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I. ABSTRACT

Neuromorphic architectures are one of the most promising
architectures to significantly reduce the energy consumption
of tomorrow’s computers. These architectures are inspired
by the behaviour of the brain at a fairly precise level and
consist of artificial Spiking Neural Networks (SNNs). To
optimise the implementation of these architectures, we propose
in this paper a novel progressive network compression and
reinforcement technique based on two functions, progressive
pruning and dynamic synaptic weight reinforcement used after
each training batch. The proposed approach delivers a highly
compressed network (up to 75 % of compression rate) while
preserving the network performance when tested with MNIST.

Index Terms—Spiking Neural Networks, neuromorphic com-
puting, unsupervised learning, pruning, compression, dynamic
threshold.

II. INTRODUCTION

The human brain is considered as the most powerful bi-
ological computing machine, with the ability to do parallel
processing for a long time with a relatively low energy
consumption compared to the artificial computing machines
and existing technologies. Composed of around 20 billion
neurons and 200 trillion synapses, the human brain is able to
process a huge amount of data by exchanging spikes between
neurons and consuming only about 20 W of power. Recently,
we have seen a rising interest in bio-inspired architectures such
as neuromorphic architectures using Spiking Neural Networks
(SNNs). These biologically plausible architectures imitate the
brain for the purpose of exploring the advantages that the brain
offers, especially low energy consumption.

Several works were presented in the past to propose a
hardware implementation of such neuromorphic architectures,
using different hardware components [1], [2], but the common
observed characteristic of the presented SNNs is the huge size
of the networks, in order to get better performance than non-
Spiking Artificial Neural Networks (ANNs). Meaning having a
large amount of neurons and synapses, and a rising complexity
when it comes to the hardware implementation and analysis
of such architecture, in [3] the authors had to increase the
number of neurons in the 2-layer SNNs by more than 60
times, in order to improve the performance by 12 %, in [4]
the authors used 2 hidden layers of 800 neurons each in
order to get an average accuracy of 98.6 % and in [5] the
authors implemented a network with two hidden layers of
1200 neurons each for an average accuracy of 98.64 %. From
the presented examples, we can see that larger networks are

needed for better performance which introduces the following
challenges :

• Larger networks are usually harder to analyse.
• Having larger networks means longer simulations with

more computational resources to use and a loss of the
energy efficiency in such networks.

• Larger networks are harder to implement in hardware
using known technologies like the memristive crossbars
[6], [1], which are subjected to many design challenges
seen when a large network is deployed [7].

Communication in SNNs is made using spikes, which are
transmitted by the synapses that represent the channel of
communication between the neurons. The number of synapses
in a network scales with the number of neurons and from
the hardware point of view of SNNs, more synapses means
a higher cost of production, and the efficient use of such
elements leads to a more energy efficient network. Pruning is
one of the techniques widely used in ANNs to reduce the net-
work size and complexity. This technique is inspired from the
observation that during the development of the human brain,
synaptic connections are pruned from the early stages [8], such
phenomena inspired researchers in the neural networks field to
adapt this technique to get a smaller network while preserving
the same performance or with a small loss [9], [10], using this
technique in Deep Neural Networks (DNNs) with the state-
of-the-art AlexNet results in a 30-times reduced number of
synapses than the baseline while preserving the performance
[11]. The idea behind these researches is not new and based on
the principle that “the simplest solution is most likely the right
one” in other words “Entities should not be multiplied without
necessity”. The idea is attributed to English Franciscan friar
William of Ockham (c. 1287–1347), a scholastic philosopher
and theologian who used a preference for simplicity. As the
Ockham’s razor [12] says that when presented with competing
hypotheses that make the same predictions, one should select
in a neural network the most relevant inputs and connections,
that is, the as simple as possible network. Similarly, in science,
for each accepted explanation of a phenomenon, there may be
an extremely large, perhaps even incomprehensible, number
of possible and more complex alternatives. Since one can
always burden failing explanations with ad hoc hypotheses
to prevent them from being falsified, simpler theories are
preferable to more complex ones because they are more
testable. Furthermore, in genetics the idea is even stronger to
be able to understand why the human genome is, for instance,
1.5 smaller that the genome of peas. The idea behind that
there are a lot of irrelevant or redundant coding on genomes.
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So according to Kolmogorov’s complexity [13], to compress
is to understand. The final word is often attributed to Einstein,
himself a master of the quotable one liner: “Everything should
be made as simple as possible, but not simpler.”

SNNs have the capability to handle natural signals and
can be implemented physically through ultra-low power de-
vices based, for instance, on CMOS [14] or memristors [2].
CMOS artificial neuron is a very simple component (only
six transistors operating in the subthreshold mode) and its
energy consumption is several orders of magnitude lower than
artificial neurons reported in the literature, but also two to
three orders of magnitude lower than the energy consumption
of living neurons.

As for recent works about pruning in SNNs, in [15] the
author combined pruning while the network is learning with
a weight quantization technique using a 2-layer SNN of 6400
neurons, in order to reduce the network size and parameters,
and shows that we can achieve highly compressed networks,
while preserving a good performance with a fixed pruning
threshold, which is defined from the beginning, deactivating
the synapses that are considered non critical, based on the non
supervised local Spiking Time Dependent Plasticity (STDP)
rule [16], used to update the weights of synapses with every
training batch, until the end of the learning phase, where
remaining non critical synapses are removed from the network.
Another work [17], based on the locally connected Spiking
Neural Network (LC-SNN), while using a 2-layer SNN of
900 neurons, resulted in 50 % of removed synapses and 90 %
maintained accuracy, the pruning operation being made only
once at the end of the learning phase. In [18], a soft-pruning
method was used during the training process, which prevents
the unnecessary update of the network parameters. This was
considered as different compared to the existing approaches
that use pruning on an already trained network. This approach
was able to maintain 90 % accuracy, on the MNIST dataset
with a 75 % of synapses removed.

The novelty of our work, is the use of a dynamic threshold
for pruning, instead of a fixed one like the previous works,
using a progressive pruning function, that computes a new
threshold, with every batch based on the last pruning opera-
tion performance. During every learning batch, the produced
network is able to keep the same performance compared to the
baseline with up to 75 % smaller network, also we introduce a
synapse reinforcement for the critical synapses, using dynamic
reinforcement function, which helps the network to preserve
an average spiking frequency, close to the baseline, and push
the neurons to specialize in one class. The combination of
these two techniques, is able to produce trainable compressed
networks, that can be trained again for a better accuracy.

The rest of this paper, is organized as follows: Section III
contains background about the used network, neuron and
synapse models, with a presentation of the Spiking Time
Dependent Plasticity (STDP) rule. Section IV, presents the
contribution in details. In Section V, the results are presented,
discussed and compared to the baseline and the related works
and finally Section VI contains the conclusion.

III. BACKGROUND

A. Network Topology

In our experiments, the used topology is based on Dielh
and Cook work [3] to classify the MNIST handwritten digits
[19]. As described in Figure 1, it is a 2-layer Spiking Neural
Network composed of the input layer, where each neuron
represents a pixel, which is feed-forward fully connected to
the next unsupervised layer, using excitatory synapses. This
unsupervised layer is fully connected with itself for lateral
inhibition, in order to create competition between the neurons,
and to prevent one neuron from dominating all the inputs,
which is also known as the Winner-Takes-All (WTA) rule.
We also employ Homeostasis [20], which is an adaptive
membrane threshold technique, it is used to guarantee that
every excitatory neuron, learns a unique feature and avoid
neuron dominating the inputs. This technique is achieved using
equation 1.

Vthreshold = Vt + τ (1)

Where Vt is a constant, represents the initial threshold defined
in the network. τ is dynamically changed, if the neuron fires
often, the value of τ will increase which requires more inputs
to fire again, and decays if the activity of the neuron is less
often. Which ensures a close average spikes activity, between
all the neurons in the network.
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Fig. 1: SNN topology, with feed forward excitatory synapses
from the input to the unsupervised layer, which are later
pruned. Inhibitory synapses between neurons of the unsuper-
vised layer.

In this work, we have used the N2S3 simulator [21] for
all simulations. N2S3 is an open-source scalable spiking
neuromorphic hardware simulator, written in Scala and based
on the Akka actor system.
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Those simulations are executed on an OpenStack cluster1

node, with the following characteristics:
• RAM : 250 GB
• VCPU : 1 10-core Intel Xeon Silver 4114 CPU

B. Spiking Neuron Model

The Leaky-Integrated-and-Fire (LIF) neuron model [22]
is used to simulate the neuron membrane potential. LIF is
considered as one of the simplest models, that includes time
in its operation, to update the membrane potential value of
the neuron based on the input from other neurons in the
network. The membrane potential keeps increasing until a
specific threshold is reached, then the neuron sends a spike and
enters a refractory period, before starting again to accumulate
the received spikes. The membrane potential evolution is
presented in Figure 2, and the LIF dynamic voltage equation
is given by:

τleak
∂v

∂t
= [v(t)− vrest] + rmz(t),

v ← vrest when v ≥ vth
(2)

Where v represents the membrane voltage, vrest is the
resting potential after a neuron fires a spike, τleak is the time
constant of the leak with τleak = rmcm, where rm is the
membrane resistance and cm is the membrane capacitance.

tref

vth

v 
(m
v)

t (ms)

Membrane potential (v)
Incoming spikes
Outgoing spikes

Fig. 2: Leaky-Integrated-and-Fire (LIF) neuron model mem-
brane voltage activity

C. Learning Rule

Spiking Neural Networks usually use a local unsupervised
learning rule (every synapse only has the information about its
post- and pre-synaptic neurons), which is biologically plausi-
ble and suitable for hardware implementation. With SNNs, it
is difficult to get high recognition rates, such as those of Deep
Neural Networks (DNNs) or Convolutional Neural Networks
(CNNs), that are based on global supervised learning rules
(e.g., backpropagation). We use in our work the Simplified
Spike Timing Dependent Plasticity (STDP) rule, which is
easy to implement with nanodevices [23]. This simplified

1http://hpc.univ-lille.fr/cloud-openstack

STDP rule is based on the tpre pre-synaptic and tpost post-
synaptic neuron firing times. When the pre-synaptic neuron
fires before the post-synaptic one, the weight of the synapse
is increased, and when the post-synaptic neuron fires before
the pre-synaptic one, the weight of the synapse is decreased.
This simplified STDP rule is modelled as:

∆w =

+ηwe
− tpre−tpost

τSTDP if tpre ≤ tpost
−ηwe−

tpre−tpost
τSTDP if tpre > tpost

(3)

τSTDP represents the time constant that controls the leak,
ηw is the learning rate, tpre and tpost are times of spikes, for
pre-synaptic and post-synaptic neuron respectively.

D. MNIST Dataset

We have used the MNIST handwritten dataset [19] for
testing. This dataset is composed of 28x28 pixels images of
handwritten digits with labels from 0 to 9. It contains 60,000
training images and 10,000 test images. For our experiments,
training images were divided into 6 batches of 10,000 images
in order to easily follow the network learning progress using
the approach presented in this work, and to minimize training
time. The images are presented to our network input layer and
processed in the format of Poisson-distributed spike trains, the
input layer neuron weights are randomly initiated based on a
uniform distribution between 0 and 1. More parameters used
in the network are presented in Table I.

TABLE I: Parameters used in the experiments

Input Stream

MinFrequency 0Hz MaxFrequency 22Hz
ExpositionDuration 350ms PauseDuration 150ms

Neuron

VoltageThreshold 35mv RestingVoltage 0mv

STDP

MaxWeight 1 MinWeight 0

IV. CONTRIBUTION

Compressing Spiking Neural Networks (SNNs) results in a
network with reduced parameters and complexity to analyze,
which will make it easier to implement in hardware using the
existing technologies [2], [1].

Pruning non-critical synapses is a widely used technique
in ANNs and SNNs, and the recent works have used two
different approaches to prune the network: at the end of the
training, or while learning using a fixed threshold (which is
defined from the beginning based on experiments). In [15],
the author was able to achieve highly compressed networks
by simply eliminating the non-critical synapses based on the
STDP learning rule and a fixed threshold. We have observed
from our tests using the MNIST dataset and based on the
network model used in [3], that the neurons generally start to
specialize in detecting a specific class early while learning,
and the network performance starts to rise from the first

http://hpc.univ-lille.fr/cloud-openstack
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learning batch as demonstrated in Figure 3. This means that
we can start removing synapses earlier, and the network can
maintain the majority of its performance when removing a lot
of synapses, based on STDP as shown in recent works [15],
[17]. If we run another training epoch on the new reduced
network, we will get a network with better performance, and
an opportunity to prune based on a higher threshold, which
should result in a more compressed network with an equal or
better performance. Starting from this observation and based
on the recent contributions, we propose a progressive pruning
function to control a dynamic threshold, which is calculated
and used to prune after a fixed training batch, and a synaptic
weight reinforcement mechanism, used to maintain the average
spiking frequency of the network, close to the baseline and to
push the neurons that did not specialize in a certain class to
do so, by reinforcement of the critical maintained synapses.

Fig. 3: Learning progress in SNN

A. Progressive Pruning

Progressive Pruning (PP) is based on reducing the number of
synapses, between the input layer and the unsupervised layer.
This reduction is performed after each batch while learning,
using a dynamic progressively increasing pruning threshold
Tn, n ∈ N. This threshold is calculated using equation 4.

Tn+1 = Tn + α ∗ (Crn/Cn) n ∈ N (4)

Where n represents the batch number, Tn+1 is the threshold
to use for the next batch, α represent a constant defined by the
user, the choice of α is discussed in the next section (α = 0.05
in this work), Tn is the old threshold used in the last batch
(T0 = 0), Crn represents the number of remaining synapses
between the two layers at batch n and finally Cn represents
the total number of synapses before applying pruning to this
batch (which equals to the remaining synapses from the last
batch, Cn = Crn−1

).
Using equation 4, the threshold is defined based on the

previous pruning performance (if the pruning rate using Tn
from the last batch was large, Tn+1−Tn will be small and vice

versa), which prevents the network from a major performance
loss, while reducing the network every time by eliminating the
non-critical synapses.

B. Dynamic Synaptic Weight Reinforcement

After reducing the network size, the neuron will learn to
react only to a specific pattern or class (in our case a digit). We
observed that during the learning process, some neurons fail to
learn a specific class, which affects the network performance
resulting in false classifications. On the other hand, applying
Progressive Pruning on the network results in a decrease of
the average spiking network frequency, which will affect the
energy consumption of our network positively, but may cause
a frequency loss in multilayer networks, which is a known
issue in Convolutional Spiking Neural Networks (CSNN) as
described in [24]. Based on those observations, we propose
a Dynamic Synaptic Weight Reinforcement (DSWR), which
concerns the synapses that are conserved and considered as
critical, to improve the network performance, by pushing the
neurons that did not specialize in a specific pattern or class to
do so, and keep the average spiking frequency of the network
near the baseline. This DSWR procedure is executed after the
pruning in each iteration, and it’s done based on equation 5.

Wn+1 = Wn + β ∗ Tn, n ∈ N. (5)

Where n represents the batch number, Wn+1 is the new
weight of the concerned synapse, Wn represents the actual
weight of that synapse, β is a defined constant, chosen based
on experiments and discussed in the next section (in this
work β= 0.1) and Tn represents the actual used threshold for
pruning from equation 4. This equation means that when the
compression ratio is large, the reinforcement will be too and
vice versa.

Fig. 4: Average spike frequency

Using the presented functions, we make sure to determine
how much to increase the weight, and maintain the average
spike frequency based on the network state. In Figure 4, using
a network composed of 100 neurons, we can see the average
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spiking frequency of our network baseline and the proposed
functions after each training batch.

A detailed flowchart concerning the proposed approach is
presented in Figure 5.

C. α and β Selection

Choosing the values of parameters α and β is a mul-
tiobjective optimization problem, the two objectives being
the network performance and the compression ratio. We did
multiple experiments using different values, and compared
them in terms of these two objectives, getting a Pareto front of
non-dominated values. We finally chose the one that gave use
the best performance with a compression ratio above 76 %.

In Figure 6, by trying different combinations of α and β, we
can get a high compression rate but in the same time a higher
loss in network accuracy, the selection of those parameters
may vary from a case to another depending on the context of
the application.

In Figure 7, we show the 10 possibilities from the 25,
respecting the following conditions and draw the Pareto front
of non-dominated solutions:

• The performance should be better than the baseline
presented in [3] (82.90 %).

• The compression rate should be better than 76 %.
Based on these results, we decided to choose α = 0.05

and β = 0.1, which gave us an accuracy of 85.10 % with a
compression rate of 79.42 %, using a network composed of
100 neurons.

V. EXPERIMENTAL VALIDATION & DISCUSSION

In this part, we describe and discuss our experimental
validation. The main tests are conducted using a network
composed of 100 neurons, in the unsupervised layer connected
to the input layer by 78400 excitatory synapses. The simulation
on each case is executed 10 times using one epoch (of 60000
samples), and we report the average of these 10 simulations.
Besides, tests were also conducted on 400, 900 and 1600
neuron networks to evaluate the performance of the presented
approach on different sizes of networks.

A. Accuracy & Compression

We compare our results to the baseline and recent works on
pruning in SNN in Table II. We can see that our methodology
helps to compress the network and to get a higher accuracy
in different network sizes, due to the progressive and iterative
pruning and reinforcement operations. For 100 neurons, the
work presented by Rathi et al. [15] could not preserve the same
accuracy compared to baseline, and one of the possible reasons
are the fact that there is no training after pruning, the one
time pruning approach and the weight quantization makes the
network lose information. No training after pruning and one
epoch leads to an accuracy of 79.50 %, which is less than the
baseline with a 75 % compression rate. We can see that with
a 100 neurons network, using only Progressive Pruning (PP)
gives better performance, compared to the baseline with more
than 78 % of the synaptic connections removed, and when

using both Progressive Pruning (PP) and Dynamic Synaptic
Weight Reinforcement (DSWR), we get a slight improvement
in accuracy and compression rate. Having a compressed net-
work with a better performance than the baseline, or the work
presented in [3] is possible, using the proposed functions and
training after each batch, which helps the network to learn
better and faster, while eliminating many synapses that are
considered as noise to the network.

In the work presented by Diehl and Cook [3], tests were
also conducted on a network composed of 400 neurons using
3 training epochs, the accuracy was 87 %, which is also close
to our 400 neurons network baseline, without the presented
approach, we can see from table II that we are able to compress
the network up to 79.52 %, with 87.84 % accuracy using PP
& DSWR with only one epoch.

From the observed evolution of the network, using a neural
network of 100 neurons with PP and DSWR, we can see in
Figure 8, that the network is compressed for more than half his
initial synaptic connections in the first batch, the compression
rate is increasing after each batch while the accuracy does the
same thing but slowly.

B. Presented Approach On Larger Networks

While the selected parameters (α and β) give good results
with small and medium networks, as shown in Table II, using
the presented approach with larger networks, while preserving
the same parameters and epoch number (only one), may have
different impact on the network. In this part, we will present
the test results we had, using a network of 1600 neurons
similar to Diehl and Cook work [3], then compare it to the
earlier results.

From Figure 9, compared to the previous experiments, we
notice that we have a loss in performance (85.31 %), the
network needs up to three batches to get a performance above
80 %, compared to smaller networks, where one batch is
enough. For the compression rate, we can see also that the
network this time is less compressed, compared to smaller
ones (65.02 %), or to the results of Diehl and Cook [3],
and starts from a small compression rate (4 %) in the first
batch, which is not the case compared to earlier examples
with smaller networks, which compress almost the half of the
network in the first batch.

To justify and explain such a result when using the presented
approach with a larger network, we propose two hypotheses:

1) The used constants (especially α) initial value may be
too large for such a large network, and need to be
adjusted properly.

2) The network with larger number of neurons needs more
time to learn before pruning, which means the number
of batches per epoch needs to be reviewed.

In order to get an idea on what is happening in the network, we
can check in Figure 10, the heatmap of some neurons, captured
after the first batch (10000 inputs) of training, as we can see
the network had not enough time to start learning features,
which is due to the competition between neurons to learn
features, which takes more time compared to previous smaller
networks. From the compression rate progress in Figure 9,
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Network initiation

Dividing training
images on 6 batches

Network training

Calculate the
threshold

Is synapse
weight above

the threshold ?
Synapse prunedSynapse preserved

Applying weight
reinforcement

Is there any
remaining
batches ?

End of training

noyes

noyes

Fig. 5: Flowchart of the presented approach

Fig. 6: α and β selection

we can discard the first hypothesis, since the problem is not
related to pruning using high threshold, based on the low
compression rate we had (4 %), which did not affect learning
process of the network, but it is indeed related to the second
hypothesis, about the time required for the network to start

Fig. 7: Accuracy and compression in function of α and β (line
= Pareto front).
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Number
of neurons Paper Learning rule Pruning approach Train after

pruning ?
Number

of epochs Accuracy ± std Compression ± std

100

Rathi et al. (2019) Exponential STDP Fixed threshold No 1 79.50 75.00
Diehl and Cook (2015) Exponential STDP – – 1 82.90 –
This work (baseline) Simplified STDP – – 1 84.47 ± 1.55 –
This work Simplified STDP PP Yes 1 84.98 ± 0.37 78.71 ± 1.96
This work Simplified STDP PP & DSWR Yes 1 85.10 ± 0.83 79.42 ± 0.06

400
Diehl and Cook (2015) Exponential STDP – – 3 87.00 –
This work Simplified STDP – – 1 87.77 ± 0.57 –
This work Simplified STDP PP & DSWR Yes 1 87.84 ± 0.40 79.52 ± 0.03

900 This work Simplified STDP PP & DSWR Yes 1 89.23 ± 0.91 77.28 ± 0.69

1600 This work Simplified STDP PP & DSWR Yes 1 85.31 ± 0.24 65.02 ± 0.04
Diehl and Cook (2015) Exponential STDP – – 7 91.90 –

TABLE II: Accuracy and compression test results compared to other similar works

Fig. 8: Accuracy and Compression evaluation using PP and
DSWR (100 neurons)

learning features, which justifies the small compression rate
compared to smaller networks and the low performance.

In this case, when dealing with larger networks and based
on our test results, it is better to reduce the number of batches
per epoch, delay the prune operation and use more than one
epoch for training, when applying the approach presented in
this work, in order to give the network the required time to
learn for a better performance and compression rate. Due to
the fact that running this simulation with a large network takes
a lot of time (days for 100 to 900 neurons and almost one
month for 1600 neurons) and a significant amount of energy,
we chose not run our tests for more than one epoch and present
the results of the proposed modifications when working with
large networks.

C. Trainable Compressed Network

Reducing the number of synapses in a network is helpful,
for time and energy reduction, especially when implementing
in hardware. One of the features that is commonly tested with
reduced networks, is the possibility to have trainable networks
after compression, because one of the reasons, that huge

Fig. 9: Accuracy and Compression evaluation using PP and
DSWR (1600 neurons)

Fig. 10: Neurons Heatmap after one batch (black points
represents pruned synapses)

networks are used for training is to maximise the possibility
to get good performance, which is not always possible if
you start with small networks. In [25], [26], a lottery tickets
hypothesis is presented for CNNs, saying that a randomly
initiated dense neural network contains a subnetwork that,
if isolated and trained alone, can match the accuracy of the
original network. This subnetwork can be extracted using
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(a) Accuracy (b) Compression

Fig. 11: Accuracy (a) and Compression rate (b) during training batches

masks. It is hard to train a pruned network from the beginning
in CNNs, which gives a worst accuracy than the original
model, and is considered as not trainable. The solution was
to train the pruned network with the initial synapse weights,
and not randomly initiated in order for the network to learn
well, and for gradient descent to be able to find a good
solution. Such hypothesis was not yet tested in Spiking Neural
Networks (SNNs). In Figure 11, we test using a 100 neuron
network if the compressed network is trainable, using the new
compressed network either without changing synapse weights,
using random initial weights or using the initial weights of the
original network. We can see after one batch that the network
with initial synaptic weights without training reaches more
than 60 % accuracy compared to the network with randomly
initiated weights, that barely reaches 50 %, this observation
was also presented in [25] for CNNs. At the end of the 6
batches of training, we get an accuracy near 85 % for the
three use cases. For the compression rate, we can see that the
network gets more compressed in the three use cases to reach
a compression rate of 80 % while preserving a better accuracy
compared to baseline.

This proves that many observations presented in [25] are
true in SNNs too, and the trainable network gets a higher
compression rate, when trained again irrespectively of the ini-
tialisation strategy, of the synaptic weights that only influences
the speed of learning, not its quality.

D. Pruning Batch
During our tests, we used a single MNIST dataset epoch

(60000 input samples), divided into 6 batches (of 10000
samples each), while applying the presented approach after
each batch. We study here the influence of the size and number
of batches, on the accuracy and compression of the network.
In Figure 12, we compare one batch of 60000 samples, 3
batches of 20000 samples and 6 batches of 10000 samples,
using a neural network composed of 100 neurons.

We can see that the accuracy of the network did not
decrease, and the variation of the number of batches does not

Fig. 12: Pruning batch variation

have a clear impact on the accuracy. However, we can see that
the compression ratio increases, when the number of batches
is increased, which is due to the presented approach, with the
dynamic threshold used and the training of each compressed
network. We conjecture that having more than 6 batches will
have an effect similar to training the network again, for another
epoch, but may results in a larger training time.

VI. CONCLUSION

Many researches focus on the unreasonable effectiveness
of Neural Networks and our deep inability to understand
causality, correlation in neural networks. To prune a neural
network can be seen as a normal discriminant analysis, for
dimensionality reduction before better classification and ex-
planation.

In this work, we have presented a novel approach to reduce
the size of Spiking Neural Networks, while preserving a
similar or better accuracy, by the use of the Progressive
Pruning, with a dynamic threshold and a Dynamic Synaptic
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Weight Reinforcement, compared to the existing approaches
of using a fixed threshold while pruning, or pruning at the
end of training without training again. Our approach is able
to get a better accuracy compared to the non-compressed
networks, when applied to small or medium networks, using
only one epoch. But when dealing with larger networks,
more than one training epoch is needed with larger batches
to provide sufficient time for the network to learn before
applying the presented approach. The compressed networks
were proved trainable to reach even better accuracy and a
better compression rate, using the initial synapses weights of
the original network, based on the presented idea in [25] for
Convolutional Neural Networks. This also suggests that the
Ticket Lottery Hypothesis presented in the same work may
also be true for Spiking Neural Networks, to create masks
for network pruning before training, which we will test and
validate in future work. More datasets will be studied like
colour images (CIFAR-10 [27]) or EMNIST [28]. Finally,
it’s worth mentioning that training compressed networks will
result also in a reduced training time, which is very important
especially for large networks.
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