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This document reports a miscellaneous collection of the main technical details of the work by Grandesso et al. presented in the paper "Exploring the limits of a hybrid actuation system through Co-Design".

1) In order to express integral variables, as in the case of the OCP cost function, it was not taken advantage of the Integral() component that PYOMO provides with the framework pyomo.dae because it is still under development. An implicit definition was used instead, that is to declare the consumed energy as a simple variable, i.e. using the Var() component, and its derivative, the total power, with DerivativeVar().

Then the expression of the total power is provided as constraint. In this way the total energy consumed by the system from time 0 to t f is obtained interrogating PYOMO about the value of the energy variable at time t f .

2) Due to the nonconvexity of the OCP in the case of the 2 DoF system, in many simulations IPOPT failed to find a local minimum. The capability of IPOPT to find a solution was enhanced and the time of the simulations was reduced by replacing the standard linear solver with the MA57 linear solver [START_REF]Hsl: A collection of fortran codes for large scale scientific computation[END_REF].

3) The two degrees of freedom θ 1 (t) and θ 2 (t), are respectively, the angle of the first link with respect to the horizontal and of the second link with respect to the first one. The hybrid actuation introduces four control variables represented by the torques τ se1 (t), τ se2 (t), τ gm1 (t) and τ gm2 (t) provided respectively by the two SEAs (characterised by gear ratios N se1 and N se2 , gearbox efficiencies η se1 and η se2 and spring stiffnesses K s1 and K s2 ) and by the two GMs (with gear ratios N gm1 and N gm2 and gearbox efficiencies η gm1 and η gm2 ). The gearbox efficiency was modeled as in the 1 DoF case. Mass, length and distance of center of mass from the joint have a subscript that specifies *This project has received funding from the Italian Ministry for Education, University, and Research (MIUR) through the "Departments of Excellence" programme. 1 G. Grandesso, 4 M. Fontana and 5 A. Del Prete are with the Department of Industrial Engineering, University of Trento, 38123 Trento, Italy (e-mail: gianluigi.grandesso@unit.it; marco.fontana-2@unitn.it; andrea.delprete@unitn.it) 2 G. Bravo-Palacios and 3 P. M. Wensing are with the Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556 USA (e-mail: gbravopa@nd.edu; pwensing@nd.edu) which link they refers to. I 1 and I 2 are not only the rotational inertias of the links around the joints, namely I l1 and I l2 . The first includes also the inertia of the GM (motor and gearbox inertias) on the first joint and the presence of the SEA and the GM on the second joint. The second one takes into account also the inertia of the GM on the second joint. They are expressed as follows:

I 1 = I l1 + (m se2 + m gm2 + 2m g ) l 2 1 + (I gm1 + I g ) N 2 gm1
(1)

I 2 = I l2 + (I gm2 + I g ) N 2 gm2 (2) 
Where m se2 and m gm2 are the masses of the SEA and GM motors on the second joint, while m g and I g are mass and inertia of the gearboxes. m g and I g were considered as constants and not dependent on the gear ratio because it was observed that their real values do not vary much for the selected range of gear ratios [START_REF]High precision drives and systems 2019-2020 catalog[END_REF].

4) The accuracy of the model improved introducing a viscous friction term with constant friction coefficient β . It appears also in the SEA motors dynamics as showed in (3)-( 4):

(I se1 + I g ) θse1 (t) = τ se1 - K s1 η se1 N se1 θ se1 N se1 -θ 1 -β θse1 (t) (3) 
(I se2 + I g ) θse2 (t) = τ se2 - K s2 η se2 N se2 θ se2 N se2 -θ 2 -β θse2 (t) (4) 
5) Remaining path constraints of the 1 DoF OCP:

-τ max ≤ τ se ≤ τ max -τ max ≤ τ gm ≤ τ max (5)
Initial conditions of the 1 DoF OCP:

θ (0) = π/2, θ (t) = f A, Φ(0) = 0 (6)
Periodicity conditions of the 1 DoF OCP:

τ se (0) = τ se (t f ) τ gm (0) = τ gm (t f ) ε se,k (0) = ε se,k (t f ) k = 1 . . . 2 P se,k (0) = P se,k (t f ) k = 1 . . . 2 (7) 
m l1 l 2 cm1 + m l2 (l 2 1 + l 2 cm2 + 2 l 1 l cm2 cos(θ 2 )) + I 1 + I 2 θ1 + + (m l2 l 2 cm2 + l 1 l cm2 cos(θ 2 ) + I 2 ) θ2 - -m l2 l 1 l cm2 sin(θ 2 ) θ 2 2 + 2 m l2 l 1 l cm2 sin(θ 2 ) θ1 θ2 + + g cos(θ 1 )(m l1 l cm1 + m l2 l 1 ) + m l2 l cm2 g cos(θ 1 + θ 2 )- -K s1 θ se1 N se1 -θ 1 -τ gm1 -β N gm1 θ1 η gm1 N gm1 = 0 (8) m l2 l 2 cm2 + I 2 θ2 + m l2 l 2 cm2 + l 1 l cm2 cos(θ 2 ) + I 2 θ1 + + m l2 l 1 l cm2 sin(θ 2 ) θ 2 1 + (m l2 l cm2 g cos(θ 1 + θ 2 )) - -K s2 θ se2 N se2 -θ 2 -τ gm2 -β N gm2 θ2 η gm2 N gm2 = 0 (9)
Similarly to the 1 DoF model, to consider the case of only SEAs, the last terms in (8)-( 9) involving the GMs should be neglected.

7) Path constraints of the 2 DoF OCP:

Eq.(1) -Eq.(4), Eq.(8), Eq.( 9)

η k -N -0.0952 k = 0 k = 1 . . . 4 P se,k -τ se,k θse,k - τ 2 se,k K m se,k = 0 k = 1, 2 P gm,k -τ gm,k θk N gm,k - τ 2 gm,k K m gm,k = 0 k = 1, 2 K m se,k -0.0567 m 1.8 se,k = 0 k = 1 . . . 2 K m gm,k -0.0567 m 1.8 gm,k = 0 k = 1 . . . 2 I se,k -2.85 10 -5 m 1.72 se,k = 0 k = 1 . . . 2 I gm,k -2.85 10 -5 m 1.72 gm,k = 0 k = 1 . . . 2 (10) 
Boundary constraints of the 2 DoF OCP for the swing up task:

θ 1 (0) = -θ 1 (t f ) = -π/2 θ 2 (0) = θ 2 (t f ) = 0 (11)
Boundary constraints of the 2 DoF OCP for the pick-and-place task: θ 1 (0) ≥ 0, Φ(0, ρ) = 0, θ 1 (t f ) ≥ 0 l 1 cos(θ 1 (0)) + l 2 cos(θ 1 (0) + θ 2 (0)) = l 1 2 l 1 sin(θ 1 (0)) + l 2 sin(θ 1 (0) + θ 2(0)) = 0 l 1 cos(θ 1 (t f /2)) + l 2 cos(θ 1 (t f /2) + θ 2 (t f /2)) = 3l 1 2 l 1 sin(θ 1 (t f /2)) + l 2 sin(θ 1 (t f /2) + θ 2 (t f /2)) = l 1 l 1 cos(θ 1 (t f )) + l 2 cos(θ 1 (t f ) + θ 2 (t f )) = l 1 2 l 1 sin(θ 1 (t f )) + l 2 sin(θ 1 (t f ) + θ 2 (t f )) = 0 θ se1 (0) = θ se1 (t f ), θ se2 (0) = θ se2 (t f ) (12)