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CRITICAL TIME FOR THE OBSERVABILITY OF KOLMOGOROV-TYPE EQUATIONS

This paper is devoted to the observability of a class of two-dimensional Kolmogorov-type equations presenting a quadratic degeneracy. We give lower and upper bounds for the critical time. These bounds coincide in symmetric settings, giving a sharp result in these cases. The proof is based on Carleman estimates and on the spectral properties of a family of non-selfadjoint Schrödinger operators, in particular the localization of the first eigenvalue and Agmon type estimates for the corresponding eigenfunctions.

Introduction

This paper is devoted to the study of the observability of two-dimensional Kolmogorov-type equations with a quadratic degeneracy. Let `, ´ą 0. We set I "s ´ ´, `r and Ω " T ˆI, where T is the one-dimensional torus R{p2πZq. All along the paper, a generic point in Ω will be denoted by px, yq, with x P T and y P I.

We consider q P C 3 p Ī, Rq such that qp0q " 0 and min yPI q 1 pyq ą 0.

In particular, qpyq ‰ 0 for y ‰ 0. The model case is qpyq " y.

Then, for T ą 0, we consider on Ω the Kolmogorov-type equation $ ' & ' % B t u `qpyq 2 B x u ´Byy u " 0, on s0, T rˆΩ, upt, ¨q " 0, on BΩ, for all t Ps0, T r, u |t"0 P L 2 pΩq. Null-controllability and observability properties of non-degenerate parabolic equations have been investigated for several decades now, since the pioneering works [START_REF] Ju | Some problems in the theory of optimal control[END_REF] and [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF] which proved independently the null-controllability of the one-dimensional heat-equation. Then [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] and [START_REF] Fursikov | Controllability of evolution equations[END_REF] independently generalized this result in any dimension, showing that the heat equation is observable through any (interior or boundary) observation set, in any positive time, in any geometrical setting. This is not the case for degenerate parabolic equations, which are a more recent subject of study. These equations may or may not be observable, depending on the location and the strength of the degeneracy, the geometrical setting, and the time horizon T . The case of a degeneracy of the equation at the boundary of the domain is now fairly well-understood (see [START_REF] Cannarsa | Global Carleman estimates for degenerate parabolic operators with applications[END_REF] and the references therein). In general, this type of degenerate equations are observable for weak degeneracy, and are not when the degeneracy becomes too strong.

In the case of interior degeneracy, there is no general theory, and equations are for the moment studied one after another. Interestingly, the known results show that, for precise strength of the degeneracy, a minimal time appears, under which observability is lost.

Among parabolic equations with interior degeneracy, the Grushin equation is so far the best understood: the two-dimensional case is now almost completely understood, and some partial results have been obtained in multi-dimensional settings [BCG14, BMM15, Koe17, BDE20, DK20, ABM20]. Other equations have also been studied, such as the heat equation on the Heisenberg group [START_REF] Beauchard | Heat equation on the Heisenberg group: observability and applications[END_REF].

Finally, we highlight that a minimal time condition for observability might also appear for systems of parabolic equations, degenerate or not (see, among others, [START_REF] Khodja | New phenomena for the null controllability of parabolic systems: minimal time and geometrical dependence[END_REF][START_REF] Duprez | Controllability of a 2 ˆ2 parabolic system by one force with spacedependent coupling term of order one[END_REF][START_REF] Benabdallah | A block moment method to handle spectral condensation phenomenon in parabolic control problems[END_REF]), for degenerate Schrödinger equations [START_REF] Burq | Time optimal observability for Grushin Schrödinger equation[END_REF], and appears naturally for the wave equation (see [START_REF] Rauch | Exponential decay of solutions to hyperbolic equations in bounded domains[END_REF][START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF]).

Regarding the Kolmogorov equation (1.1), observability properties have already been investigated in the case qpyq " y, that is for the system $ ' & ' % B t u `y2 B x u ´Byy u " 0, on s0, T rˆΩ, upt, ¨q " 0, on BΩ, for all t Ps0, T r, u |t"0 P L 2 pΩq.

(1.4) It is proved in [START_REF] Beauchard | Null controllability of Kolmogorov-type equations[END_REF] that a critical time T c appears for the observability through an open set of the form ω " Tˆsa, br if 0 Rsa, br: Theorem 1.2 ( [START_REF] Beauchard | Null controllability of Kolmogorov-type equations[END_REF]). Let ω " Tˆsa, br with ´ ´ă a ă b ă `.

(i) If a ă 0 ă b, then the problem (1.4) is observable through ω in time T for any T ą 0. (ii) If a ą 0 there exists T c ě a 2 2 such that ' if T ą T c then (1.4) is observable through ω, ' if T ă T c then (1.4) is not observable through ω.

The model studied in [START_REF] Beauchard | Null controllability of Kolmogorov-type equations[END_REF] also includes the equation B t u `yγ B x u ´Byy y " 0 with γ " 1. In that case, it is proved that the problem is observable through any open set ω, for any T ą 0, generalizing the previous study [START_REF] Beauchard | Some controllability results for the 2D Kolmogorov equation[END_REF] where the sets of observation were horizontal strips. Theorem 1.2 corresponds to the case γ " 2. The case γ " 3 is studied in [START_REF] Beauchard | Degenerate parabolic operators of Kolmogorov type with a geometric control condition[END_REF]. It is proved that if 0 ă a ă b ă `then the problem is not observable through T ˆpa, bq in any time T ą 0.

The fact that the observation domain ω is a horizontal strip of Ω may seem quite restrictive. However, the recent study [START_REF] Koenig | Non-null-controllability of the fractional heat equation and of the Kolmogorov equation[END_REF] shows that it is a quasi-necessary condition for (1.4) to be observable.

Theorem 1.3 ( [START_REF] Koenig | Non-null-controllability of the fractional heat equation and of the Kolmogorov equation[END_REF]). Let ω " ω x ˆI, where ω x is a strict open set of T. Then (1.4) is not observable through ω in any time T ą 0. Furthermore, it is shown that a minimal time is needed for the system to be possibly observable for most of observation sets ω.

Theorem 1.4 ( [START_REF] Koenig | Non-null-controllability of the fractional heat equation and of the Kolmogorov equation[END_REF]). Let ω be an open subset of T ˆI. Suppose that there exists x P T and a ą 0 such that tpx, yq, y P p´a, aqu X ω " H.

Then system (1.4) is not observable through ω in any time T ă a 2 2 . In the present paper, we investigate the observability properties of (1.1) with a more general coefficient qpyq 2 , when the domain of observation is the boundary Γ " BΩ " T ˆt´ ´, `u .

We could similarly consider observation through an open subset ω given by horizontal strips of Ω. Our main result is the following: Theorem 1.5. We set T min " 1 q 1 p0q min ˆż 0 qpsq ds, ż 0

´ ´|qpsq| ds ˙, and

T max " 1 q 1 p0q max ˆż 0 qpsq ds, ż 0 
´ ´|qpsq| ds ˙.

There exists T c P rT min , T max s such that

(i) if T ą T c , the problem (1.1) is observable through Γ, (ii) if T ă T c , the problem (1.1) is not observable through Γ.
In particular, in any configuration for which T max " T min , we obtain the critical time needed for observability of equation (1.1) to hold. This is in particular the case for symmetric configurations: Theorem 1.6. Suppose ´" `and q is odd. Let

T c " 1 q 1 p0q ż 0 qpsq ds. Then (i) if T ą T c the problem (1.1) is observable through Γ, (ii) if T ă T c the problem (1.1) is not observable through Γ.
Note that in the case qpyq " y, the critical time is T c " 2 2 . This is the analog for the observation from the boundary of the time a 2 2 which appears in Theorems 1.2 and 1.4. Theorem 1.6 is, up to our knowledge, the first result giving the precise value of the critical time for the observation of a two-dimensional Kolmogorov-type equation.

Remark 1.7. By a classical duality argument, Theorem 1.5 is equivalent to controlability properties for the adjoint equation, with a boundary Dirichlet control acting on Γ. We refer to [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF] for details on this equivalence.

Outline of the paper. The article is organized as follows. After this introduction, we give in Section 2 the main ideas for the proof of Theorem 1.5. The details are then given in the following two sections. In Section 3 we discuss the well-posedness of the problem (1.1) and we prove some spectral properties for the non-selfadjoint Schrödinger operator K n " ´Byy `inqpyq 2 which naturally appears in the analysis. We prove Agmon-type estimates for the first eigenfunction, which gives the negative result for T ă T min , and we estimate the decay of the corresponding semigroup. Finally, in Section 4, we prove a Carleman estimate and deduce an observability estimate in arbitrarily small time which depends on the frequency n with respect to x. Together with the decay properties of e ´tKn , this will give the observabililty of (1.1) for T ą T max .

Strategy of the proof

In this section we describe the strategy for the proof of Theorem 1.5. We only give the mains ideas, and the details will be postponed to the following two sections.

2.1. Well-posedness and Fourier transform of the Kolmorgorov equation. Before discussing the properties of the solutions of (1.1), we check that this problem is well posed.

Proposition 2.1. Let u o P L 2 pΩq. Then there exists a unique

u P C 0 `r0, T s, L 2 pΩq ˘X C 0 `s0, T s, H 2 pΩq X H 1 0 pΩq ˘X C 1 `s0, T s, L 2 pΩq which satisfies (1.1) with up0q " u o .
Notice in particular that the equation is regularizing, so we do not have to impose any regularity on the initial condition to get a solution in the strong sense.

Many argument in our analysis, including the proof of Proposition 2.1, will be based on a Fourier transform. All along the paper, the Fourier coefficients are taken with respect to the variable x P T. Given u P L 2 pΩq, we denote by u n P 2 pZ, L 2 pIqq the sequence of Fourier coefficients of u: upx, yq "

ÿ nPZ u n pyqe inx , u n pyq " 1 2π ż T e ´inx upx, yq dx.
The same applies if u (and then the u n , n P Z) are also functions of the time t.

For n P Z we consider the problem

$ ' & ' % B t u n ´Byy u n `inqpyq 2 u n " 0, on s0, T rˆI, u n pt,
´ ´q " u n pt, `q " 0, for t Ps0, T r, u n p0q P L 2 pIq.

(2.1) Then the Fourier coefficients of a solution of (1.1) are given by the solutions of (2.1).

Proposition 2.2. Let u be a solution of (1.1) and let u n , n P Z, be the corresponding Fourier coefficients. Then for all n P Z we have

u n P C 0 `r0, T s, L 2 pIq ˘X C 0 `s0, T s, H 2 pIq X H 1 0 pIq ˘X C 1 `s0, T s, L 2 pIq ˘,
and u n is the unique solution of (2.1) with u n p0q " u o,n , where u o,n is the n-th Fourier coefficient of u o " up0q.

An important property of the problem (2.1) is the following exponential time decay.

Proposition 2.3. Let γ ă q 1 p0q ? 2 .
There exists C ą 0 such that for n P Z, a solution u n of (2.1) and θ 1 , θ 2 P r0, T s with θ 1 ď θ 2 , one has

}u n pθ 2 q} 2 L 2 pIq ď C exp `´2γ a |n|pθ 2 ´θ1 q ˘}u n pθ 1 q} 2 L 2 pIq .
The proofs of Propositions 2.1 and 2.2 will be given in Section 3.1. Proposition 2.3 will be discussed in Section 3.3.

2.2.

Positive result: upper bound for the critical time. We begin the proof of Theorem 1.5 with the first statement and prove observability for (1.1) when T ą T max .

With the trace theorems, the regularity of the solution ensures that the righthand side of (1.3) makes sense, even if it could be equal to `8 if the initial condition is not regular enough. In fact, we are going to prove the following stronger result for observability (note that with τ 1 chosen positive, the right-hand side of (2.2) is finite).

Proposition 2.4. Let T ą T max and τ 1 Ps0, T ´Tmax r. Let τ 2 Psτ 1 , T s. Then there exists C ą 0 such that for any solution u of (1.1) we have

}upT q} 2 L 2 pΩq ď C ż τ 2 τ 1 }B ν uptq} 2 L 2 pBΩq dt. (2.2)
Obviously, Proposition 2.4 implies (1.3). The fact that we observe during an arbitrarily small time τ 2 ´τ1 might seem contradictory with the minimal time condition. It is not the case, since only the state at time T ą T max is controled by the observation on the time interval rτ 1 , τ 2 s. As we will see below, the dissipation effect of the Kolmogorov equation plays a key role in obtaining (2.2). Roughly speaking, we have to wait long enough for the dissipation to fully play is role, and inequality (2.2) to be true. By Proposition 2.2 and the Parseval identity, Proposition 2.4 is equivalent to an observability estimate for (2.1) uniform with respect to the Fourier parameter n. In other words, it is equivalent to prove the following result.

Proposition 2.5. Let T , τ 1 and τ 2 be as in Proposition 2.4. There exists C ą 0 such that for any n P Z and any solution u n of (2.1) one has

}u n pT q} 2 L 2 pIq ď C ż τ 2 τ 1 `|B y u n pt, ´ ´q| 2 `|B y u n pt, `q| 2 ˘dt. (2.3)
Note that it is sufficient to prove (2.3) for n P N. The case n P Z then follows by complex conjugation of (2.1).

The difficulty in Proposition 2.5 is the uniformity with respect to the parameter n. For n fixed, it is already known that the one-dimensional heat equation with a complex-valued potential is observable through the boundary in any positive time:

Proposition 2.6. Let T ą 0 and n P N. Let τ 1 , τ 2 Ps0, T s with τ 1 ă τ 2 . There exists C n ą 0 such that for any solution u n of (2.1) we have

}u n pT q} 2 L 2 pIq ď C n ż τ 2 τ 1 `|B y u n pt, ´ ´q| 2 `|B y u n pt, `q| 2 ˘dt.
(2.4)

A proof of Proposition 2.6 will be given in Section 4.2. With this result, it is now enough to prove Proposition 2.5 for n large. To do so, we first obtain a precise estimate of the constant C n in the asymptotic n large.

Proposition 2.7. Let τ 1 , τ 2 Ps0, T s with τ 1 ă τ 2 and κ ą max ˆ1 ? 2

ż 0 qpsq ds, 1 ? 2 ż 0
´ ´|qpsq| ds ˙" q 1 p0q ? 2 T max .

There exist n 0 P N and C ą 0 such that for n ě n 0 and a solution u n of (2.1) one has

}u n pτ 2 q} 2 L 2 pIq ď C expp2κ ? nq ż τ 2 τ 1 `|B y u n pt, ´ ´q| 2 `|B y u n pt, `q| 2 ˘dt.
The proof of this proposition is based on carefully constructed Carleman estimates, in the spirit of [START_REF] Beauchard | Minimal time issues for the observability of Grushin-type equations[END_REF]. We refer to Section 4.4 for the details.

The observability estimate of Proposition 2.7 is valid for any non-trivial interval of time, but it is not uniform with respect to n. As said above, the dissipation effect has to be taken into account here. More precisely, the second ingredient for the proof of Proposition 2.5 is the estimate given by Proposition 2.3, which precisely counterbalances the loss observed in Proposition 2.7 if we wait long enough.

Proof of Proposition 2.5, assuming Propositions 2.3, 2.6 and 2.7. We choose δ P s0, 1r so small that p1 `δqT max ă p1 ´δq 2 pT ´τ1 q. Then we set κ " p1 `δq q 1 p0q ? 2 T max , γ " p1 ´δq q 1 p0q ? 2 .

Proposition 2.3 applied with θ 2 " T and θ 1 " min `τ1 `δpT ´τ1 q, τ 2 gives a constant C 1 ą 0 such that for all n P N and u n solution of (2.1) we have

}u n pT q} 2 L 2 pIq ď C 1 exp `´2γ
? np1 ´δqpT ´τ1 q ˘}u n pθ 1 q} 2 L 2 pIq . By Propositions 2.6 and 2.7, there exists C 2 ą 0 such that for all n P N and u n solution of (2.1) we have

}upθ 1 q} 2 L 2 pIq ď C 2 expp2κ ? nq ż θ 1 τ 1 `|B y upt,
´ ´q| 2 `|B y upt, `q| 2 ˘ds.

Since κ ´γp1 ´δqpT ´τ1 q " q 1 p0q ? 2 `p1 `δqT max ´p1 ´δq 2 pT ´τ1 q ˘ă 0, these two inequalities give

}u n pT q} 2 L 2 pIq ď C 1 C 2 ż τ 2 τ 1 `|B y upt, ´ ´q| 2 `|B y upt, `q| 2 ˘dt,
and the proposition is proved.

We recall that Proposition 2.5 implies Proposition 2.4 and hence the first statement of Theorem 1.5. Thus, it is enough to prove Propositions 2.3, 2.6 and 2.7 to get the observability of (1.1) through Γ for T ą T max . These proofs are postponed to Sections 3 and 4.

2.3. Negative result: lower bound for the critical time. In this paragraph we discuss the second statement of Theorem 1.5 about the non-observability of (1.1) if T ă T min . The proof relies on the construction of a particular family of solutions of (1.1) for which the estimate (1.3) cannot hold if T ă T min . In Section 3, we will prove the following result.

Proposition 2.8. For all n P N, there exist λ n P C and

ψ n P H 2 pIq X H 1 0 pIq such that }ψ n } L 2 pIq " 1, λ n " ? nq 1 p0qe iπ 4 `o nÑ`8 p ? nq, (2.5) 
and `´B yy `inqpyq 2 ˘ψn " λ n ψ n .

Moreover, for any ε ą 0 there exists C ą 0 such that, for all n P N,

|ψ 1 n p´ ´q| 2 `|ψ 1 n p `q| 2 ď Cn exp ´´?
2np1 ´εqq 1 p0qT min ¯.

(2.6)

With this proposition we now prove that we cannot have observability through Γ in time T ă T min .

Proof of Theorem 1.5.(ii), assuming Proposition 2.8. Assume that (1.3) holds. For m P N, t P r0, T s, x P T and y P Ī we set u m pt, x, yq " e ´λmt e imx ψ m pyq, where λ m and ψ m are given by Proposition 2.8. This defines a solution u m of (1.1). Then (1.3) gives

2Repλ m q ď C `e2TRepλmq ´1˘´| ψ 1 m p´ ´q| 2 `|ψ 1 m p `q| 2 ¯.
Let ε ą 0. By Proposition 2.8 there exists C 1 ą 0 such that p ? 2q 1 p0q `op1qq ? m ď C 1 m exp ´?2mq 1 p0q rT ´p1 ´εqT min `op1qs ¯.

This implies T ě p1 ´εqT min . Since this holds for any ε ą 0, this implies that T ě T min , and the conclusion follows.

Spectral properties of the Kolmogorov equation

In this section we prove Propositions 2.1, 2.2, 2.3 and 2.8.

Well-posedness and Fourier transform of the Kolmogorov equation.

We begin with the well-posedness of the problems (1.1) and (2.1) for all n P Z. We also show that if u is a solution of (1.1) then its Fourier coefficients u n , n P Z, are solutions of (2.1).

We set H 1 0,y pΩq " u P L 2 pΩq : B y u P L 2 pΩq, upx, ˘q " 0 for almost all x P T ( .

By the Poincaré inequality, this is a Hilbert space for the norm defined by }u} 2 H 1 0,y pΩq " }B y u} 2 L 2 pΩq . We consider on L 2 pΩq the operator K defined by Ku " ´Byy u `qpyq 2 B x u on the domain DompKq " u P H 1 0,y pΩq : Ku P L 2 pΩq ( , where Ku is understood in the sense of distributions. Similarly, for n P Z we consider on L 2 pIq the operator

K n " ´Byy `inqpyq 2 , (3.1)
defined on the domain (independent of n)

DompK n q " H 2 pIq X H 1 0 pIq. (3.2)
We notice that K 0 is just the usual Dirichlet Laplacian on I. In particular, it is selfadjoint and non-negative. However, the operators K and K n for n ‰ 0 are not symmetric. We will show that they are at least accretive. For K this means that @u P DompKq, Re Ku, u L 2 pΩq ě 0.

In fact, they are even maximal accretive. This means in particular that any z P C with Repzq ă 0 belongs to the resolvent set of K.

Proposition 3.1. (i) The operator K is maximal accretive on L 2 pΩq.

(ii) For all n P Z, the operator K n is maximal accretive on L 2 pIq.

(iii) Let u P DompKq and let pu n q nPZ be the Fourier coefficients of u. Then u n belongs to DompK n q for all n P Z and the Fourier coefficients of Ku are the K n u n , n P Z.

Proof. ' We begin with the second statement. It is easy to see that for n P Z and u P DompK n q we have

Re K n u, u " }u 1 } 2 L 2 pIq ě 0, (3.3)
which means that K n is accretive. Then K n is an accretive and bounded perturbation of the selfadjoint operator K 0 , so it is maximal accretive. ' Now let u P DompKq and v " Ku P L 2 pΩq. We denote by pu n q nPZ , pv n q nPZ P 2 pZ, L 2 pIqq the sequences of Fourier coefficients of u and v, respectively. Let n P Z, φ n P C 8 0 pIq and φ : px, yq Þ Ñ e inx φ n pyq. By the Parseval identity we have

u n , ´φ2 n ´inqpyq 2 φ n L 2 pIq " 1 2π u, ´Byy φ ´qpyq 2 B x φ L 2 pΩq " 1 2π v, φ L 2 pΩq " v n , φ n L 2 pIq .
This implies that u 2 n P L 2 pIq (hence u n P H 2 pIq) and ´u2 n `inqpyq 2 u n " v n . On the other hand, it is clear from the definition of u n that u n p´ ´q " u n p `q " 0, so u n P DompK n q. Then we can write K n u n " v n . This gives the last statement of the proposition. ' As above we can see that the Fourier coefficients of B y u are the u 1 n , n P Z. Then, by (3.3) and the Parseval identity we get

}B y u} 2 L 2 pΩq " 2π ÿ nPZ }u 1 n } 2 L 2 pIq " 2πRe ÿ nPZ v n , u n " Re v, u " Re Ku, u . (3.4)
' We check that the operator K is closed. Let pu m q mPN be a sequence in DompKq such that u m Ñ u and Ku m Ñ v in L 2 pΩq, for some u, v P L 2 pΩq. In the sense of distributions we have

´Byy u `qpyq 2 B x u " lim mÑ`8 `´B yy u m `qpyq 2 B x u m ˘" v P L 2 pΩq. (3.5)
For m, p P N we have u m ´up P DompKq, so by (3.4) we have

}u m ´up } 2 H 1 0,y pΩq " Re Kpu m ´up q, u m ´up 2 L 2 pΩq ÝÝÝÝÑ mÑ`8 0.
This implies that the sequence pu m q mPN has a limit in H 1 0,y pΩq, which is necessarily u. By the trace theorem, we see that u m also goes to u in L 2 pBΩq, so u vanishes on BΩ. Finally, we have proved that u belongs to DompKq and, by (3.5), Ku " v. This proves that K is closed. ' By (3.4) the operator K is accretive on L 2 pΩq. Then, for u P DompKq we have

}pK `1qu} 2 L 2 pΩq ě }Ku} 2 L 2 pΩq `}u} 2 L 2 pΩq , (3.6) 
so pK `1q is injective with closed range. Now let v P L 2 pΩq be such that

@u P DompKq, pK `1qu, v " 0.
Then, in the sense of distributions we have

´Byy v ´qpyq 2 B x v `v " 0.
As above we can check that the operator K " ´Byy ´qpyq 2 B x , defined on the domain Domp Kq "

! u P H 1 0,y pΩq : Ku P L 2 pΩq ) ,
is accretive. This implies that v " 0 (in fact, K is the adjoint of K). Thus RanpK `1q K " t0u and pK `1q is invertible. By (3.6), its inverse is bounded. This proves that ´1 belongs to the resolvent set of K, and hence K is maximal accretive.

By the Lummer-Philipps Theorem (see for instance [START_REF] Engel | One-parameter semigroups for linear evolution equations[END_REF]), the operator p´Kq generates a contractions semigroup pe ´tK q tě0 on L 2 pΩq. Given u o P DompKq, the function u : t Þ Ñ e ´tK u belongs to C 0 pR `, DompKqq X C 1 pR `, L 2 pΩqq. This gives a strong solution of (1.1). More generally, for u o P L 2 pΩq, the function t Þ Ñ e ´tK u o belongs to C 0 pR `, L 2 pΩqq. This gives a weak solution of (1.1). The same applies on L 2 pIq to K n and (2.1) for any n P Z. In particular, if u n is a solution of (2.1) then for all t 1 , t 2 P r0, T s such that t 1 ď t 2 we have

}u n pt 2 q} 2 L 2 pIq ď }u n pt 1 q} 2 L 2 pIq . (3.7)
Now, we show that the solutions of (2.1) for n P Z give the Fourier coefficients of a solution of (1.1) Proposition 3.2. Let u o P L 2 pΩq. For t ě 0 we set uptq " e ´tK u o P L 2 pΩq. We denote by pu o,n q nPZ and pu n ptqq nPZ the Fourier coefficients of u o and uptq, t ě 0, respectively. Then for all n P Z and t ě 0 we have u n ptq " e ´tKn u o,n .

Proof. First assume that u o P DompKq. Let n P Z and t ě 0. By differentiation under the integral sign and Proposition 3.1 we have in L 2 pIq, for h ą 0, The proposition is proved.

u n pt `hq ´un ptq h " 1 2π ż T e ´inx upt
Before we can state Theorem 1.5, we still have to check that the right-hand side of (1.3) makes sense (one would not have this difficulty with observabililty through an open subset of Ω). To do so, we investigate the regularizing effect of equation (1.1), and prove that even if the initial condition u o merely belongs to L 2 pΩq, the solution is smooth enough for the right-hand side of (1.3) to be well defined. The proof of this result relies on Proposition 2.3, which will be proved in Section 3.3 below. Proposition 3.3. For u o P L 2 pΩq and τ ą 0 we have e ´τ K u o P H 2 pΩq X H 1 0 pΩq Ă DompKq. Proof. ' For t ą 0 we set uptq " e ´tK u o . We denote by u o,n and u n ptq, n P Z, the Fourier coefficients of u o and uptq, respectively. For n P Z and t ą 0 we have u n ptq " e ´tKn u o,n by Proposition 3.2. ' By Proposition 2.3 there exists c ą 0 such that for τ ą 0 and k P N we have

n k }u n pτ q} L 2 pIq ď c τ 2k }u o,n } L 2 pIq . (3.8)
This implies in particular that upτ q P C 8 pT, L 2 pIqq.

' Let τ ą 0. Assume that u o P C 8 0 pΩq Ă DompK 2 q. Then u P C 1 pr0, τ s, DompKqq and u n P C 1 pr0, τ s, DompK n qq for all n P Z. Let n P Z. Since pB t `Kn qu n " 0 we have 

0 " Re ż 2τ τ pt ´τ q pB t `Kn qu n ptq, B t u n ptq L 2 pIq dt " ż 2τ τ pt ´τ q }B t u n ptq} 2 L 2 pIq dt `ż 2τ τ pt ´τ q Re K n u n ptq
ż 2τ τ pt ´τ q }B t u n ptq} 2 2 dt ď ´1 2 Re ż 2τ τ pt ´τ q d dt K n u n ptq, u n ptq dt `n2 τ 2 }q} 4 8 }u n pτ q} 2 4 .
An integration by parts gives ´Re

ż 2τ τ pt ´τ q d dt K n u n ptq, u n ptq dt " ´τ Re K n u n p2τ q, u n p2τ q `ż 2τ τ Re K n u n ptq, u n ptq dt ď ´1 2 ż 2τ τ d dt }u n ptq} 2 dt ď }u n pτ q} 2 2 ´}u n p2τ q} 2 2 .
On the other hand, since the function t Þ Ñ B t u n ptq is also a solution of (1.1), its norm is non-increasing, so 1 2

ż 2τ τ pt ´τ q }B t uptq} 2 dt ě τ 2 }B t u n p2τ q} 2 4 .
Finally, with (3.8) we get

}B t u n p2τ q} 2 `2 }u n p2τ q} 2 τ 2 ď 2 }u n pτ q} 2 τ 2 `n2 }q} 4 8 }u n pτ q} 2 ď 2 }u o,n } 2 τ 2 `c2 }q} 4 8 }u o,n } 2 τ 4 .
Hence, by the Parseval identity,

}Kup2τ q} 2 " }B t up2τ q} 2 L 2 pΩq ď 2 }u o } 2 τ 2 `c2 }q} 4 8 }u o } 2 τ 4 .
(3.9)

' Let u o P L 2 pΩq and pu o,m q mPN be a sequence in C 8 0 pΩq which goes to u o in L 2 pΩq. For τ ą 0 we set upτ q " e ´τ K u o and u m pτ q " e ´τ K u o,m , m P N. Let δ ą 0. u m ptq converges to uptq for any t ě 0 and the function t Þ Ñ u 1 m ptq has a uniform limit on rδ, `8r. This implies that the function u belongs to C 1 ps0, `8r, L 2 pΩqq. Then, since ´K is the generator of the semigroup e ´tK , uptq belongs to DompKq for all t ą 0 and u 1 ptq " ´Kuptq. ' Finally, for u o P L 2 pΩq and τ ą 0 we have p´B yy ´qpyq 2 B x qupτ q P L 2 pΩq and B x upτ q P L 2 pΩq, so ´Byy upτ q P L 2 pΩq. Since we also have B xx upτ q P L 2 pΩq, this proves that upτ q belongs to H 2 pΩq. The fact that upτ q is also in H 1 0 pΩq is a consequence of the fact that it is in DompKq Ă H 1 0,y pΩq, and the proof is complete.

3.2. General spectral properties for non-selfajdoint Schrödinger operators. In the rest of this section, we prove Propositions 2.3 and 2.8. They can both be rewritten in terms of the operator K n defined by (3.1)-(3.2).

We have seen in Proposition 3.1 that K n is a maximal accretive operator on L 2 pIq. In particular, the resolvent set of K n is not empty. And since DompK n q is compactly embedded in L 2 pIq, the resolvent of K n is compact. This implies that the spectrum of K n consists of eigenvalues which have finite algebraic multiplicities.

We have already said that K n generates a contractions semigroup on L 2 pIq (see (3.7)). However, this is not enough for Proposition 2.3. For n " 0, the operator K 0 is selfadjoint and the decay of the corresponding semigroup is given by the functional calculus. If we denote by λ 0 the first eigenvalue of K 0 , then λ 0 is positive and for all t ě 0 we have › › e ´tK 0 › › LpL 2 pIqq ď e ´tλ 0 . For n ‰ 0, the operator K n is not selfadjoint, and the link between the exponential decay of e ´tKn and the real parts of the eigenvalues of K n is not that direct.

The purpose of the rest of this section is then to give some spectral properties for the non-selfadjoint operator K n . We are interested in the location of the spectrum (and in particular the eigenvalue with the smallest real part), the size of the resolvent pK n ´zq ´1 for z outside this spectrum (for a non-selfadjoint operator, the resolvent can have a large norm even for z far from the spectrum) and then an estimate of the propagator e ´tKn for t ě 0.

The properties of the operator K n will be deduced from analogous results for the classical complex harmonic oscillators and the complex Airy operators.

With the Agmon estimates (see Paragraph 3.4 below), we will see that for large n the eigenvectors of K n associated to "small" eigenvalues should be in some sense localized close to 0. And near 0 we have

inqpyq 2 " inq 1 p0q 2 y 2 .
Thus, it is expected that, at least for a small spectral parameter, the spectral properties of K n for large n should be close to those of the harmonic oscillator H n " ´Byy `inq 1 p0q 2 y 2 , (3.10) defined on the domain DompH n q " u P H 2 pRq : yu P H 1 pRq, y 2 u P L 2 pRq ( .

It is known (see for instance [Hel13, §14.4]) that H n defines for all n P N å maximal accretive operator on L 2 pRq. Its spectrum consists of a sequence of (geometrically and algebraically) simple eigenvalues, given by p2k ´1q

?

nq 1 p0qe iπ 4 , k P N ˚,
and for each k P N ˚, a corresponding eigenfunction is given by

y Þ Ñ P k pe iπ 8 αyqe ´pαyq 2 2 ? 2 ´ipαyq 2 2 ? 2 , α " n 1 4 q 1 p0q 1 2 , (3.11)
where P k is a polynomial of degree k. In particular, inf σPSppHnq Repσq "

?

nq 1 p0q ? 2 .
This is not enough to get a decay estimate for the propagator e ´tHn , t ě 0. However, it is also known that for γ ă q 1 p0q 2 there exists c ą 0 such that sup

Repzqďγ ? n › › pH n ´zq ´1› › LpL 2 pRqq ď c ? n (3.12)
(in fact we have more precise resolvent estimates [START_REF] Hitrik | Resolvent estimates for elliptic quadratic differential operators[END_REF][START_REF] Krejčiřík | Pseudospectra in non-Hermitian quantum mechanics[END_REF]). Then we deduce (see for instance [START_REF] Engel | One-parameter semigroups for linear evolution equations[END_REF] for the theory of semigroups) that there exists C ą 0 such that for all t ě 0 we have

› › e ´tHn › › LpL 2 pRqq ď Ce ´tγ ? n .
(3.13) Proposition 2.3 precisely says that we have a similar estimate for the propagator generated by K n , while Proposition 2.8 shows that for large n the first eigenvalue of K n is close to the first eigenvalue of H n . The decay of the corresponding eigenfunction has the same form as in (3.11), but it depends on the values of q on the whole interval I, and not only on its behavior in a neighborhood of 0.

For the proofs, we will also compare K n to some complex Airy operators. Near y 0 P Iz t0u, the potential inqpyq 2 looks like inqpy 0 q 2 `2inqpy 0 qq 1 py 0 qpy ´y0 q, with qpy 0 qq 1 py 0 q ‰ 0. It is then useful to recall the properties of Schrödinger operators with linear purely imaginary potentials.

Given α P Rz t0u, we consider on L 2 pRq the operator

A α u " ´Byy u `iαyu, (3.14) 
defined on the domain DompA α q " u P L 2 pRq : p´u 2 `iαyuq P L 2 pRq ( .

This complex Airy operator is now well understood, see for instance [START_REF] Helffer | On pseudo-spectral problems related to a time-dependent model in superconductivity with electric current[END_REF][START_REF] Krejčiřík | Elements of spectral theory without the spectral theorem[END_REF] and references therein. We notice that for α ą 0 we have

Θ ´1 α pA α ´zq ´1Θ α " 1 α 2 3 `A1 ´zα ´2 3 ˘´1 ,
where Θ a is the unitary operator defined on L 2 pRq by

pΘ α uqpyq " α 1 6 u `α 1 3 y ˘.
Moreover, A ´α " A α. Then, from the properties of A 1 we deduce the following result.

Proposition 3.4. (i) The spectrum of A α is empty for any α P Rz t0u.

(ii) Let γ P R. Then there exists c ą 0 such that for all α P Rz t0u we have

sup Repzqďγ|α| 2 3 › › pA α ´zq ´1› › ď c |α| 2 3
.

To understand the behavior of K n near the boundary points ˘ ˘, we introduce the complex Airy operator on R `. For α P Rz t0u we consider on L 2 pR `q the operator defined by A ὰ u " ´Byy u `iαyu, on the domain DompA ὰ q " u P L 2 pR `q : p´u 2 `iαyuq P L 2 pR `q and up0q " 0 ( .

To prove the following proposition, we use in L 2 pR `q the same dilation Θ a as above and we apply [Hel11, Lemma 5.1]. For the properties of the Airy function we refer for instance to [START_REF] Vallée | Airy Functions And Applications To Physics[END_REF].

Proposition 3.5. (i) Let α ą 0. The spectrum of A ὰ consists of a sequence of simple eigenvalues. These eigenvalues are given by

λ k " α 2 3 e iπ 3 |µ k | , k P N ˚,
where ¨¨¨ă µ k ă ¨¨¨ă µ 2 ă µ 1 ă 0 are the zeros of the Airy function.

(ii) Let γ ă |µ 1 |
2 . There exists C ą 0 such that for all α P Rz t0u we have sup .

Of course, we have similar properties on L 2 pR ´q for the operator

A ά : u Þ Ñ ´Byy u `iαyu,
defined on the domain DompA ά q " u P L 2 pR ´q : p´u 2 `iαyuq P L 2 pR ´q and up0q " 0 ( .

Resolvent estimates.

In this paragraph, we prove Proposition 2.3 (see Proposition 3.7 below) and the first part of Proposition 2.8, about the eigenvalue λ n (see Proposition 3.9). The estimate of a corresponding eigenfunction at the boundary will be given in the next paragraph.

We prove estimates for the resolvent pK n ´zq ´1 when z has real part smaller than γ ? n, with γ as in Proposition 2.3. More precisely, we estimate the difference between pK n ´zq ´1 and the model resolvent pH n ´zq ´1, in a suitable sense. By the theory of semigroups, this will give Proposition 2.3. This will also give the existence of an eigenvalue λ n which satisfies (2.5).

To compare pK n ´zq ´1 and pH n ´zq ´1, we follow the ideas of [START_REF] Henry | On the semi-classical analysis of Schrödinger operators with purely imaginary electric potentials in a bounded domain[END_REF]. Our one-dimensional setting is simpler than the general case considered therein so, for the reader convenience, we provide a complete proof adapted to our problem. Notice also that (2.5) is not contained in the results given in [START_REF] Henry | On the semi-classical analysis of Schrödinger operators with purely imaginary electric potentials in a bounded domain[END_REF], where the imaginary parts of the eigenvalues are not an issue.

We denote by 1 I the operator which maps u P L 2 pRq to its restriction on I: 1 I u " u| I P L 2 pIq. Then 1 I maps a function v P L 2 pIq to its extansion by 0 on R. Proposition 3.6. (i) Let γ P ‰ 0, q 1 p0q ? 2

"

. There exist n 0 P N ˚and c ą 0 such that for n ě n 0 and z P C with Repzq ď γ ? n we have z P ρpK n q and

› › pK n ´zq ´1› › LpL 2 pIqq ď c ? n .
(ii) We have

› › 1 I K ´1 n 1 I ´H´1 n › › LpL 2 pRqq " o nÑ`8 ˆ1 ? n ˙.
Proof. The proof consists in using localized versions of the resolvents of the complex harmonic operator H n and of Airy-type operators to construct an approximation Q n pzq of the resolvent pK n ´zq ´1. We first introduce suitable cut-off functions, then we define Q n pzq and finally we check that it is indeed an approximation of pK n ´zq ´1 up to a uniformly bounded operator. The proposition will then follow from estimates on Q n pzq. For n P N ˚we set

C ń " z P C : Repzq ď γ ? n ( . ' For n P N ˚and z P C ń we set R n pzq " 1 I pH n ´zq ´11 I .
This defines a bounded operator on L 2 pIq. Our purpose is to prove that R n pzq gives an approximate inverse of pK n ´zq near 0, in the following sense. We consider

ρ P  1 6 , 1 4 
" , a cut-off function χ P C 8 0 pR, r0, 1sq supported in I and equal to 1 on a neighborhood of 0, and for n P N ˚and y P Ī we set χ n pyq " χpn ρ yq.

Then we set

T n pzq " R n pzqχ n pK n ´zq ´χn . We prove that T n pzq extends to a bounded operator on L 2 pIq and

}T n pzq} LpL 2 pIqq Ý ÝÝÝ Ñ nÑ`8 0, (3.15)
where the convergence is uniform with respect to z P C ń . Let u P DompK n q. For n P N ˚we have χ n u P DompK n q and 1 I χ n u P DompH n q. For y P Ī we set rpyq " qpyq 2 ´q1 p0q 2 y 2 . Then for z P C ń we have

R n pzqpK n ´zqχ n u " χ n u `inR n pzqrχ n u.

This gives

R n pzqχ n pK n ´zqu " χ n u `inR n pzqrχ n ´Rn pzqχ 2 n u `2R n pzqpχ 1 n uq 1 . (3.16) Since |rpyqχ n pyq| À n ´3ρ , we have by (3.12)

}nR n pzqrχ n } LpL 2 pIqq À n 1´3ρ´1 2 Ý ÝÝÝ Ñ nÑ`8 0.
We also have

}R n pzqχ 2 n } LpL 2 pIqq À n 2ρ´1 2 Ý ÝÝÝ Ñ nÑ`8 0.
For the last term we observe that for v P L 2 pRq we have

› › B y pH n ´zq ´1v › › 2 L 2 pRq " Re pH n ´zqpH n ´zq ´1v, pH n ´zq ´1v L 2 pRq `Repzq › › pH n ´zq ´1v › › 2 L 2 pRq À }v} 2 L 2 pRq ? n .
Taking the adjoint gives In particular, ρ ą ρ. For n P N ˚we denote by ν n the integer part of 1`p `` ´qn ρ, and for j P t0, . . . , ν n u we set a j,n " ´ ´`jδ n , δ n " `` νn .

}R n pzqB y pχ 1 n uq} L 2 pIq ď › › pH n ´zq ´1B y p1 I χ 1 n uq › › L 2 pRq À n ´1 4 }1 I χ 1 n u} L 2 pRq À n ρ´1
We also consider θ P C 8 0 pRq supported in

‰ ´2 3 , 2 3 
" , equal to 1 on " ´1 3 , 1 3 ‰ and such that θp´yq " 1 ´θp1 ´yq for y P r0, 1s. Then for all y P R we have ÿ mPZ θpy ´mq " 1.

For n P N ˚, j P t1, . . . , ν n u and y P Ī we set θ j,n pyq " θ ˆy ´aj,n δ n ˙p1 ´χn qpyq.

Let A j,n be defined by A j,n u " ´Byy u `inqpa j,n q 2 `2inqpa j,n qq 1 pa j,n qpy ´aj,n qu on the domain DompA j,n q " u P H 2 pRq : yu P L 2 pRq ( . With the notation (3.14) we have A j,n " τ a j,n A 2npqq 1 qpa j,n q τ ´aj,n `inqpa j,n q 2 , where τ ˘aj,n is the usual translation operator: pτ ˘aj,n uqpyq " upy ¯aj,n q. Thus A j,n satisfies the properties of Proposition 3.4 with α " 2npqq 1 qpa j,n q. We similarly set A 0,n " τ ´ ´A2 npqq 1 qp´ ´qτ ´`inqp´ ´q2 and A νn,n " τ `A2 npqq 1 qp `qτ ´ ``inqp `q2 . Notice that A 0,n is an operator on L 2 p´ ´, `8q and A νn,n is an operator on L 2 p´8, `q. They satisfy the same properties as the model operators (see Proposition 3.5).

For j P t1, . . . , ν n ´1u we set 1 j " 1 I . We also denote by 1 0 the operator which maps u P L 2 p´ ´, `8q to its restriction on I, and by 1 νn the operator which maps u P L 2 p´8, `q to its restriction to I. For n P N ˚, z P C ń and j P t0, . . . , ν n u we set R j,n pzq " 1 j `Aj,n ´z˘´1 1 j and T j,n pzq " R j,n pzqθ j,n pK n ´zq ´θj,n .

We proceed as above. For j P t0, . . . , ν n u we have R j,n pzqθ j,n pK n ´zqu " θ j,n u `inR j,n pzqθ j,n r j,n u ´Rj,n pzqθ 2 j,n u `2R j,n pzqB y pθ 1 j,n uq where r j,n pyq " q 2 pyq ´q2 pa j,n q ´2 py ´aj,n qq 1 pa j,n qqpa j,n q.

Let n P N ˚and j P t0, . . . , ν n u be such that θ j,n ‰ 0. Then |a j,n | Á n ´ρ, 2nq 1 pa j,n qqpa j,n q Á n 1´ρ and hence, for z P C ń (in particular Repzq ď γn 1 2 ! n 2 3 p1´ρq ), Proposition 3.5 gives }R j,n pzq} LpL 2 pIqq À n ´2 3 p1´ρq .

(3.17) Then, as above we have |r j,n pyqθ j,n pyq| À n ´2ρ so n }R j,n pzqr j,n θ j,n } LpL 2 pIqq À n 1´2ρ´2 3 p1´ρq Ý ÝÝÝ Ñ nÑ`8 0.

Moreover, (3.18)

› › R j,n pzqθ 2 j,n u › › L 2 pIq À n 2ρ´2 3 p1´ρq }u} L 2 pIq , › › R j,n pzqpθ 1 j,n uq 1 › › LpL 2 pIqq À n ρ´1
' For u P L 2 pIq we write

u " χ n u `νn ÿ j"0 θ j,n u,
We want to sum (3.15) and the estimates (3.18), for j P t0, . . . , ν n u, to get an approximate inverse for pK n ´zq. We have seen that each contribution goes to 0, but the number of terms grows with n. Let θ P C 8 0 pR, r0, 1sq be equal to 1 on

" ´2 3 , 2 3
‰ and supported in s ´1, 1r. Then for n P N ˚, j P t1, . . . , ν n u and y P Ī we set θj,n pyq " θ ˆy ´aj,n δ n ˙, and then

Q n pzq " R n pzqχ n `νn ÿ j"0 θj,n R j,n pzqθ j,n . (3.19)
For u P DompK n q and z P C ń we have θ j,n u " θ j,n θj,n u and θ j,n pK n ´zqp1 ´θ j,n qu " 0, so

}Q n pzqpK n ´zqu ´u} L 2 pIq ď }T n pzqu} L 2 pIq `› › › › › νn ÿ j"0 θj,n T j,n pzq θj,n u › › › › › L 2 pIq .
Moreover θj,n θk,n " 0 whenever |j ´k| ě 2, so by almost orthogonaly (twice) we can write where

› › › › › νn ÿ j"0 θj,n T j,n pzq θj,n u › › › › › 2 L 2 pIq À νn ÿ j"0 › › › θj,n T j,n pzq θj,n u › › › 2 L 2 pIq À sup 0ďjďνn }T j,n pzq} 2 LpL 2 pIqq νn ÿ j"0 › › › θj,n u › › › 2 L 2 pIq À sup 0ďjďνn }T j,
B n pzq " `1 ``Q n pzqpK n ´zq ´1˘˘´1
is bounded on L 2 pIq uniformly in z P C ń and n large enough. ' Let u P L 2 pIq and z P C ń . By (3.17), and using again the almost orthogonality, we obtain

› › › › › B n pzq νn ÿ j"0 θj,n R j,n pzqθ j,n u › › › › › 2 L 2 pIq À }u} 2 L 2 pIq n 4 3 p1´ρq , so › › pK n ´zq ´1 ´Bn pzqR n pzqχ n › › LpL 2 pIqq À 1 n 2 3 p1´ρq . (3.22)
With (3.12), this gives the first statement of the proposition.

' We now consider the case z " 0 to prove the second part of the proposition. By (3.20) we have

}B n p0q ´1} LpL 2 pIqq " › › › `1 `pQ n p0qK n ´1q ˘´1 ´1› › › LpL 2 pIqq Ý ÝÝÝ Ñ nÑ`8
0, so (3.22) and (3.12) give

› › K ´1 n ´1I H ´1 n 1 I χ n › › LpL 2 pIqq " o nÑ`8 ˆ1 ? n ˙. (3.23)
On suppp1 ´χn q we have |y| Á n ´ρ, so for u P L 2 pIq we can write

› › p1 ´χn q1 I pH n q ´11 I u › › 2 L 2 pIq À n 2ρ › › ypH n q ´11 I u › › 2 L 2 pRq À n 2ρ´1 ˇˇIm pH n pH n q ´11 I u, pH n q ´11 I u L 2 pRq ˇÀ }u} 2 L 2 pIq n 3 2 ´2ρ . Taking the adjoint gives › › 1 I H ´1 n 1 I p1 ´χn q › › LpL 2 pIqq " o nÑ`8 ˆ1 ? n ˙.
With (3.23), the proof is complete.

Now we are in position to prove Proposition 2.3. It is a direct consequence of the following result.

Proposition 3.7. Let γ ă q 1 p0q ? 2 . There exist n 0 P N ˚and C ą 0 such that for n ě n 0 and t ě 0 we have

› › e ´tKn › › LpL 2 pIqq ď Ce ´tγ ? n .
Proof. Let n 0 P N ˚and c ą 0 by given by Proposition 3.6. For n ě n 0 we set Kn " ´Kn `γ? n. Then for n ě n 0 and z P C with Repzq ě 0 we have z P ρp Kn q and › › p Kn ´zq

´1› › LpL 2 pIqq ď c ? n .
Moreover for t ě 0 we have › › e t Kn › › ď e tγ ? n .

Then we apply [EN00, Th. V.1.11 p. 302] to the operator Kn . With the notation used in the proof therein, we have ω 0 ď γ ? n, M ď c ? n and L " 2π. We obtain that the semigroup pe t Kn q tě0 is bounded uniformly in t ě 0 and n ě n 0 , so there exists C ą 0 such that for all n ě n 0 and t ě 0 we have

› › e ´tKn › › " e ´tγ ? n › › e t Kn › › ď Ce ´tγ ? n .
We also refer to [START_REF] Helffer | From resolvent bounds to semi-group bounds[END_REF] to get bounds on a semigroup from bounds on the resolvent of the corresponding generator. Now we turn to the proof of (2.5). A more general version of the following result is given in [Kat80, §IV.3.5].

Proposition 3.8. Let T be a closed operator on a Hilbert space H . Let λ P C. Assume that λ is an isolated eigenvalue of T . Let pB m q mPN be a sequence of bounded operators on H such that }B m } LpHq Ñ 0 as m Ñ `8. For m P N we set T m " T `Bm . Let ε ą 0. Then for m large enough the operator T m has an eigenvalue λ m such that |λ m ´λ| ď ε.

Proof. We set C " tζ P C, |ζ ´λ| " εu. Without loss of generality, we can assume that ε ą 0 is so small that λ is the only point of SppT q in the disk Dpλ, 2εq. We set M " sup ζPC }pT ´ζq ´1}. Since T m ´ζ " pT ´ζq `1 `pT ´ζq ´1B m ˘, we see that C X SppT m q " H as soon as M }B m } ă 1 2 . Moreover, in this case, we have for ζ P C, › › pT m ´ζq ´1› › ď 2M. We set

P " 1 2iπ ż C pT ´ζq ´1 dζ.
We similarly define P m by replacing T by T m . Then we have by the resolvent identity

}P m ´P } " › › › › 1 2iπ ż C pT ´zq ´1B m pT m ´ζq ´1 dζ › › › › ď 2εM 2 }B m }.
Thus for m small enough we have }P m ´P } ă 1. By [START_REF] Kato | Perturbation Theory for linear operators[END_REF]§I.4.6] this implies that dimpRanpP m qq " dimpRanpP qq P N ˚.

This proves that T m has an eigenvalue λ m such that |λ ´λm | ă ε.

Proposition 3.9. For n P N ˚large enough there exists an eigenvalue

λ n of K n such that ˇˇλ n ´ei π 4 q 1 p0q ? n ˇˇ" o nÑ`8 `?n ˘.
Proof. We consider on L 2 pRq the unitary operator Θ n which maps u to

Θ n u : x Þ Ñ n 1 8 u ´n1 4 x ¯.
Then we have Θ ´1 n H n Θ n " ? nH 1 . By Proposition 3.6,

› › ? nΘ ´1 n 1 I K ´1 n 1 I Θ n ´H´1 1 › › LpL 2 pRqq Ý ÝÝÝ Ñ nÑ`8 0.
We set λ " e i π 4 q 1 p0q. Then µ " λ ´1 is an eigenvalue of H ´1 1 . By Proposition 3.8, there exists an eigenvalue µ n of ? nΘ ´1 n 1 I K ´1 n 1 I Θ n such that µ n goes to µ as n goes to `8. Then n ´1 2 µ n is an eigenvalue of 1 I K ´1 n 1 I , and hence an eigenvalue of K ´1 n . We conclude the proof by setting λ n " ? nµ ´1 n .

Agmon estimates.

To conclude the proof of Proposition 2.8, it remains to prove the estimate (2.6) for an eigenfunction ψ n of K n corresponding to the eigenvalue λ n . This estimate is given by an Agmon estimate. The Agmon estimates measure how the eigenfunctions corresponding to the smallest eigenvalues of a Schrödinger operator concentrate near the minimum of the potential. Exponential decay of eigenfunctions and precise Agmon estimates are classical results for real-valued potentials (see for instance [START_REF] Agmon | Bounds on exponential decay of eigenfunctions of Schrödinger operators[END_REF][START_REF] Helffer | Semi-Classical Analysis for the Schrödinger Operator and Applications[END_REF]). We refer to [START_REF] Krejčiřík | Non-accretive Schrödinger operators and exponential decay of their eigenfunctions[END_REF] for Agmon estimates for a general non-selfadjoint Laplacian.

Here, it is expected that for large n an eigenfunction corresponding to the first eigenvalue λ n of K n will concentrates near 0, where the potential q 2 reaches its minimum. In particular, such an eigenfunction will be small at the boundary, so it is indeed a good candidate to break an observability estimate like (2.4) when T ă T min . Proposition 3.10. Let E ą 0 and ε Ps0, 1r. For n P N and y P Ī we set

W n,ε pyq " 1 ´ε ? 2 ˇˇˇż y 0 b `nqpsq 2 ´?npE `εq ˘`ds ˇˇˇ, (3.24) 
where for σ P R we write σ `for maxp0, σq. There exists C ą 0 such that for n P N, u P DompK n q and λ P C with

|Repλq| `|Impλq| ď E ? n, (3.25) 
we have

› › e Wn,ε u 1 › › 2 L 2 pIq `?n › › e Wn,ε u › › 2 L 2 pIq ď C ? n }u} 2 L 2 pIq `C ? n › › e Wn,ε pK n ´λqu › › 2 L 2 pIq .
This result is proved with more generality in [START_REF] Krejčiřík | Non-accretive Schrödinger operators and exponential decay of their eigenfunctions[END_REF]. For the reader convenience we recall a proof in our 1-dimensional setting.

Proof. We denote by Q n the quadratic form corresponding to K n . It is defined for f, g P H 1 0 pIq by

Q n pf, gq " ż I f 1 ḡ1 `in ż I q 2 f ḡ.
' Let u P DompK n q. For ζ P W 1,8 p Ī, Rq, we have

u 1 , pζ 2 uq 1 L 2 pIq " ζu 1 , 2ζ 1 u `ζu 1 L 2 pIq " pζuq 1 ´ζ1 u, pζuq 1 `ζ1 u L 2 pIq , so Re u 1 , pζ 2 uq 1 L 2 pIq " }pζuq 1 } 2 L 2 pIq ´}ζ 1 u} 2 L 2 pIq . ' Let W P W 1,8 p Ī, Rq. Applied with ζ " e W ,

this equality gives

Re `Qn pu, e 2W uq ˘" Re u 1 , pe 2W uq 1 L 2 pIq "

› › pe W uq 1 › › 2 L 2 pIq ´› › W 1 e W u › › 2 L 2 pIq .
On the other hand, a direct computation shows that

Im `Qn pu, e 2W uq ˘" Im u 1 , 2W 1 e 2W u L 2 pIq `n › › qe W u › › 2 L 2 pIq . Let α Ps0, 1r. Since ˇˇIm u 1 , 2W 1 e 2W u L 2 pIq ˇˇ" 2 ˇˇIm pe W uq 1 , W 1 e W u L 2 pIq ˇď α › › pe W uq 1 › › 2 L 2 pIq `α´1 › › W 1 e W u › › 2 L 2 pIq , we have Im `Qn pu, e 2W uq ˘ě n › › qe W u › › 2 L 2 pIq ´α › › pe W uq 1 › › 2 L 2 pIq ´α´1 › › W 1 e W u › › 2 L 2 pIq ,

and hence

Re `Qn pu, e 2W uq ˘`Im `Qn pu, e 2W uq ě p1 ´αq

› › pe W uq 1 › › 2 L 2 pIq `żI `nq 2 ´p1 `α´1 qW 12 ˘|e W u| 2 .
Finally,

› › pe W uq 1 › › 2 L 2 pIq ě › › e W u 1 › › 2 L 2 pIq `› › W 1 e W u › › 2 L 2 pIq ´2 › › e W u 1 › › L 2 pIq › › W 1 e W u › › L 2 pIq ě 1 2 › › e W u 1 › › 2 L 2 pIq ´› › W 1 e W u › › 2 L 2 pIq ,
so if we set β " 2 `α´1 ´α and ε 1 " 1´α 2 , we get Re `Qn pu, e 2W uq ˘`Im `Qn pu, e 2W uq ě

ε 1 › › e W u 1 › › 2 L 2 pIq `żI `nq 2 ´βW 12 ˘|e W u| 2 . (3.26)
' On the other hand, for λ P C we have

Q n pu, e 2W uq " λ › › e W u › › 2 L 2 pIq ` pK n ´λqu, e 2W u L 2 pIq .
We take the real and imaginary parts of this equality. With (3.26) this gives

ε 1 › › e W u 1 › › 2 L 2 pIq `żI `nq 2 ´βW 12 ´Repλq ´Impλq ˘|e W u| 2 ď 2 › › e W pK n ´λqu › › L 2 pIq › › e W u › › L 2 pIq . (3.27)
' Now assume that (3.25) holds. Let δ n Ps0, ˘s be such that r´δ ń , δ ǹ s " y P Ī : nqpyq 2 ď ? npE `εq ( .

Let W n,ε be given by (3.24). We choose α Ps0, 1r in such a way that β " 2 p1 ´εq 2 .

On r´δ ń , δ ǹ s, W n,ε and hence W 1 n,ε vanish, so

βW 1 n,ε pyq 2 `Repλq `Impλq ´nqpyq 2 ď E ? n,
while on Izr´δ ń , δ ǹ s we have

βW 1 n,ε pyq 2 " nqpyq 2 ´?npE `εq, so nqpyq 2 ´βW 1 n,ε pyq 2 ´Repλq ´Impλq ě ε ? n.
Then, by (3.27),

ε 1 › › e Wn,ε u 1 › › 2 L 2 pIq `ε? n ż Izr´δ ń ,δ ǹ s ˇˇe Wn,ε u ˇˇ2 ď 2 › › e Wn,ε pK n ´λqu › › L 2 pIq › › e Wn,ε u › › L 2 pIq `E? n ż δ ǹ ´δń |u| 2 ď ε ? n 2 › › e Wn,ε u › › 2 L 2 pIq `2 ε ? n › › e Wn,ε pK n ´λqu › › 2 L 2 pIq `E? n ż δ ǹ ´δń |u| 2 ,
and finally,

ε 1 › › e Wn,ε u 1 › › 2 L 2 pIq `ε? n › › e Wn,ε u › › 2 L 2 pIq ď ε ? n 2 › › e Wn,ε u › › 2 L 2 pIq `2 ε ? n › › e Wn,ε pK n ´λqu › › 2 L 2 pIq `pE `εq ? n ż δ ǹ ´δń |u| 2 .
The proposition is proved.

For ε Ps0, 1s and y P I we set κ ε pyq " p1 ´εq ? 2 ż y 0 qpsq ds.

We first check that the estimate of Proposition 3.10 still holds with W n,ε replaced by ? nκ ε .

Proposition 3.11. Let E ą 0 and ε Ps0, 1s. There exists C ε ą 0 such that for n P N and y P I we have W n,ε{2 pyq ě ? nκ ε pyq ´Cε .

(3.28)

Proof. It is enough to prove the inequality for n large. Let α ě 1 to be fixed large enough later. For n large enough we consider η n Ps0, ˘s such that

qp˘η n q 2 " α ? n ´E `ε 2 ¯.
We have

η n " O nÑ`8 `n´1 4 ˘,
and hence ? nκ ε p˘η n q " O nÑ`8 p1q.

In particular, for n large enough the inequality (3.28) holds for y P r´η ń , η ǹ s if C ε is chosen large enough, since then the right-hand side is negative. On the other hand, for y ě η ǹ we have

ż y η ǹ c nqpsq 2 ´´E `ε 2 ¯?n ds ě ? 1 ´α´1 ? n ż y η ǹ qpsq ds. Then W n,ε{2 pyq ě 1 ´ε 2 1 ´ε ? 1 ´α´1 ? nκ ε pyq `O nÑ`8 p1q.
For α large enough this gives (3.28). We proceed similarly for y ď ´ηń .

Combining Propositions 3.10 and 3.11 we obtain the following version of the Agmon estimates: Proposition 3.12. Let E ą 0 and ε Ps0, 1s. There exists C ą 0 such that for n P N, u P DompK n q and λ P C with |Repλq| `|Impλq| ď E ? n we have

› › e ? nκε u 1 › › 2 L 2 pIq `?n › › e ? nκε u › › 2 L 2 pIq ď C ? n }u} 2 L 2 pIq `C ? n › › e ? nκε pK n ´λqu › › 2 L 2 pIq .
Proof. If we denote by C ą 0 the constant given by Proposition 3.10, then by Proposition 3.11 we obtain the estimate of Proposition 3.12 with C " e Cε C.

From Proposition 3.12 we deduce the pointwise estimate (2.6).

Proposition 3.13. Let E ą 0 and ε Ps0, 1r. There exists C ą 0 such that for n P N, an eigenvalue µ n of K n with Repµ n q`Impµ n q ď E ? n and ψ n P kerpK n ´µn q, we have

› › e ? nκε ψ 1 n › › 2 L 8 pIq ď Cn }ψ n } 2 L 2 pIq .
Proof. By Proposition 3.12 we have 

› › e ? nκε ψ n › › 2 L 2 pIq À }ψ n } 2 L 2 pIq , › › e ? nκε ψ 1 n › › 2 L 2 pIq À C ? n }ψ n } 2 L 2 pIq . (3.29) ' We prove › › e ? nκε ψ 2 n › › 2 L 2 pIq À n 3 2 }ψ n } 2 L 2 pIq . ( 3 
`3q 2 q 1 |ψ n | 2 `2q 3 Repψ n ψ 1 n q ˘dy.
On the one hand we have ˇˇˇż

I e 2 ? nκε n 3 2 3q 2 q 1 |ψ n | 2 dy ˇˇˇÀ n 3 2 › › e ? nκε ψ n › › 2 L 2 pIq À n 3 2 }ψ n } 2 L 2 pIq .
On the other hand,

ˇˇˇż I e 2 ? nκε n 3 2 2q 3 Repψ n ψ 1 n q ˘dy ˇˇˇď 2 › › e ? nκε nq 2 ψ n › › L 2 pIq › › qe ? nκε ? nψ 1 n › › L 2 pIq ď p1 ´εq › › e ? nκε nq 2 ψ n › › 2 L 2 pIq `}q} 2 8 1 ´ε › › e ? nκε ? nψ 1 n › › 2 L 2 pIq .
This gives (3.30). ' Since ψ 1 n vanishes on I (we could also use the general trace Theorem) we have by (3.29) and (3.30)

› › e ? nκε ψ 1 n › › 2 L 8 pIq ď 2 › › e ? nκε ψ 1 n › › L 2 pIq › › `e? nκε ψ 1 n ˘1› › L 2 pIq À n 1 4 }ψ n } L 2 pIq ´› › ? nκ 1 ε e ? nκε ψ 1 n › › L 2 pIq `› › e ? nκε ψ 2 n › › L 2 pIq À n }ψ n } 2 L 2 pIq . This completes the proof.
Notice that (3.30) is better that the naive estimate obtained from (3.29) and the expression of ψ 2 n . In fact we do not have to be optimal here, since the power of n in the right-hand side of (2.6) is not important for the proof of the second part of Theorem 1.5.

The Observability estimate in small time

In this section we prove Propositions 2.6 (see Paragraph 4.2) and 2.7 (see Paragraph 4.4). The proofs rely on some Carleman estimates and the construction of a suitable weight function.

In this section we will not use an index n for a solution u of (2.1). No confusion will be possible since we will never consider a solution of the initial x-dependent problem (1.1). Moreover, we use an index for the partial derivatives, so u t stands for B t u, u yy for B yy u, etc. 4.1. A generic Carleman estimate. We begin our analysis with a generic Carleman estimate. In the following statement, φ is a Carleman weight function. It will be applied to w " e ´φu, where u is a solution of a problem of the form (2.1), possibly with a source term (see (4.12) below). We also impose that w vanishes at initial and final times.

Proposition 4.1. Let n P N, τ 1 , τ 2 ą 0 with τ 1 ă τ 2 , a, b P R with a ă b, and g P L 2 psτ 1 , τ 2 rˆsa, brq. Let φ P C 4 psτ 1 , τ 2 rˆra, bs, R `q. We consider w P C 0 prτ 1 , τ 2 s, H 2 pa, bqq X C 1 prτ 1 , τ 2 s, L 2 pa, bqq such that w t ´wyy `inqpyq 2 w `φt w ´2φ y w y ´φ2 y w ´φyy w " g. (4.1)

We assume that w also satisfies the Dirichlet boundary condition @t Psτ 1 , τ 2 r, wpt, aq " wpt, bq " 0, (4.2)

and the initial and final conditions @y Psa, br, wpτ 1 , yq " wpτ 2 , yq " 0, w y pτ 1 , yq " w y pτ 2 , yq " 0. (4.3)

Then we have We integrate these five equalities over t Psτ 1 , τ 2 r, and then (4.6) gives

ż τ 2 τ 1 ż b a `Φ0 |w| 2 `Φ1 |w y | 2 ˘dy dt ď ´ż τ 2 τ 1 " φ y |w y | 2 ‰ b a dt `1 2 ż τ 2 τ 1 ż b a |g| 2 dy
ż τ 2 τ 1 " φ y |w y | 2 ‰ b a dt `ż τ 2 τ 1 ż b a ˆ´Φ t 2 `φyyyy 2 `Φy φ y ˙|w| 2 dy dt ´2 ż τ 2 τ 1 ż b a φ yy |w y | 2 dy dt `2n ż τ 2 τ 1 ż b a qq 1 Impw y wq dy dt ď 1 2 ż τ 2 τ 1 ż b a |g| 2 dy dt, Since 2nqq 1 Impw y wq ě ´?2 ? nq 1 |w y | 2 ´n3 2 q 2 q 1 |w| 2 ? 2 ,
the conclusion follows.

4.2. Observability inequality for a fixed Fourier parameter. In this paragraph we prove Proposition 2.6 about observability for a fixed Fourier parameter n P N. As already said, this is nothing but the well-known observability inequality for a heat equation with a (complex) potential. Nevertheless, we propose a proof here, both for the sake of self-containment, and because we believe it enlightens the following paragraph. The proof of Proposition 2.6 relies on Proposition 4.1. For the time dependence of the weight φ, we will use the function θ given in the following lemma.

Lemma 4.2. Let τ 1 , τ 2 ą 0 with τ 1 ă τ 2 . There exists θ in C 8 psτ 1 , τ 2 rq such that (i) θ ě 1 on sτ 1 , τ 2 r, θ " 1 on " 2τ 1 `τ2 3 , τ 1 `2τ 2 3 ‰ , ( 
ii) lim tÑτ 1 θptq " lim tÑτ 2 θptq " `8, (iii) there exists a constant C ą 0 such that for all t Psτ 1 , τ 2 r, |θ 1 ptq| ď Cθptq 2 , |θ 2 ptq| ď Cθptq 3 .

Proof. Let χ P C 8 0 `sτ 1 , τ 2 r, r0, 1s ˘be equal to 1 on

" 2τ 1 `τ2 3 , τ 1 `2τ 2 3 ‰ . For t Psτ 1 , τ 2 r we set θptq " 1 `1 ´χptq pt ´τ1 qpτ 2 ´tq .
Then θ verifies all the required properties.

Now we can prove Proposition 2.6:

Proof of Proposition 2.6. For y P Ī we set ψpyq " ψ 1 ˆ2y ` ´´ `

´` `˙,

where ψ 1 pηq " ´η2 2 ˘2η `3, η P r´1, 1s

(the sign in front of 2η is not important here, but it has to be chosen carefully if we only observe from one side of the boundary, as will be the case in Proposition 4.3 below). In particular, for some c 0 ą 0 we have on Ī

ψ 2 ď ´c0 , |ψ 1 | ě c 0 , ψ ě c 0 . (4.7)
Let u be a solution of (2.1). Let s ą 1 to be chosen large enough later. For t Psτ 1 , τ 2 r and y P Ī we set φpt, yq " s θptqψpyq, where θ is given by Lemma 4.2, and wpt, yq " upt, yqe ´φpt,yq .

Then w satisfies (4.1)-(4.3) with a " ´ ´, b " `and g " 0. Therefore, Proposition 4.1 gives 

ż τ 2 τ 1 ż I `Φ0 |w| 2 `Φ1 |w y | 2 ˘dy dt ď ´ż τ 2 τ 1 " φ y |w y | 2 ‰ ` ´dt, with Φ 0 " s 3 ˜´2θ 3 pψ 1 q 2 ψ 2 ´θ2 ψ 2 s 2 `θ ψ p4q 2 s 2 `2θ 1 θpψ 1 q 2 s ´n3 2 q 2 q 1 s 3 ? 2 ¸(
}upT q} 2 L 2 pIq ď 3 τ 2 ´τ1 ż τ 1 `2τ 2 3 2τ 1 `τ2 3 }uptq} 2 L 2 pIq dt À ż τ 2 τ 1 `|u y pt, ´ ´q| 2 `|u y pt, `q| 2 ˘dt,
which ends the proof.

Notice that in this rough proof we have not tried to control the dependence of C n with respect to n. It is the purpose of the next paragraph to get a precise estimate of the cost of observability for (2.1). The interest of Proposition 2.6 is that it is now enough to consider only large values of n.

To obtain estimates in the high frequency regime, we will use the same strategy, but we will choose more carefully the parameter s and the phase function ψ (both should be chosen as small as possible).

From (4.8), we see that s 3 has to be at least of order n 3 2 , while in (4.9), s has to be of order ? n. From these observations, we deduce that the correct scaling should be s " ? n. Finally, with s " ? n, it is then the choice of ψ that will make Φ 0 and Φ 1 positive for n large enough. We see from (4.8)-(4.9) that ψ should satisfy ´2pψ 1 q 2 ψ 2 ´q2 q 1 ? 2 ą 0 and ´2 ψ 2 ´?2q 1 ą 0. (4.10)

This leads to the construction of the weight function given in the next paragraph.

4.3.

A refined Carleman estimate. In this paragraph we prove a refined version of Proposition 4.1 for n large and a suitable choice for ψ. As discussed at the end of Paragraph 4.2, we will choose φ proportional to ? n. The choice of ψ satisfying (4.10) will be discussed in Proposition 4.4.

Proposition 4.3. Let a, b P Ī with a ă b and ψ P C 4 pra, bs, Rq. We assume that for some ε ą 0 we have on ra, bs:

ψ ě ε, ´2pψ 1 q 2 ψ 2 ´q2 q 1 ? 2 ě ε, ´2ψ 2 ´?2q 1 ě ε.
Let τ 1 , τ 2 Ps0, T s with τ 1 ă τ 2 . For t Psτ 1 , τ 2 r and y P ra, bs we set ϕpt, yq " θptqψpyq, where θ is given by Lemma 4.2. Let n P N and u in

C 0 `rτ 1 , τ 2 s, H 2 pa, bq X H 1 0 pa, bq ˘X C 1 `rτ 1 , τ 2 s, L 2 pa, bq ˘. (4.11)
We set f " u t ´uyy `inqpyq 2 u, (4.12) and w " ue ´?nϕ , g " f e ´?nϕ .

Then there exist N P N and C ą 0 such that the following statements hold if Proof. We observe that ϕ belongs to C 4 psτ 1 , τ 2 rˆra, bsq, the functions f and g are in C 0 prτ 1 , τ 2 s, L 2 pa, bqq, w extends to a function in (4.11) and we have w t ´wyy `inqpyq 2 w `?nϕ t w ´2? nϕ y w y ´nϕ 2 y w ´?nϕ yy w " g. Notice that the assumptions on ψ imply that ψ 1 does not vanish. If ψ 1 takes positive values then we have

n ě N . (i) If ψ 1 ą 0, ż τ 2 τ 1 ż b a `n3 2 θ 3 |w| 2 `?nθ |w y | 2 ˘dy dt ď C ? n ż τ 2 τ 1 |w y pt, aq| 2 dt `C ż τ 2 τ 1 ż b a |g| 2 dy dt. (ii) If ψ 1 ă 0,
´?n ż τ 2 τ 1 ϕ y pt, bq |w y pt, bq| 2 dt ď 0, which gives the first inequality. Otherwise ψ 1 ă 0 and we similarly get the second estimate.

4.4. Precise estimate of the cost of observation in small time for n large.

In this paragraph we finish the proof of Proposition 2.7. We could apply directly Proposition 4.3 and observe from one side of I only. However, we can reduce the cost of observability if we observe from both sides.

More precisely, the part of u in r0, `s will be controled by the values of u y at `, and the part of u in r´ ´, 0s will be controled by the values of u y at ´ ´. Thus, with the notation of the previous paragraph, we have to choose ψ such that ψ 1 ă 0 on the right and ψ 1 ą 0 on the left. Since ψ 1 does not vanish, we have to apply Proposition 4.3 separately on the right and on the left.

Proposition 4.4. Let τ 1 , τ 2 and κ be as given by Proposition 2.7. There exist N P N ˚, ϕ P C 0 `sτ 1 , τ 2 rˆĪ, R ˘and C ą 0 such that @t P " 2τ 1 `τ2 3 , τ 1 `2τ 2 3  , @y P I, 0 ď ϕpt, yq ď κ, (4.13) and for any n ě N and any solution u of (2.1) we have ´ ´`|qpsq| `3ε 0 ˘ds ˙ă κ.

(4.14)

Let δ Ps0, minp ´, `qs be such that maxp|qp´δq| , qpδqq ď ε 0 . For y P r´δ, `s we set ψ `pyq " ε 0 `β ż ỳ `qpsq `3ε 0 ˘ds `c`, with c `ě 0 to be chosen later. Then we have ψ `ě ε 0 , ψ 1 `" ´βpq `3ε 0 q ď ´2βε 0 , ψ 2 `" ´βq 1 , so ´2ψ 12 `ψ2 `´q 2 q 1 ? 2 " 2β 3 pq `3ε 0 q 2 q 1 ´q2 q 1 ? 2 ě q 1 ? 2 `pq `3ε 0 q 2 ´q2 ě ε 2 0 minpq 1 q and ´2ψ 2 `´? 2q 1 ě 2 ˆβ ´1 ? 2 ˙q1 ě 2 ˆβ ´1 ?

2 ˙minpq 1 q.

Thus ψ `satisfies the assumptions of Proposition 4.3 on r´δ, `s. Then, for t P sτ 1 , τ 2 r we set ϕ `pt, yq " θptqψ `pyq, (4.15)

where θ is given by Lemma 4.2. ' We consider χ `P C 8 p Ī, r0, 1sq such that χ `" 1 on r0, `s and χ `" 0 on r´ ´, ´δs. Then we set u `" χ `u. It satisfies @t Psτ 1 , τ 2 r, u `pt, ´δq " u `pt, `q " 0 and @t Psτ 1 , τ 2 r, @y P r´δ, `s, `Bt ´Byy `inq 2 ˘u`p t, yq " f `pt, yq, where f `" ´χ2 `u ´2χ 1 `uy . In particular, f `pt, ¨q is supported in r´δ, 0s. We set w `" u `e´?nϕ `and g `" f `e´?nϕ .

We nϕ `dy dt.

' For y P r´ ´, δs we set

ψ ´pyq " ε 0 `β ż y
´ ´p|qpsq| `3ε 0 q ds `c´, with c ´ě 0 to be chosen later, and for t Ps0, T r, ϕ ´pt, yq " θptqψ ´pyq.

Let χ ´P C 8 pr´ ´, `s, r0, 1sq such that χ ´" 1 on r´ ´, 0s and χ ´" 0 on y P rδ, `s. We set u ´" χ ´u and f ´" ´χ2 ´u ´2χ 1 ´uy . Then, as above, but using the first statement in Proposition 4.3, we obtain ´ ´p|qpsq| `3ε 0 q ds ´ż 0 pqpsq `3 ε 0 q ds ˙, so that ψ `p0q " ψ ´p0q. Then for t Psτ 1 , τ 2 r and y P Ī we set ϕpt, yq " # ϕ ´pt, yq if y ď 0, ϕ `pt, yq if y ě 0.

ż τ 2 τ 1 ż 0 ´ ´`n
In particular, by construction, ϕ is continuous on sτ 1 , τ 2 rˆĪ and satisfies (4.13). Moreover, ϕ `ě ϕ on r´δ, 0s, ϕ ´ě ϕ on r0, δs and, on r´δ, δs, For n large enough, the last term is smaller than one half of the left-hand side, and the conclusion follows.

|f
We can now prove Proposition 2.7.

(1. 1 )

 1 We are interested in the observability properties of the problem (1.1): Definition 1.1. (i) We say that (1.1) is observable in time T through an open subset ω of Ω if there exists C ą 0 such that for any solution u of (1.1) we have }upT q} 2 L 2 pΩq ď C We say that (1.1) is observable in time T through an open subset Γ of the boundary T ˆt´ ´, `u of Ω if there exists C ą 0 such that for any solution u of (1.1) we have }upT q} 2 L 2 pΩq ď C ż T 0 }B ν uptq} L 2 pΓq dt. (1.3)

  3 p1´ρq }u} L 2 pIq . All these estimates being uniform with respect to j P t0, . . . , ν n u, we finally get sup zPC ń sup 0ďjďνn }T j,n pzq} LpL 2 pIqq Ý ÝÝÝ Ñ nÑ`8 0.

b a p´w yy qp´2φ y w y q dy " " φ y |w y | 2 ‰ b a ´ż b a φ yy |w y | 2 dy, Re ż b a p´w yy qp´φ yy wq dy " ´ż b a φ yy |w y | 2 dy `1 2 ż b a φ yyyy |w| 2 dy, Re ż b a p´w yy qp´inq 2 wq dy " 2n ż b a qq 1 pΦwqp´2φ y w y ´φyy wq dy " ż b a Φ y φ y |w| 2 dy, Re ż b a pΦwqp´inq 2

 12 On the other hand, for all t Psτ 1 , τ 2 r we have Re ż Impw y wq dy, wq dy " 0.

? n ż τ 2 τ 1 |w y pt, bq| 2 dt `C ż τ 2 τ 1 ż b a |g| 2

 12 |w| 2 `?nθ |w y | 2 ˘dy dt ď C dy dt.

? n ż τ 2 τ 1 `?2 and ε 0 ą 0 be such that ε 0 `β max ˆż 0 `

 10 2 `?n |u y | 2 ˘e´2 ? nϕ dy dt ď C |u y pt, ´ ´q| 2 `|u y pt, `q| 2 ˘dt. Proof. ' Let β ą 1 qpsq `3ε 0 ˘ds, ż 0

32? n ż τ 2 τ 1 '

 1 |u ´|2 `?n |B y u ´|2 ˘e´2 ? nϕ ´dy dt À |B y u ´pt, ´ ´q| 2 dt `ż τ 2 We set c `" maxp0, cq and c ´" maxp0, ´cq where c " β ˆż 0

  Then for n P Z we have by continuity of e ´tK and e ´tKn in L 2 pΩq and L 2 pIq respectively

				`h, xq ´upt, xq h	dx
					ż
				ÝÝÑ hÑ0 ´1 2π
	u n ptq "	2π 1	ż	
		mÑ`8	1 2π	ż T	e ´inx pe ´tK u m o qpxq dx
	" lim mÑ`8	e ´tKn u m o,n

T e ´inx Kupt, xq dx " ´Kn u n ptq. The conclusion follows in this case. In general, since DompKq is dense in L 2 pΩq, we can consider a sequence pu m o q mPN in DompKq which converges to u o in L 2 pΩq. For m P N we denote by u m o,n , n P Z, the Fourier coefficients of u m o . Then u m o,n goes to u o,n in L 2 pIq for all n P Z. T e ´inx pe ´tK u o qpxq dx " lim " e ´tKn u o,n .

  , B t u n ptq L 2 pIq dt.SinceRe K n u n ptq, B t u n ptq " Re ´Byy u n ptq, B t u n ptq `Re inqpyq 2 u n ptq, B t u n ptq

	ě	1 2	d dt	´Byy u n ptq, u n ptq ´n }q} 2 8 }u n ptq} }B t u n ptq}	
	ě	1 2	d dt	Re K n u n ptq, u n ptq	´n2 }q} 4 8 }u n ptq} 2 2	´}B t u n ptq} 2 2	,
	with (3.7) this gives				

  4 }u} L 2 pIq , and (3.15) follows.

	' Then we consider	ρ P		1 `2ρ 6	,	1	´ρ 3	"	.

  n pzq} 2 LpL 2 pIqq }u} 2 L 2 pIq .}Q n pzqpK n ´zqu ´u} L 2 pIq Ý ÝÝÝ Ñ

	This proves				
	sup zPC ń	sup uPDompKnq	nÑ`8	0.	(3.20)
		}u} L 2 pIq "1			

Thus for n large enough the operator K n has no eigenvalue and hence no spectrum in C ń . Moreover for z P C ń we have pK n ´zq ´1 " B n pzqQ n pzq, (3.21)

  `´w yy `Φw ˘`w t ´2φ y w y ´φyy w ´inq 2 w ˘dy dt

							dt,
	where					
			Φ 0 " ´2φ 2 y φ yy	´φtt 2	`φyyyy 2	`2φ ty φ y	´n3 2 q 2 q 1 ? 2	(4.4)
	and					
							Φ 1 " ´2φ yy ´?2nq 1 .	(4.5)
	Proof. We can rewrite (4.1) as
			`´w yy `Φw	˘``w t ´2φ y w y ´φyy w `inq 2 w ˘" g,
	where Φ " φ t	´φ2 y . The identity 2Repαβq ď |α `β| 2 then gives, after integration,
	ż τ 2	ż b				
	Re					
	τ 1	a				
							ď	1 2	ż τ 2 τ 1	ż b a	|g| 2 dy dt. (4.6)
	We estimate the left-hand side with integrations by parts, using (4.2) and (4.3).
	The terms involving w t give
							ż τ 2	ż b
						Re	p´w yy qw t dy dt " 0
							τ 1	a
	and					
				ż τ 2	ż b		ż τ 2	ż b
			Re	τ 1	a	pΦwqw t dy dt "	´1 2	τ 1

a Φ t |w| 2 dy dt.

  `|u y pt, ´ ´q| 2 `|u y pt, `q| 2 ˘dt.

						4.8)
	and				
						Φ 1 " s ˆ´2θψ 2 ´?2nq 1 s	˙.	(4.9)
	Thus, by Lemma 4.2 and (4.7) we can fix s so large that Φ 0 ě 1 and Φ 1 ě 1 on
	sτ 1 , τ 2 rˆĪ. This gives
	ż τ 2	ż				ż τ 2
			|wpt, yq| 2 dy dt À
	τ 1	I				τ 1
	and then, since θ " 1 on	" 2τ 1 `τ2 3	, τ 1 `2τ 2 3	‰	and ψ is bounded away from 0,
	ż τ 1 `2τ 2 3 2τ 1 `τ2 3	ż	I	|upt, yq| 2 dy dt À	ż τ 2 τ 1
	we have }upT q} 2 L 2 pIq ď }uptq} 2 L 2 pIq for all t P	" 2τ 1 `τ2 3	, τ 1 `2τ 2 3	‰ . After integration this
	gives				

`|w y pt, ´ ´q| 2 `|w y pt, `q| 2 ˘dt,

  Moreover, w satisfies the boundary conditions (4.2) and the initial and final conditions (4.3). Then, by Proposition 4.1 applied with φ " ? nϕ, we have Φ 0 |w| 2 `?nΦ 1 |w y | 2 ˘dy dtThe properties of θ and the boundedness of the derivatives of ψ give, for n large enough, Φ 0 pt, yq ě εθ 3 2 and Φ 1 pt, yq ě εθ.

	ż τ 2	ż b	`n 3				
	τ 1		a		2 ď ´?n	ż τ 2 τ 1	"	ϕ y |w y | 2 ‰ b a dt	`1 2	τ 1 ż τ 2	a ż b	|g| 2 dy dt,
	where								
						Φ 0 " ´2ϕ 2 y ϕ yy	´q2 q 1 ? 2	´ϕtt 2n	`ϕyyyy 2n	`2ϕ ty ϕ y ? n
	and									
						Φ 1 " ´2ϕ yy ´?2q 1 .
	Thus,								
	ε 2	τ 1 ż τ 2	a ż b	`n3 2 θ 3 |w| 2 `?nθ |w y | 2 ˘dy dt		
							ď ´?n	ż τ 2 τ 1	"	ϕ y |w y | 2 ‰ b a dt	`1 2	τ 1 ż τ 2	a ż b	|g| 2 dy dt.

  Then, by the second case in Proposition 4.3, we obtain

	ż τ 2	ż	0	`n3 2 |u `|2 `?n |B y u `|2 ˘e´2 ? nϕ `dy dt	(4.16)
	τ 1					
			ż τ 2	ż	0
		À					`n3 2 θ 2 |w `|2 `?n |B y w `|2 ˘dy dt
				τ 1		
		À	? n	ż τ 2 τ 1	|B y w `pt, `q| 2 dt	`ż τ 2 τ 1	ż 0 ´δ |g `|2 dy dt
		À	? n	ż τ 2 τ 1	|B y u `pt, `q| 2 dt	`ż τ 2 τ 1	ż 0 ´δ |f `|2 e ´2?

have ? n |B y u `|2 e ´2? nϕ `À ? n |B y w `|2 `n3 2 |w `|2 θptq 2 .

  `| `|f ´| À |u| `|u y | . `|u y pt, ´ ´q| 2 `|u y pt, `q| 2 ˘dt `ż τ 2

	Then, by summing (4.16) and (4.17),
	ż τ 2	ż	`n3 2 |u| 2 `?n |u y | 2 ˘e´2 ? nϕ dy dt
	τ 1	I	
	À	n ?	ż τ 2	ż δ
				τ 1	τ 1

´δ `|u| 2 `|u y | 2 ˘e´2 ? nϕ dy dt.

Proof of Proposition 2.7. Let N be given by Proposition 4.4 and n ě N . Let u be a solution of (2.1). Let ϕ be given by Proposition 4.4. By (4.13) we have in particular

By (3.7) we have }upτ 2 q} 2 L 2 pIq ď }uptq} 2 L 2 pIq for all t P

and Proposition 2.7 is proved.
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