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Cécile Spychala(1) , Joël Armand(2), Clément Dombry(1) and Camelia Goga(1)
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ABSTRACT
Understanding and modelling road crash data is crucial in fulfilling safety goals by
helping national authorities to take necessary measures to reduce crash frequency
and severity. This work aims at giving a multivariate statistical analysis of road
crash data from the French region of Franche-Comté with special attention to road
crash gravity. The first step for this multivariate analysis was to perform Multiple
Correspondence Analysis in order to assess associations between the road crash
injury and several important accident-related factors and circumstances. Log-linear
models are used next in order to detect associations between road crash severity
and related factors such as alcohol/drug consumption or spatial crash locations.
The effects of each factors have been also evaluated on the road crash gravity by
using ordinal logistic regression. Data used in this study are extracted from BAAC
files, the French census of road crashes.

Key words: geometric data analysis, multiple correspondence analysis, ordinal logistic regres-

sion, log-linear model, road crash severity.

1. Introduction

Over the last decade, the number of road crashes has continuously been decreasing
in France. Indeed, 61 224 accidents have been recorded in 2017 instead of 58 352 in
2018, a decrease of 4,7% (ONISR, 2019). However, road accidents still happen and
important efforts and means are developed to prevent them. Among these, modern
statistical methods are efficient prevention tools used to describe and model accident
data. This paper is concerned about road accidents that occurred in the Franche-Comté
region of France (see Fig. 1). This region from the east of France is split up into four
departments called Doubs, Jura, Haute-Saône and Teritoire de Belfort. Regarding to
the mortality rate from 2017 to 2018, this rate has globally decreased for this region.
However, the situation is quite different within each department. Indeed, the death
rate has increased by 3% from 2017 in the Doubs department while it has decreased
in the Haute-Saône, Jura and Territoire de Belfort departments by 45%, 65% and
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respectively by 50% (ONISR, 2019). Understanding and modelling accident data is
crucial in fulfilling safety goals by helping national authorities to undertake necessary
measures to reduce crash frequency and severity.

This paper focuses on accidents in Franche-Comté involving casualties. An accident
refers to a road crash with casualty needing hospital care and can involve several cars
and several people. One of the main goals of the National Gendarmerie of Besançon
(Doubs, France) is to reduce the number of accidents in Franche-Comté. More precisely,
the National Gendarmerie of Besançon plans to be able in the near future to anticipate
road crashes by using time and spatial modelling of accident data. This study aims
at giving a multivariate statistical analysis of the road crashes in Franche-Comté. A
first multivariate descriptive study of French accident data was conducted by Bièvre
(2017) in an unpublished technical report. We intend in this work to give a deeper
analysis of Franche-Comté accident data.

The main goal of this research work is to explain the variable giving the severity or
the gravity of the accidents by using several covariates such as spatial location, time
period, weather conditions, road type, alcohol/drug consumption... Our multivariate
statistical analysis starts with a Multiple Correspondence Analysis (MCA). The MCA
as suggested by Benzécri (Benzécri, 1973, 1982) is the generalization of the Correspon-
dence Analysis (CA) for analyzing jointly more than two categorical variables. This
method is widely used in categorical data analyses because it allows detecting simi-
larities between individuals and assessing associations between categories. Geometric
representations of data clouds in smaller dimension spaces allow identifying clusters
of similar individuals and of associated categories or variables. Many applications of
MCA and related methods in various fields such as social, demographic, economic are
given in Greenacre and Blasius (2006). The goal here is to determine the accident
factors mostly related to road crash severity. In the literature concerning the accident
analysis and prevention, several studies used MCA in various contexts but different
from our framework. For example, Das and Sun (2015) used eight years of pedestrian
crash data and MCA to identify key associations between risk factors and Das and
Sun (2016) used MCA to identify crash-prone factors producing fatal run-off-road
crashes; Das et al. (2018) investigated the wrong way driving crash patterns by using
MCA while Fort et al. (2019) tried to explain working conditions and risk exposure of
employees whose occupations require driving on public roads.

The MCA analysis conducted on the Franche-Comté accident data set allows us
to identify several variables associated with the road crash severity. A more in-depth
analysis of these variables is next considered by log-linear modelling (Agresti, 2013).
The log-linear model belongs to the class of generalized linear model (McCullagh and
Nelder, 1989). In the case of categorical data, the cell counts of the contingency table
are modeled by a Poisson distribution and a log link function is used for the mean. More
precisely, the log-linear model specifies how the expected counts depend on the levels
of the categorical variables and it allows to quantify the associations and interactions
between those variables. Unlike MCA, log-linear models allow getting insight into
complex dependence patterns such as conditional or marginal dependence which may
exist between several categorical variables. In our framework, we will use log-linear
models in order to detect conditional or marginal associations between road crash
severity and other variables such as alcohol/drug consumption and spatial location. In
a similar way, Abdel-Aty et al. (1998) used log-linear models to explain associations
between the driver age and several important factors and circumstances related to the
accident. Also, Yannis et al. (2005) performed a log-linear analysis in order to test the
significance of first- and second-order effects among various combinations of driver age
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and engine size categories in relation to two-wheeler accident severity and at-fault risk
rates. Then, Abdel-Aty and Abdelwahab (2000) used log-linear models to investigate
whether there are associations between the different driver characteristics and alcohol
involvement and also in order to identify the high-risk group within each driver factor.

Finally, we propose ordinal logistic regression (Agresti, 2013) to model the gravity
level probabilities as a function of explicative covariates such as alcohol/drug con-
sumption, time period and spatial locations. This method widely used in accident data
analysis is a popular supervised learning method for analyzing dependencies between
a binary or multiclass response categorical variable and several explanatory variables.
It allows in particular to separate and identify the effects of each explanatory variable
on the response variable. Rezapour and Ksaibati (2018) used ordinal logistic regression
to investigate the contributory factors that increased the odds of severe single-truck
and multiple-vehicle crashes such as characteristics related to driver or vehicle for in-
stance. Then, Mekonnen (2018) has also performed ordinal logistic regression in order
to identify the risk factors among driver age, speed record or alcohol consumption for
example for severity levels of road traffic accident.

The paper is structured as follows. We first describe in Section 2 our data set as
well as the analysis methods: MCA is described briefly in Section 2.2.1, log-linear
modelling in Section 2.2.2 and ordinal logistic regression in Section 2.2.3. Section 3
contains the main results of our study and, lastly, Section 4 concludes and proposes
several recommendations and perspectives.

2. Material and methods

2.1. Franche-Comté accident data

Data used in this study concern the Franche-Comté road crashes between 2005 to
2018 which are extracted from the French national analysis bulletin of road traffic
injury accidents called BAAC 2 (Bulletin d’Analyse des Accidents Corporels). The
BAAC data are filled in by the security forces present on the accident scene and next,
data are treated, analyzed and put online by the national interdepartmental observa-
tory of road safety (Observatoire National Interministériel de la Sécurité Routière).

The BAAC files contained more than 50 variables from which 15 new categorical
variables have been created and/or reclassified. The Franche-Comté accident dataset
has 11 776 casualties registered in 4 950 accidents. The study focuses only on the
accident itself and not on each casualties. The region Franche-Comté is situated in the
east of France and neighboring Switzerland as we can see from Fig. (1). The counties
situated on the west of Franche-Comté are mountainous and entirely deserved by na-
tional and departmental roads. A daily intensive border activity between Switzerland
and France is also present in these counties.

The analysis emphasizes the accident severity, denoted by type acc, classified into
three ordered levels: “slight safe”, “serious” and “fatal”. An accident is considered as
”slight safe” (11,47% of accidents) if all passengers were safe or had minor injuries;
the label ”serious” was attributed to accidents involving at least one casualty needing
hospital care for more than 24 hours (69,82% of accidents) and lastly, an accident is
considered as ”fatal” (18,71% of accidents) if at least one casualty involved died.

The alcohol/drug consumption by car drivers is one of the main accident causes and
has a great impact on their severity. The categorical variable substance describing the

2The reader can find the BAAC open data on the government website https://www.data.gouv.fr/fr/
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Fig 1.: France map with road crash frequency of Franche-Comté region. Each small
division corresponds to a canton.

alcohol/drug consumption by the drivers involved in a road crash has the following
levels:

• ”alcohol drug” when at least one of the involved drivers has consumed both
alcohol and drugs (2.69%);
• ”drug” when at least one of the involved drivers has consumed drugs (2.73%);
• ”alcohol” when at least one of the involved drivers has consumed alcohol but

not drugs (16.22%);
• ”none” is associated with accidents involving only sober drivers (78.36%).

If the accident involves only one driver, the variable substance concerns the unique
driver.

As mentioned above, the goal of this study is the statistical analysis of accidents
and an accident may involve several drivers and casualties. Variables such as age or
sex refer to individuals and are not straightforward to recode for an accident involving
several persons. For this reason, age or sex do not appear in our multivariate analysis.

In order to give a more thorough statistical analysis, we considered further 7 cate-
gorical variables giving supplementary information about the weather, the type of the
road and of the collision:

• weather with two categories: normal and other kind (such as rainy, cloudy or
snowy weather);
• area with two categories: unurban and urban;
• intersection with two categories: intersection and out of intersection;
• obstacle corresponding to a mobile obstacle with four categories: vehicle, pedes-

trian, other kind (such as animals) and none;
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• shape road with two categories: curve and straight;
• collision with three categories: usual (such as frontal or rear-end collisions),

other kind and none;
• type road with five categories: communal, departmental, national, highway and

other kind (such as parking).

The above variables will be denoted in the paper as general features.
In order to conduct the temporal analysis of the Franche-Comté road crashes, we

used the following categorical variables related to the time period when the accident
occurred, denoted in the rest of the paper as temporal features:

• season with four categories: spring, summer, autumn and winter;
• week with two categories: weekday and week end;
• daytime with two categories: day and night;
• time with five categories: 7am 10am, 11am 3pm, 4pm 7pm, 8pm 11pm and mid-

night 6am. Note that the category 7am 10am means from 7:00 am to 10:59 am.
It is also the case for the other categories of time.

In our accident data, each accident is located by the commune (town or village) and
the department (Doubs, Jura, Haute-Saône, Territoire de Belfort) where the accident
took place. The variable commune was used to build the variable canton (district) by
regrouping the 1176 communes into 50 cantons. In fact, the region of Franche-Comté is
splitted up into 62 cantons, however, some cantons have been grouped together as for
instance ”Belfort-1”, ”Belfort-2” and ”Belfort-3” into ”Belfort”. This reclassification
allows to smooth the variability of cantons categories. Hence, Jura department is
divided into 15 cantons, Haute-Saône and Doubs both into 14 cantons and Territoire
de Belfort into 7 cantons. The categorical variables department and canton have been
used for the spatial analysis, whereas the variable commune was dropped due to too
many categories. We give in Fig. (1) the division of Franche-Comté into cantons with
their road crash frequencies; Jura department is the department with the highest road
crash frequency. These two variables will be denoted in the rest of the paper as spatial
features.
Tab 1 gives the cross-tabulation of the accident severity (type acc) with the different
categorical variables.
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2.2. Statistical analysis

2.2.1. Multiple Correspondence Analysis

The Multiple Correspondence Analysis (MCA) is an efficient unsupervised method
for exploring multivariate categorical data. The aim of MCA is to study the similari-
ties between the individuals, to assess the relationships between the variables and to
examine the associations between the categories. For a thorough description of MCA
as well as of related methods, the reader is referred to the book of Greenacre and
Blasius (2006). This method allows, if appropriate, to corroborate a strong link be-
tween categorical variables. In some cases, MCA enables to cluster categories and to
reduce the data dimension allowing multivariate data to be analyzed more easily. In-
deed, a graphical representation of individuals and variables is built in an orthogonal
system similarly as in Correspondence Analysis (CA). This statistical tool is powerful
for understanding, visualizing and simplifying the data.

MCA can be derived in several ways. One way is to apply CA on the indicator matrix
X = [X1 X2 . . . Xp] derived from the original data Individuals × Categorical
variables of p categorical variables recorded on n individuals. Each indicator matrix Xj

is obtained by column concatenation of Kj dummy variables where Kj is the number
of categories of the jth categorial variable, j = 1, . . . , p. Hence, X is a respondents-
by-categories matrix having n rows, corresponding to individuals, and K =

∑p
j=1Kj

columns, corresponding to variable categories. An element of this table, denoted by
xik, is equal to 1 if the individual i has the category k and 0 otherwise, i = 1, . . . , n
and k = 1, . . . ,K. The indicator matrix X has row sums equal to the constant p and
column sums equal to nk, the marginal frequency of the kth category, namely the
number of individuals having the category k.

This kind of data implies the study of three kinds of objects: the individuals, the
variables but also their categories. The scheme of MCA is to compare individuals and
evaluate variables characteristics by providing row typologies, column typologies and
the relationships between these typologies (Escofier and Pagès, 2008).

From a technical point of view, MCA uses as CA the χ2 distance in order to assess
similarity or dissimilarity between different columns or lines contained in X. The
indicator matrix X is transformed in order to obtain row profiles by dividing each
element of a row by the row frequency as well as column profiles by dividing each
element of a column by its frequency. In the case of MCA, row and column profiles are
very simple. The ith row profile is given by (xik/p)

K
k=1: the elements of a row profile

have only zero and 1/p values, the non-zero value being recorded if the individual
i possesses the category k. So, row profiles will be different only for ith and i′th
individuals having mismatching category levels. The kth column profile is given by
(xik/nk)ni=1 : the elements of the column profile are zero and 1/nk values.

The χ2-distance between two individuals i and i′ is a weighted sum of squared
distances between the ith and i′th row profiles with weights given by the inverse of
the average row profile given by (nk/np)

p
k=1:

d2
i,i′ =

K∑
k=1

np

nk

(
xik
p
− xi′k

p

)2

=
n

p

K∑
k=1

(xik − xi′k)2

nk
, 1 ≤ i, i′ ≤ n. (1)

Hence, the terms from the above sum will be all zero for coincident zero values and
coincident 1/p values meaning that these squared differences will not contribute to the
distance measure. Only differences between noncoincident categories will contribute
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to the distance d2
i,i′

and this contribution is proportional to (1/p)2 with weight equal

to the inverse of the marginal frequency nk. The χ2 distance between row profiles can
be interpreted as a weighted mismatching dissimilarity coefficient: small distance di,i′

means that individuals i and i′ have many categories in commun, so they are very
similar and on the contrary, large distance di,i′ means that i and i′ have few categories
in commun, so they are very different. Moreover, a rare category (small nk) has a large
contribution to the final distance and moves its owner or owners far away from the
others individuals.

While the interpretation of the χ2 distance between individuals is similar to the one
given in the CA, the χ2 distance interpretation for variable analysis is quite different
and more difficult to justify (Greenacre, 2006). Information contained in a variable can
be studied through its categories, thus, MCA focuses mostly on variable categories.
As for row-profiles, the distance between categories k and k′ is defined as the weighted
sum of squared distances between the kth and k′th column profiles with weights given
by the inverse of the average column profile which has in this case all elements equal
to 1/n:

d2
k,k′ = n

n∑
i=1

(
xik
nk
− xik′

nk′

)2

=
1

pk
+

1

pk′
− 2pkk′

pkpk′
, 1 ≤ k, k′ ≤ K, (2)

where pk = nk/n is the relative frequency of the category k and pkk′ the relative
frequency of occurence of categories k and k′. If k and k′ are different categories of the
same variable, then pkk′ = 0. As it is defined, the distance between column profiles
is a decreasing function with respect to the relative frequencies pk and joint relative
frequencies pkk′ . Two categories are close one to each other with respect to this χ2

distance if they have many individuals in common. Again, rare categories are far away
from the others. In brief, it is important to take the frequency of each category into
account. However, as remarked by Greenacre (1989) and Greenacre (2006), the terms
1/pk present in the χ2 distance are hard to interpret.

Once that distances between objects (individuals and variables) have been defined,
the next step in a MCA is to represent individuals and variables in new orthogonal sys-
tems and to make the geometric data analysis on smaller dimension sets (Le Roux and
Rouanet, 2004). As in principal component or correspondence analysis, new orthogo-
nal systems are built such that they maximise the projected inertia of the individual
cloud or variables on these new orthogonal axis, the inertia being defined as usual as
the weighted sum of squared distance of individuals or variables to their barycenter.
Each axis represents a certain percentage from the total inertia. However, these per-
centages in MCA are lower than in CA and more dimensions are needed to interpret
properly the analysis. Transition relations link the cloud of individuals with the cloud
of categories and a biplot representation is usually used as a joint map of individuals
and variable categories. The contribution of each individual to each axis as well as the
quality of its representation on each axis are obtained in a similar way to CA. For
more details about the graphical representation and all matters connected therewith,
see for example Greenacre (2006), Escofier and Pagès (2008, chapter 4), Husson et al.
(2016, chapter 3).
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2.2.2. Log-linear model

Multivariate categorical data as multidimensional contingency tables (with an order
greater than two-way) display relationships between categorical variables. This kind
of data can me model by a log-linear model, that is a generalized linear model for
Poisson regression. The Poisson distribution is the simplest distribution for count data.
The model describes association and interaction among categorical variables and its
purpose is to establish dependence patterns between variables. There is no distinction
between explanatory or response variables since only the cell counts are considered.
The reader may find a comprehensive description in Agresti (2013, chapter 9).

For the sake of simplicity, we present the method for three categorical variables X1,
X2 and X3 respectively with K1, K2 and K3 categories. The most general log-linear
model for the three-way table K1 ×K2 ×K3 is written as

logµk1k2k3
= λ+ λX1

k1
+ λX2

k2
+ λX3

k3
+ λX1X2

k1k2
+ λX1X3

k1k3
+ λX2X3

k2k3
+ λX1X2X3

k1k2k3
, (3)

where µk1k2k3
is the expected frequency of the cell with X1 = k1, X2 = k2 and

X3 = k3. The model-parameters are interpreted as follows: λ is the overall effect; λ
Xj

kj

is the effect of the level Xj = kj , j = 1, 2, 3; λ
XjXj

′

kjkj
′

is the interaction effect of levels

Xj = kj and Xj′ = kj′ , 1 ≤ j, j′ ≤ 3; finally λX1X2X3

k1k2k3
is the interaction effect between

the levels X1 = k1, X2 = k2 and X3 = k3. The model (3) is called the saturated
model, it includes all possible main effects and interactions between the variables.
Some constraints between the parameters ensure model identifiability and the number
of free parameters in the saturated model is equal to the number of cells K1K2K3,
which is why the saturated model fits the data perfectly. It reproduces exactly the
observed cell frequencies and does not provide much relevant information.

The aim is to find the simplest model that fits the data adequately, that is, a
more parsimonious model with less parameters. An unsaturated model is obtained by
imposing the nullity of some coefficients in (3) and may be more appropriate due to
simpler interpretations. Validation is performed thanks to goodness-of-fit assessment
comparing the expected cell frequencies to the observed frequencies. The goodness-of-
fit can be tested with the likelihood-ratio statistic:

G2 = 2

K1∑
k1=1

K2∑
k2=1

K3∑
k3=1

nk1k2k3
log
(nk1k2k3

µ̂k1k2k3

)
,

where nk1k2k3
and µ̂k1k2k3

are respectively the cell frequencies and the fitted values
from model (3) taking into account the nullity constraint (Agresti, 1990). The G2

statistic is used to determine the rejection or acceptance of a model. The larger the
value of G2, the more evidence there is against that the related model does fit the
data adequately, hence it should not be kept.

Different types of unsaturated log-linear models correspond to different type of de-
pendence between the variables X1, X2 and X3. We will consider here only hierarchical
models, meaning that if variables are involved in high order interactions, all the lower-
order interaction term must also appear. For example, if the model contains λX1X2

k1k2
,

then it also must contain λX1

k1
and λX2

k2
. Table 2 summarizes the different types of result-

ing models which are ordered with increasing complexity. The simplest model, noted
(X1, X2, X3), assumes the nullity of all the interaction effects and corresponds to the
mutual independence of X1, X2 and X3. The model with no interaction of order 3 and
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Tab 2.: Different structures of log-linear models corresponding to different dependence
structures. The third column ”Symbol” corresponds to model notations, that is, the
higher-order model term represented of each variable used in the model.

Log-linear model Interpretation Symbol

λ+ λX1

k1
+ λX2

k2
+ λX3

k3
mutual independence (X1, X2, X3)

λ+ λX1

k1
+ λX2

k2
+ λX3

k3
+ λX2X3

k2k3
independence of X1 and (X2, X3) (X1, X2X3)

λ+ λX1

k1
+ λX2

k2
+ λX3

k3
+ λX1X3

k1k3
+ λX2X3

k2k3
independence of X1 and X2 given X3 (X1X3, X2X3)

λ+ λX1

k1
+ λX2

k2
+ λX3

k3
+ λX1X2

k1k2
+ λX1X3

k1k3
+ λX2X3

k2k3
homogeneous association (X1X2, X2X3,X1X3)

no interaction of second order between X1, X2 and X1, X3 is noted (X1, X2X3) and
corresponds to the independence of X1 and (X2, X3). The model with no interaction
of order 3 and no interaction of order 2 between X1 and X2 is noted (X1X3, X2X3)
and corresponds to the conditional independence of X1 and X2 given X3. Finally, the
model (X1X2, X2X3, X1X3) has all interactions of order 2 but no interaction of order
3 and corresponds to homogeneous association that we will explain below. One goal of
the analysis of the log-linear model is to find out which is the simplest model suitably
fitting the data.

We now discuss marginal and conditional association of variables. A two-way con-
tingency table can be obtained by marginalizing out the third variable, obtaining the
so-called marginal table. Associations in this table are summarized by the marginal
odd ratios. The marginal odds ratio of a 2× 2 table (of X1 and X2) is defined by

θX1X2
=
µ11+µ22+

µ12+µ21+
.

where µij+ =
∑

k3
µijk3

are the expected marginal frequencies with i, j = 1, 2 and k3

a fixed category of X3.
The distribution of the two variables X1 and X2 can be displayed conditionally

on different levels of X3 using cross sections of the three-way contingency table. The
associations in these cross-sections (also called partial tables) are called conditional
associations and summarized by conditional odds ratios: for instance the ratio of the
odds of a 2× 2×K3 table is defined by

θX1X2(k3) =
µ11k3

µ22k3

µ12k3
µ21k3

.

On the other hand, the absence of interaction of order 3 in the model
(X1X2, X2X3, X1X3) implies that the conditional odds ratios do not depend on the
category of the third conditioning variable (Agresti, 2013). This property explains the
term homogeneous association.

In practice, often data sets contain a large number of categorical variables which
may have a large number of levels. Hence, using log-linear models as described before
would require a large number of higher order interactions. The estimation and inter-
pretation of parameters may be difficult in such situations. To cope with this difficulty,
one can restrict the interaction parameters to have some predefined form, for exam-
ple a product form as suggested by Andersen (1980), Goodman (1986). The resulting
model, known as the multidimensional row-column or the RC association model is
log-multiplicative rather than log-linear since it contains multiplicative terms for the
interactions. The number of parameters from log-multiplicative models to be inter-
preted are considerably reduced in this way. Coefficients used in these multiplicative
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terms are closely related to elements from the singular value decomposition associated
to the correspondence analysis of the contingency table as described in Van der Heij-
den et al. (1989). The simple or multiple correspondence analysis may be also used to
detect groups of variables or categories of variables which are mostly related. Then,
one can fit a log-linear model using only these groups of selected variables/categories
of variables. The resulting log-linear model is no longer hierarchical but the number
of interactions is considerably reduced.

2.2.3. Ordinal regression model

The logistic regression is a popular supervised learning method for analysing depen-
dencies between a response categorical variable Y (binary or multiclass) and explana-
tory variables denoted by X = (X1, . . . , Xp). More precisely, the logistic regression
is used in order to separate the effects of each variable, that is, identify the effects
of an explanatory variable Xj , j = 1, . . . , p, on the response variable Y . The logistic
regression for a binary or multiclass response variable will be presented briefly below,
for more details see for example (McCullagh and Nelder, 1989, chapter 5), (Agresti,
1990, chapter 9) or (Hothorn and Everitt, 2014, chapter 7).

Let Y ∈ {0, 1} be a binary response variable. The logistic regression model is written
as

P(Y = 1 | X = x) = F (β0 + βTx),

where x ∈ Rp, β0 ∈ R, β ∈ Rp and F (t) = et/(1 + et), t ∈ R, is the inverse logistic link
function. The coefficients β0, β1, . . . , βp are estimated by maximum likelihood method.
Equivalently, the log odds of the event {Y = 1} given X = x is linear in x :

log odds(Y = 1 | X = x) = log
P(Y = 1 | X = x)

1− P(Y = 1 | X = x)
= βTx.

Finally, a variable Xj reveals to have an effect on the response variable if the result of
the nullity coefficient test for βj is significant, that means, βj not equal to 0 (several
nullity tests exist such as Wald test for instance).

Now, in this study, the focus lies on a categorical variable with more than two cate-
gories. Let Y be a multiclass response variable. The logistic regression for a multiclass
response variable is an extension of the logistic regression for a binary one. When
the categories {m1, . . . ,mq} of the response variable Y are hierarchically ordered as
m1 ≺ . . . ≺ mq, a way to model Y is to suppose that there exists a latent unobserved
continuous variable denoted Y ∗ ∈ R, with logistic distribution F , such that

Y = mk if and only if ck−1 < Y ∗ ≤ ck,

where −∞ = c0 < c1 < . . . < cq−1 < cq = +∞ and k = 1, 2, . . . , q. Then, the ordinal
regression model is written as

P(Y � mk | X = x) = F (ck − βTx), (4)

where k = 1, 2, . . . , q − 1. Note that the general intercept β0 is replaced by the
set of ordered intercept paramaters ck mentioned before. The unknown coefficients
c1, . . . , cq−1, β1, . . . , βp are estimated by maximimum likelihood.
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Model (4) is also called the proportional-odds model due to the following property:
the log odds ratio of {Y � mk} at X = x1 and X = x2 is given by

log
odds(Y � mk | X = x1)

odds(Y � mk | X = x2)
= −βT (x1 − x2),

and does not depend on the category mk.

3. Results

This section aims at giving a multivariate analysis of Franche-Comté road crash data
by using the above described methods. Our analysis begins by performing several
MCA analyses on road crash variables to provide insights multivariate road crash
related variables by using geometric data visualization. This method is a powerful
tool to distinct non-trivial category associations if it is the case. More exactly, MCA
analyzes were performed by considering temporal and spatial features separately and
next, a global MCA analysis based on temporal, spatial features and variables which
revealed to be most related one to another from separate MCA analysis. General
features such as crash gravity, alcohol/drug consumption, road type and so on were
included in the three performed MCA analyzes. These MCA analyzes revealed several
association and interaction patterns among the set of categorical variables related to
road crash gravity and hierarchical and non-hierarchical log-linear models were fitted
in second time to describe more thoroughly these associations. Finally, the ordinal
regression model allows to quantify the effects of each explanatory variable on the
ordered response variable road crash gravity.

This study used open-source R software packages FactoMineR (Lê et al., 2008) and
factoextra (Kassambara and Mundt, 2019) to perform MCA, glm function to per-
form log-linear models, then packages MASS (Venables and Ripley, 2002) and ordinal

(Christensen, 2019) to perform ordinal logistic regression. Graphics were plotted with
ggplot2 package (Wickham, 2016).

3.1. MCA of road crash temporal variables

We conducted a MCA temporal analysis by considering general and temporal fea-
tures as described in Section (2.1). Spatial features are not included in MCA analysis.
Fig (2) gives the percentages of variance explained by each of the first ten axes built
by the MCA analysis. The first three-factorial axes explain 22,09% of the total vari-
ance and only these axes were kept for further analysis. Two-dimensional geometrical
representations are given in Fig (3)-(5) and interpreted below. Each time, only the 25
best represented categories have been plotted.

The two-dimensional map in Fig (3) gives the representation of categories on the
plane made by axis 1 and axis 2 and it accounts for 16,07% of the total inertia. The
more categories a variable has, the more it contributes to the inertia. The variables
season and weather are not represented on the first factorial plane since they are very
poorly represented on this plane. Next, categories with the greatest contribution to
the axis 1 are ”night” (13,26%), ”none” from obstacle (10,57%) and ”midnight 6am”
(9,26%) and respectively, ”pedestrian” (28,45%), ”urban” (19,04%) and ”other kind”
from collision (11,46%) for axis 2.
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In this first factorial plane, axis 1 shows the contrast between weekday accidents
(accidents occurring during the week) and weekend ones (accidents occurring during
the weekend). Weekday accidents are more frequent during the day and mostly around
lunch time, in urban areas, on communal roads and are not associated to alcohol or
drug consumption. These accidents are more likely to happen on straight roads, at
intersections and caused by collisions between several vehicles. Weekend accidents,
instead, are more frequent during the night and mostly between 8 pm and 6 am, outside
urban areas and involve more frequently drug consumers. These accidents occur mainly
on curve roads and no external factors seem to impact (out of intersections, no bumped
mobile obstacles or no collisions). To sum up, this first factorial axis is related to fatal
accidents.

Axis 2 provides a similar information as axis 1: it opposes accidents occurred dur-
ing weekday time, in urban area, at intersection and on straight road to accidents
occurred during weekend time, outside urban area, out of intersection and on curve
road. However, axis 2 stresses the fact that fatal road crash are more likely to occur
between midnight and 6 am especially when alcohol and drugs have been consumed.

Geometrical representations derived in MCA plot closely associated categories and
unassociated ones further apart. The first factorial plane reveals several strong as-
sociations among categories: categories ”straight”, ”intersection”, ”weekday”, ”sub-
stance none”, ”11am 3pm”, ”collision usual” are strongly associated to categories
”obstacle vehicle”; categories ”curve”, ”out of intersection, ”week end”, ”unurban”
are strongly associated to ”fatal”; ”night”, ”8pm 11pm”, ”midnight 6am”, ”obsta-
cle none”, ”alcohol” and ”alcohol drug” in the same way.

On the other hand, this factorial plane also shows that some categories are far from
the others, this results from their lower frequencies. Indeed, as it is given in Tab 1,
”obstacle pedestrian” and ”type road other kind” represents respectively only 8,28%
and 2,53% of road accidents.

Fig (4) gives the two-dimensional map of axis 1 and axis 3 and it explains 15, 32%
of the total inertia. The variable area has been omitted from this geometrical repre-
sentation due to its poor representation quality. Categories that contribute the most
to axis 3 are categories ”night” (11,82%), ”none” (11,08%) of the variable collision
and category ”winter” (10,96%) of the variable season.

In this factorial plane, axis 3 suggests that summer accidents tend to differentiate
from winter ones. Summer accidents are more likely to occur during the day, around
lunch time and on week-end time. They are globally associated to no alcohol or drug
consumption, happening on curve roads, out of intersections and other kind of collision.
Winter accidents instead occur more frequently during the night, the week time and on
national roads. They are also mostly associated with substances consumed, happening
on straight roads, at intersections and collisions with vehicles. The associations with
straight roads, intersections and collisions with vehicles seem to be caused by weather
(”other kind”) which is generally snowy in winter. In addition, the axis 3 specifies that
winter accidents are more likely to be fatal.

Two groups of strongly associated categories stand out in the second factorial plane:
the group formed by ”obstacle vehicle”, ”collision usual”, ”intersection”, ”straight”,
”weekday”, ”substance none”, ”day”, ”11am 3pm” and the other group formed by
”summer”; ”night”, ”8pm 11pm”, ”midnight 6am”, ”alcohol drug”. These groups res-
onates to those mentioned previously.

Fig (5) gives the two-dimensional map of axis 2 and axis 3 and it explains 12,79%
of the total inertia. From the thirteen variables used, the variables substance, week and
intersection are very poorly represented on this map and are omitted from this ge-
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Fig 2.: MCA temporal analysis: variance percentage explained by the first 10 axes.

ometrical representation. This plot emphasizes the differences between serious and
fatal accidents which tend to be strongly associated with lunch time and respec-
tively night time. We distinguish two groups of close categories: ”winter”, ”night”,
”fatal”, ”8pm 11pm”, ”obstacle vehicle”, ”collision usual” and ”weather other kind”;
”type road departmental”, ”serious”, ”weather normal”, ”spring”, ”curve”, ”day”,
”summer”, ”11am 3pm” and ”obstacle none”.
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Fig 3.: MCA temporal analysis: factorial plane made by axis 1 and axis 2.

Fig 4.: MCA temporal analysis: factorial plane made by axis 1 and axis 3.
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Fig 5.: MCA temporal analysis: factorial plane made by axis 2 and axis 3.

3.2. MCA of road crash spatial variables

We performed a spatial analysis by considering the general features as well as the
spatial ones as described in the Section (2.1). Temporal variables (season, week, day-
time and time) are not considered in this analysis. Due to the several categories of
the variable canton, the spatial analysis of Franche-Comté has been splitted into two
analyses corresponding to Doubs and Jura departments. We will interpret only rela-
tionships from categories situated close one to another in the plot.

3.2.1. Doubs department

For the spatial analysis of Doubs department, the first four factorial axes explain
21,22% of the total inertia. Note that only the first 25 categories with the most im-
portant representation qualities were plotted.

Plot made by axis 1 and axis 2 given in Fig (7) explains 12,74% of the total inertia.
Not all the variables are plotted, the variable weather is less well represented than the
other categories and it does not figure on the plot. Categories which contribute the
most for axis 1 are ”none” (20,77%) and ”vehicle” (14,06%) from obstacle, then ”usual”
from collision (12,88%); and for axis 2”pedestrian” (22,53%), ”urban” (18,92%) and
”other kind” from collision (9,73%).

As mentioned before, associations can be highlighted by the proximity of cate-
gories on the factorial plot. Two groups of close categories with spatial connotations
stand out: ”type road other kind”, ”type road communal”, ”Bethoncourt”, ”urban”
and ”Valentigney”; ”Besançon”, ”collision usual” and ”obstacle vehicle”. The first
group emphasizes that Bethoncourt and Valentigney accidents are more frequent in
urban areas. The second one strongly insists that the canton of Besançon is more
conducive to collisions with vehicles.

Additional plots made by combinations of axis 1, 2, 3 and 4 explain between 8,48%
and 11,01% of the total inertia, it should be noted that compared to each other the as-
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Fig 6.: MCA spatial analysis, Doubs department: variance percentage on the first 10
axes.

sociations do not differ. These plots indicates, in addition to what was said before, that
Besançon accidents tend to be fatal when the weather is bad and more characterized
by bumped pedestrians; Bethoncourt accidents are mostly associated with substance
consumption and very strongly associated to ”drug”; Baume-les-Dames accidents are
more likely to be fatal; Besançon, Saint-Vit and Ornans accidents are mainly similar
and more frequent on communal and national roads; most of Mâıche accidents are not
caused by collisions.

Fig 7.: MCA spatial analysis, Doubs department: factorial plane made by axis 1 and
axis 2.
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3.2.2. Jura department

For the spatial analysis of Jura department, the first four factorial axes explain
21,88% of the total inertia. Note that only the first 25 categories with the most im-
portant representation qualities were plotted.

Plot made by axis 1 and axis 2 explains 13,08% of the total inertia and is given in Fig
(9). Not all the variables are plotted, the variable weather is less well represented than
the other categories and it does not figure on the plot. Categories which contribute the
most for axis 1 are ”none” (18,34%) and ”vehicle” (13,79%) from obstacle, then ”usual”
from collision (11,94%); and for axis 2 ”pedestrian” (24,89%), ”urban” (18,69%) and
”other kind” from type road (11,23%).

We can distinguish three groups of close categories, with components of the
canton variable that stand out in this factorial plane: ”Saint-Lupicin”, ”fatal”,
”drug”, ”alcohol drug”, ”alcohol” and ”obstacle none”; ”Authume”, ”Saint-Laurent-
en-Grandvaux”, ”unurban”, ”type road departmental” and ”out of intersection”;
”Champagnole”, ”urban” and ”type road communal”. The first group highlights that
accidents in the canton of Saint-Lupicin are more likely to be fatal and associated
to alcohol and drug consumption. The second one tells that accidents happening in
Authume and Saint-Laurent-en-Grandvaux are more frequent in non urban areas, on
departmental roads. Then, the third group of close categories shows that accidents
in the canton of Champagnole are occuring more commonly in urban areas and on
communal roads. Finally, the structure of this factorial plane tells that accidents hap-
pening in Authume, Saint-Laurent-en-Grandvaux and Saint-Lupicin are more likely
to be fatal.

Additional plots made by combinations of axis 1, 2, 3 and 4 explain between 8,81%
and 11,24% of the total inertia, it should be noted that compared to each other the
associations do not differ. The cantons of Champagnole, Morez and Saint-Laurent-en-
Grandvaux have been associated to each other in many factorial planes, it seems that
accidents are more likely to happen in these cantons when the weather is qualified as
”other kind” (cloudy, rainy or snowy). This is opposed to accidents happening in Au-
thume and Bletterans where accidents are more frequent when the weather is ”normal”.
Many cantons have been related to alcohol or drug consumption: accidents occurring
in the Dole canton are more commonly associated to drug, Moirans-en-Montagne and
Saint-Claude cantons are instead matched to alcohol. Finally, the canton where ac-
cidents happen in higher proportion on highway is Dole, it is also the canton where
accidents are more likely to be fatal, and finally, the canton where pedestrians are
bumped in much higher amounts is Champagnole.

3.3. MCA of road crash temporal and spatial variables

Here was conducted a global MCA by considering both temporal variables (time,
season, daytime and week) and spatial variables (department) as well as the most
important general features such as type acc and substance. The first three-factorial
axes explain 25,85% of the total variance and only these axes were kept for further
analysis. Two-dimensional geometrical representations of all 24 categories are given in
Fig (10)-(12) and interpreted below.

The first two-dimensional map in Fig (10) gives the representation of categories on
the plane made by axis 1 and axis 2 and it accounts for 19,13% of the total inertia.
Categories with the greatest contribution to the axis 1 are ”night” (25,75%), ”mid-
night 6am” (13,83%) and ”8pm 11pm” (11,88%) and respectively, ”winter” (21,99%),
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Fig 8.: MCA spatial analysis, Jura department: variance percentage on the first 10
axes.

Fig 9.: MCA spatial analysis, Jura departement: factorial plane made by axis 1 and
axis 2.

”slight safe” (21,10%) and ”week end” (9,33%) for axis 2.
Axis 1 shows the contrast between serious accidents occurring during the day (be-

tween 7:00 a.m. and 7:59 p.m.) from fatal accidents happening during the night (be-
tween 8:00 p.m. and 6:00 a.m.). In the first situation, the accidents happen under good
daylight conditions, during the spring and the summer time and mostly during the
week-time (from Monday to Friday). In the second situation, accidents occur during
the week-end and they are associated to alcohol/drug consumptions.

Axis 2 dissociates clearly slight accidents from serious and fatal ones. Accidents
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occurring in Territoire de Belfort are mostly slight accidents while accidents from
Jura are in general serious or fatal. As for the first factorial axis, axis 2 shows the
contrast week accidents from week-end accidents which are fatal most of the time. We
can notice that accidents occurring in the Doubs department are similar to those from
the department of Haute Saône and relatively close to the origine represented by the
average accident profile.

The first factorial plane reveals five groups of associated categories: ”slight safe”,
”Terr Belfort” and ”winter”; ”weekday”, ”7am 10am” and ”none”; ”fatal”,
”week end” and ”drug”; ”serious”, ”spring”, ”summer” and ”Jura”; enfin ”night”,
”8pm 11pm”, ”alcohol drug”, ”midnight 6am” and ”alcohol”.

Notice also that from this plot, the group formed by categories ”Territoire Belfort”,
”winter” and ”slight safe” is relatively far away from the origin of the plot. This is
due to the fact that categories ”Territoire Belfort” and ”slight safe” are of low relative
frequencies, 6, 20% and respectively 11, 47%, see also Tab 1.

Plot made by axis 1 and axis 3 given in Fig (11) explains 18, 87% of the total inertia.
Categories with the greatest contribution to the axis 3 are ”Terr Belfort” (14, 96%),
”slight safe” (12, 84%) and ”spring” (10, 87%).

Axis 3 seems to contrast accidents occurring in spring/summer from those occurring
in autumn/winter. In the first situation, accidents happen mostly during the day, on
week-end and they may have minor consequences or, on the contrary, they may be very
serious. In the second situation, the accidents occur during the night, on week-time and
they may be serious. Again, the department of Jura is in opposite situation with the
department Territoire de Belfort. We can also notice that the department Doubs seems
to be the department where most of accidents are associated to drugs. Several groups
of categories can be distinguished: ”drug”, ”Doubs” and ”summer”; ”Haute Saone”
and ”serious”; ”none”, ”4pm 7pm” and ”weekday”; ”Jura”, ”autumn” and ”winter”.

Finally, the two-dimensional map of axis 2 and 3 given in Fig (12) explains 13, 70%
of the total inertia. This plot highlights several associations that were analyzed in
previous ones. For example, fairly similar modalities are ”8pm 11pm” and ”Doubs”;
”spring”, ”11am 3pm”, ”drug”, ”week end”, ”summer” and ”fatal”.
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Fig 10.: MCA global analysis: factorial plane made by axis 1 and axis 2.

Fig 11.: MCA global analysis: factorial plane made by axis 1 and axis 3.

3.4. Hierarchical log-linear modelling

The MCA performed in sections 3.1 and 3.2 reveals that there are associations
between the gravity of the accidents (type acc) and the drug/alcohol consumption
(substance). Moreover, we could see during the spatial analysis that these associations
are observed within each department. In order to describe more thoroughly the associ-
ation patterns between these categorical variables and the variable department, several
hierarchical log-linear models have been fitted on the related three-way contingency
table (corresponding to the column ”Observed values” of the table Tab 3).
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Fig 12.: MCA global analysis: factorial plane made by axis 2 and axis 3.

Tab 4 gives the likelihood-ratio statistic G2 of each hierarchical model and the
5%-level associated significance test (p-value). A model fits the data well if the null
hypothesis of the goodness-of-fit test is accepted. The p-values in Tab 4 show that all
the models fit the data poorly except (TS, TD, SD) which is close to the observed data
(corresponding to the column ”Fitted values” of the table Tab 3). This unsaturated
hierarchical final model has been kept as the objective was to find the simplest model
that fits the data adequately. It is written as

logµkk′k′′ = λ+ λTk + λSk′ + λDk′′ + λTS
kk′ + λTD

kk′′ + λSDk′k′′ ,

where k is ”slight safe”, ”serious” or ”fatal” for the categorical variable type acc (T) ;
k

′
is ”none”, ”alcohol”, ”drug” or ”alcohol drug” for the variable substance (S) ; and

k
′′

is ”Doubs”, ”Haute Saone”, ”Jura” or ”Terr Belfort” for the variable department
(D).

This is the model with no three-factor interaction. The conditional association terms
appear for each pair of variables, this means that no pair is conditionally independent.
The odds ratios related to this model have been calculated and are given in Tab 5.
Note that the baseline categories of type acc, substance and department were respec-
tively ”slight safe”, ”none” and ”Doubs”. For instance, the odds ratio relating the
level ”serious” of type acc and ”alcohol drug” of substance at the level ”Doubs” of
department is calculated as

25, 64× 221, 37

1149, 58× 3, 96
= 1, 25.

Remind that the no three-factor interaction model means that the association between
two variables is identical at each level of the third variable. Hence, in the same way,
calculating this odds ratio with the fitted values regarding to the levels ”Haute Saone”,
”Jura” or ”Terr Belfort” of department would have given the same result.
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In general marginal odds ratios may differ from conditional ones in a no three-
factor interaction model, however in this case marginal and conditional odds ratio are
very close. This means that controlling or ignoring the third variable does not change
significantly the association between the two variables. Only conditional odds ratio
will be interpreted below as the interpretations of marginal ones are the same.

Regarding substances consumption, the odds for an accident to be serious or fatal
increases when alcohol, drug or both are consumed. Indeed, the odds ratios for an
accident to be serious are estimated to be respectively 1,64, 1,94 and 1,25 higher than
slight when alcohol, drug and both are consumed compared with no consumption.
Similarly, the odds ratios for an accident to be fatal are estimated to be respectively
2,76, 4,15 and 5,93 higher than slight when alcohol, drug and both are consumed. The
highest risk for an accident to be fatal corresponds to drug and alcohol consumption,
almost two times larger than alcohol consumption. Regarding the department where
the accident happens, the odds to be serious or fatal decreases only for the department
Territoire de Belfort. The odds ratio for an accident to be serious is estimated to be
0,48 times lower than slight when it occurs in this department compared with Doubs.
Similarly, the odds for an accident to be fatal is estimated to be 0,39 times lower than
slight when it occurs in Territoire de Belfort compared with Doubs. The highest risk
for an accident to be fatal is when it occurs in Jura department compared with Doubs,
almost four times larger than in Territoire de Belfort.

Tab 3.: Three-way contingency table with type acc, substance and department as cat-
egorical variables. Left side correspond to the observed values, right one is equal to
the predicted frequencies from the log-linear model (TS, TD, SD).

Observed values Fitted values (TS, TD, SD)
type acc type acc

department substance slight safe serious fatal slight safe serious fatal

Doubs

alcohol drug 6 26 24 3,96 25,64 26,40
drug 2 30 13 2,87 28,79 13,34
alcohol 27 227 85 26,81 228,99 83,20
none 220 1150 250 221,37 1149,58 249,06

Haute Saone

alcohol drug 2 15 20 2,48 17,60 16,92
drug 4 21 14 2,32 25,60 11,08
alcohol 11 165 35 15,58 145,92 49,50
none 121 658 144 117,62 669,88 135,50

Jura

alcohol drug 0 12 10 0,86 9,40 11,74
drug 2 27 12 1,49 25,29 14,22
alcohol 12 131 75 10,03 144,34 63,63
none 89 802 201 90,62 792,97 208,42

Terr Belfort

alcohol drug 2 8 8 2,70 8,36 6,94
drug 0 8 2 1,32 6,32 2,36
alcohol 8 19 8 5,58 22,75 6,67
none 62 157 25 62,40 154,58 27,03

23



Tab 4.: Goodness-of-Fit Tests for log-linear models relating type acc (T), substance
(S) and department (D).

Model G2 p-value
(T, S, D) 246,39 0,00

(T, SD) 218,97 0,00
(S, TD) 179,65 0,00
(D, TS) 125,36 1,09e-12

(TS, TD) 58,61 3,99e-4
(TS, SD) 97,94 6,72e-11
(TD, SD) 152,23 0,00

(TS, TD, SD) 27,38 0,07

(TSD) 0,00 –

Tab 5.: Odds ratio estimated from (TS, TD, SD) log-linear model. The table is divided
into two parts, which are also splitted up into two parts: conditional odds ratios in top
have been calculated respectively in left and right sides controlling levels of department
and substance variable, and marginal odds ratios in bottom have been calculated
respectively in left and right sides ignoring department and substance variable. Each
odds ratio has been calculated as each level of type acc, substance and department
variable and was opposed respectively to ”slight safe”, ”none” and ”Doubs”.

Conditional odds ratios
serious fatal serious fatal

alcohol drug 1,25 5,93 Haute Saone 1,10 1,02
drug 1,94 4,15 Jura 1,69 2,05
alcohol 1,64 2,76 Terr Belfort 0,48 0,39

Marginal odds ratios
serious fatal serious fatal

alcohol drug 1,08 4,92 Haute Saone 1,11 1,06
drug 1,91 4,07 Jura 1,68 1,98
alcohol 1,66 2,78 Terr Belfort 0,47 0,41

3.5. Log-linear modelling using MCA

The goal here was to fit a log-linear model with more than three categorical vari-
ables. In order to do that, the global MCA analysis performed in the previous section
has been used to choose several variables associated to the road crash severity and to
fit a log-linear model with a limited number of parameters but well chosen. A similar
analysis has been performed by Papagiotakos and Pitsavos (2004). The global MCA
analysis revealed several groups of associated variables/categories such as ”slight safe”,
”Terr Belfort” and ”winter”; ”night”, ”8pm 11pm”, ”alcohol drug”, ”midnight 6am”
and ”alcohol”, or even more ”fatal”, ”week end” and ”drug”. These three groups sug-
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gest that it might exist interactions between the variables type acc, department and
season ; daytime, time and substance ; and finally, type acc, week and substance.

Based on these considerations, the following log-linear model has been fitted:

logµk1k2k3k4k5k6k7
= λ+λTD

k1k3
+λSDk2k3

+λDaTiS
k7k4k2

+λTWS
k1k6k2

+λTDSe
k1k3k5

+λWTiS
k6k4k2

+λT iSD
k4k2k3

, (5)

where k1 is ”slight safe”, ”serious” or ”fatal” for the categorical variable type acc (T);
k2 is ”none”, ”alcohol”, ”drug” or ”alcohol drug” for the variable substance (S); k3 is
”Doubs”, ”Haute Saone”, ”Jura” or ”Terr Belfort” for the variable department (D);
k4 is ”7am 10am”, ”11am 3pm”, ”4pm 7pm”, ”8pm 11pm” or ”midnight 6am” for the
categorical variable time (Ti); k5 is ”spring”, ”summer”, ”autumn” or ”winter” for
the variable season (Se); k6 is ”weekday” or ”week end” for the variable week (W);
and k7 is ”day” or ”night” for the variable daytime (Da).

Several different log-linear models have been fitted and compared one to each other,
this final model was the one with the smallest likelihood-ratio statistic G2. This log-
linear model contains specific second and third order interactions between the seven
chosen variables based on the global MCA. As mentioned before, these interactions
have been decided upon the groups of associated variables revealed in the global MCA.
Considering all the second and third interaction terms in the log-linear model would
cost in term of interpretation and feasibility.

Tab 6.: Seven-way contingency table with type acc (T), department (D), substance
(S), time (Ti), season (Se), week (W) and daytime (Da) as categorical variables. Left
side correspond to the observed values, right one is equal to the predicted frequencies
from the log-linear model 5.

Observed values Fitted values
type acc type acc

D, S, Ti, Se, Da week slight safe serious fatal slight safe serious fatal
Doubs
none
7am 10am
spring
day

weekday 10 27 4 8,33 32,01 7,02
week end 2 8 0 2,06 10,96 1,95

D, S, Ti, W, Da season slight safe serious fatal slight safe serious fatal
Doubs
none
11am 3pm
week end
day

spring 8 36 8 5,90 31,34 5,57
summer 4 44 6 5,44 41,08 7,24
autumn 5 30 2 3,68 30,19 6,15
winter 2 18 4 4,52 24,26 4,87

Tab 6 gives two partial tables of the seven-way contingency table made with
type acc, substance, department, time, season, week et daytime as categorical vari-
ables. It is quite difficult, actually, to give the whole seven-way contingency table due
to the high number of cells (3840). This table gives frequencies for categories ”Doubs”,
”none”, ”7am 10am”, ”spring” and ”day” of respectively department, substance, time,
season and daytime variables; and ”Doubs”, ”none”, ”11am 3pm”, ”week end” and
”day” for respectively department, substance, time, week and daytime variables. The
first partial table (top) details according to week and type acc variables and the second
partial table (bottom) details according to season and type acc variables.

The odds ratios related to the fitted log-linear model from (5) have been calculated
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in the same way as in the previous section and are given in Tab 7. The baseline cat-
egories used of type acc, week and season were respectively ”slight safe”, ”weekday”
and ”spring”. Here, conditional odds ratios may differ according to which levels of
the variables we have conditioned. However there are too many possible combinations
of levels with our seven categorical variables used, hence only conditional odds ratios
regarding to the fixed levels, as in Tab 7, were calculated. Notice a slight difference
between the conditional odds ratios and the marginal ones. However, the interpreta-
tions are the same, except for the level ”winter” of the variable season for which the
odds ratios have a different conclusion depending on whether they are conditional or
marginal.

Conditional and marginal odds ratios inform that the risk of an accident being
serious or fatal increases if it occurs during the weekend. Indeed, the conditional and
marginal odds ratios for an accident to be serious are estimated to be equal to 1,38 on
week-ends and respectively 1,12 and 1,34 for an accident being fatal, on week-ends as
well. Both kinds of odds ratios tell us that the risk for a crash to be serious or fatal
than slightly increases if it occurs in summer or autumn in comparaison with spring.
Conditional and marginal odds ratios for an accident to be serious are estimated to be
respectively 1,42 and 1,27 if it occurs in summer, 1,54 and 1,37 if it is in autumn. They
are estimated to be respectively equal to 1,41 and 1,03 for a fatal crash in summer,
1,77 and 1,23 in autumn. For those occurring during winter with respect to spring,
interpretations differ regarding to conditional or marginal odds ratios. Indeed, the
risk for an accident to be serious does not seem to depend on the fact that it occurs
in winter with respect to spring, the conditional odds ratio being equal to 1,01. The
marginal odds ratio is equal to 0,90 meaning that this risk decreases slightly if it occurs
during winter. As for the fatal consequences of an accident occurring in winter, the
risk would be slightly increased compared to spring according to the conditional odds
ratio equal to 1,14; the marginal odds ratio equal to 0,91 informs us that this risk
would be slightly reduced.

3.6. Ordinal regression modelling

An ordinal regression has been fitted on the response variable type acc (ordered as
slight safe, serious and then fatal). The analysis was performed with all the explanatory
variables except canton (due to too many categories).

Note that the categorical variable type acc is considered as a response variable. It
is relevant because it gives the severity of accidents and the aim of this study lies on
understanding how the gendarmerie can avoid serious injuries.

The initial dataset has been split randomly into two sets: a training set (seventy-five
percent of the initial one) and a test set (the remaining twenty-five percent). An ordinal
regression model has been fitted on the training set, the results are given in Tab 8.
Only five explanatory variables reveal to have an effect on the response variable: time,
substance, department, collision and area. This model, with full parameters, gives a
misclassification error of 28,84% on the test set.

Next, a variable selection has been performed by using AIC criterion (with backward
selection). The final model is composed by the categorical variables time, substance,
department, collision and area. This model gives a misclassification error of 29,00% on
the test set, a score very close to the previous one. The odds ratio of these variables
are given in Fig (13). Only odds ratios with confidence intervals not containing the
value 1 (represented by the vertical dotted line) are interpreted.
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Tab 7.: Odds ratio estimated from log-linear model 5. The table is divided into two
parts, each part is also split up into two parts: conditional odds ratios in top have
been calculated in left side controlling the levels of department, substance, time, season
and daytime then right side controlling the levels department, substance, time, week
and daytime variables, and marginal odds ratios in bottom have been calculated in
left side ignoring department, substance, time, season and daytime then in right side
ignoring department, substance, time, week and daytime variables. Each odds ratio has
been calculated as each level of type acc, week and season variable and was opposed
respectively to ”slight safe”, ”weekday” and ”spring”.

Conditional odds ratios
serious fatal serious fatal

summer 1,42 1,41
week end 1,38 1,12 autumn 1,54 1,77

winter 1,01 1,14
Marginal odds ratios

serious fatal serious fatal
summer 1,27 1,03

week end 1,38 1,34 autumn 1,37 1,23
winter 0,90 0,91

Regarding the odds ratio, the highest risk for an accident to be serious or fatal is if
substances have been consumed by one of the drivers involved. Indeed, the most two
important odds ratios are alcohol drug and drug which are equal to exp(1, 16) = 3, 19
and exp(0, 85) = 2, 34 respectively. The risk for an accident to be serious or fatal
increases if the accident happens in non urban areas (odds ratio 2,10) or in the Jura
department (odds ratio 1,42 with Doubs as reference). Accident involving uncommon
collision also have a slightly increased risk (odds ratio 1,28). On the opposite, two
categories have a protective effect and are associated with lower risk of serious or fatal
accident. This is the case for Territoire de Belfort department (odds ratio 0,56 with
Doubs as reference) and for the occurrence time between 4pm and 7pm (odds ratio
0,77).

Each department odds ratio has been represented on the map in Fig 14. Remind
that the odds of Haute-Saône department were not significant and hence meaningless.
The odds ratio of Doubs department is equal to 0 as it was the baseline category for
the department variable. As a symbol, Jura and Territoire de Belfort departments have
been represented in red and blue respectively due to their odds ratio: the riskiest and
the less risky.

4. Conclusion

A study of accidents with the purpose of mitigating the crash severity is critical for
the well-being of a society and the safety concern posed by road crashes. The aim of
this work was to understand factors which are the most influential in road accidents
from the French region Franche-Comté. To respond to these issues, three statistical
methods were used: Multiple Correspondence Analysis (MCA), log-linear model and
ordinal logistic regression.
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Tab 8.: Ordinal regression model results with type acc as ordered response variable.
The item * means that the p-value of the nullity coefficient test is less than 0,05. The
category in parentheses correspond to the baseline category of the above categorical
variable.

Attribute Ordinal regression results Attribute Ordinal regression results
Coefficients Estimate p-value Coefficients Estimate p-value

substance alcohol drug 1,16 5,19e-8 * department Haute Saone -0,01 0,89
(none) drug 0,85 4,32e-5 * (Doubs) Jura 0,35 5,87e-5 *

alcohol 0,46 1,14e-5 * Terr Belfort -0,58 2,67e-4 *

season spring 0,01 0,30 obstacle vehicle -0,02 0,85
(winter) summer 0,11 0,27 (none) pedestrian 0,23 0,15

autumn -0,05 0,67 other kind 0,23 0,30

week week end -0,04 0,53 shape road curve -0,01 0,90
(weekday) (straight)

daytime day 0,08 0,51 collision usual -0,02 0,91
(night) (none) other kind 0,25 0,04 *

time 11am 3pm -0,08 0,50 type road communal 0,43 0,14
(7am 10am) 4pm 7pm -0,26 0,02 * (highway) departmental 0,39 0,15

8pm 11pm -0,10 0,52 national 0,47 0,10
midnight 6am 0,18 0,27 other kind 0,34 0,34

weather other kind 0,00 0,97 intersection intersection -0,12 0,31
(normal) (out of intersection)

area unurban 0,74 3,97e-16 *
(urban)

Fig 13.: Odds ratios obtained by ordinal regression model. Grey lines represent the
confidence intervals and black points the values of the odds ratios.

MCA, the only unsupervised or descriptive statistical method used in this study,
allowed to assess relationships between the categorical variables and examine the asso-
ciations between the different categories. Geometric representations of data in smaller
dimension spaces were produced and proximities between several road crash related
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Fig 14.: Franche-Comté map with department odds ratio. Each color corresponds
to a department with its odds ratio value considering the Doubs department as the
reference and each small division corresponds to a canton.

categories have been observed. This analysis allowed to establish a global vision of the
data and to draw up temporal and spatial profiles of accidents occurring in the Franche-
Comté region. Regarding the MCA temporal analysis, several associations have been
highlighted. We remarked that accidents occurring during the week are different from
those occurring during the weekend. Indeed, weekend accidents are more likely to
happen during the night, be fatal and associated to alcohol/drug consumption. There
was also a contrast between summer and winter accidents. The MCA spatial analy-
sis revealed that several cantons of the Franche-Comté region are strongly related to
alcohol/drug consumption (Bethoncourt, Saint-Lupicin or Dole) or to fatal accidents
(Besançon, Baume-les-Dames, Authume, Saint-Laurent-en-Grandvaux, Saint-Lupicin
and Dole).Bethoncourt, Besançon and Baume-les-Dames are situated in the Doubs de-
partment and others in the Jura department. Finally, the global MCA temporal and
spatial analysis allows to analyse the departments in association to alcohol/drug con-
sumptions and crash severity in temporal ways. Many contrasts have been highlighted
and groups of close categories have been analysed. It seems that Jura department is
the department where most of accidents are serious or fatal, instead of Territoire de
Belfort department which is associated to minor consequences.

The log-linear model was used next in order to evaluate dependencies between the
road crash gravity, the alcohol/drug consumption and Franche-Comté departments.
This tool models the multidimensional contingency table formed by these three cate-
gorical variables and describes associations and interactions among them. It allowed
establishing patterns. The selected model concludes on no interaction between the
categorical variables type acc, substance and department. It corresponds to the model
of homogeneous association, which means that each pair of variable were condition-
ally dependent. Odds ratios estimated from this model allowed to quantify the risks
about alcohol/drug consumption and the department where the accident happened.

29



We remarked that the highest risks for a serious or fatal accident to happen are if
drug, alcohol or both are consumed. Conversely, the lowest risk for an accident to be
serious or fatal is if it happens in the Territoire de Belfort department. The Jura de-
partment was, instead of the previous one, a location which increases this risk. Then,
a second log-linear model was fitted, a non-hierarchical one. This model used results
from the global MCA. The fairly similar groups of categories were translated into vari-
able interactions which thus induced the fitted log-linear model. This model revealed
many associations between variables. Odds ratios estimated from this model allowed
to quantify the risk of an accident occurring during the week or the week-end, or oc-
curring in spring, summer, autumn or winter. According to the conditional odds ratios
calculated with respect to spring level, the highest risk for an accident to be serious
or fatal is if it occurs in autumn.

The ordinal regression allowed the study to assess each effect of road crash related
factors on the road crash gravity. Eight circumstances revealed to be influential on
the accident gravity: the consumption of alcohol, drug or both; the period of the day
between 4pm and 7pm; the roads situated outside urban areas; the roads situated
in Jura or Territoire de Belfort departments; collisions qualified as ”other kind” (not
usual as frontal or rear-end for example). Odds ratios estimated from this model
allowed to quantify the risks due to each of these circumstances. Similarly to the log-
linear analysis, the risk of an accident being fatal is highest if alcohol and drugs are
consumed and lowest if the accident happens in the Territoire de Belfort department.

The results obtained with these three methods allow us to conclude that the most
important factor to take into account for road crashes in Franche-Comté is the al-
cohol/drug consumption. As expected, this factor strongly influences the nature of
accidents. Hence, based on results obtained with this statistical study, more efforts
should be gathered by the National Gendarmerie of Besançon to prevent the alco-
hol/drug consumption especially in the cantons which were associated to this factor.
For example, more alcohol/drug tests and driver awareness measures can be performed.

In order to be more precise for the spatial analysis, the future study would be
focused on how GPS coordinate can be used to prevent accidents.
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statistique descriptive. Technical report.
Christensen, R. H. B. (2019). ordinal: Regression models for ordinal data. R package

30



version 2019.12-10. https://CRAN.R-project.org/package=ordinal.
Das, S., Avelar, R., Dixon, K., and Sun, X. (2018). Investigation on the wrong way

driving crash patterns using multiple correspondence analysis. Accident Analysis
and Prevention, 11:43–55.

Das, S. and Sun, X. (2015). Factor association with multiple correspondence anal-
ysis in vehicle-pedestrian crashes. Trasportation Research Record: Journal of the
Transportation Research Board, 2519:95–103.

Das, S. and Sun, X. (2016). Association knowledge for fatal run-off-road crashes by
multiple correspondence analysis. IATSS Research, 39:146–155.

Escofier, B. and Pagès, J. (2008). Analyses factorielles simples et multiples. Dunod,
4ème édition edition.

Fort, E., Gadegbeku, B., Gat, E., Pelissier, C., Hours, M., and Charbotel, B. (2019).
Working conditions and risk exposure of employees whose occupations require driv-
ing on public roads – factorial analysis and classification. Accident Analysis and
Prevention, 131:254–267.

Goodman, L. A. (1986). Some useful extensions of the usual correspondence analysis
approach and the usual log-linear models approach in the analysis of contingency
tables. International Statistical Review, 54:243–309.

Greenacre, M. (1989). The carroll-green-schaffer scaling in correspondence analysis: a
theoretical and empirical appraisal. Journal of Marketing Research, 26:358–365.

Greenacre, M. (2006). From simple to multiple correspondence analysis. In Greenacre,
M. and Blasius, J., editors, Multiple Correspondence Analysis and Related Methods.
Chapman & Hall/CRC.

Greenacre, M. and Blasius, J. (2006). Multiple Correspondence Analysis and Related
Methods. Chapman & Hall/CRC.

Hothorn, T. and Everitt, B. S. (2014). A Handbook of Statistical Analyses Using R.
CRC Press, third edition edition.
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ONISR (2019). La sécurité routière en France – Bilan de l’accidentalité de l’année
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