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Abstract

In this paper, we address the estimation of the sensitivity indices called
"Shapley effects". These sensitivity indices enable to handle dependent
input variables. The Shapley effects are generally difficult to estimate, but
they are easily computable in the Gaussian linear framework. The aim of
this work is to use the values of the Shapley effects in an approximated
Gaussian linear framework as estimators of the true Shapley effects corre-
sponding to a non-linear model. First, we assume that the input variables
are Gaussian with small variances. We provide rates of convergence of
the estimated Shapley effects to the true Shapley effects. Then, we fo-
cus on the case where the inputs are given by an non-Gaussian empirical
mean. We prove that, under some mild assumptions, when the number
of terms in the empirical mean increases, the difference between the true
Shapley effects and the estimated Shapley effects given by the Gaussian
linear approximation converges to 0. Our theoretical results are supported
by numerical studies, showing that the Gaussian linear approximation is
accurate and enables to decrease the computational time significantly.

1 Introduction
Sensitivity analysis, and particularly sensitivity indices, have became important
tools in applied sciences. The aim of sensitivity indices is to quantify the im-
pact of the input variables X1, · · · , Xp on the output Y = f(X1, · · · , Xp) of a
model f . This information improves the interpretability of the model. In global
sensitivity analysis, the input variables are assumed to be random variables. In
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this framework, the Sobol indices [Sob93] were the first suggested indices to be
applicable to general classes of models. Nevertheless, one of the most important
limitations of these indices is the assumption of independence between the input
variables. Hence, many variants of the Sobol indices have been suggested for
dependent input variables [MT12, Cha13, MTA15, CGP12].

Recently, Owen defined new sensitivity indices in [Owe14] called "Shapley
effects". These sensitivity indices have many advantages over the Sobol indices
for dependent inputs [IP19]. For general models, [SNS16] suggested an estimator
of the Shapley effects. However, this estimator requires to be able to generate
samples with the conditional distributions of the input variables. Then, a con-
sistent estimator has been suggested in [BBD20], requiring only a sample of the
inputs-output. However, in practice, this estimator requires a large sample and
is very costly in terms of computational time.

Let us now consider the framework when the distribution of X1, · · · , Xp is
Gaussian and f is linear, that we call the Gaussian linear framework. This
framework is considered relatively commonly (see for example [KHF+06, HT11,
Ros04, Clo19]), since the unknown function f(X1, · · · , Xp) can be approximated
by its linear approximation around E(X). The Gaussian linear setting is highly
beneficial, since the theoretical values of the Shapley effects can be computed
explicitly [OP17, IP19, BBDM19, BBCM20]. These values depend on the co-
variance matrix of the inputs and on the coefficients of the linear model. An
algorithm enabling to compute these values is implemented as the function
"ShapleyLinearGaussian" in the R package sensitivity [IAP20]. It is shown
in [BBDM19] that this computation is almost instantaneous when the number
p of input variables is smaller than 15, but becomes more difficult for p ≥ 25.
However, "ShapleyLinearGaussian" uses the possible block-diagonal structure
of the covariance matrix to reduce the dimension, thereby reducing the compu-
tation cost [BBDM19].

The aim of this paper is to use the Shapley values computed from a Gaus-
sian linear model as estimates of the true Shapley values corresponding to a
non-linear model f . We provide convergence guarantees, as the Gaussian lin-
ear approximation is more and more accurate. We address the two following
settings.

First, we assume that X = (X1, . . . , Xp) is a Gaussian vector with variances
decreasing to 0, and f is not linear. We give the rate of convergence of the
difference between the true Shapley effects and the ones given by the first-order
Taylor polynomial of f at the mean of X. To estimate the Shapley effects in a
broader setting, we also provide the rate of convergence when the Taylor poly-
nomial is unknown and the linear approximation is given by a finite difference
approximation and a linear regression. To strengthen these theoretical results,
we compare the three linear approximations on simulated data.

Second, we consider the case where the input vector is non-Gaussian and
given by an empirical mean and the model f is non-linear. We address the esti-
mators of the Shapley values obtained by treating the input vector as Gaussian
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and the model as linear. We show that, as the number of summands goes to
infinity, the estimators of the Shapley values converge to the true Shapley val-
ues, corresponding to the non-Gaussian input vector and the non-linear model.
Then, we treat the particular case when the Shapley effects evaluate the impact
of the individual estimation errors on a global estimation error. In numeri-
cal experiments, we compare the estimator of the Shapley effects given by the
Gaussian linear framework with the estimator of the Shapley effects given by
the general procedure of [BBD20], to the advantage of the former.

The rest of the article is organized as follows. In Section 2, we recall the
definition of the Shapley effects and we detail the particular form of the Gaussian
linear framework. Section 3 provides the rates of convergence for Gaussian
inputs and non-linear models. In Section 4, we address the case where the
inputs are given by an empirical mean and f is non-linear. The conclusions are
given in Section 5. All the proofs are postponed to the supplementary material.

2 The Shapley effects
Let (Xi)i∈[1:p] be random input variables on Rp and let Y = f(X) be the
real random output variable which is squared integrable . We assume that
Var(Y ) 6= 0. Here, f : Rp → R can be a numerical simulation model [SWNW03].

If u ⊂ [1 : p] and x = (xi)i∈[1:p] ∈ Rp, we write xu := (xi)i∈u. We can define
the Shapley effects as in [Owe14], where for each input variable Xi, the Shapley
effect is:

ηi(X, f) :=
1

pVar(Y )

∑
u⊂−i

(
p− 1
|u|

)−1 (
Var(E(Y |Xu∪{i}))−Var(E(Y |Xu))

)
(1)

where −i is the set [1 : p] \ {i}. We let η(X, f) be the vector of dimension p
composed of η1(X, f), ..., ηp(X, f). One can see in Equation (1) that adding Xi

to Xu changes the conditional expectation of Y , and increases the variability of
this conditional expectation. The Shapley effect ηi(X, f) is large when, on aver-
age, the variance of this conditional expectation increases significantly when Xi

is observed. Thus, a large Shapley effect ηi(X, f) corresponds to an important
input variable Xi.

The Shapley effects have interesting properties for global sensitivity analy-
sis. Indeed, there is only one Shapley effect for each variable (contrary to the
Sobol indices). Moreover, the sum of all the Shapley effects is equal to 1 (see
[Owe14]) and all these values lie in [0, 1] even with dependent inputs. This is
very convenient for the interpretation of these sensitivity indices.

An estimator of the Shapley effects has been suggested in [SNS16]. It is im-
plemented in the R package sensitivity as the function "shapleyPermRand".
However, it requires to be able to generate samples with the conditional distri-
butions of the inputs, which limits the application framework. [BBD20] sug-
gested another estimator which requires only a sample of the inputs-output.
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This estimator uses nearest-neighbour methods to mimic the generation of sam-
ples from these conditional distributions. It is implemented in the R package
sensitivity as the function "shapleySubsetMC". However, in practice, this
estimator requires a large sample and is very costly in terms of computational
time.

Consider now the case where X ∼ N (µ,Σ), with Σ ∈ S++
p (R) and where

the model is linear, that is f : x 7−→ β0 + βTx, for a fixed β0 ∈ R and a fixed
vector β. In this framework, the sensitivity indices can be calculated explicitly
[OP17]:

ηi(X, f) :=
1

pVar(Y )

∑
u⊂−i

(
p− 1
|u|

)−1 (
Var(Y |Xu)−Var(Y |Xu∪{i})

)
(2)

with

Var(Y |Xu) = Var(βT−uX−u|Xu) = βT−u(Σ−u,−u − Σ−u,uΣ−1u,uΣu,−u)β−u (3)

where Γv,w := (Γi,j)i∈v,j∈w. Thus, in the Gaussian linear framework, the Shap-
ley effects are functions of the parameters β and Σ. The Gaussian linear frame-
work is thus very beneficial from an estimation point of view, because in gen-
eral one needs to estimate conditional moments of the form Var(E(Y |Xv)) for
v ⊂ [1, p], using nearest-neighbour methods, while in the Gaussian linear frame-
work, only standard matrix vector operations are required.

3 Approximation of a model by a linear model

3.1 Introduction and notation
To model uncertain physical values, it can be convenient to consider them as
a Gaussian vector. For example, the international libraries [McL05, JEF13,
JEN11] on real data from the field of nuclear safety provide the average and
covariance matrix of the input variables, so it is natural to model them with
the Gaussian distribution. Hence, to quantify the impact of the uncertainties
of the physical inputs of a model on a quantity of interest, it is commonly
the case to estimate the Shapley effects of Gaussian inputs. The model f is in
general non-linear and the estimation procedures dedicated to non-linear models
[SNS16, BBD20] are typically computationally costly, with an accuracy that can
be sensitive to the specific situation. Nevertheless, when the uncertainty on the
inputs become small, the input vector converges to its mean µ, and a linear
approximation of the model at µ seems more and more appropriate.

To formalize this idea, let X{n} ∼ N (µ{n},Σ{n}) be the input vector, with a
sequence of mean vectors (µ{n}) and a sequence of covariance matrices (Σ{n}).
The index n can represent for instance the number of measures of an uncertain
input, in which case the covariance matrix Σ{n} will decrease with n.
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Assumption 1. The covariance matrix Σ{n} decreases to 0 such that the eigen-
values of a{n}Σ{n} are lower-bounded and upper-bounded in R∗+, with a{n} −→

n→+∞
+∞. Moreover, µ{n} −→

n→+∞
µ, where µ is a fixed vector.

In Assumption 1, the condition on the eigenvalues of a{n}Σ{n} means that
the correlation matrix obtained from Σ{n} can not get close to a singular matrix.
This condition is necessary in our proofs.

If j ∈ N and if f is Cj at µ{n}, we will write f{n}j (x) = 1
j!D

jf(µ{n})(x−µ{n})
(where Dj(µ{n})(z) is the image of (z, z, · · · , z) ∈ (Rp)j through the multilinear
function Djf(µ{n}), which gathers all the partial derivatives of order j of f at
µ{n}) and R{n}j (x) = f(x)−

∑j
l=0 f

{n}
l (x) the remainder of the j-th order Taylor

approximation of f at µ{n}. In particular, f{n}1 (x) = Df(µ{n})(x−µ{n}), where
Df = D1f . We identify the linear function Df(µ{n}) with the corresponding
row gradient vector of size 1 × p and the bilinear function D2f(µ{n}) with the
corresponding Hessian matrix of size p×p. We also write f1(x) = Df(µ)(x−µ).

Finally, we assume that the function f is subpolynomial, that is, there exist
k ∈ N and C > 0 such that,

∀x ∈ Rp, |f(x)| ≤ C(1 + ‖x‖k).

3.2 Theoretical results
3.2.1 First-order Taylor polynomial

First, we study the asymptotic difference between the Shapley effects given by
the true model f and the ones given by the first-order Taylor polynomial of f at
µ{n}. Remark that adding a constant to the function does not affect the values
of the Shapley effects. Thus, the Shapley effects η(X{n}, f(µ{n}) + f

{n}
1 ) given

by the first-order Taylor polynomial of f at µ{n} are equal to η(X{n}, f
{n}
1 ). In

the next proposition, we show that approximating the true Shapley effects of
the non-linear f by the Shapley effects of the linear approximation f{n}1 yields
a vanishing error of order 1/a{n} as n→∞.

Proposition 1. Assume that X{n} ∼ N (µ{n},Σ{n}), Assumption 1 holds and
f is subpolynomial and C3 on a neighbourhood of µ and Df(µ) 6= 0. Then,

‖η(X{n}, f)− η(X{n}, f
{n}
1 )‖ = O

(
1

a{n}

)
.

We remark that, when f is a computer model, it can be the case that the
gradient vector is available. First, the computer model can already provide
them, by means of the Adjoint Sensitivity Method [Cac03]. Second, automatic
differentiation methods can be used on the source file of the code and yield a
differentiated code [HP04].
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Remark 1. The rate O(1/a{n}) is the best rate that we can reach under the as-
sumptions of Proposition 1. Indeed, letting X{n} = (X

{n}
1 , X

{n}
2 ) ∼ N (0, 1

a{n}
I2)

and Y {n} = f(X{n}) = X
{n}
1 + X

{n}2
2 , we have η1(X{n}, f

{n}
1 ) = 1 and

η2(X{n}, f
{n}
1 ) = 0. Moreover, η1(X{n}, f) = a{n}

a{n}+2
and η2(X{n}, f) = 2

a{n}+2
.

Thus, the rate of the difference between η(X{n}, f) and η(X{n}, f
{n}
1 ) is exactly

1/a{n}.

In Proposition 1, we bound the difference between the Shapley effects given
by f and the ones given by the first-order Taylor polynomial of f . Moreover,
when the matrix a{n}Σ{n} converges, Proposition 2 shows that the Shapley
effects given by the Taylor polynomial converge.

Proposition 2. Assume that X{n} ∼ N (µ{n},Σ{n}), Assumption 1 holds, f
is C1 on a neighbourhood of µ, Df(µ) 6= 0 and a{n}Σ{n} −→

n→+∞
Σ ∈ S++

p (R).

Then, if X∗ ∼ N (µ,Σ),

‖η(X{n}, f
{n}
1 )− η(X∗, f1)‖ = O(‖µ{n} − µ‖) +O(‖a{n}Σ{n} − Σ‖).

Proposition 1 shows that replacing f by its first-order Taylor polynomial
f
{n}
1 does not impact significantly the Shapley effects when the input variances
are small. Thus, the knowledge of f{n}1 would enable us to use the explicit
expression (3) of the Gaussian linear case, and for instance the function "Shap-
leyLinearGaussian" of the package sensitivity, to estimate the true Shapley
effects η(X{n}, f). However, in practice, the first-order Taylor polynomial f{n}1

is not always available, except for instance in situations described above. Thus,
one may be interested in replacing the true first-order Taylor polynomial f{n}1

by an approximation. We will study two such approximations given by finite
difference and linear regression.

3.2.2 Finite difference approximation

For h = (h1, · · · , hp) ∈ (R∗+)p and writing (e1, · · · , ep) the canonical basis of Rp,
let

D̂hf(x) :=

(
f (x+ e1h1)− f (x− e1h1)

2h1
, · · · , f (x+ ephp)− f (x− ephp)

2hp

)
,

(4)
be the approximation of the differential of f at x with the steps h1, · · · , hp. If
(h{n})n is a sequence of (R∗+)p converging to 0, let

f̃1,h{n}(x) := f̃1,h{n},µ{n}(x) := D̂h{n}f(µ{n})(x− µ{n})

be the approximation of the first-order Taylor polynomial of f−f(µ{n}) at µ{n}
with the steps h1, · · · , hp. The next proposition ensures that the Shapley effects
computed from the true Taylor polynomial and the approximated one are close,
for small steps.
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Proposition 3. Under the assumptions of Proposition 1, we have

‖η(X{n}, f
{n}
1 )− η(X{n}, f̃

{n}
1,h{n}

)‖ = O
(
‖h{n}‖2

)
.

Then, the next corollary extends Propositions 1 and 2 to the approximated
Taylor polynomial based on finite differences.

Corollary 1. Under the assumptions of Proposition 1, and if ‖h{n}‖ ≤ Csup√
a{n}

(for example, choosing h{n}i :=

√
Var(X

{n}
i ), the standard deviation of X{n}i ),

we have
‖η(X{n}, f)− η(X{n}, f̃

{n}
1,h{n}

)‖ = O(
1

a{n}
).

Moreover, if a{n}Σ{n} −→
n→+∞

Σ, then, letting X∗ ∼ N (µ,Σ),

‖η(X{n}, f̃
{n}
1,h{n}

)−η(X∗, f1)‖ = O(‖µ{n}−µ‖)+O(‖a{n}Σ{n}−Σ‖)+O
(

1

a{n}

)
.

3.2.3 Linear regression

For n ∈ N and N ∈ N∗, let (X{n}(l))l∈[1:N ] be an i.i.d. sample of X{n} of size
N and assume that we compute the image of f at each sample point, obtaining
the vector Y {n}. Then, we can approximate f with a linear regression, by least
squares. In this case, we estimate the coefficients of the linear regression by the
vector: (

β̂
{n}
0

β̂{n}

)
=
(
A{n}TA{n}

)−1
A{n}TY {n},

where A{n} ∈ MN,p+1(R) is such that, for all j ∈ [1 : N ], the j-th line of A{n}
is (1 X{n}(j)T ). The function f is then approximated by

f̂
{n}(N)
lin : x 7−→ β̂

{n}
0 + β̂{n}Tx.

Remark that the linear function f̂{n}(N)
lin is random and so, the deduced Shap-

ley effects η(X{n}, f̂
{n}(N)
lin ) are random variables. The next proposition and

corollary correspond to Proposition 3 and Corollary 1, for the linear regression
approximation of f .

Proposition 4. Under Assumption 1, if f is C2 on a neighbourhood of µ with
Df(µ) 6= 0, there exist Cinf > 0, C(1)

sup < +∞ and C(2)
sup < +∞ such that, with

probability at least 1− C(1)
sup exp(−CinfN), we have

‖η(X{n}, f
{n}
1 )− η(X{n}, f̂

{n}(N)
lin )‖ ≤ C(2)

sup

1√
a{n}

.
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Corollary 2. Under the assumptions of Proposition 1, there exist Cinf > 0,
C

(1)
sup < +∞ and C(2)

sup < +∞ such that, with probability at least 1−C(1)
sup exp(−CinfN),

we have
‖η(X{n}, f)− η(X{n}, f̂

{n}(N)
lin )‖ ≤ C(2)

sup

1√
a{n}

.

Moreover, if a{n}Σ{n} −→
n→+∞

Σ, then, letting X∗ ∼ N (µ,Σ), there exists C(3)
sup <

+∞ such that, with probability at least 1− C(1)
sup exp(−CinfN),

‖η(X{n}, f̂
{n}(N)
lin )−η(X∗, f1)‖ ≤ C(3)

sup

(
‖µ{n} − µ‖+ ‖a{n}Σ{n} − Σ‖+

1√
a{n}

)
.

3.3 Numerical experiments
In this section, we compute the Shapley effects of the true function f and the
ones obtained from the three previous linear approximations to illustrate the
previous theoretical results. Let p = 4 and

f(x) = cos(x1)x2 + sin(x2) + 2 cos(x3)x1 − sin(x4).

This function is 1-Lipschitz continuous and C∞ on R4. We choose Σ{n} = 1
n2 Σ

(that is, a{n} = n2), where Σ is defined by:

Σ = ATA, A =


−2 −1 0 1
2 −2 −1 0
1 2 −2 −1
0 1 2 −2

 .

Let µ = (1, 0, 2, 1) and µ{n} = µ+ 1
n (1, 1, 1, 1).

On Figure 1, we plot, for different values of n, the vector η(X{n}, f̂
{n}(N)
lin )

(given by the linear regression), the vector η(X{n}, f
{n}
1 ) (given by the true Tay-

lor polynomial), the vector η(X{n}, f̃
{n}
1,h{n}

) (given by the finite difference ap-
proximation of the derivatives) and the boxplots of 200 estimates of η(X{n}, f)
computed by the R function "shapleyPermRand" from the R package sensitivity
(see [SNS16, IP19]), which is adapted to non-linear functions, with parameters
NV = 105, m = 103 and NI = 3. To compute the linear regression, we observed
a sample of size N = 40. To compute the finite difference approximation, we

took h{n}i =

√
Var(X

{n}
i ).

The differences between the Shapley effects given by f and the ones given
by the linear approximations of f seem to converge to 0, as it is proved by
Propositions 1, 3 and 4. Moreover, Figure 1 emphasizes that the Shapley effects
obtained from the linear regression get closer slower to the true ones than the
ones given by the other linear approximations.

We remark that we have here Σ{n} = 1
a{n}

Σ and thus the assumptions of
Proposition 2 hold. Hence, the values of the true Shapley effects η(X{n}, f)
converge, as we can see on Figure 1.
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Figure 1: Shapley effects of the linear approximations f̂{n}(N)
lin , f{n}1 , f̃{n}

1,h{n}
and

boxplots of estimates of the Shapley effects of the function f .

The computation time for each estimate of the Shapley effects is around 5
seconds using "shapleyPermRand", 1.9 × 10−3 using the linear approximation
f
{n}
1 or f̃{n}

1,h{n}
and 2.4× 10−3 using the linear approximation f̂{n}(N)

lin . Remark
that this time difference can become more accentuated if the function f is a
costly computer code.

4 Approximation of the empirical mean by a Gaus-
sian vector

4.1 Theoretical results
Here, we extend the results of Section 3 to the case where the distribution of
the input (that we now write X̂{n}) is close to a Gaussian distribution X{n}.
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We focus on the setting where the input vector is an empirical mean

X̂{n} =
1

n

n∑
l=1

U (l),

where (U (l))l∈[1:n] is an i.i.d. sample of a random vector U in Rp such that
E(‖U‖2) < +∞ and Var(U) 6= 0. Let µ := E(U) and Σ be the covariance
matrix of U . Remark that, as is Section 3, the input vector X̂{n} is a random
vector converging to its mean, and its covariance matrix Σ{n} is equal to 1

nΣ.
Contrary to Section 3, X̂{n} is not Gaussian, but, thanks to the central

limit theorem, its distribution is close to N (µ, 1
nΣ). Hence, we would like to

estimate the Shapley effects η(X̂{n}, f) by η(X∗, Df(µ)), where X∗ ∼ N (0,Σ),
since η(X∗, Df(µ)) can be computed using the explicit expression (3) of the
Gaussian linear case, and for instance the function "ShapleyLinearGaussian" of
the package sensitivity.

Proposition 5. Assume that f is C3 on a neighbourhood of µ with Df(µ) 6= 0
and that f is subpolynomial, that is there exist k ∈ N∗ and C > 0 such that for
all x ∈ Rp, we have |f(x)| ≤ C(1 + ‖x‖k). If E(‖U‖4k) < +∞ and if U has a
bounded probability density function, then

η(X̂{n}, f) −→
n→+∞

η(X∗, Df(µ)).

Proposition 5 justifies that η(X∗, Df(µ)) is a good approximation of η(X̂{n}, f).
Furthermore, if µ, Σ and Df(µ) are unknown, the following corollary shows that
they can be replaced by approximations. Let (U{l}′)l∈[1:n′] and (U{l}′′)l∈[1:n′′] be
independent of (U{l})l∈[1:n], composed of i.i.d. copies of U and with n′ = n′(n)
and n′′ = n′′(n) such that n′, n′′ →∞ when n→∞. We can estimate µ (resp.
Σ) by the empirical mean X̂{n

′}′ of (U{l}′)l∈[1:n′] (resp. the empirical covariance
matrix Σ̂{n

′′}′′ of (U{l}′′)l∈[1:n′′]), and we can estimate Df by a finite difference
approximation. The next corollary guarantees that the error stemming from
these additional estimations goes to 0 as n→∞.

Corollary 3. Assume that the assumptions of Proposition 5 hold and that
(h{n})n∈N is a sequence of (R∗+)p converging to 0. Let X∗n be a random vector
with distribution N (µ, Σ̂{n

′′}′′) conditionally to Σ̂{n
′′}′′. Then∥∥∥η(X̂{n}, f)− η(X∗n, f̃

{n}
1,h{n},X̂{n′}′

)
∥∥∥ a.s.−→
n→+∞

0,

where f̃{n}
1,h{n},X̂{n′}′

is the linear approximation of f at X̂{n
′}′ obtained from

Equation (4) by replacing µ{n} by X̂{n
′}′ .

Remark 2. If µ, Σ or Df is known, the previous corollary holds replacing
X̂{n

′}′, Σ̂{n
′′}′′ or f̃{n}

1,h{n},X̂{n′}′
by µ,Σ or Df(X̂{n

′}′) respectively.
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Remark 3. The notation η(X∗n, f̃
{n}
1,h{n},X̂{n′}′

) is to be understood conditionally

to Σ̂{n
′′}′′, X̂{n

′}′. That is, conditionally to Σ̂{n
′′}′′, X̂{n

′}′, the Shapley effects
η(X∗n, f̃

{n}
1,h{n},X̂{n′}′

) are defined with the fixed linear function f̃{n}
1,h{n},X̂{n′}′

and
the Gaussian distribution for X∗n.

4.2 Application to the impact of individual estimation er-
rors

Let us show an example of application of the results of Section 4.1. Let U be a
continuous random vector of Rp, with a bounded density and with an unknown
mean µ. Assume that we observe an i.i.d. sample (U (l))l∈[1:n] of U and that we
focus on the estimation of a parameter θ = f(µ), where f is C3. This parameter
is estimated by f(X̂{n}) (which is asymptotically efficient by the delta-method),
where X̂{n} is the empirical mean of (U (l))l∈[1:n]. The estimation error of each
variable X̂{n}i (for i = 1, · · · , p) propagates through f . To quantify the part
of the estimation error of Y = f(X̂{n}) caused by the individual estimation
errors of each X̂

{n}
i (for i = 1, · · · , p), one can estimate the Shapley effects

η(X̂{n}, f) = η(X̂{n}−µ, f(·+µ)− f(µ)) which assess the impact of individual
errors on the global error. To that end, Proposition 5 and Corollary 3 state
that the Shapley effects can be estimated using a Gaussian linear approxima-
tion, with an error that vanishes as n increases.

For example, let f = ‖ · ‖2 and p = 5. In this case, the derivative Df
is known and no finite difference approximation is required. To generate U
with a bounded density and with dependencies, we define A1 ∼ U([5, 10]), A2 ∼
N (0, 4), A3 with a symmetric triangular distribution T (−1, 8), A4 ∼ 5Beta(1, 2)
and A5 ∼ Exp(1). Then, we define

U1 = A1 + 2A2 − 0.5A3

U2 = A2 + 2A1 − 0.5A5

U3 = A3 + 2A2 − 0.5A5

U4 = A4 + 2A1 − 0.5A2

U5 = A5 + 2A3 − 0.5A4.

Since the mean µ and the covariance matrix Σ are unknown, we need to estimate
them (as in Corollary 3). Using the notation of Section 4.1, we choose n =
n′ = n′′ and (U (l)′)l∈[1:n′] = (U (l)′′)l∈[1:n′] (that is, we estimate the empirical
mean and the empirical covariance matrix with the same sample). We estimate
the Shapley effects η(X̂{n}, f) by η(X∗n, Df(X̂{n}′)), where X∗n is a random
vector with distribution N (µ, Σ̂{n}′′) conditionally to Σ̂{n}′′. By Corollary 3 and
Remark 2, the difference between η(X̂{n}, f) and η(X∗n, Df(X̂{n}′)) converges
to 0 almost surely when n goes to +∞.

Here, we compute 1000 estimates of µ and Σ and we compute the 1000 corre-
sponding Shapley effects of the Gaussian linear approximation η(X∗n, Df(X̂{n}′)).
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To compare with these estimates, we also compute 1000 estimates given by the
function "shapleySubsetMC" suggested in [BBD20], with parameters Ntot =

1000, Ni = 3 and with an i.i.d. sample of X̂{n} with size 1000. We plot the
results on Figure 2.

−
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1
0.

3
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5
n = 100

η1 η2 η3 η4 η5

−
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1
0.

1
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3
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n = 200

η1 η2 η3 η4 η5

−
0.

1
0.

1
0.

3
0.

5

n = 500

η1 η2 η3 η4 η5

−
0.

1
0.

1
0.

3
0.

5

n = 1000

η1 η2 η3 η4 η5

Figure 2: Boxplots of the estimates of the Shapley effects given by the general
estimation function "shapleySubsetMC" (in red) and by the Gaussian linear
approximation (in black).

We observe that the estimates of the Shapley effects given by "shapley-
SubsetMC" and the Gaussian linear approximation are rather similar, even for
n = 100. However, the variance of the estimates given by the Gaussian lin-
ear approximation is smaller than the one of the general estimates given by
"shapleySubsetMC". Moreover, each Gaussian linear estimation requires only
a sample of (U (l)′)l∈[1:n] (to compute X̂{n}′ and Σ̂{n}′′) and takes around 0.007
second on a personal computer, whereas each general estimation with "shap-
leySubsetMC" requires here 1000 samples of (U (l)′)l∈[1:n] and takes around 11
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seconds. Remark that this time difference can become more accentuated if the
function f is a costly computer code. Finally, the estimator of the Shapley ef-
fects given by the linear approximation converges almost surely when n goes to
+∞, whereas the estimator of the Shapley effects given by "shapleySubsetMC"
is only shown to converge in probability when the sample size and Ntot go to
+∞ (see [BBD20]).

To conclude, we have provided a framework where the theoretical results of
Section 4.1 can be applied. We have illustrated this framework with numerical
experiments on generated data. We have showed that, in this framework, to
estimate the Shapley effects, the Gaussian linear approximation provides an
estimator much faster and much more accurate than the general estimator given
by "shapleySubsetMC".

5 Conclusion
In this paper, we worked on the Gaussian linear framework approximation to
estimate the Shapley effects, in order to take advantage of the simplicity brought
by this framework. First, we focused on the case where the inputs are Gaussian
variables converging to their means. This setting is motivated, in particular,
by the case of uncertainties on physical quantities that are reduced by taking
more and more measurements. We showed that, to estimate the Shapley effects,
one can replace the true model f by three possible linear approximations: the
exact Taylor polynomial approximation, a finite difference approximation and a
linear regression. We gave the rate of convergence of the difference between the
Shapley effects of the linear approximations and the Shapley effects of the true
model. These results are illustrated by a simulated application that highlights
the accuracy of the approximations. Then, we focused on the case where the in-
puts are given by an empirical mean. In this case, we proved that the instinctive
idea to replace the empirical mean by a Gaussian vector and the true model by a
linear approximation around the mean indeed gives good approximations of the
Shapley effects. We highlighted the benefits of these estimators on numerical
experiments.

Several questions remain open to future work. In particular, it would be
valuable to obtain more insight on the choice between the general estimator of
the Shapley effects for non-linear models and the estimators based on Gaussian
linear approximations. Quantitative criteria for this choice, based for instance
on the magnitude of the input uncertainties or on the number of input samples
that are available, would be beneficial. Regarding the results on the impact
of individual estimation errors in Section 4.2, it would be interesting to obtain
extensions to estimators of quantities of interest that are not only empirical
means, for instance general M-estimators.
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Appendices
We will write Csup for a generic non-negative finite constant. The actual value
of Csup is of no interest and can change in the same sequence of equations.
Similarly, we will write Cinf for a generic strictly positive constant. Moreover,
for all u ⊂ [1 : p], if Z is a random vector in Rp and g is a function from Rp
to R such that E(g(Z)2) < +∞ and Var(g(Z)) > 0, let Sclu (Z, g) be the closed
Sobol index (see [GJK+16] for example) for the input vector Z and the model
g, defined by:

Sclu (Z, g) =
Var(E(g(Z)|Zu))

Var(g(Z))
.

6 Proofs for Section 3
Proof of Proposition 1

We divide the proof into several lemmas. We assume that the assumptions
of Proposition 1 hold throughout this proof.

Let ε ∈]0, 1[ be such that f is C3 on B(µ, ε) and such that, for all x ∈ B(µ, ε),
we have Df(x) 6= 0. Since µ{n} converges to µ, there exists N ∈ N such that,
for all n ≥ N , µ{n} ∈ B(µ, ε/2). In the following, we assume that n is larger
than N .

Lemma 1. For all x ∈ B(µ{n}, ε/2), we have

|R{n}1 (x)| ≤ C1‖x− µ{n}‖2, |R{n}2 (x)| ≤ C ′1‖x− µ{n}‖3

and for all x /∈ B(µ{n}, ε/2),

|R{n}1 (x)| ≤ C2‖x− µ{n}‖k, |R{n}2 (x)| ≤ C ′2‖x− µ{n}‖k,

where C1, C
′
1, C2 and C ′2 are positive constants that do not depend on n.

Proof. Using Taylor’s theorem, for all x ∈ B(µ{n}, ε2 ), there exist θ2(n, x), θ3(n, x)
∈]0, 1[ such that

f(x) = f
{n}
0 + f

{n}
1 (x) +

1

2
D2f(µ{n} + θ2(n, x)(x− µ{n}))(x− µ{n})

= f
{n}
0 + f

{n}
1 (x) + f

{n}
2 (x)

+
1

6
D3f(µ{n} + θ3(n, x)(x− µ{n}))(x− µ{n}).

Let C1 = 1
2 maxx∈B(µ,ε) ‖D2f(x)‖ and C ′1 = 1

6 maxx∈B(µ,ε) ‖D3f(x)‖, where ‖·‖
also means the operator norm of a multilinear form. Thus, for all x ∈ B(µ, ε2 ),

|R{n}1 (x)| ≤ C1‖x− µ{n}‖2, |R{n}2 (x)| ≤ C ′1‖x− µ{n}‖3.
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Moreover, f is subpolynomial, so ∃k ≥ 3, and C < +∞ such that, ∀x ∈ Rp,

|f(x)| ≤ C(1 + ‖x‖k).

Hence, taking C ′ = C(2‖µ‖+ 2)k, we have

|f(x)| ≤ C(1 + 2k‖x− µ{n}‖k + 2k‖µ{n}‖k) ≤ C ′(1 + ‖x− µ{n}‖k).

Hence, taking C ′′ := C ′ + maxy∈B(µ,ε) ‖Df(y)‖, we have

|R{n}1 (x)| ≤ |f(x)|+ max
y∈B(µ,ε)

‖Df(y)‖‖x− µ{n}‖ ≤ C ′′(1 + ‖x− µ{n}‖k).

Now, taking C2 := C ′′
(
1 + ( 2

ε )k
)
, we have, for all x /∈ B(µ{n}, ε/2),

|R{n}1 (x)| ≤ C ′′ + C ′′‖x− µ{n}‖k ≤ C2‖x− µ{n}‖k.

Similarly, there exists C ′2 < +∞ such that

|R{n}2 (x)| ≤ C ′2‖x− µ{n}‖k.

Lemma 2. We have

cov(E(f
{n}
1 (X{n})|X{n}u ), f

{n}
2 (X{n})|X{n}u )) = 0.

Proof. Let n ∈ N. To simplify notation, let A = X{n} − µ{n}, β ∈ Rp be the
vector of the linear application Df(µ{n}) and Γ ∈ Mp(R) be symmetric the
matrix of the quadratic form 1

2D
2f(µ{n}). Then,

cov(E(f
{n}
1 (X{n})|X{n}u ),E(f

{n}
2 (X{n})|X{n}u ))

= cov(E(βTA)|Au),E(ATΓA|Au))

= E
([
βTuAu + βT−uE(A−u|Au)

] [
ATuΓu,uAu + 2ATuΓu,−uE(A−u|Au) + E(AT−uΓ−u,−uA−u|Au)

])
= E

([
βTuAu + βT−uE(A−u|Au)

]
E(AT−uΓ−u,−uA−u|Au)

)
since all the other terms are linear combinations of expectations of products of
three zero-mean Gaussian variables. Indeed, the coefficients of E(A−u|Au) are
linear combinations of the coefficients of Au. Now,

E
(
βTuAu × E(AT−uΓ−u,−uA−u|Au)

)
= E

(
E(βTuAu ×AT−uΓ−u,−uA−u|Au)

)
= E(βTuAu ×AT−uΓ−u,−uA−u)

= 0.

Similarly, the term E
(
β−uE(A−u|Au)E(AT−uΓ−u,−uA−u|Au)

)
is equal to 0.
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Lemma 3. There exists Csup < +∞ such that, for all u ⊂ [1 : p],

Var(E(
√
a{n}R

{n}
1 (X{n})|X{n}u )) ≤ Csup

a{n}
,

and ∣∣∣cov(E(
√
a{n}f

{n}
1 (X{n})|X{n}u ),E(

√
a{n}R

{n}
1 (X{n})|X{n}u ))

∣∣∣ ≤ Csup

a{n}
.

Proof. Using Lemma 1, we have,

E(|
√
a{n}R

{n}
1 (X{n})|2) = E(|

√
a{n}R

{n}
1 (X{n})|21‖Xn‖< ε

2
) + E(|

√
a{n}R

{n}
1 (X{n})|21‖Xn‖≥ ε

2
)

≤ C2
1

a{n}
E(‖
√
a{n}(X{n} − µ{n})‖4)

+
C2

2

a{n}(k−1)
E(‖
√
a{n}(X{n} − µ{n})‖2k)

≤ Csup

a{n}
,

since a{n}Σ{n} is bounded. Hence,

Var(
√
a{n}R

{n}
1 (X{n})) ≤ Csup

a{n}
.

Moreover, for all u ⊂ [1 : p],

0 ≤ Var(E(a{n}R
{n}
1 (X{n})|X{n}u )) ≤ Var(a{n}R

{n}
1 (X{n})) ≤ Csup

a{n}
.

For all u ⊂ [1 : p],

cov(E(
√
a{n}f

{n}
1 (X{n})|X{n}u ),E(

√
a{n}R

{n}
1 (X{n})|X{n}u ))

= cov(E(
√
a{n}f

{n}
1 (X{n})|X{n}u ),E(

√
a{n}f

{n}
2 (X{n})|X{n}u ))

+ cov(E(
√
a{n}f

{n}
1 (X{n})|X{n}u ),E(

√
a{n}R

{n}
2 (X{n})|X{n}u ))

= cov(E(
√
a{n}f

{n}
1 (X{n})|X{n}u ),E(

√
a{n}R

{n}
2 (X{n})|X{n}u )),

using Lemma 2. Now, by Cauchy-Schwarz inequality,∣∣∣cov(E(
√
a{n}f

{n}
1 (X{n})|X{n}u ),E(

√
a{n}R

{n}
2 (X{n})|X{n}u ))

∣∣∣
≤

√
Var(

√
a{n}f

{n}
1 (X{n})|X{n}u )

√
Var(

√
a{n}R

{n}
2 (X{n})|X{n}u )

≤
√

Var(
√
a{n}f

{n}
1 (X{n}))

√
Var(

√
a{n}R

{n}
2 (X{n})).
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Now, by Lemma 1, we have,

E(|
√
a{n}R

{n}
2 (X{n})|2)

= E(|
√
a{n}R

{n}
2 (X{n})|21‖Xn‖≤ ε

2
) + E(|

√
a{n}R

{n}
2 (X{n})|21‖Xn‖≥ ε

2
)

≤ C2
1

a{n}2
E(‖
√
a{n}(X{n} − µ{n})‖6)

+
C2

2

a{n}(k−1)
E(‖
√
a{n}(X{n} − µ{n})‖k×2)

≤ Csup

a{n}2
.

Furthermore,

Var(
√
a{n}f

{n}
1 (X{n})) ≤ max

x∈B(µ{n},ε/2)
‖Df(x)‖E

(
‖
√
a{n}(X{n} − µ{n})‖

)
≤ Csup.

Finally,∣∣∣cov(E(
√
a{n}f

{n}
1 (X{n})|X{n}u ),E(

√
a{n}R

{n}
1 (X{n})|X{n}u ))

∣∣∣ ≤ Csup

a{n}
,

that concludes the proof of Lemma 3.

Lemma 4. For all u ⊂ [1 : p],

Sclu (X{n}, f) = Sclu (X{n}, f
{n}
1 ) +O

(
1

a{n}

)
.

Proof. We have

f(X{n}) = f(µ{n}) + f
{n}
1 (X{n}) +R

{n}
1 (X{n}).

For all u ⊂ [1 : p], we have

E(f(X{n})|X{n}u ) = f(µ{n}) + E(f
{n}
1 (X{n})|X{n}u ) + E(R

{n}
1 (X{n})|X{n}u ),

so,

a{n}Var(E(f(X{n})|X{n}u ))

= Var(E(
√
a{n}f

{n}
1 (X{n})|X{n}u )) + Var(E(

√
a{n}R

{n}
1 (X{n})|X{n}u ))

+2 cov(E(
√
a{n}f

{n}
1 (X{n})|X{n}u ),E(

√
a{n}R

{n}
1 (X{n})|X{n}u ))

= Var(E(
√
a{n}f

{n}
1 (X{n})|X{n}u )) +O(

1

a{n}
),

by Lemma 3. Hence, for u = [1 : p], we have

a{n}Var(f(X{n})) = Var(
√
a{n}f

{n}
1 (X{n})) +O(

1

a{n}
).
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Thus, for all u ⊂ [1 : p],

Sclu (X{n}, f) =
Var(E(f(X{n})|X{n}u ))

Var(f(X{n}))

=
a{n}Var(E(f(X{n})|X{n}u ))

a{n}Var(f(X{n}))

=
Var(E(

√
a{n}f

{n}
1 (X{n})|X{n}u )) +O( 1

a{n}
)

Var(
√
a{n}f

{n}
1 (X{n})) +O( 1

a{n}
)

=
Var(
√
a{n}f

{n}
1 (X{n})|X{n}u )

Var(
√
a{n}f

{n}
1 (X{n}))

+O(
1

a{n}
)

= Sclu (X{n}, f
{n}
1 ) +O

(
1

a{n}

)
,

where we used that,

Var(
√
a{n}f

{n}
1 (X{n})) = Df(µ{n})(a{n}Σ{n})Df(µ{n})T

≥ λmin(a{n}Σ{n}) inf
x∈B(µ,ε/2)

‖Df(x)‖2

≥ Cinf .

Now we have proved the convergence of the closed Sobol indices, we can
prove Proposition 1 easily.

Proof. By Lemma 4 and applying the linearity of the Shapley effects with respect
to the Sobol indices, we have

η(X{n}, f) = η(X{n}, f
{n}
1 ) +O(

1

a{n}
).

Proof of Remark 1

Proof. Let X{n} = (X
{n}
1 , X

{n}
2 ) ∼ N (0, 1

a{n}
I2) and Y {n} = f(X{n}) =

X
{n}
1 + X

{n}2
2 , we have f{n}1 (X{n}) = X

{n}
1 and R{n}1 (X{n}) = X

{n}2
2 . Thus,

η1(X{n}, f
{n}
1 ) = 1 and η2(X{n}, f

{n}
1 ) = 0. Now, let us compute the Shapley

effects η(X{n}, f). We have

Var(f(X{n})) = Var(X
{n}
1 ) + Var(X

{n}2
2 )

= Var(X
{n}
1 ) + E(X

{n}4
2 )− E(X

{n}2
2 )2

=
1

a{n}
+

3

a{n}2
− 1

a{n}2

=
a{n} + 2

a{n}2
.
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Moreover,

Var(E(f(X{n})|X{n}1 )) = Var(X
{n}
1 +

1

a{n}
) = Var(X

{n}
1 ) =

1

a{n}

and

Var(E(f(X{n})|X{n}2 )) = Var(X
{n}2
2 ) = E(X

{n}4
2 )−E(X

{n}2
2 )2 =

3− 1

a{n}2
=

2

a{n}2
.

Hence,

η1(X{n}, f) =
a{n}2

(a{n} + 2)2

(
1

a{n}
+
a{n} + 2

a{n}2
− 2

a{n}2

)
=

a{n}

a{n} + 2
,

and
η2(X{n}, f) =

2

a{n} + 2
.

Proof of Proposition 2
As in the proof of Proposition 1, we first prove the convergence for the closed

Sobol indices. To simplify notation, let Γ{n} := a{n}Σ{n}.

Lemma 5. Under the assumptions of Proposition 2, for all u ⊂ [1 : p], we have

Sclu (f
{n}
1 (X{n})) = Sclu (f1(X∗)) +O(‖µ{n} − µ‖) +O(‖Γ{n} − Σ‖).

Proof. We have

Var(
√
a{n}f

{n}
1 (X{n}))−Var(f1(X∗))

= Df(µ{n})Γ{n}Df(µ{n})T −Df(µ)ΣDf(µ)T

= Df(µ{n})Γ{n}
[
Df(µ{n})T −Df(µ)T

]
+Df(µ{n})

[
Γ{n} − Σ

]
Df(µ)T[

Df(µ{n})−Df(µ)
]

ΣDf(µ)T

= O(‖Df(µ{n})−Df(µ)‖) +O(‖Γ{n} − Σ‖)
= O(‖µ{n} − µ‖) +O(‖Γ{n} − Σ‖),

using that Df is Lipschitz continuous on a neighbourhood of µ (thanks to the
continuity of D2f).

Moreover, for all ∅  u  [1 : p], we have

Var(E(
√
a{n}f

{n}
1 (X{n})|X{n}u ))−Var(E(f1(X∗)|X∗u))

= Var(
√
a{n}f

{n}
1 (X{n}))− E(Var(

√
a{n}f1(X{n})|X{n}−u ))−Var(f1(X∗)) + E(Var(f1(X∗)|X∗u))

= Df(µ{n})Γ{n}Df(µ{n})T −Df(µ{n})u(Γ{n}u,u − Γ
{n}
u,−uΓ

{n}−1
−u,−uΓ

{n}
−u,u)Df(µ{n})Tu

−Df(µ)ΣDf(µ)T −Df(µ)u(Σu,u − Σu,−uΣ−1−u,−uΣ−u,u)Df(µ)Tu

= O(‖µ{n} − µ‖) +O(‖Γ{n} − Σ‖),
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proceeding as previously and using the fact that the operator norm of a subma-
trix is smaller than the operator norm of the whole matrix.

Hence,

Sclu (X{n}, f
{n}
1 ) = Sclu (X∗, f1) +O(‖µ{n} − µ‖) +O(‖Γ{n} − Σ‖).

Now, we can easily prove Proposition 2.

Proof. By Lemma 5 and applying the linearity of the Shapley effects with respect
to the Sobol indices, we have

η(f
{n}
1 (X{n})) = η(f1(X∗)) +O(‖µ{n} − µ‖) +O(‖Γ{n} − Σ‖).

Proof of Proposition 3
Under the assumption of Proposition 3, let ε > 0 be such that f is C3 on

B(µ, ε) and such that, for all x ∈ B(µ, ε), we have Df(x) 6= 0. Since µ{n}
converges to µ, there exists N ∈ N such that, for all n ≥ N , µ{n} ∈ B(µ, ε/2).
In the following, we assume that n is larger than N .

Lemma 6. For all x ∈ B(µ, ε2 ) and h ∈ (R∗+)p such that ‖h‖ ≤ ε
2 , we have

‖D̂hf(x)−Df(x)‖ ≤ 1

6
max
i∈[1:p]

max
y∈B(µ,ε)

|∂3i f(y)|‖h‖2

Proof. Let x ∈ B(µ, ε2 ) and h ∈ (R∗+)p such that ‖h‖ ≤ ε
2 . For all i ∈ [1 : p],

using Taylor’s theorem, there exist θ+x,h,i, θ
−
x,h,i ∈]0, 1[ such that

f (x+ eihi)− f (x− eihi)
2hi

= ∂if(x)+
h2i
12

(
∂3i f(x+ θ+x,h,ih) + ∂3i f(x− θ−x,h,ih)

)
.

Hence,

‖D̂hf(x)−Df(x)‖ ≤
p∑
i=1

∣∣∣[D̂hf(x)−Df(x)
]
i

∣∣∣
≤ 1

6
max
i∈[1:p]

max
y∈B(µ,ε)

|∂3i f(y)|
p∑
i=1

h2i

=
1

6
max
i∈[1:p]

max
y∈B(µ,ε)

|∂3i f(y)|‖h‖2.

Lemma 7. For all linear functions l1 and l2 from Rp to R, we have∣∣∣Var(E(l1(X{n})|X{n}u )−Var(E(l2(X{n})|X{n}u )
∣∣∣ ≤ Csup

a{n}
‖l1 − l2‖.
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Proof. For all u ⊂ [1 : p], let φ{n}u : R|u| −→ Rp be defined by

φ{n}u (xu) =

(
xu

µ
{n}
−u + Γ

{n}
−u,uΓ

{n}−1
u,u (xu − µ{n}u )

)
and φ{n}[1:p] = idRp .

Let u ⊂ [1 : p]. Then

E(X{n}|X{n}u ) = φ{n}u (X{n}u ).

Now, for all linear function l : Rp −→ R, we have

E(l(X{n})|X{n}u ) = l
(
E(X{n}|X{n}u )

)
= l(φ{n}u (X{n}u )),

so, identifying a linear function from Rp to R with its matrix of size 1 × p, we
have

Var
(
E(l(X{n})|X{n}u )

)
= lφ{n}u

Γ
{n}
u,u

a{n}
φ{n}Tu lT .

Hence, for l = l1 and l = l2, one can show that,∣∣∣Var(E(l1(X{n})|X{n}u ))−Var(E(l2(X{n})|X{n}u ))
∣∣∣ ≤ Csup

a{n}
‖l1 − l2‖.

Now, we can prove Proposition 3.

Proof. By Lemmas 6 and 7, we have, for all u ⊂ [1 : p],

Var(E(
√
a{n}f

{n}
1 (X{n})|X{n}u )−Var(E(

√
a{n}f̃

{n}
1,h{n}

(X{n})|X{n}u ) = O
(
‖h{n}‖2

)
.

Thus,
Sclu (X{n}, f

{n}
1 )− Sclu (X{n}, f̃

{n}
1,h{n}

) = O
(
‖h{n}‖2

)
,

so
η(X{n}, f

{n}
1 )− η(X{n}, f̃

{n}
1,h{n}

) = O
(
‖h{n}‖2

)
.

Proof of Proposition 4
Under the assumption of Proposition 3, let ε > 0 be such that f is C3 on

B(µ, ε) and such that, for all x ∈ B(µ, ε), we have Df(x) 6= 0. Since µ{n}
converges to µ, there exists N ∈ N such that, for all n ≥ N , µ{n} ∈ B(µ, ε/2).
In the following, we assume that n is larger than N .

Lemma 8. There exists Csup such that, with probability at least
1− 2p2 exp(−CinfN)− 4p exp(−CinfN

2),∥∥∥∥(A{n}TA{n})−1A{n}T∥∥∥∥ ≤ Csup

√
a{n}√
N

.
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Proof.∥∥∥∥(A{n}TA{n})−1A{n}T∥∥∥∥2 = λmax

[(
A{n}TA{n}

)−1]
=

a{n}

N
λmax

[(
a{n}

N
A{n}TA{n}

)−1]
.

Now, by the strong law of large numbers, we have almost surely

a{n}

N
A{n}TA{n} − (a{n} − 1)

(
1

µ{n}

)(
1

µ{n}

)T
−→

N→+∞
M
{n}
1 :=

(
1 µ{n}T

µ{n} Γ{n} + µ{n}µ{n}T

)
.

Let M{n}2 :=

(
1 µ{n}T

µ{n} λinfIp + µ{n}µ{n}T

)
and M2 :=

(
1 µT

µ λinfIp + µµT

)
,

where λinf > 0 is a lower-bound of the eigenvalues of (Γ{n})n. We can see
that

M
{n}
1 ≥M{n}2 −→

n→+∞
M2.

Now,
det(M2) = det(1) det

(
[λinfIp + µµT ]− µ1−1µT

)
= λpinf > 0.

Hence, writing λ′inf > 0 the smallest eigenvalue of M2, we have that the eigen-
values of M{n}1 are lower-bounded by λ′inf/2 for n large enough.

Similarly, let

M
{n}
3 :=

(
1 µ{n}T

µ{n} λsupIp + µ{n}µ{n}T

)
, and M3 :=

(
1 µT

µ λsupIp + µµT

)
,

where λsup > 0 is an upper-bound of the eigenvalues of (Γ{n})n. Writing λ′sup <
+∞ the largest eigenvalue of M3, we have that the eigenvalues of M{n}1 are
upper-bounded by 2λ′sup for n large enough.

Now, since the eigenvalues of (M
{n}
1 )n are lower-bounded and upper-bounded,

there exists α > 0 such that, for all n ∈ N (large enough), ∀M ∈ Sp(R),

‖M −M{n}1 ‖ ≤ α =⇒ |λmin(M)− λmin(M
{n}
1 )| ≤ λ′inf

4
.

Now, by Bernstein inequality,

P

(∥∥∥∥∥a{n}N A{n}TA{n} − (a{n} − 1)

(
1

µ{n}

)(
1

µ{n}

)T
−M{n}1

∥∥∥∥∥ ≤ α
)

≥ 1− 2p2 exp(−CinfN)− 2× 2p exp(−CinfN
2)

≥ 1− Csup exp(−CinfN),

25



where the term 2p2 exp(−CinfN) bounds the difference of the submatrices of
index [2 : p + 1] × [2 : p + 1] and the term 2 × 2p exp(−CinfN

2) bounds the
differences of the submatrices of index {1} × [2 : p+ 1] and [2 : p+ 1]× {1}.

Hence, with probability at least 1− Csup exp(−CinfN), we have

λmin

(
a{n}

N
A{n}TA{n} − (a{n} − 1)

(
1

µ{n}

)(
1

µ{n}

)T)
≥ λ′inf

4
,

and so

λmin

(
a{n}

N
A{n}TA{n}

)
≥ λ′inf

4
.

Lemma 9. With probability at least 1− Csup exp(−CinfN), we have∥∥∥β̂{n} −∇f(µ{n})
∥∥∥ ≤ Csup

1√
a{n}

.

Proof. Let Z{n} ∼ N (0,Γ{n}). Then ‖X{n} − µ{n}‖ ≤ ε
2 with probability

P(‖Z{n}‖ ≤ a{n}ε
2 ) −→

n→+∞
1. Let Ω

{n}
N := {ω ∈ Ω | ∀j ∈ [1 : N ], ‖X{n}(j)(ω) −

µ{n}‖ ≤ ε
2}. Hence,

P(Ω
{n}
N ) ≥ 1− 2N exp

(
−Cinfa

{n}
)
−→

n→+∞
1.

On B(µ{n}, ε2 ), we have f = f(µ{n}) + f
{n}
1 +R

{n}
1 . Hence, on Ω

{n}
N , for all

j ∈ [1 : N ],

f(X{n}(j)) = f(µ{n}) + f
{n}
1 (X{n}(j)) +R

{n}
1 (X{n}(j)).

Thus,

β̂{n} =
(
A{n}TA{n}

)−1
A{n}T

(
f(µ{n})+f

{n}
1 (X{n}(j))+R

{n}
1 (X{n}(j))

)
j∈[1:N ]

.

Since f(µ{n}) + f
{n}
1 is a linear function with gradient vector ∇f(µ{n}) and

with value at zero f(µ{n})−Df(µ{n})µ{n}, we have,(
A{n}TA{n}

)−1
A{n}T (f(µ{n})+f

{n}
1 (X{n}(j)))j∈[1:N ] =

(
f(µ{n})−Df(µ{n})µ{n}

∇f(µ{n})

)
.

Hence, it remains to see if(
A{n}TA{n}

)−1
A{n}T (R

{n}
1 (X{n}(j)))j∈[1:N ]
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is small enough. By Lemma 1, we have on Ω
{n}
N ,

‖(R{n}1 (X{n}(j)))j∈[1:N ]‖2 =

N∑
j=1

R
{n}
1 (X{n}(j))2

≤ Csup

N∑
j=1

‖X{n}(j) − µ{n}‖4

≤ Csup

a{n}2

N∑
j=1

‖
√
a{n}(X{n}(j) − µ{n})‖4.

Hence, on Ω
{n}
N ,

‖(R{n}1 (X{n}(j)))j∈[1:N ]‖ ≤ Csup

√
N

a{n}
.

Thus, ∥∥∥∥(A{n}TA{n})−1A{n}T (R
{n}
1 (X{n}(j)))j∈[1:N ]

∥∥∥∥
≤

∥∥∥∥(A{n}TA{n})−1A{n}T∥∥∥∥ ∥∥∥(R
{n}
1 (X{n}(j)))j∈[1:N ]

∥∥∥
≤ Csup

1√
a{n}

,

with probability at least 1− Csup exp(−CinfN).

Now, it is easy to prove Proposition 4.

Proof. By Lemma 7 for l1 = β̂{n}T and l2 = Df(µ{n}), and by Lemma 9 we
have, with probability at least 1− Csup exp(−CinfN),∣∣∣Var(E(

√
a{n}Df(µ{n})X{n}|X{n}u ))−Var(E(

√
a{n}β̂{n}TX{n}|X{n}u ))

∣∣∣
≤ Csup‖Df(µ{n})− β̂{n}T ‖

≤ Csup
1√
a{n}

,

where the conditional expectations and the variances are conditional to (X{n}(j))j∈[1:N ].
Thus, with probability at least 1−Csup exp(−CinfN), there exists Cinf > 0 such
that, for n large enough ‖β̂{n}T ‖ ≥ Cinf , thus Var(

√
a{n}β̂{n}

T

X{n}) is lower-
bounded. Hence, with probability at least 1− Csup exp(−CinfN),∣∣∣Sclu (X{n}, f

{n}
1 )− Sclu (X{n}, β̂{n}T )

∣∣∣ ≤ Csup
1√
a{n}

,

and so ∥∥∥η(X{n}, f
{n}
1 )− η(X{n}, β̂{n}T )

∥∥∥ ≤ Csup
1√
a{n}

.
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7 Proofs for Section 4
In this section, we prove Proposition 5 in Subsections B.1 to B.6 and we prove
Corollary 3 in Subsection B.7.

7.1 Introduction to the proof of Proposition 5
Recall that (U (l))l∈[1:n] is an i.i.d. sample of U with E(U) = µ and Var(U) = Σ
and

X̂{n} =
1

n

n∑
l=1

U (l).

Let X{n} ∼ N (µ, 1
nΣ). By Proposition 1, we have

η
(
X{n}, f

)
= η

(
X{n}, Df(µ)

)
+O

(
1

a{n}

)
= η (X∗, Df(µ)) +O

(
1

a{n}

)
.

Hence, it remains to prove that∥∥∥η (X̂{n}, f)− η (X{n}, f)∥∥∥ −→
n→+∞

0,

that is, writing fn :=
√
n
(
f
(
·√
n

+ µ
)
− f(µ)

)
and X̃{n} :=

√
n(X̂{n} − µ),

that ∥∥∥η (X̃{n}, fn)− η (X∗, fn)
∥∥∥ −→
n→+∞

0.

In Section 7.2, we give some lemmas of fn. Then, defining

Eu,n,K(Z) := E
(
E
[
fn(Z)21‖Z‖∞≤K

∣∣Zu]2) ,
Eu,n(Z) := E

(
E
[
fn(Z)2

∣∣Zu]2) ,
we prove in Section 7.3 that supn |Eu,n,K(X̃{n}) − Eu,n(X̃{n})| converges to 0

whenK → +∞. In particular, for U ∼ N (µ,Σ), the result holds for X̃{n} = X∗.
Hence, for any ε > 0, choosing K such that |Eu,n,K(X̃{n})−Eu,n(X̃{n})| <

ε/3 and |Eu,n,K(X∗)− Eu,n(X∗)| < ε/3, we show in Section 7.4 that

|Eu,n,K(X∗)− Eu,n,K(X̃{n})| −→
n→+∞

0.

In Section 7.5, we conclude the proof that∣∣∣Var(E(fn(X̃{n})|X̃{n}u ))−Var(E(fn(X∗)|X∗u))
∣∣∣ −→
n→+∞

0.

In Section 7.6, we conclude the proof that∥∥∥η (X̃{n}, fn)− η (X∗, fn)
∥∥∥ −→
n→+∞

0.

The key of the proof is that the probability density function of X̃{n} con-
verges uniformly to the one ofX∗ by local limit theorem (see [She71] or Theorem
19.1 of [BR86]).
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7.2 Part 1
Lemma 10. There exists Csup < +∞ such that, for all x ∈ Rp,

|fn(x)| ≤ Csup

(
‖x‖1‖x‖≤√n +

‖x‖k
√
n
k−11‖x‖>

√
n)

)
,

where we recall that k ∈ N∗ is such that for all x ∈ Rp, we have |f(x)| ≤
C(1 + ‖x‖k).

Proof. For all x ∈ Rp, we have∣∣∣∣f ( x√
n

+ µ

)
− f (µ)

∣∣∣∣ ≤ ∣∣∣∣f ( x√
n

+ µ

)∣∣∣∣+ |f (µ)|

≤ Csup

(
1 +

∥∥∥∥ x√
n

+ µ

∥∥∥∥k
)

+ |f (µ) |

≤ Csup

(
1 +

∥∥∥∥ x√
n

∥∥∥∥k
)
.

Thus, for all ‖x‖ ≥
√
n, we have

|fn(x)| ≤ Csup
‖x‖k
√
n
k−1 .

If ‖x‖ ≤
√
n, we have∣∣∣∣f ( x√

n
+ µ

)
− f (µ)

∣∣∣∣ ≤ max
‖y‖≤1+‖µ‖

‖Df(y)‖
∥∥∥∥ x√

n
+ µ− µ

∥∥∥∥
≤ Csup

∥∥∥∥ x√
n

∥∥∥∥ ,
and thus,

|fn(x)| ≤ Csup‖x‖.

In particular,

|fn(x)| ≤ Csup(‖x‖+ ‖x‖k), fn(x)2 ≤ Csup(‖x‖2 + ‖x‖2k)

Lemma 11. For i = 1, 2, we have

E(fn(X̃{n})2i) ≤ Csup.

Proof. We have

E(fn(X̃{n})2i) ≤ Csup

(
E(‖X̃{n}‖2ik) + E(‖X̃{n}‖2i)

)
≤ Csup

(
E(‖X̃{n}‖2ik2ik) + E(‖X̃{n}‖2i2i)

)
.
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Now, by Rosenthal inequality [Ros70], we have

E(|X̃j |2ik) =
1

nik
E

( n∑
l=1

U
(l)
j − µj

)2ik


≤ Csup

nik
max

(
nE([U

(1)
j − µj ]2ik),

[
nE([U

(1)
j − µj ]2)

]ik)
≤ Csup.

Lemma 12. For all v ⊂ [1 : p], v 6= ∅ and for i = 1, 2, we have

sup
n
E
(
fn(X̃{n})i1

X̃
{n}
v /∈[−K,K]|v|

)
−→

K→+∞
0.

Proof. We have

E
(
fn(X̃{n})i1

X̃
{n}
v /∈[−K,K]|v|

)
≤

√
E
(
fn(X̃{n})2i

)√
P(X̃

{n}
v /∈ [−K,K]|v|).

By Lemma 11, supn

√
E
(
fn(X̃{n})2i

)
is bounded.

Now, since (X̃
{n}
v )n converges in distribution, it is a tight sequence, hence

sup
n
P
(
X̃{n}v /∈ [−K,K]|v|

)
≤ sup

n
P(‖X̃{n}v ‖ ≥ K) −→

K→+∞
0.

Lemma 13. The sequence (fn)n converges pointwise to Df(µ).

Proof. For all x ∈ R,

f

(
x√
n

+ µ

)
− f(µ) = Df (µ)

x√
n

+O

(∥∥∥∥ x√
n

∥∥∥∥2
)
,

so,

fn(x) = Df (µ)x+O

(
‖x‖2√
n

)
.
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7.3 Part 2
We want to prove that, for all u ⊂ [1 : p], u 6= ∅, we have

sup
n
|Eu,n,K(X̃{n})− Eu,n(X̃{n})| −→

K→+∞
0.

We will prove this result for ∅  u  [1 : p], since it is easier for u = [1 : p]
(see Remark 4).

We have∣∣∣∣∣
∫
R|u|

(∫
R|−u|

fn(x)dP
X̃
{n}
−u |X̃

{n}
u =xu

(x−u)

)2

dP
X̃
{n}
u

(xu)

−
∫
[−K,K]|u|

(∫
[−K,K]|−u|

fn(x)dP
X̃
{n}
−u |X̃

{n}
u =xu

(x−u)

)2

dP
X̃
{n}
u

(xu)

∣∣∣∣∣
≤

∫
([−K,K]|u|)c

(∫
R|−u|

fn(x)dP
X̃
{n}
−u |X̃

{n}
u =xu

(x−u)

)2

dP
X̃
{n}
u

(xu)

+

∫
[−K,K]|u|

∣∣∣∣∣
(∫

R|−u|
fn(x)dP

X̃
{n}
−u |X̃

{n}
u =xu

(x−u)

)2

−

(∫
[−K,K]|−u|

fn(x)dP
X̃
{n}
−u |X̃

{n}
u =xu

(x−u)

)2 ∣∣∣∣∣dPX̃{n}u
(xu).

We have to bound the two summands of the previous upper-bound.
The first term converges to 0 by Lemma 12. Let us bound the second term.
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By mean-value inequality with the square function, we have∫
[−K,K]|u|

∣∣∣∣∣
(∫

R|−u|
fn(x)dP

X̃
{n}
−u |X̃

{n}
u =xu

(x−u)

)2

−

(∫
[−K,K]|−u|

fn(x)dP
X̃
{n}
−u |X̃

{n}
u =xu

(x−u)

)2 ∣∣∣∣∣dPX̃{n}u
(xu)

≤ 2

∫
[−K,K]|u|

(∫
R|−u|

|fn(x)|dP
X̃
{n}
−u |X̃

{n}
u =xu

(x−u)

)
∣∣∣∣∫
R|−u|

1x−u /∈[−K,K]|−u|fn(x)dP
X̃
{n}
−u |X̃

{n}
u =xu

(x−u)

∣∣∣∣ dPX̃{n}u
(xu)

≤ 2

∫
[−K,K]|u|

(∫
R|−u|

|fn(x)|dP
X̃
{n}
−u |X̃

{n}
u =xu

(x−u)

)
×
(∫

R|−u|
1x−u /∈[−K,K]|−u| |fn(x)|dP

X̃
{n}
−u |X̃

{n}
u =xu

(x−u)

)
dP

X̃
{n}
u

(xu)

≤ 2

√
E(E(|fn(X̃{n})| |X̃{n}u )2)

×

√∫
R|u|

(∫
R|−u|

1x−u /∈[−K,K]|−u| |fn(x)|dP
X̃
{n}
−u |X̃

{n}
u =xu

(x−u)

)2

dP
X̃
{n}
u

(xu).

Now, E(E(|fn(X̃{n})| |X̃{n}u )2) ≤ E(fn(X̃{n})2) which is bounded by Lemma
11 and the other term converges to 0 uniformly on n by Lemma 12.

Remark 4. In the case where u = [1 : p], it is much simpler, since

E(fn(X̃{n})2)− E(fn(X̃{n})21X̃{n}∈[−K,K]p) = E(fn(X̃{n})21X̃{n} /∈[−K,K]p),

which converges to 0 uniformly on n when K → +∞ by Lemma 12.

7.4 Part 3
Let K ∈ R∗+ and u ⊂ [1 : p] such that u 6= ∅. We want to prove that

|Eu,n,K(X∗)− Eu,n,K(X̃{n})| −→
n→+∞

0.

The case u = [1 : p] is much easier (see Remark 5), hence, assume that
∅  u  [1 : p]. Since K is fixed, the probability density function fX∗ of X∗ is
lower-bounded by a > 0 on [−K,K]p. Let εn := max∅ u⊂[1:p] supx∈Rp |fX∗(x)−
fX̃{n}(x)|. Using local limit theorem (see Theorem 19.1 of [BR86] or [She71]),
εn −→

n→+∞
0. We assume that n is large enough such that εn ≤ a

2 . Let b < +∞
be the maximum of fX∗ .
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We have

|Eu,n,K(X∗)− Eu,n,K(X̃{n})|

≤
∫
[−K,K]|u|

∣∣∣∣∣
(∫

[−K,K]|−u|
fn(x)

fX∗(x)

fX∗u(xu)
dx−u

)2

−

(∫
[−K,K]|−u|

fn(x)
fX̃{n}(x)

f
X̃
{n}
u

(xu)
dx−u

)2 ∣∣∣∣∣fX∗u(xu)dxu

+

∫
[−K,K]|u|

(∫
[−K,K]|−u|

fn(x)
fX̃{n}(x)

f
X̃
{n}
u

(xu)
dx−u

)2

|fX∗u(xu)− f
X̃
{n}
u

(xu)|dxu.

Hence, we have to prove the convergence of the two summands in the previous
upper-bound. For the second term, it suffices to remark that

|fX∗u(xu)− f
X̃
{n}
u

(xu)| ≤ εn ≤
2εn
a
f
X̃
{n}
u

(xu).

Hence, the second term is smaller than 2εn
a E(fn(X̃{n})2) that converges to 0. It

remains to prove that the first term converges to 0. By mean-value inequality,
we have ∫

[−K,K]|u|

∣∣∣∣∣
(∫

[−K,K]|−u|
fn(x)

fX∗(x)

fX∗u(xu)
dx−u

)2

−

(∫
[−K,K]|−u|

fn(x)
fX̃{n}(x)

f
X̃
{n}
u

(xu)
dx−u

)2 ∣∣∣∣∣fX∗u(xu)dxu

≤ 2

∫
[−K,K]|u|

(∫
[−K,K]|−u|

|fn(x)|max

(
fX∗(x)

fX∗u(xu)
,
fX̃{n}(x)

f
X̃
{n}
u

(xu)

)
dx−u

)

×

(∫
[−K,K]|−u|

|fn(x)|

∣∣∣∣∣ fX∗(x)

fX∗u(xu)
−

fX̃{n}(x)

f
X̃
{n}
u

(xu)

∣∣∣∣∣ dx−u
)
fX∗u(xu)dxu.
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Now,∣∣∣∣∣ fX∗(x)

fX∗u(xu)
−

fX̃{n}(x)

f
X̃
{n}
u

(xu)

∣∣∣∣∣ ≤ |fX∗(x)− fX̃{n}(x)|
fX∗u(xu)

+ fX̃{n}(x)

∣∣∣∣∣ 1

fX∗u(xu)
− 1

f
X̃
{n}
u

(xu)

∣∣∣∣∣
≤
|fX∗(x)− fX̃{n}(x)|

fX∗u(xu)
+ fX̃{n}(x)

4

a2

∣∣∣fX∗u(xu)− f
X̃
{n}
u

(xu)
∣∣∣

≤ εn
fX∗u(xu)

+ fX̃{n}(x)
4

a2
εn

≤ εn
fX∗u(xu)

+ fX∗(x)
8

a2
εn

≤ εn
a

fX∗(x)

fX∗u(xu)
+

8b

a2
εn

fX∗(x)

fX∗u(xu)

≤ Csupεn
fX∗(x)

fX∗u(xu)
.

Hence, for n large enough such that Csupεn ≤ 1, we have

∫
[−K,K]|u|

∣∣∣∣∣
(∫

[−K,K]|−u|
fn(x)

fX∗(x)

fX∗u(xu)
dx−u

)2

−

(∫
[−K,K]|−u|

fn(x)
fX̃{n}(x)

f
X̃
{n}
u

(xu)
dx−u

)2 ∣∣∣∣∣fX∗u(xu)dxu

≤ 2

∫
[−K,K]|u|

(∫
[−K,K]|−u|

|fn(x)|2 fX
∗(x)

fX∗u(xu)
dx−u

)

×

(∫
[−K,K]|−u|

|fn(x)|Csupεn
fX∗(x)

fX∗u(xu)
dx−u

)
fX∗u(xu)dxu

≤ CsupεnE(fn(X∗)2),

that converges to 0.

Remark 5. If u = [1 : p], it suffices to remark that

|fX∗(x)− fX̃{n}(x)| ≤ εn ≤
εn
a
fX∗(x).

Thus,

|Eu,n,K(X∗)− Eu,n,K(X̃{n})|

≤
∫
[−K,K]p

fn(x)2|fX∗(x)− fX̃{n}(x)|dx

≤ εn
a
E(fn(X∗)2)

≤ Csupεn.
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7.5 Part 4
Let us prove that

E(fn(X̃{n}))− E(fn(X∗)) −→ 0

By lemma 12, we have

sup
n

∣∣∣E(fn(X̃{n})− E(fn(X̃{n})1X̃{n}∈[−K,K]p)
∣∣∣ −→
K→∞

0

Let ε > 0 and let K such that

sup
n

∣∣∣E(fn(X̃{n})− E(fn(X̃{n})1X̃{n}∈[−K,K]p)
∣∣∣ < ε

3

and
sup
n

∣∣E(fn(X∗)− E(fn(X∗)1X∗∈[−K,K]p)
∣∣ < ε

3
.

By local limit theorem, we have∣∣∣E(fn(X̃{n})1X̃{n}∈[−K,K]p)− E(fn(X∗)1X∗∈[−K,K]p)
∣∣∣ −→
n→+∞

0.

Thus, for all u ⊂ [1 : p], we have

Var(E(fn(X̃{n})|X̃{n}u ))−Var(E(fn(X∗)|X∗u)) −→
n→+∞

0.

7.6 Conclusion
To prove the convergence of the Shapley effects, it suffices to prove the Var(fn(X∗))
is lower-bounded. Hence, we show that Var(fn(X∗)) converges to Var(Df(µ)X∗).
Let i = 1, 2 and let ε > 0. By Lemma 12, let K such that

sup
n
E(fn(X∗)i1X∗ /∈[−K,K]p) ≤ ε

3
, E([Df(µ)X∗]i1X∗ /∈[−K,K]p) ≤ ε

3
.

By Lemmas 10 and 13 and by dominated convergence theorem, we have :

E(fn(X∗)i1X∗∈[−K,K]p) −→
n→+∞

E([Df(µ)X∗]i1X∗∈[−K,K]p).

Hence, Var(fn(X∗)) converges to Var(Df(µ)X∗). Thus, for all u ⊂ [1 : p]

Sclu (X̃{n}, fn)− Su(X∗, fn) −→
n→+∞

0.

Hence, ∥∥∥η(X̃{n}, fn)− η(X, fn)
∥∥∥ −→
n→+∞

0.
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7.7 Proof of Corollary 3

Since X̂{n
′}′ a.s−→

n→+∞
µ and Σ̂{n

′′}′ a.s−→
n→+∞

Σ, it suffices to prove that, if (x{n})n

converges to µ, and (Σ{n})n converges to Σ, we have∥∥∥η(X̂{n}, f)− η(X∗n, f̃
{n}
1,h{n},x{n}

)
∥∥∥ −→
n→+∞

0,

where X∗n is a random vector with distribution N (µ,Σ{n}). Let (x{n})n and
(Σ{n})n be such sequences. Recall that∥∥∥η(X̃{n}, fn)− η(X∗, fn)

∥∥∥ −→
n→+∞

0,

where X∗ ∼ N (0,Σ), that is∥∥∥η (X̂{n}, f)− η (X{n}, f)∥∥∥ −→
n→+∞

0,

where X{n} ∼ N (µ, 1
nΣ). Hence, we have to prove that∥∥∥η(X{n}, f)− η(X∗n, f̃

{n}
1,h{n},x{n}

)
∥∥∥ −→
n→+∞

0.

By Propositions 1 and Proposition 2, remark that η(X{n}, f) converges to
η(X∗, f1). Moreover,

η(X∗n, f̃
{n}
1,h{n},x{n}

) = η(X∗n + x{n} − µ{n}, f̃{n}
1,h{n},x{n}

) −→
n→+∞

η(X∗, f1),

by Corollary 1, that concludes the proof.
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