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Abstract

Temperature dependence of methyl iodide self-broadening coefficients in the fundamental ν6
band is evaluated theoretically by the use of a semi-classical and a semi-empirical approaches
in the range 200–400 K recommended for HITRAN. In the absence of not-room-temperature
measurements, comparisons are performed solely between line-width sets computed by the
two methods at some fixed temperatures. Traditional temperature exponents as well as
parameters of the recently suggested double power law [JQSRT 2018;217:440-52] (going
beyond the considered temperature range) are determined for (J ,K)-lines with 0 ≤ J ≤
70, K ≤ 20 requested by spectroscopic databases. Because of the negligible vibrational
dependence, these data can be safely used for other perpendicular and parallel bands studied
in atmospheric applications.

Keywords: Methyl iodide, Self-broadening coefficients, Temperature dependence,
Temperature exponents, Double power law, Perpendicular bands, Semi-classical
calculations, Semi-empirical calculations, Atmospheric applications

1. Introduction

The interest to spectroscopic parameters of methyl iodide lines has risen abruptly over
the last few years due to its environmental significance (source of iodine atoms destroying
the ozone layer) and the needs of nuclear safety and radio protection (part of the released
radioactivity not trapped on filters). Indeed, CH3I is one of so-called volatile organic halo-
carbons that, though short-lived, influence the ozone concentration in the upper troposphere
and lower stratosphere [1]. Moreover, it is one of possible pollutants in case of a nuclear
accident [2] and is of great danger for human’s health as iodine-131 containing compound.
Although the natural production of methyl iodide is limited to a few sources (marine algae
and bacteria [3], terrestrial fungi and bacteria [4], rice plantations [5]) and its concentration
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in the atmosphere reaches solely 1–3 pptv [6], it may be successfully detected owing to its
numerous IR-active bands.

Despite the growing needs for atmospheric monitoring, line-shape parameters for this
molecule are still absent from spectroscopic databases such as e.g. HITRAN [7] and GEISA
[8]. This lack can be partly attributed to the existence of Coriolis interactions inside low-
lying manifolds of vibrational levels (for instance, between v6=1 and v3=2 states) and to
the presence of well-spaced nuclear quadrupole hyperfine structure observable even in the IR
region and complicating the assignment of spectral lines. Separate studies of line positions
and intensities in several IR-absorption bands had been reported during decades (see Ref. [9]
for a short review) before the need of exhaustive line-parameters sets was generally admitted
by the spectroscopic community. In order to generate line lists for CH3I detection, a series of
works on line positions and intensities has been performed very recently for the ν6, 2ν3 [9, 10]
and ν5, ν3 + ν6 [11] bands. Such essential molecular parameters as transition moments for
the 2ν3, ν6 [10] and ν5, ν3 + ν6 [11] interacting bands as well as high-precision rotational
constants for the ground, v2 = 1, v3 = 2 and v6 = 1 states [9] were determined. As for the
pressure-broadening and -shifting coefficients, their measurements have been initiated only
in the year 2000 by the work of Belli et al. [12], who focused on the hyperfine components of
the transition (J = 10 → 9, Kl = 9) of the ν6 band, and pushed further by Hoffman and
Davies [13], who published self-, O2- and N2-broadening coefficients for some lines in the ν5
fundamental. First line lists of the room-temperature ν6 CH3I lines self-broadened [14] and
both self- and N2-broadened [15] have been suggested solely in 2019. The work [14] besides
experimental values provided theoretical calculations by a semi-classical (SC) [16] and a
semi-empirical (SE) methods [17]. However, neither experimental results nor theoretical
estimates have been reported up to now for the temperature dependence characteristics of
methyl iodide line widths and shifts.

The present work aims to furnish this missing information for transitions in the ν6 band
which, being located in the 11 µm transparency window, is of particular interest for terres-
trial atmosphere monitoring. Both theoretical methods employed previously [14] are used
to evaluate line widths in the temperature range 200–400 K and extract their temperature-
dependence characteristics. Pressure-induced shifting is not considered because of the ab-
sence of vibrationally dependent isotropic potential for the semi-classical calculations and
unavailability of data on line shifts for determination of semi-empirical model parameters.
Computations are done for all 6 sub-branches of the the ν6 band (R,PP, R,PQ, R,PR,) in large
intervals of rotational quantum numbers (0 ≤ J ≤ 70, K ≤ 20) requested by spectroscopic
databases.

In the next section we remind briefly the salient features of the semi-classical and semi-
empirical approaches. Section 3 is devoted to comparison of line widths computed by these
two methods at various temperatures. Two different ways to model the temperature depen-
dence (traditional temperature exponents and the recently suggested double power law [18])
are considered in detail in Sec. 4. The final section summarizes the main conclusions of our
work. Numerical values for the obtained temperature-dependence parameters are provided
in Supplementary material.
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2. Semi-classical and semi-empirical approaches

2.1. Semi-classical method

For the transition i(Ji, Ki)→ f(Jf , Kf ) collisional line half-width is expressed by1 [22]

γif =
nv

2πc

∞∫
0

2πbdb〈1− e−ReS2〉J2 (1)

with the number density of perturbing particles n, mean thermal velocity v, impact parame-
ter b, average on the rotational states of perturber 〈...〉J2 and the real part of the second-order
contributions to the scattering matrix S2 composed of S2,i2, S2,f2 and S2,f2i2 terms. For the
case of two symmetric tops these terms read [16]
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(the equation for S2,f2 is obtained by replacing index i by f in Eq. (2)). The frequencies
ωJiKiJ2K2,J ′

iK
′
iJ

′
2K

′
2

in Eq. (2) are the sums of two frequencies ωJiKiJ ′
iK

′
i

and ωJ2K2J ′
2K

′
2

corre-
sponding to the collision-induced transitions in the active and perturbing molecules. The
Clebsch-Gordan coefficients CJiMi

JfMfρσ
in Eq. (3) describe the coupling between the active

molecule and the external field (ρ = 1 for IR absorption). For practical integration with a
trajectory model the impact parameter b is replaced by the distance of the closest approach
rc and the relative motion is governed by the isotropic potential traditionally taken in the

1We do not employ the modified formula [19] since for a similar CH3Cl- CH3Cl system it was found [20]
to worsen the agreement with experiment. Moreover, the line coupling effects [21] are also ignored since for
the strongly polar CH3I molecule the expected overestimation of line broadening is rather due to the deep
isotropic potential strongly perturbing the relative molecular motion.
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Lennard-Jones 12-6 form. In the case of the exact trajectories Eqs. (2) and (3) reduce to
[14]
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The resonance functions fk1k2l1l2l
can be found in [16] and the coefficients D(JiJfKiKf ; ρl1) =

(−1)Ji+Jf
√

(2Ji + 1)(2Jf + 1)CJiKi
JiKil10

C
JfKf

JfKf l10
W (JiJfJiJf ; ρl1) including the Racah coeffi-

cients W (JiJfJiJf ; ρl1) depend on the considered sub-branch.
In the present work the Lennard-Jones parameters were taken as ε = 232.86 K and

σ = 3.6367 Å [23]. The anisotropic potential was modeled by the leading electrostatic
interactions (dipole-dipole, dipole-quadrupole and quadrupole-quadrupole) according to the
common practice for the strongly interacting molecules of CH3X type (e.g. CH3F [24],
CH3Br [25], CH3Cl [26], and CH3CN [27]). The dipole moment value µ=1.1613 D and the
quadrupole moment value Q=10.70 DÅ were those of Refs. [28] and [29], respectively. The
molecular rotational constants A0=5.17394986 cm−1, B0=0.25021630 cm−1 for the ground
state and A6=5.20864873 cm−1, B6=0.24942867 cm−1 for the v6=1 state [9] were used. The
rotational populations were accounted for up to Jmax = 90 for active molecules and up to
J2 max = 106, K2 max = 22 for perturbing molecules, the resonance perameter was up to
kc max = 25, and the maximal rc value was 35 Å, which ensured convergence of line widths
within 1%. These maximal parameters values were considered as sufficient, given the high
CPU cost of exact-trajectory computations.

2.2. Semi-empirical method

The key idea of the semi-empirical approach [17] is to simplify the Robert-Bonamy
expression to an Anderson-Tsao-Curnutte form [30]

γif = B(i, f) +
∑
l

D2(ii′|l)Pl(ωii′) +
∑
l

D2(ff ′|l)Pl(ωff ′) + ... (6)

The first term in the rhs of this equation represents the contribution from Anderson’s cut-off
procedure:

B(i, f) =
n

c

∑
k

ρ(k)b20(k, i, f), (7)

where ρ is the thermal population of the perturber’s level with a set of quantum num-
bers k and b0 is the cut-off radius. The terms D2(ii′|l) and D2(ff ′|l) in Eq. (6) denote
the transition strengths corresponding to the l-th rank multipoles and Pl are the so-called
efficiency functions related to different scattering channels. These efficiency functions are
further seen as products of the analytical Anderson’s efficiency functions PA

l and correction
factors Cl(ω). The specific form of the correction factor is chosen in function of line-width
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J-dependence at small K and its parameters are fitted on some experimental values. In
such a way, corrections for the real trajectory curvature and vibrational effects as well as
corrections to the scattering matrix are taken into account and ensure reliable recovering of
experimental results.

For the aims of the present work, since the J-dependences of line widths at small
K demonstrate regular behavior, the correction factor was taken in the traditional two-
parameter form

Cl(ω) =
c1

c2
√
Ji + 1

(8)

and the model parameters c1 and c2 were fitted on some experimental line widths in the RQ
sub-branch.2 In the anisotropic potential the leading electrostatic as well as induction and
dispersion contributions were accounted for.

3. Results and discussion

3.1. Comparison of SC and SE results at various temperatures

Computations by both theoretical methods were performed for 5 temperatures in the
temperature range 200–400 K: 200, 250, 296, 350 and 400 K. The results for a particular
case of RR-transitions with K=0 are visualized in Fig. 1 (an example of numerical values is
given in Table 1). Same scaling intervals are kept for the broadening axis in all panels, in
order to better appreciate the influence of the temperature on the computed results. The left
upper panel shows the overlaid plot of SC and SE values at five chosen temperatures. The
general decrease of line widths with increasing temperature is well reproduced (life-time of
each level grows because of larger Boltzmann distributions of rotational populations), and for
high J values the calculations become nearly temperature-independent (a quickly rotating
top is very stable and unperturbed by collisions with surrounding molecules). The left lower
panel contains a detailed comparison for the room temperature. In addition to the SC-SE
results, it comprises available measurements [14] and the SC values obtained with a rc cut-off
at 24 Å which provides the best match of experimental data. This cut-off is of interest since
it was suggested in the literature [25] for the case of highly polar self-perturbed molecules of
CH3X type to avoid the problem of line-width overestimation by semi-classical approaches.
For the room-temperature CH3Cl line widths, for example, the cut-off at 22 Å resulted in
very realistic K-dependences [20] and, providing line widths for high K values inaccessible
experimentally for SE-parameters fitting, allowed reliable restoring of experimental values
at 200 K [31]. For a lower (250 K) and a higher (350 K) temperatures (two rhs panels),
the 35 Å-semi-classical and semi-empirical results are quite close. Since the SE values are
expected to be quite realistic (the SE model parameters were shown to be temperature-
independent), the 24 Å-cut-off in SC values seems to underestimate the broadening too
much and, therefore, seems to be inappropriate for extracting the temperature-dependence
parameters considered in the following subsections.

2Fits were also done for some experimental data sets in the RP and RR sub-brunches resulting in slight
modifications of c1, c2 values (see [14] for more details).
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Figure 1: Comparison of CH3I self-broadening coefficients computed at various temperatures by the semi-
classical (SC) and semi-empirical (SE) approaches for the RR transitions with K=0 in the ν6 band. Exper-
imental values [14] are shown solely for 296 K since unavailable at other temperatures. The SC results with
the cut-off of the intermolecular distance at 24 Å (giving the best agreement with the available measure-
ments) are also plotted for completeness.

3.2. Determination of temperature exponents

To characterize the temperature dependence of CH3I line broadening we consider first
the traditional approach making use of the so-called temperature exponents N :

γif (T ) = γif (Tref )

(
Tref
T

)N
(9)

with the reference temperature Tref usually chosen as 296 K for atmospheric applications. It
should be kept in mind that for many molecules this equation is applicable solely in narrow
temperature intervals about 100 K.

The quality of linear log-log fits for the semi-classical results as well as the influence of
the cut-off at 24 Å is illustrated in Fig. 2 for some K=0 transitions in the RR-sub-branch.
Because of the well known drawback of the semi-classical approach to underestimate the
broadening at few first J values, for the transition (0,0) the non-linearity is already visible
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Table 1: Sample of SC- and SE-calculated line widths in (cm−1atm−1) for transitions in the RR sub-branch
for K = 0. Semi-classical values correspond to computations with rc ≤ 35 Å.

SC SE
J 200 K 250 K 296 K 350 K 400 K 200 K 250 K 296 K 350 K 400 K
0 0.5510 0.4583 0.4177 0.3467 0.3101 0.6724 0.5616 0.4903 0.4286 0.3851
1 0.5476 0.4570 0.4200 0.3467 0.3104 0.5196 0.4319 0.3757 0.3274 0.2934
2 0.5400 0.4532 0.4184 0.3461 0.3103 0.5038 0.4159 0.3605 0.3131 0.2800
3 0.5292 0.4467 0.4092 0.3439 0.3092 0.4984 0.4101 0.3545 0.3072 0.2742
4 0.5198 0.4394 0.3944 0.3404 0.3069 0.5057 0.4120 0.3541 0.3055 0.2720
5 0.5153 0.4342 0.3805 0.3366 0.3040 0.5134 0.4164 0.3566 0.3066 0.2722
6 0.5160 0.4321 0.3732 0.3337 0.3014 0.5298 0.4255 0.3622 0.3098 0.2741
7 0.5216 0.4332 0.3737 0.3320 0.2996 0.5425 0.4347 0.3689 0.3144 0.2774
8 0.5320 0.4374 0.3798 0.3319 0.2988 0.5616 0.4467 0.3772 0.3201 0.2815
9 0.5460 0.4450 0.3890 0.3334 0.2991 0.5740 0.4571 0.3856 0.3265 0.2865
10 0.5616 0.4551 0.3992 0.3367 0.3008 0.5911 0.4690 0.3945 0.3331 0.2916

and strongly pronounced for both converged (”SC 35 Å” curve) and truncated (”SC 24 Å”
curve) line widths. For the transition (5,0) the behavior is nearly linear for both series of
broadening coefficients, however the converged line widths result in a slightly better linear
fit with a more abrupt slope (closer to the SE value 0.915 than the 24 Å-one). Similarly, for
higher J the 35 Å-curves provide ”more linear” dependencies and higher values of the tem-
perature exponents. We can conclude from this figure that the SC approach, even limited
to 3-temperature fits (250-350 K range), is characterized in general by nonlinear dependen-
cies in the log-log scale and, therefore, is not very reliable for estimating the temperature
exponents.

Fig. 3 presents a similar analysis of log-log dependencies for the semi-empirical approach.
Instead of the full or truncated intermolecular distances related to the SC values and dis-
cussed above, the secondary aspect here is to probe the validity of the use of SE data com-
puted for 200 K. Indeed, considering the isotropic interaction potential depth for CH3I-CH3I
(ε = 232.86 K [23]), one could have a doubt on the reliability of semi-classical/semi-empirical
3 calculations for this temperature. On the other hand, the SE values do not demonstrate
any irregularity in the calculated line widths when going down to 200 K, so that the question
weather or not the 200 K results should be included is worth contemplating. As can be seen
in Fig. 3, the dependencies are linear (J . 20) or nearly linear (J & 20), and adding the
200 K-results does not influence strongly the extracted temperature exponents. It means
that for most lines with low and middle values of the rotational quantum numbers the linear
regression of SE results furnishes reliable values of the temperature exponents (confidence
in the range 1-0.99). Solely the cases of high J (and high K) give relatively small line

3The semi-empirical approach is basically of a semi-classical nature.
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Figure 2: Linear fits of semi-classical results in log-log coordinates. Except a small region J ≈ 5, the
dependencies are visibly non linear. The use of the fully converged (rc ≤ 35 Å) linewidths improves slightly
but not sufficiently the results obtained with the cut-off at 24 Å.

widths which leads to less trusty results (confidence of 0.97 or below). Therefore, in the
case of temperature exponents the SE approach can be considered as more appropriate for
extracting the temperature dependence characteristics than the SC method.

A more general view of the differences between the SE temperature exponents extracted
without (”4T” curves) and with 200 K (”5T” curves) is presented in Fig. 4 for RR transitions
corresponding to some given K values (K=0, 10 and 20). The first couple of curves for K=0
confirms the conclusions of Fig. 3 that for J . 20, because of the linear log-log dependence,
no substantial differences are observed between the temperature exponents deduced with 4
and 5 temperatures; a similar absence of differences is in the vicinity of J ≈ 49 where the
slope changes the sign. In the other J-intervals for K = 0 and for the other-K pairs of
curves the differences are about 0.04 which falls however in the error-bar range, so that the
J-dependencies of temperature exponents corresponding to 4 and 5 temperatures remain
consistent with each other. For further analyses of the temperature dependence we decided
to keep the full, 5-temperature, line-width data as concerning a larger temperature interval.

The high quality of temperature exponents estimated with the semi-empirically computed
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Figure 3: Linear fits of semi-empirical broadening coefficients in log-log coordinates. Linear (for J . 20) or
nearly linear (for J & 20) behavior is observed in all cases. Adding the SE values at 200 K does not change
significantly the deduced temperature exponents.

line widths is also confirmed by the broadening coefficients restored for the considered tem-
peratures of 200, 250, 296, 350 and 400 K. Examples are shown on the left-side panels of
Fig. 5 for RR transitions with K=0, 10 and 20.

3.3. Extraction of double power law parameters

The non-linear behavior of log(γ(T )/γ(Tref )) on log(Tref/T ) in large temperature inter-
vals observed for many molecular systems has initiated very recently an advanced study of
line width and shift temperature dependence by Gamache and Vispoel [18]. They suggested
four-parameter laws for both line widths and shifts which account for a correction term to
the usual expression of Eq.(9) (the so-called double power law — DPL):

γif (T ) = a1

(
T

Tref

)n1

+ a2

(
T

Tref

)n2

(10)

In our case of CH3I, as mentioned above, the semi-empirical line widths calculated at
various temperatures are very well fitted by the usual equation with temperature exponents.
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Figure 4: SE temperature exponents extracted for RR transitions with some specific K values using the
line-broadening data for 4 (250, 296, 350, 400 K) and 5 (200, 250, 296, 350, 400 K) temperatures. The
differences are very small for J . 20 and near J ≈ 47− 49; they grow up to ≈ 0.04 for the other J but still
remain inside the estimated error bars.

For some transitions, however, a non-linear behavior in the log-log coordinates was stated, so
that we attempt to apply the DPL approach to these lines. The non linear fit procedure was
realized with a modified Levenberg-Marquardt algorithm and a finite-difference Jacobian
[32], which require initial guess values for the fitted parameters and are very sensitive to
them. The maximal allowed number of iterations was fixed to 400. Because of strong
correlations between two terms, direct fits of Eq.(10) were not feasible, and we slightly
re-written it as

γ(T ) = a1T̃
n1(1 + a′2T̃

n′
2), (11)

with T̃ = T/Tref . The initial guesses for a1 and n1 were taken as γ(Tref ) and N (temperature
exponent) issued from the linear-regression fits; the initial values of a′2 and n′2 were put
equal to 0 and 1, respectively. With this 4-parameter configuration no converged results
were obtained with the allowed maximal number of iterations (again, because of the above-
mentioned correlations). We attempt therefore a simpler 3-parameter fit with the expression
γ(T ) = a1T̃

n1(1 + a′′2) to see the importance of the correction term. This fit easily provided
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Figure 5: Broadening coefficients restored with the SE temperature exponents (left panels) and with the
double power law parameters at 200, 250, 296, 350 and 400 K.
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a1 and n1 consistent with γ(296) and N within below than 1% (meaning that the correction
is very small), so that to be able to determine the parameters of the second DPL term, we
decided to fix a1 and n1 to γ(Tref ) and N . Even with this restriction, a′2 and n′2 remained
undetermined for some transitions (maximal number of iterations exceeded), so that we
considered the single power law of Eq. (9) being sufficient and put a′2 = n′2 = 0. Moreover,
zero values of a′2, n

′
2 were admitted for lines with too small |a′2| values or too high |n′2|

values (we assumed, respectively, 10−4 and 3 as reasonable criteria). An example of deduced
parameters is given in Table 2 for RR transitions with K = 0 and K = 20. It can be seen
from this table that the second power term in Eq.(10) introduces very small corrections,
and for many lines this simple law with a temperature exponent works very well. This
fact is confirmed by the plots in the rhs of Fig. 5: the line widths restored with the double
power law are practically identical to those restored with the single power law. Some ”holes”
appearing on DPL curves indicate the transitions for which the DPL fits were not converged
and a′2 = n′2 = 0 were assumed. Slightly higher quality of restoring the broadening with the
DPL parameters is observable on 200 K-curves at high J values (& 55). The full set of DPL
parameters for 0 ≤ J ≤ 70, K ≤ 20 transitions in the 6 sub-branches of the ν6 band is given
in Supplementary material.

Similar tests of line widths restored with the temperature exponents and the DPL pa-
rameters were done for the SC results. Fig. 6 (left panel) shows that the approach of temper-
ature exponents reproduces very well the room-temprature data but introduces significant
deviations from the input line widths at low and high temperatures. The DPL approach
demonstrates some discrepancies for the room-temperature values but gives very good re-
sults for the other temperatures. Because of the underestimation of broadening at very small
J and their overestimation for the mid-range J-values with respect to the room-temperature
measurements, we decided to do not include the temperature dependence characteristics de-
duced with the semi-classical results in our final results listed in Supplementary material.

4. Conclusion

In this paper we analyzed the temperature dependence of CH3I self-broadening coef-
ficients estimated theoretically by a semi-calssical and a semi-empirical approaches in the
temperature range 200–400 K relevant to atmospheric applications. Temperature depen-
dence characteristics were extracted with the use of the traditional temperature-exponent
form and the recently suggested double power law. The SC results were found to lead
to non-linear dependencies in log-log coordinates and to be less reliable for extracting the
temperature-dependence parameters. The SE line widths demonstrated linear or nearly
linear behaviors and resulted in high-quality fits of temperature exponents allowing per-
fect restoring of line widths used for fitting. The double power law was more complex to
implement and the sufficiency of the single power law resulted in non stability of second
power term parameters and convergence problems. When applicable, it allowed very slight
improvements of the restored line widths at high J values.
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Table 2: Sample of DPL parameters deduced from SE calculations for RR transitions with K=0 and 20.

K = 0 K = 20
J a1 ≡ γ(Tref ) n1 ≡ N a′2, 10−3 n′2 J a1 ≡ γ(Tref ) n1 ≡ N a′2, 10−3 n′2
0 0.4903 0.804 0 0 20 0.2122 0.822 0 0
1 0.3757 0.824 0 0 21 0.2320 0.849 0 0
2 0.3605 0.847 0 0 22 0.2462 0.842 0 0
3 0.3545 0.862 0 0 23 0.2571 0.824 0 0
4 0.3541 0.894 0 0 24 0.2646 0.800 0 0
5 0.3566 0.915 0 0 25 0.2704 0.772 0 0
6 0.3622 0.951 0 0 26 0.2738 0.743 0 0
7 0.3689 0.967 0 0 27 0.2762 0.712 0 0
8 0.3772 0.996 0 0 28 0.2767 0.682 0 0
9 0.3856 1.003 0 0 29 0.2766 0.650 0 0
10 0.3945 1.020 0 0 30 0.2750 0.620 0 0
11 0.4027 1.014 0.4726 2.742 31 0.2731 0.589 0 0
12 0.4106 1.019 0.3355 1.714 32 0.2699 0.560 0 0
13 0.4174 1.003 0 0 33 0.2667 0.530 0 0
14 0.4234 0.998 0 0 34 0.2626 0.503 0 0
15 0.4279 0.973 0 0 35 0.2584 0.475 0 0
16 0.4313 0.959 0 0 36 0.2535 0.450 -7.5359 2.480
17 0.4333 0.927 0 0 37 0.2488 0.425 -7.6024 2.416
18 0.4341 0.908 0 0 38 0.2435 0.404 -7.7178 2.194
19 0.4335 0.872 0 0 39 0.2385 0.381 -8.1526 1.790
20 0.4318 0.849 0 0 40 0.2329 0.363 -7.6366 1.758

In the absence of measurements at not-room temperatures, the deduced temperature-
dependence parameters are expected to provide good estimates of line broadening for the
studied temperature interval. They may be therefore recommended for spectroscopic databases
and atmospheric applications.
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