrate these five equalities over ¢ €]7y, 73[, and then (4.6) gives

f (6, [, ] dt+f J( %yu@y%) wf? dydt
—2f f¢yy|wy| dydt+2nf qulm wy) dy dt < J f|g\2dydt

Since

nzqq w
2nqq'Im(w,w) = \ffq] y’ — \@| | ,

the conclusion follows. O

4.2. Observability inequality for a fixed Fourier parameter. In this para-
graph we prove Proposition 2.6 about observability for a fixed Fourier parameter
n € N. As already said, this is nothing but the well-known observability inequality
for a heat equation with a (complex) potential. Nevertheless, we propose a proof
here, both for the sake of self-containment, and because we believe it enlightens
the following paragraph.

The proof of Proposition 2.6 relies on Proposition 4.1. For the time dependence
of the weight ¢, we will use the function # given in the following lemma.

Lemma 4.2. Let 7,75 > 0 with 1y < 7o. There exists 0 in C* (|11, 72[) such that

(i) 0=1on]n, nl, 0 =1 on |52 DE22]
(i) limy_,,, 0(t) = lim;_,,, 0(t) = +c0,

(iii) there exists a constant C > 0 such that for all t €], 12|,
()] < Co)?, 10"(1)] < COlt)°.

Proof. Let x € C§°(]m1, [, [0,1]) be equal to 1 on [Qﬁ%, %] For ¢ €]y, 7|
we set
1 —x(t)
(=m0
Then 6 verifies all the required properties. O

(t) =1+

Now we can prove Proposition 2.6:
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Proof of Proposition 2.6. For y € I we set
2
n

o) = (SR ) where vt = <% 243, pe-1]

o
(the sign in front of 27 is not important here, but it has to be chosen carefully if
we only observe from one side of the boundary, as will be the case in Proposition
4.3 below). In particular, for some ¢y > 0 we have on [

"< =, [W]=c, ¥=co (4.7)

Let u be a solution of (2.1). Let s > 1 to be chosen large enough later. For
t €]m, o[ and y € I we set

o(t,y) = s0(t)Y(y),

where 0 is given by Lemma 4.2, and

w(t,y) = u(t,y)e *0¥),

Then w satisfies (4.1)-(4.3) with a = —¢_, b = ¢, and g = 0. Therefore, Proposi-
tion 4.1 gives

T2 T2
¢
[ [ @olur 0y dya < — [ [o, 0,117, a
1 I 1

with

B no o 0" U™ 2000w nigd
Py = s° (—293(1/;)% —oatoa T - 33\/5> (4.8)

and

@q/> . (4.9)

q)l =S (—28¢N -
Thus, by Lemma 4.2 and (4.7) we can fix s so large that ®; > 1 and ®; > 1 on
|71, 7[xI. This gives

| [ et vt < | (e~ + e, £0) .
T JI

T1

2114710 114272 ]
3 3

and then, since § = 1 on [ and v is bounded away from 0,

T1+279

J271+T2 J ‘u t y ’2 dy dt < J (‘U’y(t, _67)|2 + |uy<t’€+)‘2) dt

T1

[#5, 22 After integration this

we have |[u(T )HLQ(I) < Hu(t)HLQ(I) for all t €

gives
3 T 4?327'2 .
D) o < = [, Tul0gy e = [ (=0 + e, £)7)
T2 1 713‘*"’2 7_1
which ends the proof. U

Notice that in this rough proof we have not tried to control the dependence of
C,, with respect to n. It is the purpose of the next paragraph to get a precise
estimate of the cost of observability for (2.1). The interest of Proposition 2.6 is
that it is now enough to consider only large values of n.

To obtain estimates in the high frequency regime, we will use the same strategy,
but we will choose more carefully the parameter s and the phase function ¢ (both
should be chosen as small as possible).
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From (4.8), we see that s® has to be at least of order n2, while in (4.9), s has
to be of order y/n. From these observations, we deduce that the correct scaling
should be s ~ y/n.

Finally, with s = 4/n, it is then the choice of ) that will make ®q and ®; positive
for n large enough. We see from (4.8)-(4.9) that ¢ should satisfy

2/

— 2(7//)2 " — q\/% >0 and —2¢"— \/iq' > 0. (4.10)

This leads to the construction of the weight function given in the next paragraph.

4.3. A refined Carleman estimate. In this paragraph we prove a refined ver-
sion of Proposition 4.1 for n large and a suitable choice for ¥. As discussed at
the end of Paragraph 4.2, we will choose ¢ proportional to /n. The choice of ¥
satisfying (4.10) will be discussed in Proposition 4.4.

Proposition 4.3. Let a,b e I with a < b and 1 € C*([a,b],R). We assume that
for some € > 0 we have on [a,b]:

>e, -2 -V2'ze
Let 11,79 €]0,T] with 11 < 75. For t €|m, | and y € [a,b] we set o(t,y) =
0(t)Y(y), where 0 is given by Lemma 4.2. Let n € N and u in

CO([Tl, ], H*(a,b) n H;(a, b)) N C’l([ﬁ, ], L*(a, b)). (4.11)

We set
f=u—uy, + mq(y)2u, (4.12)

and
w=ue V¥ g=fe V.

Then there exist N € N and C' > 0 such that the following statements hold if
n = N.

(i) If ' >0,
T2 b 5
J J (036 [wl? + v/mb [, ) dy dt
n T2 T2 b
< C\/ﬁj wy(t, a)|* dt + C’J f lg|? dy dt.
(i) If " <0,
T2 b 5
J f (n20° |w|* + v/nf [w,|*) dy dt
o To 7o b
< C\/ﬁj |wy(t, b)) dt + CJ f g dy dt.

Proof. We observe that ¢ belongs to C*(]y, 72[ x[a, b]), the functions f and g are
in C°([11, 2], L?(a, b)), w extends to a function in (4.11) and we have

wy — wyy + ing(y)*w + Vnpw — 2¢/npyw, — neiw — neyw = g.
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Moreover, w satisfies the boundary conditions (4.2) and the initial and final con-
ditions (4.3). Then, by Proposition 4.1 applied with ¢ = /ny, we have

T b
J J (n%q)o\w|2+\/ﬁ<b1\wy]2)dydt
1 Ja
TS 01 1 T b )
< —vn | [eylw,l ]adt+§ 9" dydt,

where

2./
_ 9 q°q Ort | Pyyyy | 2Pty
B . A T TN

and
Q1 = —2py, — V2q'.

The properties of # and the boundedness of the derivatives of ¢ give, for n large
enough,
=03
Do (t,y) = - and @y(t,y) = 6.

Thus,
c T2 b 5 o ) )
5] | (n26°% |w|” + v/nb lw,|”) dy dt

T2 b 1 (™ b
< —\/ﬁf [0y |wy|2]adt + §J f g|? dy dt.
T1 T1 a

Notice that the assumptions on v imply that ¢’ does not vanish. If ¢’ takes
positive values then we have

—\/ﬁf 0y (t,b) [w,(t,b)]* dt <0,
T1

which gives the first inequality. Otherwise 1" < 0 and we similarly get the second
estimate. U

4.4. Precise estimate of the cost of observation in small time for n large.
In this paragraph we finish the proof of Proposition 2.7.

We could apply directly Proposition 4.3 and observe from one side of I only.
However, we can reduce the cost of observability if we observe from both sides.

More precisely, the part of w in [0, ;] will be controled by the values of u, at
(¢, and the part of u in [—¢_,0] will be controled by the values of u, at —/(_.
Thus, with the notation of the previous paragraph, we have to choose v such that
1" < 0 on the right and ¥ > 0 on the left. Since 1)’ does not vanish, we have to
apply Proposition 4.3 separately on the right and on the left.

Proposition 4.4. Let 71, 7 and k be as given by Proposition 2.7. There exist
NeN* pe C’O(]Tl,Tg[xI, R) and C > 0 such that

Vi e 27’1-{—7'2’7'14-27'2
3 3

Vyel, 0<o(ty) <k, (4.13)
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and for any n = N and any solution u of (2.1) we have
T2
J J (n% ul? + v/n |, |* ) e 2V dy dt
7 JI
<Oyt | (gt = + fuy b)) .
T1

Proof. e Let > —= and g9 > 0 be such that

co + Bmax < J " (als) + 320) ds, f " (Jas) + 320) ds> <n (4.14)

0 —0_

Let § €]0, min(¢_, ¢,)] be such that max(|q(—d)|,q(d)) < 9. For y € [—4, ¢, ] we
set

5+
(o —50~|—BJ +3€0 ds + c4,

with ¢, = 0 to be chosen later. Then we have

¢+ €0, ¢,+ = _B(q + 350) 25607 ilr = _Bq/7

SO
2 I /
NV & Y TP SR i
er + \/5 B (q 0) q \/5
q 2
= — + 3g0)” —
\/§(<q 0 q )
> o min(q')
and

—2¢" —\2¢ =2 ( — \%) q =2 ( - \/%) min(q’).

Thus v, satisfies the assumptions of Proposition 4.3 on [—d,¢,]. Then, for ¢ €
|71, o[ we set

o+ (ty) = 0() Y4 (y), (4.15)

where 6 is given by Lemma 4.2.
e We consider x, € C*(1,[0,1]) such that x;, = 1 on [0,¢,] and x; = 0 on
[—¢_,—0]. Then we set u, = x,u. It satisfies

Vtelm, rf, us(t,—0) =u,(t,ly) =0
and
Vt G]/7—17 7—2[7 Vy € [_57 £+]7 (at - ayy + qu)UJr (t> y) = f—i— (t7 y)a
where
[ = —x"lu—2x uy.
In particular, f,(¢,-) is supported in [—4,0]. We set
wy =ure V¥ and gy = fre V¥

We have
Vi [Oguil? eV < (owe ]’ + 0k lw P 0()>.
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Then, by the second case in Proposition 4.3, we obtain

T2 Z+
J J (n% |u+|2+\/ﬁ|6yu+|2)6_2‘/7“"+ dy dt (4.16)
1 0
T2 €+ § 9 9 9
< (n26? |ws|” + Vn|oywi|”) dy dt
T 0
1 T2 T2 0
<vin [ loe e are || Lol dyde
Ty 1 J=0

To T2 0
i | Wt der [ [ n ey
T 71 J—6

e Forye|[—(_, 0] we set

0-(g) =0+ 5 [ (la(o)] + 3eo) s+

with ¢_ > 0 to be chosen later, and for ¢ €]0, 77,

p-(t,y) = 0(H)v-(y).
Let x- € C*([—¢-,¢4],[0,1]) such that x- = 1 on [—¢_,0] and x_- = 0 on
ye[0,0y]. Weset u_ = x_uand f_ = —x"u—2x"_u,. Then, as above, but using
the first statement in Proposition 4.3, we obtain

T2 0
J f (n% lu_|? + V/n|oyu_|?)e Ve dy dt
T J—l_

T Ty 0
< \/ﬁf 0,u_(t, —(_)|? dt+J f |f_|? eV dydt. (4.17)
1 71 JO

e We set ¢, = max(0,c) and ¢_ = max(0, —c) where

=5 ([t seonas— [ "t w3y as).

—0_ 0
so that 1, (0) = 1_(0). Then for t €]r, 7[ and y € I we set

o_(t,y) ify <0,
o(t,y) = .
{w(t,y) if y > 0.

In particular, by construction, ¢ is continuous on |7, 5[ x I and satisfies (4.13).
Moreover, ¢, = ¢ on [—6,0], o = ¢ on [0,4] and, on [, ],

[fol + =1 < Tul + fuyl -
Then, by summing (4.16) and (4.17),

J f (n% ul* + v/ fu,[* ) e 2V dy dt
T JI

T2 T2 O
< \/ﬁf (fuay (8, =€) + Juy (¢, £4)[7 ) dt + J J ) ([u* + |uy[*)e 2V dy at.
1 mn J-

For n large enough, the last term is smaller than one half of the left-hand side,
and the conclusion follows. O

We can now prove Proposition 2.7.
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Proof of Proposition 2.7. Let N be given by Proposition 4.4 and n > N. Let u
be a solution of (2.1). Let ¢ be given by Proposition 4.4. By (4.13) we have in

particular

T1+2719

e Ce2/n (2
L ’ JW dy dt < e—f (Juy (8, =) + [uy (£, €,)[?) dt.
7'13‘*'7'2 I n

By (3.7) we have Hu(Tg)HiQ(I) < ||u(t)|\iQ(I) for all t €

2
lu(r2) |72y <

T1

211+712 T14+272
3

3 [, SO

3C 26k4/m T2
S () e )

(72 —T)n el

and Proposition 2.7 is proved. U
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