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Abstract

This work presents benchmark examples related to the modelling of sound absorbing porous media with rigid frame
based on the periodic geometry of their microstructures. To this end, rigorous mathematical derivations are recalled to
provide all necessary equations, useful relations, and formulas for the so-called direct multi-scale computations, as well
as for the hybrid multi-scale calculations based on the numerically determined transport parameters of porous materials.
The results of such direct and hybrid multi-scale calculations are not only cross verified, but also confirmed by direct
numerical simulations based on the linearised Navier-Stokes-Fourier equations. In addition, relevant theoretical and
numerical issues are discussed, and some practical hints are given.
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1 Introduction
Porous materials are used widely for sound absorption. Methods of determining the bulk acoustical properties of porous
media from their microstructures have a long history [1–9]. The classical approach is to assume idealised microstructures,
e.g. arrays of pores with constant cross-section [9–13], fibres [14–18], or grains [19–23]. But typical microstructures of
porous materials used for sound absorption are much more complicated.

To allow simultaneously for arbitrary pore shapes and pore cross-sections that change along their lengths, Johnson
et al. [24] introduced the viscous characteristic length which takes into account the dominance of viscous effects in the
narrower pore sections. Champoux, Allard, Lafarge and others [25–27] used an analogous method to account for thermal
effects, hence introducing the thermal characteristic length, thermal permeability and thermal tortuosity.

Semi-analytical formulations for the bulk material complex-valued and frequency-dependent density and compress-
ibility of a porous solid resulting from this approach are based upon physically admissible limiting forms for small and
large characteristic lengths, in comparison with the viscous or thermal boundary layer thickness, together with the bulk
parameters of porosity, steady flow air permeability and high frequency tortuosity. The high frequency tortuosity, other-
wise known as the geometrical tortuosity, determines the inertial effect on the fluid motion in the presence of the solid
frame. According to Pride et al. [28], another parameter is required to account for the enhancement of the effective fluid
inertia at lower frequencies caused by the cross-sectional changes in the pore size and viscous friction at the smallest
apertures of the pores.

The most complete semi-analytical model, i.e. the Johnson-Champoux-Allard-Lafarge-Pride (JCALP) model, requires
eight transport parameters, namely, porosity, high frequency tortuosity, steady flow viscous permeability, viscous char-
acteristic length, thermal characteristic length, static thermal permeability, and static viscous and thermal tortuosities.
When the microstructure of the material closely resembles an array of uniform identical tortuous cylindrical pores, with-
out too abrupt cross-sectional changes, the number of parameters required reduces to six so the JCALP model becomes
the Johnson-Champoux-Allard-Lafarge (JCAL) model [24–27]. Recently, Horoshenkov et al. [29–32] have shown that,
to predict the acoustical properties of media having a log-normal distribution of pore sizes, only three parameters viz.
porosity, steady flow permeability and the standard deviation of the pore size distribution are required.

Gasser et al. [33] and Perrot et al. [34–36] have explored a technique based on numerical calculations of the transport
parameters in rigid-frame porous media with complicated microstructures. Since the variability in the porous microstruc-
tures usually makes it difficult to identify local micro-geometry that can be used to predict bulk acoustical properties, a
Representative Elementary Volume (REV) or Periodic Unit Cell (PUC) is used to reconstruct the actual microstructure in
an idealised manner. For example, open cell polymer foams are represented by truncated octahedra with circular cross
section ligaments and spherical nodes at their intersections. The dimensions of the PUC are deduced from the measure-
ments of porosity and steady flow resistivity or from 3D images. Each PUC can be used for direct multiscale calculations
which require solving the harmonic (i.e. oscillatory) Stokes flow and heat transfer equations for each frequency. Alterna-
tively, the transport parameters can be computed from the steady Stokes flow and Laplace equations related to viscous and
inertial effects, respectively, and from the Poisson equation related to heat transfer. This approach is less computationally
intensive, since it uses the computed eight (or fewer) parameters as inputs to the semi-analytical formulas of the JCALP
model (or its variations). Such a hybrid approach has been used to investigate the acoustical properties of fibrous ma-
terials [37–43], granular media [33, 37, 44–47], various polymeric and open-cell foams [34, 35, 48–59], ceramic foams
with spherical pores [60], metallic foams [36], and syntactic hybrid foams, i.e. open-cell polyurethane foams with em-
bedded hollow microbeads [61]. Moreover, similar microstructure-based approach has been applied to model media with
multiple scales [23, 37, 62–64], and recently, it has been used to study (and design) novel materials manufactured using
modern additive manufacturing technologies, e.g. 3D-printed foams [65], optimally graded porous materials [66] and
adaptable absorbers [67, 68], sintered fibrous materials [69–72], and even micro-perforated plates with complex patterns
of micro-slits [73].

This paper provides a complete illustration of the microstructure-based approach for modelling of sound absorbing
media by comparing the results of the direct and hybrid multiscale calculations, and also validating them with predic-
tions obtained from direct numerical simulations based on the linearised, oscillatory, compressible Navier-Stokes-Fourier
equations. Given the intricacies of the numerical calculations that are necessary, the purpose is to provide benchmark
calculations for substantially different periodic microstructures. These should enable researchers who carry out such
simulations in future to check the accuracy of their results.

The three calculation methods that were used for each benchmark problem are summarised in Section 2. Section 3
provides full descriptions of the calculations and the associated numerical results for two easily reproducible bench-
mark microstructures: (1) a two-dimensional periodic array of straight parallel fibres with circular cross-sections (Sec-
tion 3.1), and (2) a regular periodic foam with identical spherical pores (Section 3.2). Computational hints are offered
and concluding remarks are presented in Section 4. They should facilitate implementation of the methods and conse-
quent benchmark computations using commercial finite element software (like COMSOL Multiphysics) or freeware (e.g.
FreeFEM++ [74, 75]). The full theoretical background is given in Appendix A, where equations for the acoustic wave
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propagation in rigid-frame porous materials with arbitrary microstructures are derived using homogenisation theory, and
the basis is supplied thereby for the direct multiscale calculations and also for numerical analyses required to determine
the parameters used during the alternative hybrid multiscale calculations. The starting point for these derivations are the
linearised Navier-Stokes-Fourier equations useful for the computationally demanding direct numerical simulations.

2 Calculation methods and procedures
Three calculation approaches are used to determine sound absorption of porous and fibrous layers serving as benchmark
examples, namely: (1) DNS – Direct Numerical Simulation (see Table 1), (2) DM – Direct Multiscale calculations (see
Table 2), and (3) HM – Hybrid Multiscale calculations (see Table 3). Tables 1, 2, and 3 present the calculation procedures
for each method. Each table summarises the relevant equations (i.e. boundary value problems) and formulas necessary
for calculations and for implementing the procedure. Note that some calculation steps can be performed in parallel, viz.
harmonic viscous flow (HVF) and harmonic thermal diffusion (HTD) in Table 2, or Laplace’s problem (LP), Stokes
flow (SF), and Poisson’s problem (PP) in Table 3. The full theoretical foundations for these methods are discussed in
detail in Appendix A, where we show, in particular, how the DM method is obtained from DNS equations based on the
assumptions of periodicity, scale separation, and local incompressibility. Therefore, below we only briefly discuss each
method by stating the boundary value problems, dependent field variables and other involved functions. We also give the
names of transport parameters used in the HM method referring to Appendix A for more details. Other parameters in the
procedure tables describe the properties of the fluid and are summarised in Table 4, where the values for air used in the
benchmark calculations are also given.

Table 1: Procedure for Direct Numerical Simulations (DNS)

DNS Solve the Navier-Stokes-Fourier equations of oscillatory viscous, compressible
flow for p, v, %, and T in the fluid domain inside the “whole thickness” of a porous
layer and the adjacent layer of air:

η

(
∇2v +

1

3
∇(∇ · v)

)
−∇p = iω%0v in Ωf, v = 0 on Γsf,

%0∇ · v + iω% = 0 in Ωf,

κ∇2T = iω%0CpT − iωp in Ωf, T = 0 on Γsf.

p

P0
=

%

%0
+
T

T0
in Ωf,

with additional appropriate boundary conditions on lateral planes of symmetry or pe-
riodicity, and on the boundary of the plane incident wave. Use p and v to determine
the required acoustic descriptors (surface acoustic impedance, sound absorption).

The Direct Numerical Simulation (DNS) consists in solving a coupled visco-thermal problem in harmonic regime, i.e.
for a discrete set of frequencies (ω is the angular frequency), described by the set of equations summarised in Table 1
(note that these are field equations (A.1)–(A.4) in the fluid domain as well as no-slip (A.5) and isothermal boundary
conditions (A.6) on solid walls). The computations are performed at the micro-scale: on the “whole” fluid domain Ωf
inside a band of a layer of porous or fibrous material with an adjacent thin layer of air in order to apply the plane wave
excitation at some sufficient distance from the layer. The solid boundary Γsf consists not only from the walls of solid
skeleton (or fibres) inside the band but also from the rigid backing wall. The periodic or, if possible, symmetric conditions
are applied only on the lateral fluid boundaries of the band, and the adiabatic pressure condition is applied on the external
boundary of the adjacent air layer exposed to the normally-incident wave. The results are the complex-valued fields of
acoustic pressure p, particle velocity v, temperature T and density % fluctuation in the fluid domain Ωf, determined for
each computational frequency ω. The sound absorption of the porous layer is computed as

A(ω) = 1− |R(ω)|2, R(ω) =
Zs(ω)− Z0

Zs(ω) + Z0
, (1)

where the surface acoustic impedance Zs(ω) is calculated directly from its definition as the ratio between the pressure and
(negative) normal velocity determined as the average on some surface inside the adjacent layer of air (with characteristic
impedance Z0), since the propagation in this layer is practically lossless. Moreover, Zs(ω) can be also computed at any
single point on the external boundary of the adjacent air layer where the wave is plane.
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Table 2: Procedure for Direct Multiscale (DM) computations

HVF Solve the scaled problem of harmonic (oscilla-
tory) viscous, incompressible flow for k̂ and π̂ in a REV:

iω

ν
k̂−∇2

yk̂ +∇yπ̂ = e in Ωf,

∇y · k̂ = 0 in Ωf,

k̂ = 0 on Γsf,

with additional periodic (or symmetric and asymmetric)
boundary conditions on the appropriate planes.

HTD Solve the scaled problem of harmonic (os-
cillatory) thermal diffusion for θ̃ in a REV:

iω

νth
θ̃ −∇2

y θ̃ = 1 in Ωf,

θ̃ = 0 on Γsf,

with additional periodic (or symmetric) boundary
conditions on the appropriate planes.

DYNAMIC FUNCTIONS Compute the dynamic permeability functions:

K(ω) = φ
〈
k̂(ω) · e

〉
f
, θ(ω) = φ

〈
θ̃(ω)

〉
f
,

where φ = Ωf/Ω and 〈.〉f = 1
Ωf

∫
Ωf

(.) dΩ. Calculate the dynamic tortuosity functions:

α(ω) =
φ ν

iωK(ω)
, αth(ω) =

φ νth

iω θ(ω)
.

EFFECTIVE PROPERTIES Calculate effective properties of the equivalent fluid:

%e(ω) =
%0 α(ω)

φ
, C(ω) =

φβ(ω)

γP0
, ce(ω) =

c0√
α(ω)β(ω)

,

where β(ω) = γ − γ − 1

αth(ω)
.

MACRO-SCALE COMPUTATIONS Solve the corresponding Helmholtz problem on the
macro-scale domain (for the acoustic pressure p), typically for a layer of the effective
fluid equivalent to the porous medium, viz.:

∇2p+
ω2

ce(ω)
p = 0 ,

with appropriate boundary conditions (e.g. the sound-hard b.c. ∇p = 0 on rigid walls
and symmetry planes, the pressure b.c. on the boundary of the plane incident wave).
Compute the particle velocity field v = − ∇p

iω %e(ω) . Use p and v to determine the
required acoustic descriptors (surface acoustic impedance, sound absorption).

The Direct Multiscale (DM) calculations involve two uncoupled harmonically-driven complex-valued analyses, namely:
the scaled harmonic viscous incompressible flow in a preferential direction e with no-slip boundary conditions on solid
walls – see HVF in Table 2 (also equations (A.34)–(A.36)), and the scaled harmonic thermal diffusion with isothermal
boundary conditions on solid walls – see HTD in Table 2 (also equations (A.38) and (A.39)). Both analyses are carried
out for a set of computational frequencies ω, on the fluid domain Ωf of a periodic representative elementary volume or
cell Ω of a porous or fibrous medium of open porosity φ = Ωf/Ω. The solid boundaries Γsf are only those inside Ω.
The unknowns for the viscous flow problem are the normalised fields of velocity k̂ and pressure π̂, while the thermal
diffusion problem is solved for a normalised field of temperature θ̃. The normalised fields k̂ and θ̃ have the dimension of
permeability (m2) and the so-called dynamic viscous permeability of porous medium K(ω) and dynamic thermal perme-
ability θ(ω) are directly calculated by averaging them over the REV as shown in Table 2 (see also Section A.2). Then, the
so-called dynamic viscous α(ω) and thermal αth(ω) tortuosities are found from the formulas shown in Table 2 (see also
equations (A.41) and (A.42), respectively). The dynamic permeabilities (or tortuosities) allow to determine the effective
properties for a fluid equivalent to the porous material as described in Section A.1 or A.2. In particular, we determine the
effective density %e(ω), compressibility C(ω), and sound speed ce(ω), which is used to solve the macro-scale Helmholtz
problem (see Table 2). Finally, based on the solution of the Helmholtz problem for a layer of such material with a thickness
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of h, the following formula for the surface acoustic impedance is derived

Zs(ω) = −i%e(ω)ce(ω) cot

(
ωh

ce(ω)

)
. (2)

The surface acoustic impedanceZs(ω) is an important acoustic descriptor, which is used to determine the reflection,R(ω),
and acoustic absorption, A(ω), coefficients for the porous layer using formulas (1). The three acoustic descriptors Zs(ω),
R(ω), and A(ω), calculated in that way, i.e. using the DM approach, can be compared with the corresponding results of
DNS.

Table 3: Procedure for Hybrid Multiscale (HM) calculations

LP Solve the Laplace’s prob-
lem for q in a REV:

∇2
yq = 0 in Ωf,

∇yq · n = e · n on Γsf,

with additional periodic (or sym-
metric and asymmetric) bound-
ary conditions on the appropriate
planes. Compute: E = e−∇yq.

SF Solve the scaled Stokes flow
problem for k̂0 and π̂0 in a REV:

−∇2
yk̂0 +∇yπ̂0 = e in Ωf,

∇y · k̂0 = 0 in Ωf,

k̂0 = 0 on Γsf,

with additional periodic (or symmet-
ric and asymmetric) boundary condi-
tions on the appropriate planes.

PP Solve the Poisson’s prob-
lem for θ̃0 in a REV:

−∇2
y θ̃0 = 1 in Ωf,

θ̃0 = 0 on Γsf,

with additional periodic (or sym-
metric) boundary conditions on
the appropriate planes.

TRANSPORT PARAMETERS Calculate the required transport parameters (all 8 for the JCALP model):

φ =
Ωf

Ω
, α∞ =

〈E ·E〉f
〈E〉f · 〈E〉f

, α0v =

〈
k̂0 · k̂0

〉
f〈

k̂0

〉
f
·
〈
k̂0

〉
f

, α0th =

〈
θ̃2

0

〉
f〈

θ̃0

〉2

f

,

Λth = 2
Ωf

Γsf
, Λv = 2

∫
Ωf

E ·EdΩ∫
Γsf

E ·EdΓ
, K0 = φ

〈
k̂0 · e

〉
f
, θ0 = φ

〈
θ̃0

〉
f
.

JCA / JCAL / JCALP MODEL Calculate the dynamic tortuosity functions

α(ω) = α(ω;φ, α∞, α0v,K0,Λv) , αth(ω) = αth(ω;φ, α0th, θ0,Λth) ,

using transport parametrs and formulas (A.79)–(A.82) according to the JCALP, JCAL, or JCA
model. Additionally, calculate the dynamic permeability functions:

K(ω) =
φ ν

iω α(ω)
, θ(ω) =

φ νth

iω αth(ω)
.

EFFECTIVE PROPERTIES & MACRO-SCALE COMPUTATIONS See Table 2.

In the case of the Hybrid Multiscale (HM) calculations three uncoupled, frequency-independent and real-valued prob-
lems are solved: the Laplace’s problem – see LP in Table 3 (also equations (A.58)–(A.59)), the scaled problem of the
Stokes flow – see SF in Table 3 (also equations (A.70)–(A.72)), and the Poisson’s problem – see PP in Table 3 (also
equations (A.75)–(A.76)). Each problem is defined in the fluid domain Ωf of a periodic REV or cell Ω, as in the case
of DM computations. The representative geometry and results of static solutions are used to determine the transport
parameters as described in Section A.3. These are (see Table 3): the porosity φ, (geometrical) tortuosity α∞, static vis-
cous α0v and thermal α0th tortuosities, static viscous K0 and thermal θ0 permeabilities, and two characteristic lengths, i.e.
the viscous length Λv and thermal length Λth. These numerically-computed parameters are used to calculate the dynamic
tortuosities (A.79) and (A.81), as well as the dynamic permeabilities (A.83) (see also Table 3), using the analytical ap-
proximations according to each of the three models (i.e. JCA, JCAL, and JCALP) discussed in Section A.3. The dynamic
functions computed with this Hybrid approach can be confronted with the corresponding DM results. Then, the effective
properties of such a homogenised medium equivalent to a porous material, as well as the acoustic descriptors (i.e. the sur-
face acoustic impedance, reflection and acoustic absorption coefficients) for a porous layer of known thickness modelled
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on a macro-scale using the Helmholtz equation, can be calculated in the same way as in the case of the Direct Multiscale
method (see Table 2).

The following finite-element approximation functions were applied in numerical analyses. The Taylor-Hood approx-
imation [76] was used for the scaled (static as well as harmonic) viscous flow problems, which means the quadratic (i.e.
second-order Lagrange) functions for all components of the scaled velocity fields k̂ and k̂0, while the linear ones for the
scaled pressure fields π̂ and π̂0. The quadratic Lagrange approximation was also applied for the field of scaled potential q,
as well as for the scaled temperature fields θ̃ and θ̃0. To ensure high accuracy of the results of benchmark calculations,
the quadratic approximation was also used for geometry (when the software implementation allowed it), since it does not
change the number of degrees of freedom, but may slightly improve the overall accuracy in case of curved boundaries.
Finally, in the case of DNS, the density fluctuation % is eliminated from the set of equations (A.1)–(A.4) (by using the
last one of them) and the problem is formulated with respect to the remaining fields of acoustic pressure p (approximated
with linear functions), particle velocity v (with components approximated using the Lagrange quadratic functions), and
temperature fluctuation T (with the quadratic Lagrange approximation).

Table 4: Air properties at temperature of 20◦C and ambient mean (atmospheric) pressure of 1 atmosphere (i.e. 101325 Pa)

Parameter name Symbol Unit Value (formula)
ambient mean pressure P0 Pa 101325

ambient mass density %0 kg/m3 1.205
heat capacity ratio γ – 1.400
dynamic viscosity η Pa·s 1.821 · 10−5

thermal conductivity κ W/(m·K) 0.02560
isobaric specific heat Cp J/(kg·K) 1006

adiabatic bulk modulus B0 Pa 141855 = γ P0

speed of sound c0 m/s 343.1 =
√
B0/%0

characteristic impedance Z0 Pa·s/m 413.4 = %0 c0
Prandtl number NPr – 0.7156 = η Cp/κ

kinematic viscosity ν m2/s 1.511 · 10−5 = η/%0
thermal diffusivity νth m2/s 2.112 · 10−5 = ν/NPr

Table 4 presents air properties at “standard conditions” of temperature and pressure (that is, at 20◦C and 1 atmosphere)
used in the calculations. Apart from the values of the ambient mean pressure and adiabatic bulk modulus, all other data
are listed with an accuracy to 4 significant digits. The parameters with names in italics are computed from the (recalled)
well-known formulas using the “basic” parameters. Note that the bulk viscosity of air is neglected, which is consistent
with Multiscale calculations, where this parameter would have no effect at all, since incompressible flow is assumed on
the micro-scale level.

3 Numerical benchmark examples

3.1 BENCHMARK 1: A periodic fibrous material composed of straight parallel fibres with
circular cross-sections

Figure 1 shows the (micro- and macro-) geometry of a fibrous layer composed of straight parallel fibres. The material
is truly periodic and contains two types of fibres which differ only by the size of their circular cross-sections, namely,
D1 = 0.04 mm and D2 = 0.05 mm. Moreover, the direction of wave propagation in such artificial fibrous material
is assumed perpendicular to the fibres, which means that the micro-scale geometry and analyses on the microstructural
level are essentially two-dimensional. The periodic micro-geometry can be represented in the y1y2-plane by a square
cell containing two fibres as depicted in Figure 1; the cell size is `c = 0.20 mm, while the “horizontal” and “vertical”
projections of the distance between the two fibres are dh = 0.08 mm and dv = 0.10 mm, respectively. The fibrous material
would be structurally isotropic in the y1y2-plane (and transversally isotropic in 3D, with the symmetry axis along the y3

direction) if dh = dv, which is not the case. However, since dh and dv differ only slightly, and the propagation along the
fibres (i.e. in the direction of y3-axis) is completely different than in the y1y2-plane, the material can be treated as nearly
transversally isotropic.

The (preferential) propagation direction e is assumed along the y1-axis which coincides with the “macroscopic” x1-
axis (see Figure 1). Plane waves propagate at normal incidence into a rigidly-backed layer of fibrous material with
thickness h = Nc`c, where Nc is the number of cells along the propagation direction (see Figures 1 and 2). Three cases
will be considered: (1) Nc = 50, h = 10 mm, (2) Nc = 80, h = 16 mm, and finally, (3) Nc = 120, h = 24 mm. The
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Figure 1: Macro-scale configuration of a sound-absorbing layer with a lossless adjacent layer of air, showing also a micro-scale zoom and a
periodic two-dimensional cell representative for a fibrous material with straight parallel fibres of circular cross-sections
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Figure 2: Microstructural geometry of the periodic fibrous layer and boundary conditions used in DNS

thickness of the adjacent lossless layer of air is ha = 10`c = 2 mm (the same in each case). Figure 2 shows the whole
microstructural geometry of the fibrous layer used in Direct Numerical Simulations together with the adjacent air layer
and relevant boundary conditions: isothermal and no-slip on the solid surfaces of fibres and the backing wall, periodic on
the top and bottom boundaries of the fluid band domain, and the adiabatic pressure excitation on the external face of the
air layer.

It is important to notice that dv = 1
2`c, which means that there are horizontal axes (planes) of symmetry, parallel to

the direction of propagation. As shown in Figure 1, a semi-symmetric / semi-periodic sub-cell can be resected from the
periodic cell by the parallel symmetry axes which pass through the centre of (respectively) the top or bottom fibre. This

Table 5: Transport parameters for the periodic fibrous material

Transport parameter Symbol Unit Value
(open) porosity φ % 91.950

(inertial) tortuosity α∞ – 1.0815
static viscous tortuosity α0v – 1.2693
static thermal tortuosity α0th – 1.1085

viscous permeability K0 10-10m2 9.0799
thermal permeability θ0 10-9m2 1.9677

viscous length Λv 10-4m 1.3883
thermal length Λth 10-4m 2.6016
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sub-cell can be used (instead of the periodic representative cell) in all Multiscale calculations with the relevant symmetric
boundary conditions applied on the symmetry edges. The issue of symmetric (and antisymmetric) boundary conditions
will be discussed in Section 3.2. The advantage of symmetry should be also taken in the case of DNS, where simulations
can be carried out on the symmetric sub-band shown in Figure 2, by applying the symmetry boundary conditions along
the top and bottom edges of such fluid sub-domain.

Figure 3 presents two finite-element meshes used for the Multiscale calculations (one generated on the periodic cell
and the other on the semi-periodic sub-cell), as well as a finite-element mesh of the sub-band of the fluid domain used for
DNS; the edges of periodicity and symmetry are indicated in each of the mesh cases. The static finite-element analyses
(scaled Stokes’, Laplace’s and Poisson’s problems) were carried out using the periodic and semi-periodic meshes. The
results are essentially the same for both mesh cases, as presented in Figure 4, and they served to calculate the relevant
transport parameters for the fibrous material.

The values of all transport parameters are given in Table 5 with accuracy of 5 significant digits. Within this accuracy,
the same results were obtained using the cell and the sub-cell finite-element meshes shown in Figure 3, and even with

periodicity
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periodicity

`c

`c

symmetry

symmetry
pe

ri
od

ic
ity

periodicity

`c

`c

2

boundary layers

symmetry

symmetry

symmetry

symmetry

h = Nc`c ha

Figure 3: Finite element meshes on the computational fluid domains for the periodic fibrous material used for Multiscale calculations (top),
and for DNS (bottom)

scaled flow velocity
(to the permeability unit) (m2)

scaled electric potential
(to the unit of length) (m)

scaled temperature
(to the permeability unit) (m2)

Figure 4: Fields of the scaled velocity projected onto e, scaled electric potential, and scaled temperature for Hybrid Multiscale calculations
of the fibrous material (the arrows show the velocity, electric field, and temperature gradient, respectively). Note that averaging the fields of
scaled velocity and temperature gives viscous and thermal permeability, respectively.

8

https://doi.org/10.1016/j.jsv.2020.115441


Preprint of: https://doi.org/10.1016/j.jsv.2020.115441 J. Sound Vib. 4?? (2020) 115441

some slightly coarser meshes not presented here. Note that the available analytical formulas for porosity, φ = 1− π
4

(
D2

1 +

D2
2

)/
`2c , and characteristic length, Λth =

(
4
π `

2
c −D2

1 −D2
2

)/(
2D1 + 2D2

)
, confirm exactly the corresponding numerical

values obtained with a purely geometrical calculation.
The numerically-determined transport parameters were used for the analytical formulas for dynamic permeabili-

ties (A.83) and dynamic tortuosities (A.79) and (A.81), accordingly to each of the three models (JCA, JCAL, and JCALP)
recalled in Section A.2. These results of Hybrid calculations are compared in Figures 5–8 with their counterparts found
using the Direct Multiscale (DM) approach (discussed in Section 2 and in Appendix A.2) and the same finite-element
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Figure 5: Dynamic viscous permeability for the periodic fibrous material: DM – Direct Multiscale computations; JCALP, JCAL, JCA –
Hybrid Multiscale calculations with the specified model
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meshes shown in Figure 3. In particular, the dynamic permeabilities are compared in Figures 5 and 6, where also the
relevant fields of direct calculations at particular frequencies of 2, 4, and 6 kHz are shown. Most of the results of Hybrid
calculations are very similar (or nearly identical) to the DM results, however, there are significant discrepancies at lower
frequencies in the case of the dynamic thermal permeability computed using the JCA model (see Figure 6). This discrep-
ancy almost vanishes with the low-frequency correction of the thermal permeability parameter θ0 introduced by Lafarge
et al. [27] and used in the JCAL and JCALP models; here, note that the analytical estimation of thermal permeability
φΛ2

th/8 = 7.78 · 10−9 m2, which leads to the JCA model, is nearly 4 times larger than the correct value found numeri-
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Figure 6: Dynamic thermal permeability for the periodic fibrous material: DM – Direct Multiscale computations; JCALP, JCAL, JCA –
Hybrid Multiscale calculations with the specified model

10

https://doi.org/10.1016/j.jsv.2020.115441


Preprint of: https://doi.org/10.1016/j.jsv.2020.115441 J. Sound Vib. 4?? (2020) 115441

100 101 102 103 104
1.19

1.2

1.21

1.22

1.23

1.24

1.25

1.26

1.27

R
ea

lp
ar

to
fd

yn
am

ic
vi

sc
ou

s
to

rt
uo

si
ty

DM
JCALP
JCAL, JCA

100 101 102 103 104
−500

−400

−300

−200

−100

0

Frequency (Hz)

Im
ag

in
ar

y
pa

rt

DM
JCALP
JCAL, JCA

Figure 7: Dynamic viscous tortuosity for the periodic fibrous material: DM – Direct Multiscale computations; JCALP, JCAL, JCA – Hybrid
Multiscale calculations with the specified model

cally (see Table 5). In order to better visualise some other differences, the dynamic tortuosites are compared in Figures 7
and 8, where the DM results where determined from the directly-computed dynamic permeabilities using Eqs. (A.41)
and (A.42). Notice especially, the discrepancies of the real part of both dynamic tortuosities calculated using the JCAL
model, with respect to the corresponding (nearly identical) DM and JCALP results, and also small discrepancies at higher
frequencies between the DM and JCALP calculations of the real part of dynamic viscous tortuosity (see top plot in Fig-
ure 7). We assume that the DM results may be used for reference, however, the frequency-dependent DM computations
were carried out using always (i.e. for each computational frequency) the same finite-element mesh as the corresponding
frequency-independent (i.e. static) computations of transport parameters used by Hybrid calculations.

The dynamic functions calculated for the periodic fibrous material were used to compute its effective properties, and
finally the effective wave number (A.45), from which the wave speed and attenuation (A.47) were determined and plotted
in Figure 9 for the relevant cases of calculation methods and models. Here, the discrepancies between various results are
related to the ones discussed above, although they seem to be less pronounced. Note also that at higher frequencies, the
waves in the fibrous material are only slightly (i.e. 80% to 90%) slower than the waves in the open air, however, they
dramatically slow down below 2 kHz. The corresponding wavelengths are compared in Figure 10 to demonstrate that
at lower frequencies they are much shorter than the wavelengths in the open air, however, even the shortest-considered
wavelength (λw ≈ 30 mm at 10 kHz) is still 150 times larger than the cell size (`c = 0.2 mm), which ensures a very good
separation of scales and the absence of scattering.

Figure 11 compares sound absorption computed using various methods and models (as discussed in Section 2) for
layers of the periodic fibrous material of different thickness h = 10 mm, 16 mm, and 24 mm, respectively. A close com-
parison of the absorption curves shows that the results of Direct Multiscale calculations (DM) are practically the same as
the results obtained from Direct Numerical Simulations (DNS), and also nearly identical to the results of Hybrid Multi-
scale calculations using the JCALP model. If these results are used for reference, then small but noticeable discrepancies
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Figure 8: Dynamic thermal tortuosity for the periodic fibrous material: DM – Direct Multiscale computations; JCALP, JCAL, JCA – Hybrid
Multiscale calculations with the specified model

appear when the JCAL model is used, especially at higher frequencies above 2 or 3 kHz, while in the case of the JCA
model much more significant discrepancies manifest themselves in the whole frequency range (especially for thinner lay-
ers), which proves the importance of the correction introduced by the thermal permeability parameter θ0 for such fibrous
materials. Note that for a particular method and model, the sound absorption coefficients are virtually the same when
they are computed on the face of the fibrous layer (with a certain thickness h) or anywhere inside the adjacent layer of
air, because the wave propagation in the air layer is lossless. This was also confirmed in the case of DNS (see Figure 2
and the finite-element mesh at the bottom of Figure 3), for which the surface impedances Zs(ω) computed (for each fre-
quency) using values of the pressure and normal velocity averaged over the interface EF (or even CD) or the boundary
GH, respectively, were obviously different, but the final results of the acoustic absorption coefficient (1) were practically
the same.

3.2 BENCHMARK 2: A regular periodic foam with identical spherical pores in overlapped
cubic packing

Figure 12 shows the Representative Elementary Volume of a very regular foam with identical spherical pores. The pores
are set in a cubic packing and they overlap, so that the porosity is fully open. The assumed size of the cubic REV is
`c = 0.20 mm, and the spherical pore diameter is Rp = 0.55 `c = 0.11 mm, which results in a porosity of 67.18%. The
REV is fully symmetric so that the porous material is structurally isotropic having the same macroscopic properties for
any direction e. For the micro-scale computations, we assume that e is along the y1-axis and divide the periodic REV
into 16 and 48 symmetrical sections, as presented in Figure 12, in order to take advantage of the geometrical symmetry.
The division into 16 sections is for problems that depend on the direction e (i.e. the Stokes flow, Laplace’s problem, and
harmonic viscous flow), while the division into 48 sections is for fully-symmetric direction-independent problems (i.e.
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Figure 9: Wave speed and attenuation for the periodic fibrous material: DM – Direct Multiscale computations; JCALP, JCAL, JCA – Hybrid
Multiscale calculations with the specified model
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Figure 10: Wavelength for the periodic fibrous material (and in the open air): DM – Direct Multiscale computations; JCALP, JCAL, JCA –
Hybrid Multiscale calculations with the specified model

the Poison’s problem and harmonic thermal diffusion). In the first case, instead of using the whole periodic REV one can
perform direction-dependent computations on one of the 1/16-th sections by applying the symmetric boundary conditions
on all its fluid faces parallel to the direction e, and the antisymmetric boundary conditions on the remaining two fluid
faces perpendicular to e (see Figure 13). In the case of the direction-independent problems any of the 1/48-th sections
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P
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propagation
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Solid walls

Figure 12: Fluid domain inside the cubic periodic porous cell (i.e. REV of the size `c) with a single spherical pore (radius Rp = 0.55 `c)
and its partitioning based on the symmetry; the symbol P means periodic boundary conditions applied on the corresponding fluid faces; the
parenthesis around this symbol indicates that the fluid face is on the back of the pore (visible only for transparency)

can serve as the computational domain with the symmetric boundary conditions applied on all fluid faces (see Figure 13).
This smallest possible symmetrical section cannot be used for the direction-dependent problems. On the other hand, the
Poisson’s and harmonic thermal diffusion problems can be solved on the larger 1/16-th section by applying the symmetric
boundary conditions on all fluid faces. Finally, all problems can be solved on the 1/8-th section depicted in Figure 13,
by applying the symmetric boundary conditions on all faces parallel to e, and periodic continuity conditions on the two
remaining faces, although (because of the symmetry) the conditions of periodicity can be also conveniently replaced with
the antisymmetric boundary conditions in the case of the direction-dependent analyses, or with the symmetric ones in the
case of the direction-independent analyses.

Here, we specify the symmetric boundary conditions for each of the relevant computational problems. The fluid does
not flow through the plane of symmetry which means that in the case of the scaled Stokes flow (A.70)–(A.71) we must
set on each symmetry face the no-penetration condition k̂0 ·n = 0, which in the case of the scaled harmonic flow (A.34)–
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Figure 13: Symmetric sections of the periodic REV and the faces of: S – symmetry, and P – periodicity; the parenthesis around the symbols
mark that the fluid face is invisible (i.e. at the back of the section); A / S means that the antisymmetric boundary condition is applied in the case
of Stokes flow, harmonic viscous flow, or Laplace’s problem driven in the direction y1, while the symmetric condition is applied in the case
of Poisson’s problem or harmonic thermal diffusion; note that because of the symmetry, P can be conveniently replaced by A / S; the smallest
(1/48) section may serve only in direction-independent analyses, i.e. the Poisson’s problem and harmonic thermal diffusion

(A.35) is k̂ ·n = 0, where n is the unit vector normal to the symmetry plane. In the case of the Laplace’s equation (A.58),
related to the scaled problem of electric conduction, the condition on the symmetry plane is ∇yq · n = 0, which is also
related to the fact that the (scaled) electric field (A.55) is tangent to the symmetry plane, namely, E ·n = e ·n−∇yq ·n =
0, and here, e · n = 0, because all symmetry planes are parallel to the direction e of the external uniform electric
field (see Figure 13). Finally, in the case of the Poisson’s equation (A.75), or the scaled equation of harmonic thermal
diffusion (A.38), there is no (heat) flux through the symmetry planes (like in thermal insulation), namely, ∇y θ̃0 · n = 0,
or respectively, ∇y θ̃ · n = 0.

Antisymmetric boundary conditions are relevant only for the direction-dependent problems: for the (scaled) Stokes
flow and harmonic (oscillatory) viscus flow, and for the Laplace’s problem. In order to discuss them, let us introduce
two unit vectors t(1) and t(2), which are not collinear, but both are tangent to the considered plane of antisymmetry, i.e.
t(1) · n = t(2) · n = 0, where n is the unit vector normal to the antisymmetry plane; note also that for any antisymmetric
face, n is collinear with e (see Figure 13). Antisymmetry requires that there is no tangential flow along the antisymmetric
faces, or in other words, the velocity projection on the antisymmetry plane is zero, i.e. v(0) · t(1) = v(0) · t(2) = 0,
which in the case of the scaled Stokes flow (A.70)–(A.71) means that k̂0 · t(1) = k̂0 · t(2) = 0, and in the case of the
scaled harmonic flow (A.34)–(A.35), similarly, k̂ · t(1) = k̂ · t(2) = 0. Additionally, also the local pressure and normal
stresses on the antisymmetry plane are zero, i.e. p(1) = 0 and σ(0) ·n = 0; here, the stress tensor σ(0) (not to be confused
with the flow resistivity tensor σ) is defined as σ(0) = τ(0) − p(1)I, where τ(0) = 2η ε̇(v(0)) is the shear stress tensor

(i.e. the stress deviator) and ε̇(v(0)) = 1
2

(
∇yv(0) +∇T

yv
(0)
)

is the rate of strain (i.e. the symmetric part of the gradient
of velocity). Note that, since the local pressure is zero on the antisymmetry plane, the zero normal stress condition can
be equivalently rewritten as τ(0) · n = 0 or ε̇ · n = 0, and it simply means that inside the weak integral formulations
of the corresponding (oscillatory, stationary, or scaled) flow problems, the relevant surface integral which involves the
term ε̇(v(0)) · n (or its scaled equivalent) is zero on the plane of antisymmetry, and thus, the surface integral vanishes in
practice on the antisymmetric boundaries. On the other hand, the condition p(1) = 0 must be explicitly set on the planes
of antisymmetry as an additional constraint for the local pressure field, and in the case of the scaled flow problems (A.70)–
(A.71) or (A.34)–(A.35), it means that the corresponding scaled pressure is zero, i.e. π̂0 = 0 or π̂ = 0, respectively, on
each plane of antisymmetry. Finally, in the case of the Laplace’s equation (A.58), the antisymmetric boundary condition
is q = 0. Note also that from this condition results what follows: the potential q is constant on the antisymmetric face so
that the projection of its gradient onto this plane is zero, i.e. ∇yq · t(1) = ∇yq · t(2) = 0, and since for antisymmetric
faces e · t(1) = e · t(2) = 0, then, as expected, the projection of the scaled electric field (A.55) onto the antisymmetric
plane is also zero, i.e. E · t(1) = E · t(2) = 0.

The representative periodic geometry shown in Figures 12 and 13 can be easily reconstructed, however, it has sharp
edges all around the windows connecting the pores. These sharp edges may cause serious computational problems,
especially, when computing the viscous characteristic length Λv, because the (scaled electric) potential q is not smooth
in the vicinity of a sharp edge, and E, being a function of the gradient of q, may be there very singular [77]. In the
formula (A.68) for Λv one actually integrates the term E ·E over the whole solid surface, and when this surface has sharp
edges one cannot easily get rid of this singularity, which entails a problem with mesh independence, no matter how dense
the finite element mesh around the sharp edges is.

To ensure a numerical convergence for all transport parameters the sharp edges should be replaced by small smooth
fillets with radius RF much smaller than the radii of pores and windows. In Appendix B we present how to add fillets with
smooth inflection points to the periodic porous microstructure used here for benchmark calculations. We also provide all
necessary data for accurate reconstruction of such geometry, as well as formulas for analytical calculations of important
geometric parameters, such as porosity, surface of solid walls inside the periodic REV, and filleted window radius. In
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the benchmark calculations we used the geometry without fillets for DNS and DM computations, where the Laplace’s
problem is not solved so there is no convergence problem. For HM calculations we used fillets with a radius 200 times
smaller than the pore radius, however, for comparison we also present the values of transport parameters computed for
larger fillet radii, namely, when the ratio Rp/RF equals to 100 and 50.

Figure 14 presents finite-element meshes that were used in micro-scale computations for the regular periodic foam

MESH R/50#(1/8)

fillet with RF = Rp/50
(no boundary layers)

MESH R/50#(1/16)

fillet with RF = Rp/50
(no boundary layers)

MESH R/50 (1/48)

MESH R/50 (1/16)

fillet with RF = Rp/50
(8 boundary layers)

MESH R/100 (1/16)

fillet with RF = Rp/100
(8 boundary layers)

MESH R/200 (1/16)

fillet with RF = Rp/200
(5 boundary layers)

MESH R/∞ (1/8)

mirror
copy

sharp edge
(singularity)

MESH R/∞ (1/16)

sharp edge
(singularity)

MESH R/∞ (1/48)

h = Nc`c ha

`c
2

MESH for DNS

A B

Figure 14: Finite element meshes on sections of the fluid domain of the REV of regular periodic foam, and the finite element mesh used for
DNS
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Table 6: Numbers of elements (in the computational domain, on its surfaces and edges) and degrees of freedom (DOF in various types of
analyses) for all cases of finite element meshes generated for the regular periodic foam

Mesh case
(section type)

3D
elements

2D
elements

1D
elements

DOF in
SF or HVF

DOF in
LP, PP, HTD HVF SF LP PP HTD

R/50#
(1/8) 476 795 18 749 446 2 429 392 847 583 ◦ • • • ◦

R/50#
(1/16) 279 011 17 102 752 1 217 618 424 687 ◦ • • • ◦

R/50 (1/16) 352 107 20 006 792 2 150 250 734 591 ◦ • • • ◦
R/50 (1/48) 524 386 17 502 516 751 808 × × × • ◦
R/100 (1/16) 765 107 36 732 1 252 4 621 785 1 562 906 ◦ • • • ◦
R/200 (1/16) 1 570 599 69 172 2 136 8 560 125 2 889 481 ◦ • • • ◦
R/∞ (1/8) 121 088 10 464 404 537 489 194 203 ◦ • ! • ◦
R/∞ (1/16) 60 544 5 420 231 270 070 ∗ 97 507 ∗ • • ! • •
R/∞ (1/48) 547 314 25 072 557 805 602 ∗ × × × • •

Numerical analyses: • – computed, ◦ – possible, × – not applicable,
! – singularity at sharp edges causes computational problems (Λv is mesh-dependent);
HVF – harmonic viscous flow, SF – Stokes flow, LP – Laplace’s problem,
PP – Poisson’s problem, HTD – harmonic thermal diffusion.

∗complex DOF in HVF and HTD

(for fillets with different sizes, i.e. RF = Rp/50, Rp/100, and Rp/200, as well as with sharp edges). Typically, the
meshes were constructed as follows. First, triangular elements were generated on the solid boundary (including fillets);
the maximum triangular element size for the fillets was `c

8Rp/RF
(e.g. it was `c

400 for RF = Rp/50), while for the remaining

solid surface it was set to `c
80 . Then, tetrahedral elements were generated over the whole fluid domain with the maximum

element size set to `c
40 . Additionally, the minimal element size was set equal to the maximum element size assigned for the

fillet surfaces. Such approach allowed for an efficient distribution of the degrees of freedom. Finally, some meshes were
enriched with boundary layers generated along the solid surface. Note that the finite element meshes on the 1/8-th section
are symmetric with respect to the middle plane, because they were constructed from the mesh generated on the 1/16-th
section using a mirror copy operation. Table 6 lists the numbers of elements for each of the meshes used in the REV-based
calculations, as well as the numbers of degrees of freedom (DOF) related to particular mesh cases and numerical analyses.
For convergence tests even denser meshes were generated with the minimal element size smaller than the one specified
above, which also allowed for denser meshing on fillets. However, the results obtained for these meshes were virtually
the same as the ones found using the coarser meshes shown in Figure 14, which proved a very good convergence.

Numerical analyses for Multiscale calculations were carried out using various FE meshes as shown in Table 6. The
field results of static analyses (for the fillet with radius RF = Rp/50), obtained using MESH R/50 (1/8) and MESH
R/50 (1/16), are shown in Figures 15 and 16, as well as in Figure 17, where the results of computations based on MESH
R/50 (1/48) are also presented. As expected, the same results were obtained from the corresponding meshes of the 1/16-th
and 1/8-th sections, and also for the 1/48-th section in the case of the Poisson’s problem. The corresponding field results
obtained for the cases with smaller fillets were very similar to the ones presented in Figures 15–17. The meshes with
fillets were used only for the static analyses, while MESH R/∞ (1/16) served for all static and both dynamic (oscillatory)
analyses, however, as anticipated, in the case of the Laplace’s problem the singularity at the sharp edges did not allow the
viscous characteristic length (even when trying extremely dense mesh cases). MESH R/∞ (1/8) served for the Poisson’s
analysis and the oscillatory thermal diffusion problem. Finally, MESH for DNS was constructed on Nc successive pairs of
the 1/16-th section (without fillets) and its mirror copy, forming a fluid domain with thickness h = Nc`c, with an adjacent
layer with thickness ha = 5`c = 1 mm, as depicted at the bottom of Figure 14. Two cases were considered: (1) Nc = 50,
h = 10 mm, and (2) Nc = 100, h = 20 mm.

The static solutions were used to determine the transport parameters for the regular periodic foam (with fillets). Recall
that calculations of transport parameters involve averaging over the periodic fluid domain Ωf. However, when Ωf is
symmetric with respect to one or more symmetry planes, FE computations should be conducted on subdomains Ωsub

f (the
smallest possible), resected from Ωf by the symmetry (and antisymmetry) planes, as demonstrated in this benchmark

example. Now, let us define the averaging operator over a fluid subdomain Ωsub
f , i.e.: 〈·〉fsub =

1

Ωsub
f

∫

Ωsub
f

(·) dΩ. Because

of the symmetry, the integrations over Ωf (and over its solid surface) can be replaced by the integrations over Ωsub
f (and

over its solid surface) in the formulas (A.68) and (A.69) for Λv and Λth, respectively, while the averaging over Ωf can
be replaced by the averaging over Ωsub

f in the formulas (A.73), (A.77), (A.78), and (A.65), for K0, θ0, α0th, and α∞,
respectively. However, in the case of formula (A.74) for α0v, and Eqs. (A.66) and (A.67) for α∞, such substitution is not
valid for the 1/16-th section of the REV used in this benchmark example (i.e. for subdomains set between two successive
planes of antisymmetry), since for such subdomains

〈
k̂0

〉
fsub
6=
〈
k̂0

〉
f

and 〈E〉fsub 6= 〈E〉f. Ignoring this may lead to
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Scaled velocity field (to the permeability unit) projected onto e
(m2)

Scaled pressure field (to the unit of length)
(m)

Figure 15: Results of the scaled problems of Stokes flow for the regular periodic foam

Scaled electric potential field (to the unit of length)
(m)

Figure 16: Results of the Laplace’s analyses for the regular periodic foam

Scaled temperature field (to the permeability unit)
(m2)

Figure 17: Results of the Poisson’s analyses for the regular periodic foam

serious errors. On the other hand, for fluid domains with antisymmetric field solutions of the Stokes flow and Laplace’s
problem (see, e.g. Figures 15 and 16), the components of k̂0 and E perpendicular to e cancel out in averaging, so that〈
k̂0

〉
f
·
〈
k̂0

〉
f

=
〈
k̂0 · e

〉2

f
=
〈
k̂0 · e

〉2

fsub
and 〈E〉f ·〈E〉f = 〈E · e〉2f = 〈E · e〉2fsub, which means that the formulas (A.74)
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and (A.67) in such cases can be replaced by

α0v =

〈
k̂0 · k̂0

〉
f〈

k̂0 · e
〉2

f

=

〈
k̂0 · k̂0

〉
fsub〈

k̂0 · e
〉2

fsub

, α∞ =
〈E ·E〉f
〈E · e〉2f

=
〈E ·E〉fsub

〈E · e〉2fsub

, (3)

where it has been assumed that ‖e‖ = 1 (otherwise, simply substitute e
‖e‖ for e in the expressions above), while Eq. (A.66)

transforms into the first formula in (A.65). Finally, for (larger) symmetric subdomains like the 1/8-th section of the REV
used in this benchmark example (i.e. with the plane of antisymmetry in the middle) the substitution of 〈·〉fsub in place of
〈·〉f is valid also for Eqs. (A.66), (A.67), and (A.74).

The values of transport parameters for the regular periodic foams (with fillets of three different sizes), computed from
FE solutions based on various mesh cases, are shown in Table 7 with an accuracy to 5 significant digits (4 significant digits
in the case of Λv). The linear geometry shape order was used for MESH R/50#. In the case of quadratic shape order, the
results were virtually the same as for MESH R/50, though this latter mesh contains boundary layers. When the quadratic
shape order was used for geometry (as it was for the remaining mesh cases), the purely geometric parameters (φ and Λth)
were calculated accurately with assumed accuracy (cf. with Table B.1 in Appendix B). Moreover, the convergence tests
proved also the correctness of the values found for other transport parameters. To get such accuracy when using the linear
geometry shape order, the mesh density must be increased on the curved surfaces, leading to larger numbers of degrees of
freedom. The values of transport parameters found for the case without fillets are not given in Table 7, but they were close
to the values shown in the last row and computed for the smallest fillet (i.e. with radius RF = Rp/200), although with the
exception of Λv, which did not converge at all, and in an extreme case of a very fine meshing around the sharp edges its
value even reached a value of more than 10% smaller than the radius of the window connecting the pores.

Figure 18 shows how the transport parameters, computed for different (decreasing) radii of fillets, converge to the
values found for the smallest considered fillet radius RF = Rp/200. The values of transport parameters for the case

Table 7: Transport parameters for the regular periodic foam with fillets

Mesh
case

φ
(%)

α∞
(–)

α0v
(–)

α0th
(–)

K0

(m2)
θ0

(m2)
Λv
(m)

Λth
(m)

R/50# 67.222 1.5106 2.1554 1.3000 1.8757 · 10−10 7.1188 · 10−10 5.306 · 10−5 1.0059 · 10−4

R/50 67.228 1.5108 2.1558 1.3000 1.8750 · 10−10 7.1195 · 10−10 5.308 · 10−5 1.0059 · 10−4

R/100 67.191 1.5348 2.2085 1.3048 1.7459 · 10−10 7.0231 · 10−10 4.981 · 10−5 9.8914 · 10−5

R/200 67.181 1.5468 2.2375 1.3072 1.6805 · 10−10 6.9789 · 10−10 4.741 · 10−5 9.8061 · 10−5

The linear geometry shape order was used for the mesh case R/50#, while the quadratic one in all other cases.
Note that in the latter cases the numerical values for φ and Λth are virtually equal to the analytical results.

50 100 200

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

Rp/RF

Tr
an

sp
or

tp
ar

am
et

er
ra

tio
,
TP

(R
p/
R

F
)

TP
(2

00
)

TP
φ
α∞
α0v
α0th

K0

θ0
Λv

Λth

Figure 18: Relative changes of transport parameters (TP) with respect to the ratio of the pore radius Rp = 0.11mm to the decreasing fillet
radius RF
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with the smallest fillet (i.e. the values from the last row in Table 7) were used to calculate the dynamic permeability and
tortuosity functions using the JCA, JCAL, and JCALP models recalled at the end of Section A.2. These dynamic functions
are compared in Figures 19, 20, and 21 with their counterparts found from the Direct Multiscale (DM) computations using
MESH R/∞ (1/16) (for the analysis of harmonic viscous flow) and MESH R/∞ (1/48) (for the harmonic thermal diffusion).
As expected, the results for the JCALP model are the most accurate in the sense of being nearly the same as the DM results:
small discrepancies between the DM and JCALP curves of dynamic permeabilities are barely visible in Figure 19; they
are easier to see when comparing the real parts of dynamic tortuosities in Figures 20 and 21. The discrepancies between
the DM results and the JCAL or JCA results are more pronounced. The JCA curves of dynamic thermal permeability (see
the lower chart in Figure 19) differ but not so much from the DM / JCALP / JCAL results, and it seems that the correction
introduced by θ0 is not so crucial as in the case of the fibrous material investigated in Section 3.1 (cf. Figure 6). The
corrections introduced by α0th and α0v seem to be more important than those introduced by θ0, especially, when looking

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
·10−10

+Real part

−Imaginary partD
yn

am
ic

vi
sc

ou
s

pe
rm

ea
bi

lit
y

(m
2
)

DM
JCALP
JCAL, JCA

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

·10−10

+Real part

−Imaginary part

Frequency (kHz)

D
yn

am
ic

th
er

m
al

pe
rm

ea
bi

lit
y

(m
2
)

DM
JCALP
JCAL
JCA

Figure 19: Dynamic viscous and thermal permeabilities for the regular periodic foam: DM – Direct Multiscale computations; JCALP,
JCAL, JCA – Hybrid Multiscale calculations with the specified model
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Figure 20: Dynamic viscous tortuosity for the regular periodic foam: DM – Direct Multiscale computations; JCALP, JCAL, JCA – Hybrid
Multiscale calculations with the specified model

at the curves of the wave speed and attenuation presented in Figure 22, and sound absorption presented in Figure 23,
where more noticeable differences appear only when the JCAL / JCA results are compared versus the DM / JCALP ones.
Figure 23 shows also the acoustic absorption curves computed using the Direct Numerical Simulations (DNS). For the
considered porous layer thickness values (i.e. for h = 10 mm and h = 20 mm) the DNS results tend to be closer to the
DM / JCALP results than to the JCAL / JCA results. Note that the DNS curves were computed from the surface acoustic
impedances determined on the surface A, or alternatively, on the surface B (see MESH for DNS in Figure 14), since the
propagation in the adjacent air layer is practically lossless, i.e. the surface acoustic impedance Zs(ω) on the surface A is
different than the one on the surface B, but the results of acoustic absorption (1) are the same. Finally, recall also that the
DM and DNS results were computed using the geometry without fillets and (consistently) rather coarse meshes, which
might have had some influence on their accuracy. On the other hand, the direct results are not affected by the singularity
around sharp edges (no gradient fields are involved in their calculation) and the consistency between the DNS, DM and
JCALP results is indeed confirmed.

4 Conclusions
Two benchmark examples have been considered based on idealised (easily reproducible) microstructures intended to rep-
resent fibrous materials and cellular foams, respectively, i.e. two main kinds of sound-absorbing materials. Various results
obtained for both benchmarks using three different methods of calculation (DM, HM, and DNS) have been compared,
enabling mutual verification of these results. Moreover, the simple geometries have permitted to carry out precise conver-
gence tests, so that the values of transport parameters in Tables 5 and 7 (with the only exception of the results presented
for the mesh case R/50#) are accurate up to the last revealed significant digit. Periodic boundary conditions have been

21

https://doi.org/10.1016/j.jsv.2020.115441


Preprint of: https://doi.org/10.1016/j.jsv.2020.115441 J. Sound Vib. 4?? (2020) 115441

100 101 102 103 104
1.18

1.2

1.22

1.24

1.26

1.28

1.3

1.32

R
ea

lp
ar

to
fd

yn
am

ic
th

er
m

al
to

rt
uo

si
ty

DM
JCALP
JCAL
JCA

100 101 102 103 104

−800

−600

−400

−200

0

Frequency (Hz)

Im
ag

in
ar

y
pa

rt

DM
JCALP
JCAL
JCA

Figure 21: Dynamic thermal tortuosity for the regular periodic foam: DM – Direct Multiscale computations; JCALP, JCAL, JCA – Hybrid
Multiscale calculations with the specified model

applied, however, when possible and in particular in the second benchmark example, we have demonstrated how to take
advantage of all existing symmetries (and anti-symmetries) of a REV. Below we present some additional remarks and
practical hints that should help the readers to carry out their own numerical calculations for both benchmarks as well as
other sound absorbing materials.

Finite element meshes for the HM calculations must be sufficiently fine in order to determine the transport parameters
with proper accuracy (of course, for practical use, it is not important to have the transport parameters determined to
5-digit accuracy, as we have done it in this work for obvious benchmarking reasons). Usually, the DM calculations do
not require meshes of such density, because the viscous and thermal permeability functions are determined directly at
each frequency by averaging the relevant viscous and thermal fields (of the scaled velocity and temperature), so they
are less sensitive than the calculations based on the formulas depending on transport parameters. Nevertheless, the HM
approach is less computationally demanding than the DM approach, since the latter one requires solution of complex-
valued problems (i.e. the oscillatory Stokes flow and thermal diffusion) for each computational frequency. In both cases,
meshes on the corresponding periodic boundaries must be consistent, which means that, in practice, a mesh from one
periodic boundary must be copied onto its periodic counterpart. Otherwise (i.e. when an approach involving Lagrange
multipliers is used instead to realise periodic boundary conditions on non-consistent meshes), one has to expect large
(often unacceptable) inaccuracies, especially when the meshes on periodic boundaries are not very dense. Correct sound
absorption predictions from DNS (obtained by solving at each frequency large systems of the linearised complex-valued
Navier-Stokes equations) usually require huge computational resources, although, they can be reduced by using coarser
meshes, which is acceptable in case of simple microstructural geometries of appropriate size (as the ones proposed in the
benchmark examples).

To calculate transport parameters with high accuracy, in particular, the porosity which in fact appears in the formulas
for other transport parameters, any curved geometry of the solid boundary (e.g. the circular boundaries of fibres, or the
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Figure 22: Wave speed and attenuation for the regular periodic foam: DM – Direct Multiscale computations; JCALP, JCAL, JCA – Hybrid
Multiscale calculations with the specified model
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Figure 23: Sound absorption for the rigidly-backed regular periodic foam layers (of the specified thickness h): DM – Direct Multiscale
computations; JCALP, JCAL, JCA – Hybrid Multiscale calculations with the specified model; DNS – Direct Numerical Simulations

partially spherical boundaries of pore walls and fillets in the benchmark examples) must be very accurately approximated
by the finite element mesh which entails fine discretization on all curved boundaries. This requirement often makes the
mesh on solid boundaries much denser than is actually required by proper implementation of boundary conditions in the
Stokes flow or Laplace’s problem, and thus, unnecessarily increases the number of degrees of freedom. One can easily
avoid this by applying the quadratic shape order for geometry. This is a very efficient approach since it does not increase
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the number of degrees of freedom and at the same time it allows to represent the curved geometry much more accurately
than in the case of the commonly-used linear shape order. The quadratic geometry shape order has enabled to obtain very
accurate values of transport parameters using not extremely dense finite element meshes. For the mesh case R/50# we
present the results computed using the linear geometry shape order (see the first row in Table 7) to demonstrate a small
loss in accuracy related with that. On the other hand, we realise that many finite element systems or implementations take
all information about the geometry (only) by importing finite element meshes generated by some dedicated software, or
they simply do not support non-linear approximation of geometry. In such cases, one must increase the mesh density on
the curved boundaries to reach the accuracy reported in this paper.

In the case of the flow or Laplace problems with periodic boundaries, the solutions are not unique with respect to
the pressure or potential, respectively, as there are no boundary conditions anywhere specifying their values. This may
result in convergence problems during the numerical solution of the corresponding equations. The uniqueness of the flow
solution is ensured by forcing the average of the pressure field to zero [55], i.e. 〈π̃〉f = 0 or 〈π̂〉f = 0. Another way to
ensure uniqueness is to set the level of pressure or potential by specifying them at some point (or in some other way). Of
course, if the antisymmetric boundary conditions are used instead of the periodic ones, the values of pressure or potential
are set to zero on the antisymmetry planes making the corresponding solutions unique.

When a porous microstructure possesses a sharp edge, the solution will not be smooth in its vicinity and the gradient
of the solution can be singular at that point [77]. Therefore, one cannot expect the viscous characteristic length Λv to be
mesh-independent and converge. We have shown how to deal with this problem by applying small fillets. In engineering
practice, the size of fillets may be comparable or smaller than typical shape imperfections. In this work we have presented
a few sets of transport parameters computed for the geometries with fillets of decreasing size. However, we have found
out that reliable values of the transport parameters other than Λv can also be determined for the geometry without fillets.
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A Sound propagation in rigid-frame porous media

A.1 Homogenisation based on periodicity
Let us consider a periodic porous material comprising a pore fluid network and a solid frame. The former is fully connected
and saturated with fluid (air) while the latter is assumed motionless because either the solid frame stiffness or its weight
is significantly larger than that of the saturating fluid. The existence of a microscopic characteristic length `, determined
by the size of local heterogeneities or the period size of the material, and a macroscopic characteristic length L = λw/2π,
where λw is the sound wavelength, and their highly distinct values, i.e. `/L � 1, permit defining a Representative
Elementary Volume. The porosity of the material is the ratio between the volume occupied by the fluid and the total
volume of the material, which in terms of the volume of the REV occupied by the fluid Ωf and the total volume of the
REV Ω can be calculated as φ = Ωf/Ω.

The linearised equations that describe the flow of a compressible fluid saturating the pore fluid network Ωf in harmonic
regime are [7–9, 27, 78] the equations of momentum (A.1), mass (A.2), and energy (A.3) conservation, as well as the
equation of state (A.4), namely,

η

(
∇2v +

1

3
∇(∇ · v)

)
−∇p = iω%0v in Ωf, (A.1)

%0∇ · v + iω% = 0 in Ωf, (A.2)

κ∇2T = iω%0CpT − iωp in Ωf, (A.3)
p

P0
=

%

%0
+
T

T0
in Ωf, (A.4)
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together with the no-slip (A.5) and zero-temperature (A.6) conditions formulated on the interface Γsf between the pore
fluid network and the solid frame:

v = 0 on Γsf, (A.5)
T = 0 on Γsf. (A.6)

Here, ω = 2πf is the angular frequency (f is the frequency; note also that a positive convention has been adopted, i.e.
exp(+iωt), where i is the imaginary unit and t is the temporal variable), while v, p, %, and T are the (unknown complex
amplitudes of) oscillatory fluid velocity, pressure, density, and temperature, respectively. The physical parameters are the
dynamic viscosity η, thermal conductivity κ, and heat capacity at constant pressure Cp of the saturating fluid, and those
with a zero subscript are equilibrium quantities, i.e. %0 is the fluid density at the equilibrium state of ambient pressure P0

and temperature T0. The standard values of these properties (which were used in calculations) are given for air in Table 4,
in Section 2.

We aim at deriving a macroscopic description of sound propagation in periodic porous media by using the two-scale
asymptotic homogenisation method [78]. To do so, a physical analysis of the local description, Eqs. (A.1)–(A.6), is first
conducted. This analysis for the variables and terms of the local description is well established [8, 27, 78], will be used to
rescale the local description, and is as follows.

Consistent with the assumed separation of scales ` � L, the pressure varies macroscopically, i.e. ∇p = O(p/L),
while viscous effects occur locally, i.e. η∇2v = O(ηv/`2), where v = ‖v‖ is an estimation of the fluid velocity (‖·‖ is
the Euclidean norm). Furthermore, in order to account for the macroscopic compressibility, the divergence of the velocity
is considered to vary with the sound wavelength λw = 2πL, i.e. ∇ · v = O(v/L). The quoted estimates will lead to a
fluid velocity field that is asymptotically divergence-free at the pore scale, bringing as a consequence the uncoupling of
the viscous and thermal effects in the pores. On the other hand, heat conduction effects occur locally and, consequently,
one has the following estimate κ∇2T = O(κT/`2).

Regarding the relative order of magnitude of the terms in the equation of conservation of momentum (A.1), the
case of interest occurs when the viscous and inertial terms are balanced by the pressure gradient, which is expressed as
O(ηv/`2) = O(ω%0v) = O(p/L). Furthermore, the estimations of the terms in the equation of conservation of mass
(A.2) are of the same order of magnitude, i.e. O(v/L) = O(ω%/%0). On the other hand, the conduction and inertial terms
in Eq. (A.3) are balanced by the heat source due to pressure. Hence one has that O(κT/`2) = O(%0CpωT ) = O(ωp).

Now let us introduce two independent space variables, namely, x which is the usual spatial variable, and y = ε−1x,
where ε = `/L� 1; therefore, x accounts for variations at the macroscopic scale while y for those occurring locally. As a
consequence of the introduction of these two spatial variables, the large separation of scales (i.e. ε� 1), and periodicity,
the unknown physical variables are, a priori, functions of x and y, namely, v = v(x,y) and so on. Furthermore,
considering once again the large separation of scales, invoking the chain rule and taking L as the reference length, the
gradient operator can be expressed as ∇ = ∇(x,y) = ∇x + ε−1∇y . Note that to simplify the notation we have unbolded
the spatial variables.

The use of two space variables is combined with a rescaling of the local equations based upon a single space variable.
The reason for the rescaling lies in the fact that when expressed with the two space variables (x, y), the actual physical
gradient of a quantity Q that varies at the macroscopic scale, i.e. ∇xQ becomes ∇Q. On the other hand, if the quantity
varies at the local scale, the actual physical gradient ∇yQ is expressed as ε∇Q. Therefore, the gradient of variables
oscillating locally is rescaled.

Recalling that the gradient operator reads now as ∇ = ∇x + ε−1∇y , the rescaled equations of motion in the fluid-
saturated pore domain Ωf are given by

ε2η

(
∇2v +

1

3
∇(∇ · v)

)
−∇p = iω%0v in Ωf, (A.7)

∇ · v + iω

(
p

P0
− T

T0

)
= 0 in Ωf, (A.8)

ε2κ∇2T = iω%0CpT − iωp in Ωf, (A.9)

with the no-slip and isothermal boundary conditions on the walls of solid frame (skeleton, fibres, etc.)

v = 0 on Γsf, (A.10)
T = 0 on Γsf. (A.11)

The unknown variables are then looked for in the form of asymptotic expansions in powers of the small parameter
ε, i.e. Q(x, y) =

∑∞
i=0 ε

iQ(i), where Q = v, p, %, T . Then, these series are replaced into Eqs. (A.7)–(A.11) and the
terms of the same order are identified. (Note that Q(i) and Q are frequency-dependent, which is implicitly assumed in all
formulas.)
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At ε−1, it follows from the equation of conservation of momentum that ∇yp(0) = 0, which means that the leading-
order pressure is a macroscopic variable, i.e. p(0) = p(0)(x).

Further identification provides the following oscillatory Stokes flow problem

η∇2
yv

(0) −∇yp(1) = iω%0v
(0) +∇xp(0) in Ωf, (A.12)

∇y · v(0) = 0 in Ωf, (A.13)

v(0) = 0 on Γsf. (A.14)

This is a linear problem forced by the macroscopic pressure gradient ∇xp(0). Therefore, the velocity v(0) and local
pressure p(1) can be linearly related to∇xp(0) via [7, 8]

v(0)(x, y) = −
k̃(y, ω)

η
· ∇xp(0)(x), (A.15)

p(1)(x, y) = −π̃(y, ω) · ∇xp(0)(x) + p̄(1)(x), (A.16)

where k̃(y, ω) represents an Ω-periodic local tensor field, π̃(y, ω) is an Ω-periodic local vector field, and p̄(1)(x) is
a constant field. The Ω-periodicity means that such a field must satisfy the conditions of periodic continuity on the
corresponding fluid boundaries lying on the opposite faces of the periodic cell Ω.

Let us now define the following averaging operator

〈·〉 =
1

Ω

∫

Ωf

(·) dΩ =
φ

Ωf

∫

Ωf

(·) dΩ = φ 〈·〉f , (A.17)

which is related to the whole periodic cell Ω (containing a fluid domain Ωf and a motionless rigid skeleton), while the
operator 〈·〉f = 1

Ωf

∫
Ωf

(·) dΩ averages over the fluid domain Ωf. Incidentally, note that the pressure field (A.16) has been
expressed in terms of the integration constant p̄(1)(x) and a zero-mean part, i.e. the first term on the right-hand side of
Eq. (A.16) vanishes when the averaging operator (A.17) is applied.

The application of the operator (A.17) to Eq. (A.15) yields the dynamic Darcy’s law [8]

V(x) = −
k(ω)

η
· ∇p(x), (A.18)

where the superscript indicating the order and the subscript x have been dropped in this macroscopic description, and
moreover,

V(x) =
〈
v(0)(x, y)

〉
= φ

〈
v(0)(x, y)

〉
f

(A.19)

defines the Darcy velocity (i.e. the macroscopic flux), while the dynamic viscous permeability (second-rank) tensor k is
calculated as [8]

k(ω) =
〈
k̃(y, ω)

〉
= φ

〈
k̃(y, ω)

〉
f
. (A.20)

Now, let us consider the equation of conservation of energy (A.9) and the isothermal boundary condition (A.11), from
which the following leading-order heat conduction cell problem is identified

κ∇2
yT

(0) = iω%0CpT
(0) − iωp(0) in Ωf, (A.21)

T (0) = 0 on Γsf. (A.22)

This linear problem is driven by the harmonic rate of macroscopic pressure iωp(0). Therefore, the unknown leading-order
temperature T (0) can be linearly related to iωp(0) via [7, 27]

T (0)(x, y) =
θ̃(y, ω)

κ
iωp(0)(x), (A.23)

where θ̃(y, ω) represents the Ω-periodic local scalar field. The averaging operation (A.17) can be applied to this relation
and the so-called dynamic thermal permeability [27] is defined in a way similar to its viscous analogue (A.20), namely,

θ(ω) =
〈
θ̃(y, ω)

〉
= φ

〈
θ̃(y, ω)

〉
f
. (A.24)
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Finally, let us consider the resulting leading-order of the mass balance equation (A.8) (which has already been com-
bined with the equation of state)

∇x · v(0) +∇y · v(1) + iω

(
p(0)

P0
− T (0)

T0

)
= 0. (A.25)

The following results are obtained when averaging this equation using the operator (A.17). The averaging of the first term
in Eq. (A.25) becomes the divergence of the macroscopic (Darcy) velocity (A.19), namely,

〈
∇x · v(0)

〉
= ∇x ·

〈
v(0)

〉
=

∇ · V, while the second term simply vanishes, i.e.
〈
∇y · v(1)

〉
= 0, since by applying the divergence theorem when

this term is averaged, it can be re-written as a surface integral which becomes zero because of both the overall no-slip
condition (A.5) on solid walls and the fact that on the remaining boundaries of the fluid domain (lying of the periodic cell
faces) it cancels out due to periodicity. The averaging of the third term in Eq. (A.25) and inserting the relation (A.23) lead
to the following result

iω

〈
p(0)(x)

P0
− T (0)(x, y)

T0

〉
= iω

φ p(0)(x)

P0

(
1− (γ − 1)

γ

%0Cp

κ
iω
〈
θ̃(y, ω)

〉
f

)
, (A.26)

where the thermodynamic identity P0/T0 = %0Cp(γ−1)/γ has been used, with γ being the specific heat ratio of the pore
fluid. Finally, by combining all these results together and using the definition (A.24), the averaging of Eq. (A.25) leads to
the following formula for the macroscopic mass balance equation (after dropping the superscript indicating the order and
the subscript x)

∇ ·V(x) + iω C(ω) p(x) = 0, (A.27)

where the effective compressibility C(ω) of the homogenised medium is defined as

C(ω) =
φ

P0

(
1− (γ − 1)

γ

%0Cp

φκ
iω θ(ω)

)
. (A.28)

Equations (A.18) and (A.27) describe the harmonic flow in a homogenised porous medium characterised by the effec-
tive compressibility C and dynamic viscous permeability tensor k (alternatively, one may use the dynamic flow resistivity
tensor σ = η k−1). To discuss the isotropic sound propagation in such a medium, let us now consider that the porous
material is macroscopically isotropic, i.e. k(ω) = K(ω) I, where I is the unitary second-rank tensor (and consequently,
σ = σ(ω) I, where σ(ω) = η/K(ω)); with some approximation, this approach is also valid in the case of a preferential
flow (or wave propagation) direction. Now, the dynamic Darcy’s law (A.18) takes the isotropic form

V(x) = −K(ω)

η
∇p(x) (A.29)

which, when combined with the macroscopic mass balance equation (A.27), leads to the Helmholtz equation for harmonic
wave propagation in isotropic media

∇2p(x) + ω2 η C(ω)

iωK(ω)
p(x) = 0 , (A.30)

where the effective wave number kw and the effective (complex-valued) speed of sound ce can be at once identified as

kw(ω) = ω

√
η C(ω)

iωK(ω)
, ce(ω) =

√
iωK(ω)

η C(ω)
. (A.31)

The effective bulk modulus Be and density %e, as well as the characteristic impedance Ze for the homogenised medium
are calculated from the following formulas

Be(ω) =
1

C(ω)
, %e(ω) =

η

iωK(ω)
=
σ(ω)

iω
, Ze(ω) =

√
η

iωK(ω) C(ω)
=

√
σ(ω)

iω C(ω)
, (A.32)

where the first formula is (by definition) straightforward, while the latter two are derived by recalling the well-known
relations ce =

√
Be/%e and Ze = %e ce. Note that the following (harmonic and source-less) Cauchy momentum equation

is satisfied: iω%eV +∇p = 0; the formula for %e is also obtained when this equation is combined with the isotropic form
of Darcy’s law (A.29).
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A.2 Dynamic permeability and tortuosity functions, effective properties and sound absorption
As demonstrated above, the macroscopic description of sound propagation in single-porosity rigid-frame materials is
related to two response functions: the dynamic viscous permeability K(ω) and the dynamic thermal permeability θ(ω).
When these functions are known, the complex-valued frequency-dependent effective properties (i.e. %e(ω), C(ω) orBe(ω),
etc.) can be calculated and sound propagation can be analysed in a homogenised medium of acoustic fluid using the
Helmholtz equation (A.30).

In this work, wave propagation in isotropic media is considered, which means that the dynamic permeability ten-
sor k(ω) is isotropic or can be approximated as such. Then, the dynamic permeability function can be computed as the
spherical part of this tensor, namely, K(ω) = 1

N trk(ω) = 1
N k(ω) • I (here, N = 2 or N = 3 for two- or three-

dimensional problems, respectively, the operator tr is the trace of a tensor, and the operation • is the scalar product of two
second-order tensors), which is justified when its deviatoric part (k − K I) is zero (i.e. tends to 0 when compared with
k) or at least the norm of it is much smaller than |K|. Finally, the isotropic approximation is also possible in the case
of a plane-wave propagation in the preferential direction defined by a unitary vector e; then, the dynamic permeability
function is computed as K(ω) =

(
k(ω) · e

)
· e. Note that in that case (which is, of course, also true for truly isotropic

tensor k), one needs to know only the projection of k onto this direction, i.e. the vector k{e} ≡ k · e. To determine
this vector (for any chosen direction e) one must solve the leading-order boundary value problem of oscillatory viscous
flow (A.12)–(A.14) (arising from homogenisation) for a discrete set of (computational) frequencies, assuming that the
locally-constant pressure gradient driving the flow is ∇xp(0) =

∥∥∇xp(0)
∥∥ e (where the value of

∥∥∇xp(0)
∥∥ can be taken

arbitrarily but should be small enough to comply with the assumption of linearity). Then, the numerically calculated
leading-order fluid velocity field v(0) is inserted in formula (A.15), which is averaged using the operator (A.17) to get the
projection of the dynamic permeability tensor onto e as

k{e} ≡ k · e =
〈
k̃ · e

〉
= − η∥∥∇xp(0)

∥∥ φ
〈
v(0)

〉
f
. (A.33)

Alternatively, one can conveniently reformulate the oscillatory Stokes problem and use the fact that the dynamic vis-
cous permeability tensor is symmetric [78] as follows. Let us formally define: the unitary vector e ≡ ∇xp(0)/

∥∥∇xp(0)
∥∥

specifying the constant pressure gradient direction (and thus, the preferential wave propagation direction), the vector
component k̂ (related to that direction) of the tensor field k̃, that is, k̂ ≡ k̃ · e, and the scalar field π̂ ≡ π̃ · e as the
projection of the vector field π̃ onto e. Using these relations for formulas (A.15) and (A.16), when inserting them into
Eqs. (A.12)–(A.14), leads to an oscillatory viscous flow problem formulated in terms of the Ω-periodic (unknown) vector
field k̂ and scalar field π̂, namely,

iω

ν
k̂−∇2

yk̂ +∇yπ̂ = e in Ωf, (A.34)

∇y · k̂ = 0 in Ωf, (A.35)

k̂ = 0 on Γsf, (A.36)

where ν = η/%0 is the kinematic viscosity of the pore fluid. Note that k̂(y, ω) can be treated as an Ω-periodic velocity
field normalised by −

∥∥∇xp(0)
∥∥ /η, so this scaled-velocity field k̂ has the unit of permeability (m2) [79], while π̂ is

a similarly normalised pressure field with the unit of length (m). Having calculated the solution k̂, the corresponding
vector component of the (macroscopic) dynamic permeability tensor is found by averaging, i.e. k{e}(ω) =

〈
k̂(y, ω)

〉
=

φ
〈
k̂(y, ω)

〉
f
. In the case of isotropy or if e is the preferential direction of flow the dynamic viscous permeability can be

calculated as K(ω) = k{e}(ω) · e.
In general, if the whole (anisotropic) permeability tensor is needed, one should carry out N oscillatory flow cal-

culations (N = 2 for 2D, and N = 3 for 3D problems), separately, for N mutually perpendicular directions e{i}

(i = 1, . . . , N ) related to the locally-constant pressure gradients driving the flow ∇xp(0) =
∥∥∇xp(0)

∥∥ e{i}. Denoting the
projection of tensor k onto e{i} by k{i}, i.e. k{i} ≡ k · e{i}, when all projections are found the dynamic permeability
tensor is computed as k =

∑N
i=1 k

{i} ⊗ e{i}.
To determine the dynamic thermal permeability θ(ω), the leading-order boundary value problem (A.21)–(A.22), aris-

ing from homogenisation and describing the harmonically-driven thermal diffusion (or heat conduction) in the pores,
must be solved for each one of the computational frequencies, assuming an arbitrary value for the locally-constant pres-
sure field p(0). When the solution T (0) is found, this local temperature field is used with formula (A.23) to obtain the local
field θ̃, which is then averaged as shown in Eq. (A.24), to get the dynamic thermal permeability as

θ =
〈
θ̃
〉

=
κ

iω p(0)
φ
〈
T (0)

〉
f
. (A.37)
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Equivalently, inserting Eq. (A.23) into Eqs. (A.21)–(A.22) leads to a (thermal) diffusion problem formulated in terms of
the Ω-periodic unknown scalar field θ̃, namely,

iω

νth
θ̃ −∇2

y θ̃ = 1 in Ωf, (A.38)

θ̃ = 0 on Γsf, (A.39)

where νth = κ/(%0Cp) = ν/NPr is the thermal diffusivity, with NPr = η Cp/κ being the Prandtl number for the pore fluid.
Note that θ̃(y, ω) can be treated as an Ω-periodic field of temperature normalised by iωp(0)/κ, so that θ̃ has the unit of
permeability (m2) [79]. When this local field θ̃ is found as the solution of this re-scaled thermal diffusion problem (A.38)–
(A.39), the dynamic thermal permeability is simply computed by averaging, i.e. θ(ω) =

〈
θ̃(y, ω)

〉
= φ

〈
θ̃(y, ω)

〉
f
.

The effective density of the homogenised medium can be calculated from the formula depending on its porosity φ,
dynamic visco-inertial tortuosity α(ω) which is a generalization of the concept of tortuosity, and on the density %0 of
saturating fluid, namely,

%e(ω) =
%0 α(ω)

φ
. (A.40)

When this equation is compared with the second formula from (A.32), the following relation of inverse proportionality
between the functions of dynamic visco-inertial tortuosity and dynamic viscous permeability is obtained

α(ω) =
φ ν

iωK(ω)
. (A.41)

In the case of anisotropic porous structures, the second-order tensors of dynamic viscous tortuosity, α(ω) = φ ν
iω k−1(ω),

and effective density, ρe(ω) = %0
φ α(ω) = η

iωk
−1(ω), can be introduced as related to the anisotropic tensor of dynamic

permeability k.
Now, the so-called dynamic thermal tortuosity is introduced per analogy to its visco-inertial counterpart (A.41),

namely,

αth(ω) =
φ νth

iω θ(ω)
. (A.42)

Note that at each frequency, the thermal tortuosity is inversely proportional to the dynamic thermal permeability. Using
this formula, the effective compressibility (A.28) and its inverse (the effective bulk modulus) can be presented as follows

C(ω) =
φβ(ω)

γP0
, Be(ω) =

B0

φβ(ω)
, where β(ω) = γ − γ − 1

αth(ω)
, (A.43)

and B0 = γP0 is the adiabatic bulk modulus of the pore fluid.
Now, the effective speed of sound and characteristic impedance for the fluid acoustically equivalent to porous medium

can be computed from the formulas involving the dynamic tortuosities α and αth (or instead of αth, the more convenient
function β defined above), namely,

ce(ω) =

√
Be(ω)

%e(ω)
=

c0√
α(ω)β(ω)

, Ze(ω) = %e(ω) ce(ω) =
Z0

φ

√
α(ω)

β(ω)
, (A.44)

where c0 =
√
B0/%0 and Z0 = %0c0 are the speed of sound and characteristic impedance of the saturating fluid, respec-

tively. The effective speed of sound allows to calculate the complex wave number

kw(ω) =
ω

ce(ω)
=
ω

c0

√
α(ω)β(ω). (A.45)

The real part of this frequency-dependent function is always positive, while the imaginary part is always negative (for
ω > 0, and because the positive convention exp(+iωt) has been adopted), so that the complex wave number may be
decomposed into its real and imaginary parts as follows

kw(ω) = Re kw(ω) + i Im kw(ω) =
ω

cw(ω)
− i dw(ω), (A.46)

where we define
cw(ω) =

ω

Re kw(ω)
and dw(ω) = − Im kw(ω) (A.47)
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as the real-valued (and positive for ω > 0) frequency-dependent functions of wave speed and wave attenuation, respec-
tively. Note that typically, i.e. for any wave-attenuating media, cw = c0/Re(

√
αβ) is not the same as as the real part

of the effective speed of sound, Re ce = c0 Re(1/
√
αβ). Finally, in such dispersive media, i.e. where cw = cw(f), the

wavelength λw is related to the frequency f in a more complex way than by a simple inverse proportionality, although the
general formula, λw = cw/f , remains the same.

When the effective properties of a porous material are determined, the sound absorption of a porous layer (or a
multilayered system) of known thickness can be quickly evaluated. To this end, the real-valued frequency-dependent
acoustic absorption coefficient is calculated as

A(ω) = 1− |R(ω)|2, R(ω) =
Zs(ω)− Z0

Zs(ω) + Z0
. (A.48)

Here, R(ω) is the reflection coefficient which depends on the characteristic impedance Z0 of the adjacent fluid (which is
the same as the fluid in pores), and on the complex-valued frequency-dependent surface acoustic impedance Zs(ω) of the
absorbing layer (or multi-layer). In the case of a single sound-absorbing layer of porous material with open porosity φ
and thickness h, placed on a rigid, impervious wall, the surface acoustic impedance is found analytically as

Zs(ω) = −i%e(ω)ce(ω) cot

(
ωh

ce(ω)

)
= −i

Z0

φ

√
α(ω)

β(ω)
cot

(
ωh

c0

√
α(ω)β(ω)

)
, (A.49)

by solving the corresponding Helmholtz problem in the layer of equivalent homogenised medium (with the effective
density %e and effective speed of sound ce) placed on a rigid, impervious wall and subject on its free surface to a normally-
incident plane harmonic wave.

A.3 Approximations based on transport parameters
Dynamic permeabilities and tortuosities can be determined using scaling functions [24–28] which depend on the kine-
matic viscosity ν and thermal diffusivity νth of the pore fluid, and on the so-called transport parameters which are fluid-
independent and related to the micro-geometry of the porous medium. In comparison with the direct calculation of the
dynamic properties discussed in Section A.2, this is an approximative approach. However, it is significantly less compu-
tationally demanding and usually provides accurate predictions. The most enhanced, robust and accurate approximation
that will be used in this paper requires 8 transport parameters, namely: the porosity φ, the (geometrical) tortuosity α∞
[24], the static viscous [28] and thermal [26] tortuosities, α0v and α0th, respectively, the static viscous [8] and thermal [27]
permeabilities,K0 and θ0, respectively, and two characteristic lengths, namely, Λv for viscous forces [24], and Λth for ther-
mal effects [25]. The calculation of porosity φ = Ωf/Ω is obvious. Below, we thoroughly discuss how to (numerically)
determine the other transport parameters. Then, the approximation formulas for the dynamic tortuosity and permeability
functions involving these parameters are presented.

The dynamic viscous tortuosity α(ω) is a generalisation of the concept of tortuosity and (by definition) α∞ =
limω→∞Reα(ω) = limω→∞ α(ω), since limω→∞ Imα(ω) = 0. However, for ω → ∞ (i.e. in high-frequency regime)
and in absence of scattering, the viscosity of fluid can be neglected since its behaviour tends to be as that of an ideal fluid,
so that the behaviour of the flow through the porous medium is dominated by the inertia of the saturating fluid. When
the viscosity is neglected (i.e. for η = 0), the Stokes’ equations of oscillatory flow (A.12)–(A.14) become the linearised
Euler’s equations of ideal (i.e. inviscid and incompressible) oscillatory flow, namely,

−iω%0v
(0) = ∇xp(0) −∇yp(1) in Ωf, (A.50)

∇y · v(0) = 0 in Ωf, (A.51)

v(0) · n = 0 on Γsf. (A.52)

Notice that the no-slip boundary condition (A.14) for viscous fluid is replaced by the no-penetration condition (A.52)
for an inviscid one, where n is the unit vector normal to the solid boundary Γsf. Here, in a way similar to Eqs. (A.15)
and (A.16), the velocity v(0) and local pressure p(1) can be linearly related to the global pressure gradient ∇xp(0), which
drives the ideal flow (inside the periodic cell Ωf) described by the system of linear equations (A.50)–(A.52), namely,

v(0)(x, y) = −
Ẽ(y)

iω%0
· ∇xp(0)(x), p(1)(x, y) = −q̃(y) · ∇xp(0)(x) + p̄(1)(x), (A.53)

where Ẽ(y) represents an Ω-periodic local tensor field, q̃(y) is an Ω-periodic local vector field, and p̄(1)(x) is a constant
field. For the sake of simplicity, we are narrowing now our discussion to isotropic media or to the flow in a preferential
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direction e, which means that the pressure gradient forcing the flow is ∇xp(0)(x) =
∥∥∇xp(0)(x)

∥∥ e, and the fields of
velocity and pressure (A.53) can be expressed as

v(0)(x, y) = −
∥∥∇xp(0)(x)

∥∥
iω%0

E(y), p(1)(x, y) = −
∥∥∥∇xp(0)(x)

∥∥∥ q(y) + p̄(1)(x), (A.54)

where we have introduced the Ω-periodic vector field E(y) ≡ Ẽ(y) · e and scalar field q(y) ≡ q̃(y) · e. Inserting these
linear relations into the equations of oscillatory ideal flow (A.50)–(A.52) yields

E = e−∇yq in Ωf, (A.55)

∇y ·E = 0 in Ωf, (A.56)

E · n = 0 on Γsf. (A.57)

This set of equations describes an electric conduction problem of a porous medium made up of a dielectric (i.e. insulating)
solid frame and saturated with an electrically conductive fluid, assuming that e is a global (i.e. external, locally-constant)
electric field, while E(y) is the local electric field and q(y) is the local scalar field of electric potential in the saturating
fluid. Although in our case, these quantities have been normalised by ‖e‖, so that e is in fact a dimensionless constant
unit-vector field, consequently, E is also dimensionless, while q has the unit of length (m). In that way, the problem of
ideal linear flow through a porous medium (A.50)–(A.52) coincides formally with such electric conduction problem [80–
83] described with Eqs. (A.55)–(A.57) which, on the other hand, reduces to a Laplace problem for the Ω-periodic (electric)
potential q, namely,

∇2
yq = 0 in Ωf, (A.58)

∇yq · n = e · n on Γsf. (A.59)

When the solution q is found, the local (Ω-periodic) electric field E is computed from Eq. (A.55).
Let us now assume that (at least virtually) the solid matrix of porous material is dielectric, while the saturating fluid is

characterised by electric conductivity ςf. Due to the Kirchoff’s reformulation of Ohm’s law, the electric current density j
at a given location in the saturating fluid is proportional to the electric field E at that location, namely, j(y) = ςf E(y).
The macroscopic electric current density J through a representative cell Ω of such porous material is the cell average of
this local vector field of electric current density, i.e.

J = 〈j(y)〉 = φ 〈j(y)〉f = φ ςf 〈E(y)〉f (A.60)

On the other hand, the macroscopic electric current density J is related to the macroscopic electric field e by a similar
Ohm’s law formulated for the homogenised medium, namely,

J = ςee where ςe =
φ ςf
α∞

(A.61)

is the effective electric conductivity of porous medium saturated with conductive fluid [81]; it is directly proportional to
the electric conductivity ςf of the saturating fluid and to the porosity φ, while inversely proportional to the tortuosity α∞
of the pore fluid network.

The comparison of Eqs. (A.60) and (A.61) shows that the tortuosity of porous medium plays the following role in the
relation between the global and local electric fields

e = α∞ 〈E(y)〉f . (A.62)

Multiplying both sides of this equation by e yields

‖e‖2 = α∞ 〈E · e〉f , (A.63)

where one may also substitute the following result

〈E · e〉f = 〈E ·E〉f + 〈E · ∇yq〉f = 〈E ·E〉f , (A.64)

obtained by using Eq. (A.55) and the fact that the third averaged term in (A.64) vanishes (by integration by parts), because
the electric field is solenoidal, see Eq. (A.56), Ω-periodic, and satisfies the boundary condition (A.57) on the solid walls.
Equations (A.63) and (A.64) provide equivalent formulas for tortuosity

α∞ =
‖e‖2
〈E · e〉f

=
‖e‖2
〈E ·E〉f

. (A.65)
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Alternatively, the following formula is straightforwardly obtained from Eq. (A.62)

‖e‖2 = α2
∞ 〈E〉f · 〈E〉f or α∞ =

‖e‖
‖〈E〉f‖

. (A.66)

Notice that ‖e‖2 = ‖e‖ = 1, if the calculations are carried out for the normalised constant electric field, i.e. unitary
vector e. On the other hand, whatever the vector e is, it can be eliminated from Eqs. (A.65) and (A.66) to get the
following formula for tortuosity

α∞ =
〈E ·E〉f
〈E〉f · 〈E〉f

= φ
〈E ·E〉
〈E〉 · 〈E〉 . (A.67)

The solution E(y) of the electric conduction problem through periodic representative cell of a porous medium serves
also to determine the viscous characteristic length [24]

Λv = 2

∫
Ωf

E ·EdΩ∫
Γsf

E ·EdΓ
, (A.68)

while the thermal length is calculated directly from the porous micro-geometry as twice the ratio of the volume of fluid
domain to the surface of solid walls (i.e. the solid-fluid interface) inside the cell

Λth = 2

∫
Ωf

dΩ∫
Γsf

dΓ
. (A.69)

It can be demonstrated (see [9, 13] and Appendix D in [73]) that for a porous medium with channels parallel to the direction
of flow and with arbitrary but constant cross-sections α∞ = 1 (the porous medium is not tortuous) and 2Λv = 2Λth is the
well-known hydraulic diameter.

The dynamic viscous permeability K(ω) is a generalisation of the (static, viscous) permeability and by definition
K0 = K(0) (since ImK(0) = 0), while α0v = limω→0 Reα(ω). Therefore, to calculate the static viscous permeabilityK0

and tortuosity α0v, the equations (A.34)–(A.36) are solved for ω = 0. Then, the first term in Eq. (A.34) vanishes and
the whole set of equations is not only frequency-independent, but also real-valued and fluid-independent. We denote
k̂0(y) ≡ k̂(y, 0) and π̂0 ≡ π̂(y, 0), and solve the following set of equations formulated in terms of the real-valued
Ω-periodic unknowns k̂0 and π̂0

−∇2
yk̂0 +∇yπ̂0 = e in Ωf, (A.70)

∇y · k̂0 = 0 in Ωf, (A.71)

k̂0 = 0 on Γsf. (A.72)

This is a scaled Stokes’ problem (i.e. a normalised steady-state viscous flow globally driven in the direction e), and in
order to determine the static viscous permeability tensor k0 one may proceed as discussed in Section A.2 in the case of
the dynamic permeability tensor (incidentally, notice that k0 = k(0)). That means solving the problem (A.70)–(A.72)

N -times, independently, for mutually perpendicular directions e{i} (i = 1, . . . , N , whereN = 2 in 2D andN = 3 in 3D);
then, the static permeability tensor is computed as k0 =

∑N
i=1 k

{i}
0 ⊗ e{i}, where k

{i}
0 =

〈
k̂
{i}
0 (y)

〉
= φ

〈
k̂
{i}
0 (y)

〉
f

and the field k̂
{i}
0 (y) is the solution for e = e{i}. When the anisotropy factor is not large, an isotropic approximation

can be applied for the permeability tensor, i.e. k0 ≈ K0I, where the static viscous permeability has been computed as
K0 = trk0. Alternatively (and usually), the static viscous permeability is computed as follows for the preferential flow
direction e

K0 =
〈
k̂0(y) · e

〉
= φ

〈
k̂0(y) · e

〉
f
. (A.73)

Note that in the case of structural isotropy, the same value of permeabilityK0 is obtained for any direction e. Incidentally,
when K0 is known, the static flow resistivity can be computed for a particular fluid as σ0 = σ(0) = η/K0. Finally, the
static viscous tortuosity is calculated from the solution k̂0(y) using the following formula

α0v = φ

〈
k̂0 · k̂0

〉

〈
k̂0

〉
·
〈
k̂0

〉 =

〈
k̂0 · k̂0

〉
f〈

k̂0

〉
f
·
〈
k̂0

〉
f

, (A.74)

which (if need be) can be generalised for anisotropy to give the second-order tensor of static viscous tortuosity.
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Notice that, by definition, θ0 = θ(0) (since Im θ(0) = 0) and α0th = limω→0 Reαth(ω). Therefore, to calculate the
static thermal permeability θ0 and tortuosity α0th, the equations (A.38)–(A.39) are solved for ω = 0, which means that
the first term in Eq. (A.38) vanishes and the new set of equations describes a Poisson’s problem, which is real-valued and
frequency- and fluid-independent. By denoting θ̃0(y) ≡ θ̃(y, 0), the following set of equations, formulated in terms of the
real-valued Ω-periodic unknown θ̃0, is to be solved

−∇2
y θ̃0 = 1 in Ωf, (A.75)

θ̃0 = 0 on Γsf. (A.76)

Then, the static thermal permeability is calculated as

θ0 =
〈
θ̃0(y)

〉
= φ

〈
θ̃0(y)

〉
f
, (A.77)

while the static thermal tortuosity is computed from the following formula

α0th = φ

〈
θ̃2

0

〉

〈
θ̃0

〉2 =

〈
θ̃2

0

〉
f〈

θ̃0

〉2

f

. (A.78)

The transport parameters permit quick, accurate approximations of the dynamic tortuosity and permeability func-
tions characterising the porous medium saturated with air (or other specified fluid). Three approximation models are
used throughout this work, or as a matter of fact, an advanced semi-phenomenological model and (additionally) its two
enhanced versions, namely:

• JCA – the Johnson-Champoux-Allard model [24, 25] with 5 transport parameters, i.e. φ, α∞, K0, Λv and Λth;

• JCAL – the Johnson-Champoux-Allard-Lafarge model [24–27] with 6 transport parameters, i.e. 5 parameters as in
the JCA model plus the static thermal permeability θ0;

• JCALP – the Johnson-Champoux-Allard-Lafarge-Pride model [24–28] with 8 transport parameters, i.e. 6 parame-
ters as in the JCAL model plus the static tortuosities α0v and α0th.

According to this kind of modelling, the dynamic viscous tortuosity α(ω) can be estimated as

α(ω) = α∞
(

1 +
Fv(ω)

iω/ωv

)
, where Fv(ω) = 1− Pv +

√
P2

v +
Mv

2

iω

ωv
. (A.79)

Here, the viscous characteristic frequency ωv is introduced, together with the viscous pore-shape factor Mv and the
low-frequency viscous correction parameter Pv, namely,

ωv =
φ ν

α∞K0
, Mv =

8α∞K0

φΛ2
v

, Pv =
Mv

4(α0v/α∞ − 1)
. (A.80)

The formula for Pv depends on the static viscous tortuosity α0v, which is required only by the JCALP model. For the

JCA and JCAL models Pv = 1, and then Fv(ω) =
√

1 + Mv
2 iω/ωv. Similarly, the dynamic thermal tortuosity αth(ω) is

computed as

αth(ω) = 1 +
Fth(ω)

iω/ωth
, where Fth(ω) = 1− Pth +

√
P2

th +
Mth

2

iω

ωth
. (A.81)

Here, the thermal characteristic frequency ωth is introduced, together with the thermal pore-shape factor Mth and the
low-frequency thermal correction parameter Pth defined as follows:

ωth =
φ νth

θ0
, Mth =

8θ0

φΛ2
th
, Pth =

Mth

4(α0th − 1)
. (A.82)

The formula for Pth depends on the static thermal tortuosity α0th, which is required by the JCALP model. For the JCA

and JCAL models Pth = 1, and then Fth(ω) =
√

1 + Mth
2 iω/ωth. Moreover, in the original JCA model, the static thermal

permeability θ0 is not required, because it is approximated by the result obtained, for example, for straight circular
channels, i.e. θ0 = φΛ2

th/8, which means that in this modelMth = 1 and ωth = 8νth/Λ
2
th.

Using relations (A.41) and (A.42) for the approximations (A.79) and (A.81), the corresponding approximation formu-
las for dynamic (viscous and thermal) permeabilities are derived, namely,

K(ω) =
φ ν

iω α(ω)
=

K0

iω/ωv + Fv(ω)
, θ(ω) =

φ νth

iω αth(ω)
=

θ0

iω/ωth + Fth(ω)
. (A.83)

It is direct to confirm that K(0) = K0 and θ(0) = θ0, that is, for ω → 0 the imaginary parts of K and θ vanish and these
functions take their static values.
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B Fillets
Figure B.1 shows a cross-section of the porous periodic structure used for benchmark calculations in Section 3.2 with
added fillets with smooth inflection points, and provides all necessary data for the exact re-construction of such geometry.
Note that it can be easily done using even very simple CAD systems that do not support fillets, but only three geometric
primitives, namely, a sphere (for the pores), a cube (for the cubic cell), and a torus (for the manually constructed fillets).
The fillet radius RF is related to the pore radius Rp, and for the sake of the drawing legibility RF = Rp/10 in Figure B.1,

win
do

w
ra

di
us
R

w

fillet radius
RF = Rp/10

Rp/50

Rp/200

Rp/25

Rp/100

pore rad
ius R

p

RF

RF

1
2`c

RT
Rw

R̂w

Ĥsc

Hsc

Ψ

smooth inflection point

spherical cap
sharp egde
(avoided)

Figure B.1: A cross-sectional view of the regular periodic foam showing the geometry with fillets around the windows connecting the pores

Table B.1: Geometrical features of the periodic REV with fillets (analytical calculations), for decreasing values of RF (and fixed Rp =
0.11mm), and their convergence toward the corresponding values of the REV with sharp edges (for Rp/RF → ∞)

Rp/RF φ (%) Vf (m3) Ss (m2) Λth (m) Rw (m)

10 68.139 5.4512 · 10−12 9.6596 · 10−8 1.1286 · 10−4 5.7125 · 10−5

25 67.364 5.3891 · 10−12 1.0380 · 10−7 1.0384 · 10−4 5.1164 · 10−5

50 67.228 5.3782 · 10−12 1.0693 · 10−7 1.0059 · 10−4 4.8681 · 10−5

100 67.191 5.3753 · 10−12 1.0869 · 10−7 9.8914 · 10−5 4.7307 · 10−5

200 67.181 5.3745 · 10−12 1.0962 · 10−7 9.8061 · 10−5 4.6581 · 10−5

∞ 67.178 5.3742 · 10−12 1.1058 · 10−7 9.7197 · 10−5 4.5826 · 10−5

Rp/RF φ/φ̂ = Vf/V̂f Ss/Ŝs Λth/Λ̂th Rw/R̂w

10 1.01432 0.87351 1.16119 1.24657
25 1.00278 0.93865 1.06832 1.11649
50 1.00075 0.96698 1.03492 1.06230
100 1.00019 0.98283 1.01767 1.03232
200 1.00005 0.99124 1.00889 1.01647

φ̂, V̂f, Ŝs, Λ̂th, R̂w are the values for Rp/RF → ∞ (i.e., no fillets),
listed in the last row of the upper table.
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however, curvature radii of smaller fillets (in particular, those used for numerical calculations of transport parameters) are
also depicted to demonstrate how the geometry with fillets tends to the (initial) one with sharp edges, whenRF decreases to
zero. In particular, one may compare the radius R̂w of sharp-edge windows connecting the pores, with the corresponding
radius Rw of a filleted window, namely:

R̂w =
√
R2

p − 1
4`

2
c , Rw = RT −RF, RT =

√(
Rp +RF

)2 − 1
4`

2
c . (B.1)

Here,RT is the large radius of the fillet torus (see Figure B.1). The window radii, as well as the volume of the pore fluid Vf
and surface area of the solid skeleton Ss inside the periodic REV, its porosity φ = Vf/`

3
c , and the thermal characteristic

length Λth = 2Vf/Ss, are compared in Table B.1 for various values of the ratio Rp/RF (with fixed Rp = 0.11 mm and
decreasing fillet radius RF). These geometrical results are determined analytically for both cases, i.e. the geometry with
sharp edges and the one with fillets, from the following formulas for the fluid volume and solid surface, where the “hat”
symbol (ˆ) marks the case with sharp edges (i.e. without fillets), namely,

V̂f =
4π

3
R3

p − 6V̂sc, Ŝs = 4πR2
p − 6Ŝsc (with sharp edges, no fillets), (B.2)

Vf =
4π

3
R3

p − 6Vsc + 6Vw, Ss = 4πR2
p − 6Ssc + 6Sw (for smooth surface with fillets), (B.3)

where the volumes (V̂sc and Vsc) and surface areas (Ŝsc and Ssc), as well as the heights (Ĥsc and Hsc) of the relevant
spherical caps (see Figure B.1) are

V̂sc =
π

3
Ĥ2

sc

(
3Rp − Ĥsc

)
, Ŝsc = 2πRpĤsc, Ĥsc = Rp − 1

2`c (B.4)

Vsc =
π

3
H2

sc

(
3Rp −Hsc

)
, Ssc = 2πRpHsc, Hsc = Ĥsc +RF sin Ψ, (B.5)

respectively, and the volume Vw and solid surface area Sw inside the filleted window are calculated as

Vw = πRF

(
R2

T sin Ψ +R2
F

(
sin Ψ− 1

3 sin3 Ψ
)
−RFRT

(
Ψ + sin Ψ cos Ψ

))
, (B.6)

Sw = 2πRF

(
RTΨ−RF sin Ψ

)
, Ψ = arcsin

`c

2(Rp +RF)
. (B.7)
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