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Abstract
We consider the problem of unveiling the implicit network structure of node interactions (such as user in-
teractions in a social network), based only on high-frequency timestamps. Our inference is based on the
minimization of the least-squares loss associated with a multivariate Hawkes model, penalized by `1 and trace
norm of the interaction tensor. We provide a first theoretical analysis for this problem, that includes sparsity
and low-rank inducing penalizations. This result involves a new data-driven concentration inequality for ma-
trix martingales in continuous time with observable variance, which is a result of independent interest and
a broad range of possible applications since it extends to matrix martingales former results restricted to the
scalar case. A consequence of our analysis is the construction of sharply tuned `1 and trace-norm penaliza-
tions, that leads to a data-driven scaling of the variability of information available for each users. Numerical
experiments illustrate the significant improvements achieved by the use of such data-driven penalizations.
Keywords. Hawkes processes; Sparsity; Low-Rank; Random matrices; Data-driven concentration

1. Introduction

Understanding the dynamics of social interactions is a challenging problem of rapidly growing interest
(de Menezes and Barabási, 2004; Leskovec, 2008; Crane and Sornette, 2008; Leskovec et al., 2009) because
of the large number of applications in web-advertisement and e-commerce, where large-scale logs of event
history are available. A common supervised approach consists in the prediction of labels based on declared
interactions (friendship, like, follower, etc.). However such supervision is not always available, and it does
not always describe accurately the level of interactions between users. Labels are often only binary while
a quantification of the interaction is more interesting, declared interactions are often deprecated, and more
generally a supervised approach is not enough to infer the latent communities of users, as temporal patterns
of actions of users are much more informative.

For latent social groups recovering, several recent papers (Rodriguez et al., 2011; Gomez-Rodriguez
et al., 2013; Daneshmand et al., 2014) consider an approach directly based on the real actions or events
of users (referred to as nodes in the following) that are fully identified through their corresponding user id
and timestamp. These models assume a structure of data consisting in a sequence of independent cascades,
containing the timestamp of each node. In these works, techniques coming from survival analysis are used
to derive a tractable convex likelihood, that allows one to infer the latent community structure. However,
they require that data are already segmented into sets of independent cascades, which is often unrealistic.
Moreover, it does not allow for recurrent events, namely a node can be infected only once, and it cannot
incorporate exogenous factors, i.e., influence from the world outside the network.
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Another approach is based on self-exciting point processes, such as the Hawkes process (Hawkes, 1971).
Previously used for geophysics (Ogata, 1998), high-frequency finance (Bacry et al., 2013, 2015), crime ac-
tivity (Mohler et al., 2011), these processes have been recently used for the modelization of users activity in
social networks, see for instance Crane and Sornette (2008); Blundell et al. (2012); Zhou et al. (2013); Yang
and Zha (2013). The structure of the Hawkes model allows us to capture the direct influence of a specific
user’s action on all the future actions of all the users (including himself). It encompasses in a single likeli-
hood the decay of the influence over time, the levels of interaction between nodes, which can be seen as a
weighted asymmetrical adjacency matrix, and a baseline intensity, that measures the level of exogeneity of a
user, namely the spontaneous apparition of an action, with no influence from other nodes of the network.

In this paper, we consider such a multivariate Hawkes process (MHP), and we combine convex proxies
for sparsity and low-rank of the adjacency tensor and the baseline intensities, that are now of common use in
low-rank modeling in collaborative filtering problems (Candès and Tao, 2004, 2009). Note that this approach
is also considered in (Zhou et al., 2013). We provide a first theoretical analysis of the generalization error
for this problem, see Hansen et al. (2012) for an analysis including only entrywise `1 penalization. Namely,
we prove a sharp oracle inequality for our procedure, that includes sparsity and low-rank inducing priors,
see Theorem 6 in Section 5. This result involves a new data-driven concentration inequality for matrix
martingales in continuous time, see Theorems 3 and 4 in Section 3.3, that are results of independent interest,
that extends previous non-commutative versions of concentration inequalities for martingales in discrete time,
see Tropp (2012). A consequence of our analysis is the construction of sharply tuned `1 and trace-norm
penalizations, that leads to a data-driven scaling of the variability of information available for each node.
We give empirical evidence of the improvements of our data-driven penalizations, by conducting in Section 6
numerical experiments on simulated data. Since the objectives involved are convex with a smooth component,
our algorithms build upon standard batch proximal gradient descent algorithms.

2. The multivariate Hawkes model and the least-squares functional
Consider a finite network with d nodes (each node corresponding to a user in a social network for instance).
For each node j ∈ {1, . . . , d}, we observe the timestamps {tj,1, tj,2, . . .} of actions of node j on the network
(a message, a click, etc.). With each node j is associated a counting process Nj(t) =

∑
i≥1 1tj,i≤t and we

consider the d-dimensional counting process Nt = [N1(t) · · · Nd(t)]>, for t ≥ 0. We observe this process
for t ∈ [0, T ]. Each Nj has an intensity λj , meaning that

P
(
Nj has a jump in [t, t+ dt] | Ft

)
= λj(t)dt, j = 1, . . . , d,

where Ft is the σ-field generated by N up to time t. The multivariate Hawkes model assumes that each Nj
has an intensity λj,θ given by

λj,θ(t) = µj +

d∑
j′=1

∫
(0,t)

ϕj,j′(t− s)dNj′(s), (1)

where µj ≥ 0 is the baseline intensity of j (i.e., the intensity of exogenous events of node j) and where the
functions ϕj,j′ : R+ → R for j = 1, . . . , d, called kernels, allow to quantify the impact of node j′ on node
j. Note that the integral used in Equation (1) is a Stieljes integral, namely it simply stands for∫

(0,t)

ϕ(t− s)dNj′(s) =
∑

i : tj′,i∈[0,t)

ϕ(t− tj′,i).

In the paper, we consider general kernel functions ϕj,j′(t) that can be written as:

ϕj,j′(t) =

K∑
k=1

aj,j′,khj,j′,k(t). (2)
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where the coefficients aj,j′,k are the entries of a d× d×K tensor A (i.e., (A)j,j′,k = aj,j′,k) and the kernels
hj,j′,k(t) are elements of a fixed dictionnary of non negative and causal functions (hj,j′,k : R+ → R+) such
that ‖hj,j′,k‖1 = 1. In that respect, the weights aj,j′,1, . . . , aj,j′,K all quantify the influence of j′ on j, but
the particular weight aj,j′,k quantifies it for the k-th decay function hj,j′,k. A standard choice is a dictionnary
of exponential kernels, hj,j′,k(t) = αke

−αkt with varying memory parameters α1, . . . , αK . This leads to the
following standard parametrization of the kernel functions, called exponential kernels:

ϕj,j′(t) =

K∑
k=1

aj,j′,kαk exp(−αkt). (3)

The main advantage of exponential kernels with fixed memory parameters α1, . . . , αK , is that it allows one
to handle a convex problem. In the general case or when the memory parameters are unknown, the problem
becomes non-convex, more challenging and is beyond the scope of the paper.

The parameter of interest is the self-excitement tensor A, which can be viewed as a cross-scale (for
k = 1, . . . ,K) weighted adjacency matrix of connectivity between nodes, as illustrated in Figure 1 below.
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Figure 1: Toy example with d = 10 nodes. Based on actions’ timestamps of the nodes, represented by ver-
tical bars (top), we aim at recovering the vector µ0 and the tensor A of implicit influence between
nodes (bottom).

The Hawkes model is particularly relevant for the modelization of the “microscopic” activity of social
networks and has attracted a lot of interest in the recent literature (see Crane and Sornette (2008); Blundell
et al. (2012); Zhou et al. (2013); Yang and Zha (2013); Linderman and Adams (2014); DuBois et al. (2013);
Blundell et al. (2012); Iwata et al. (2013), among others) for this kind of application, with a particular empha-
sis on Hansen et al. (2012) that gives first theoretical results for the Lasso used with Hawkes processes with
an application to neurobiology. The main point is that this simple autoregressive structure of the intensity
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allows us to capture the direct influence of a user, based on the recurrence and the patterns of his actions, by
separating the intensity into a baseline and a self-exciting component, hence allowing to filter exogeneity in
the estimation of users’ influences on each others.

We introduce in this paper an estimation procedure of θ = (µ,A) based on data {Nt : t ∈ [0, T ]}. The
hidden structure underlying the observed actions of nodes is contained in A. Our strategy is based on the
least-squares functional given by

RT (θ) = ‖λθ‖2T −
2

T

d∑
j=1

∫
[0,T ]

λj,θ(t)dNj(t), (4)

with respect to θ, where ‖λθ‖2T = 1
T

∑d
j=1

∫
[0,T ]

λj,θ(t)
2dt is the norm associated with the inner product

〈λθ, λθ′〉T =
1

T

d∑
j=1

∫
[0,T ]

λj,θ(t)λj,θ′(t)dt. (5)

This least-squares function is very natural, and comes from the empirical risk minimization principle (Van
De Geer, 2000; Massart, 2007; Koltchinskii, 2011; Bartlett and Mendelson, 2006): assuming that Nj has
an unknown ground truth intensity λj (not necessarily following the Hawkes model), the Doob-Meyer’s
decomposition gives∫

[0,T ]

λj,θ(t)dNj(t) =

∫
[0,T ]

λj,θ(t)λj(t)dt+

∫
[0,T ]

λj,θ(t)dMj(t),

where Mj(t) = Nj(t) −
∫ t
0
λj(s)ds is a continuous-time martingale with upwards jumps of +1. Since the

“noise” term
∫
[0,T ]

λj,θ(t)dMj(t) is centered, we obtain

E[RT (θ)] = E‖λθ‖2T − 2E〈λθ, λ〉T = E‖λθ − λ‖2T − ‖λ‖2T ,

so that we expect a minimum θ̂ of RT (θ) to lead to a good estimation λθ̂ of λ, following the empirical risk
minimization principle. As explained in Section 8 below, the noise terms can be written as∫ t

0

Ts ◦ dM s,

for a specific tensorTt and matrix martingaleM t, whereTs ◦M s stands for a tensor-matrix product defined
in Section 3.1 below. The next Section introduces new results, of independent interest, providing data-
driven deviation inequalities for the operator norm of a matrix martingale defined as the stochastic integral∫ t
0
Ts ◦ dM s. These results allow us, as a by-product, to control the noise terms arising in the application

considered in this paper, and lead to a sharp data-driven tuning of the penalizations used on A, as explained
in Section 4 below.

3. A new data-driven matrix martingale Bernstein’s inequality
An important ingredient for the theoretical results proposed in this paper is an observable deviation inequality
for continuous time matrix martingales. We first recall previous results obtained in Bacry et al. (2016b) about
non-observable deviation inequalities for such objects.

3.1. Notations

Let T be a tensor of shape m × n × p × q. It can be considered as a linear mapping from Rp×q to Rm×n
according to the following “tensor-matrix” product:

(T ◦A)i,j =

p∑
k=1

q∑
l=1

Ti,j;k,lAk,l.

4
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We will denote by T> the tensor such that T> ◦ A = (T ◦ A)> (i.e., T>i,j;k,l = Tj,i;k,l) and by T•,•;k,l
and Ti,j;•,• the matrices obtained when fixing the indices k, l and i, j respectively. Note that (T ◦A)i,j =

tr(Ti,j;•,•A
>). If T and T′ are two tensors of dimensionsm×n×p×q and n×r×p×q respectively, TT′

stands for the m× r×p× q tensor defined as (TT′)i,j;k,l = (T•,•;k,lT
′
•,•;k,l)i,j . Accordingly, for an integer

r ≥ 1, if T•,•;a,b are square matrices, we will denote by Tr the tensor such that (Tr)i,j;k,l = (Tr•,•;k,l)i,j .
We also introduce ‖T‖op;∞ = maxk,l ‖T•,•;k,l‖op, the maximum operator norm of all matrices formed by
the first two dimensions of tensor T.

In this paper we shall consider the class of m× n matrix martingales that can be written as

ZT(t) =

∫ t

0

Ts ◦ dM s, (6)

where Ts is a tensor with dimensions m× n× p× q, whose components are assumed to be locally bounded
predictable random functions. The process M t is a p × q is matrix with entries that are square integrable
martingales with a diagonal quadratic covariation matrix. More explicitly, the entries of ZT(t) are given by

(ZT(t))i,j =

p∑
k=1

q∑
l=1

∫ t

0

(Ts)i,j;k,l(dM s)k,l,

where the martingale M t is a matrix of compensated counting processes M t = N t − λt where N t is a
p×q matrix counting process (i.e., each component is a counting process) with an intensity process λt which
is predictable, continuous and with finite variations (FV).

3.2. A non-observable matrix martingale Bernstein’s inequality

The next Theorem (which is a small variation of Theorem 2 in Bacry et al. (2016b)) provides a concentration
inequality for ‖ZT(t)‖op, the operator norm of ZT(t). Before stating the Theorem, let us introduce some
more notations. We define

bT(t) = sup
0≤s≤t

max
(
‖Ts‖op;∞, ‖T>s ‖op;∞

)
, (7)

and depending on whether the tensor Ts is symmetric (i.e., T>s = Ts and m = n) or not, we define the
following.

• If Ts is symmetric, we define
WT(s) = T2

s ◦ λs (8)

and Km,n = m

• If Ts is not symmetric, we define

WT(s) =

[
TsT

>
s ◦ λs 0
0 T>s Ts ◦ λs

]
, (9)

and Km,n = m+ n.

In both cases, we define

V T(t) =

∫ t

0

WT(s) ds. (10)

Finally, all along the paper we denote φ(x) = ex − 1− x for x ∈ R. The following concentration inequality
is an easy consequence of Theorem 1 from Bacry et al. (2016b).

5
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Theorem 1 Let ZT(t) be the m× n matrix martingale given by Equation (6). Moreover, assume that

E
[ ∫ t

0

φ
(
3max(‖Ts‖op;∞, ‖T>s ‖op;∞)

)
max(‖Ts‖2op;∞, ‖T>s ‖2op;∞)

(WT(s))i,jds

]
< +∞, (11)

for any 1 ≤ i, j ≤ m+ n. Then for any ξ ∈ (0, 3), t, b, x > 0, the following holds:

P
[
‖ZT(t)‖op ≥

φ(ξ)

ξb
λmax

(
V T(t)) +

xb

ξ
, bT(t) ≤ b

]
≤ Km,ne

−x. (12)

Optimizing this last inequality on ξ gives

P
[
‖ZT(t)‖op ≥

√
2vx+

bx

3
, λmax(V T(t)) ≤ v, bT(t) ≤ b

]
≤ Km,ne

−x. (13)

The proof of Theorem 1 is given in Section 8.1 below. This result is a Freedman (or Bernstein) inequality
for the operator norm of ZT(t), that provides a deviation based on a variance term V T(t) and a L∞ term
bT(t). It is a strong generalization of the scalar Freedman inequality for continuous time martingales, and
this result match exactly the scalar case whenever ZT(t) is scalar. A more thorough discussion about the
consequences of this result is provided in Bacry et al. (2016b).

3.3. Data-driven matrix martingale Bernstein’s inequalities

Inequality (13) is of poor practical interest in situations where one observes only the jumping times of the
Zt components (namely N t) and not the stochastic intensity λt. In that respect, one needs a ”data driven”
inequality where V T(t) is replaced by its empirical version V̂ T(t).

• If Ts is symmetric, we define

V̂ T(t) =

∫ t

0

T2
s ◦ dN s,

• while if Ts is not symmetric, we define

V̂ T(t) =

[∫ t
0
TsT

>
s ◦ dN s 0

0
∫ t
0
T>s Ts ◦ dN s

]
.

The next Proposition allows us to control λmax(V T(t)) using its observable counterpart λmax(V̂ T(t)) with
a large probability. This result is a generalization to arbitrary matrices of dimensions m × n of an analog
inequality originally proven by Hansen et al. (2012) for scalar martingales.

Proposition 2 For any x, b > 0 and ξ ∈ (0, 3) such that ξ > φ(ξ), we have

P
[
λmax(V T(t)) ≥

ξ

ξ − φ(ξ)
λmax(V̂ T(t)) +

xb2

ξ − φ(ξ)
, bT(t) ≤ b

]
≤ Km,ne

−x,

where Km,n is defined as in Theorem 1. Moreover, choosing ξ = −W−1(− 2
3e
−2/3) − 2/3 (note that ξ ≈

0.762), where W−1 is the second branch of the Lambert W function, leads to

P
[
λmax(V T(t)) ≥ 2λmax(V̂ T(t)) + cb2x, bT(t) ≤ b

]
≤ Km,ne

−x

for any x, b > 0, with c = 2.62.

Thanks to Proposition 2, we can establish an analog of Theorem 1 where λmax(V T(t)) is replaced by its
data-driven version λmax(V̂ T(t)), up to a slight loss in values of the numerical constants.

6
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Theorem 3 With the same notations and assumptions as in Theorem 1 one has

P
[
‖ZT(t)‖op ≥ 2

√
vx+ cbx, λmax(V̂ T(t)) ≤ v, bT(t) ≤ b

]
≤ 2Km,ne

−x (14)

for any x, b > 0 with c = 14.39.

The proof of Theorem 3 is given in Section 8.3 below. It follows simple arguments that combine
Theorem 1 and Proposition 2. However, this inequality is stated on the events {λmax(V̂ T(t)) ≤ v} and
{bT(t) ≤ b}, while an unconditional deviation inequality is more practical. Such a result, which involves
some extra technicalities, is stated in the next Theorem.

Theorem 4 With the same conditions and notations as in Theorem 3, one has

P
[
‖ZT(t)‖op ≥ 2

√
λmax(V̂ T(t))(x+ `x(t)) + c(x+ `x(t))(1 + bT(t))

]
≤ Cm,ne−x (15)

where Cm,n = π4

18 log(2)4Km,n ≤ 23.45Km,n, where c = 14.39 and

`x(t) = 2 log log
(4λmax(V̂ T(t))

x
∨ 2
)
+ 2 log log(4bT(t) ∨ 2).

The proof of this Theorem is given in Section 8.4. It is a result of independent interest, that gives a control on
the operator norm of a matrix martingale in continuous time (with jumps at most 1), using only observable
quantities. Along with Bacry et al. (2016b), it provides a first deviation inequality for such objects, and it can
be understood as a data-driven version of the results given in Bacry et al. (2016b).

4. The procedure
We want to produce an estimation procedure of θ = (µ,A) based on data from {Nt : t ∈ [0, T ]}. Following
the empirical risk minimization principle, the estimation procedure uses the least-squares functional (4) as a
goodness-of-fit. In addition to this goodness-of-fit criterion, we need to use a penalization that allows us to
reduce the dimensionality of the model, namely we consider

θ̂ ∈ argmin
θ=(µ,A)∈Rd

+×R
d×d×K
+

{
RT (θ) + pen(θ)

}
, (16)

for a specific penalization function pen(θ) described below. In particular, we want to reduce the dimension-
ality of A, based on the prior assumption that latent factors explain the connectivity of users in the network.
This leads to a low-rank assumption on A, which is commonly used in collaborative filtering and matrix
completion techniques (Ricci et al., 2011). Our prior assumptions on µ and A are the following.

Sparsity of µ. Some nodes are basically inactive and react only if stimulated. Hence, we assume that the
baseline intensity vector µ is sparse.

Sparsity of A. A node interacts only with a fraction of other nodes, meaning that for a fixed node j, only a
few aj,j′,k are non-zero. Moreover, a node might react at specific time scales only, namely aj,j′,k is non-zero
for some k only for fixed j, j′. Hence, we assume that A is an entrywise sparse tensor.

Low-rank of A. Using together Equations (1) and (2), one can write

λj,θ(t) = µj +

d∑
j′=1

K∑
k=1

aj,j′,k

∫
(0,t)

hj,j′,k(t− s)dNj′(s)

= µj +
(
hstack(A)j,•)> hstack(H(t))j,•,

(17)

7
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where H(t) is the d× d×K tensor with entries

Hj,j′,k(t) =
∫
(0,t)

hj,j′,k(t− s)dNj′(s), (18)

where (X)j,• stands for the j-th row of a matrix X and where hstack stands for the horizontally stacking
operator defined by

hstack : Rd×d×K → Rd×Kd such that hstack(A) =
[
A•,•,1 · · · A•,•,K

]
, (19)

where A•,•,k stands for the d× d matrix with entries (A•,•,k)j,j′ = Aj,j′,k. In view of Equation (17), all the
impacts of nodes j′ at time scale k on node j is encoded in the j-th row of the d × Kd matrix hstack(A).
Therefore, a natural assumption is that the matrix hstack(A) has a low-rank: we assume that there exist latent
factors that explain the way nodes impact other nodes through the different scales k = 1, . . . ,K.

To induce these prior assumptions on the parameters, we use a penalization based on a mixture of the
`1 and trace-norms. These norms are respectively the tightest convex relaxations for sparsity and low-rank,
see for instance Candès and Tao (2004, 2009). They provide state-of-the art results in compressed sensing
and collaborative filtering problems, among many other problems. These two norms have been previously
combined for the estimation of sparse and low-rank matrices, see for instance Richard et al. (2014) and Zhou
et al. (2013) in the context of MHP. Therefore, we consider the following penalization on the parameter
θ = (µ,A):

pen(θ) = ‖µ‖1,ŵ + ‖A‖1,Ŵ + τ̂‖hstack(A)‖∗, (20)

where each terms are entry-wise weighted `1 and trace-norm penalizations given by

‖µ‖1,ŵ =

d∑
j=1

ŵj |µj |, ‖A‖1,Ŵ =
∑

1≤j,j′≤d,1≤k≤K

Ŵj,j′,k|Aj,j′,k|, ‖A‖∗ =
d∑
j=1

σj(A),

where the σ1(A) ≥ · · · ≥ σd(A) are the singular values of a matrix A (we take A = hstack(A) in the
penalization). The weights ŵ, Ŵ, and coefficients τ̂ are data-driven tuning parameters described below. The
choice of these weights comes from a sharp analysis of the noise terms and lead to a data-driven scaling of
the variability of information available for each nodes.

From now on, we fix some confidence level x > 0, which corresponds to the probability that the oracle
inequality from Theorem 6 holds (see Section 5 below). This can be safely chosen as x = log T for instance,
as described in our numerical experiments (see Section 6 below).

Weight τ̂ for the trace-norm penalization of hstack(A). This weight comes from Corollary 7 (see Sec-
tion 8.5). Let us introduce the d × Kd matrix H(t) = hstack(H(t)) where H(t) is the d × d × K tensor
defined by (18) and hstack is the horizontally stacking operator defined by (19). Let us also recall that ‖ · ‖2
is the `2-norm, and define ‖H‖∞,2 = max1≤j≤d ‖Hj,•‖2 where Hj,• stands for the j-th row of H . We
define

τ̂ = 4

√
λmax(V̂ (T )/T )(x+ log(2d) + `τ (T ))

T

+ 28.78
x+ log(2d) + `τ (T ))(1 + sup0≤t≤T ‖H(t)‖∞,2)

T

(21)

where

λmax(V̂ (T )) = λmax

(∫ T

0

H>(s)H(s) diag(dN(s))
) ∨

max
j=1,...,d

∫ T

0

‖Hj,•(t)‖22dNj(s),

and where

`τ (T ) = 2 log log
(4λmax(V̂ (T ))

x
∨ 2
)
+ 2 log log

(
4 sup
0≤t≤T

‖H(t)‖∞,2 ∨ 2
)
,

where we used the notation a ∨ b = max(a, b) for a, b ∈ R.

8
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Weights ŵj for `1-penalization of µ. These weights are given by

ŵj = 6

√
(Nj(T )/T )(x+ log d+ `j(T ))

T
+ 86.34

x+ log d+ `j(T )

T
(22)

with `j(T ) = 2 log log(
4Nj(T )

x ∨ 2)) + 2 log log 4. The weighting of each coordinate j in the penalization
of µ is natural: it is roughly proportional to the square-root of Nj(T )/T , which is the average intensity of
events on coordinate j. The term `j(T ) is a technical term, that can be neglected in practice, see Section 6.

Weights Ŵj,j′k for `1-penalization of A. Recall that the tensor H is given by (18). The weights Ŵj,j′k

are given by

Ŵj,j′,k = 4

√
1
T

∫ T
0
Hj,j′,k(t)2dNj(t)(x+ log(Kd2) + Lj,j′,k(T ))

T

+ 28.78
(x+ log(Kd2) + Lj,j′,k(T ))(1 + sup0≤t≤T |Hj,j′,k(t)|)

T

(23)

where Lj,j′,k(T ) = 2 log log
( 4 ∫ T

0
Hj,j′,k(t)

2dNj(t)

x ∨2
)
+2 log log(4 sup0≤t≤T |Hj,j′,k(t)|∨2). Once again,

this is natural: the variance term
∫ T
0
Hj,j′,k(t)2dNj(t) is, roughly, an estimation of the variance of the self-

excitements between coordinates j and j′ at time scale k. The term Lj,j′,k(T ) is a technical term that can be
neglected in practice.

These weights are actually quite natural: the terms λmax(V̂ (T )) and
∫ T
0
Hj,j′,k(t)2dNj(t) correspond

to estimations of the noise variance, that are the L2 terms appearing in the empirical Bernstein’s inequalities
given in Section 3.3. The terms sup0≤t≤T ‖H(t)‖∞,2 and sup0≤t≤T |Hj,j′,k(t)| correspond to the L∞

terms from these Bernstein’s inequalities. Once again, these data-driven weights lead to a sharp tuning of the
penalizations, as illustrated numerically in Section 6 below.

5. A sharp oracle inequality
Recall that the inner product 〈λ1, λ2〉T is given by (5) and recall that ‖·‖T stands for the corresponding norm.
Theorem 6 below is a sharp oracle inequality on the prediction error measured by ‖λθ̂ − λ‖

2
T . For the proof

of oracle inequalities with a fast rate, one needs a restricted eigenvalue condition on the Gram matrix of the
problem (Bickel et al., 2009; Koltchinskii, 2011). One of the weakest assumptions considered in literature
is the Restricted Eigenvalue (RE) condition. In our setting, a natural RE assumption is given in Definition 5
below. First, we need to introduce some simple notations and definitions.

Some notations and definitions. If a, b (resp. A,B and A,B) are vectors (resp. matrices and tensors)
of the same size, we always denote by 〈a, b〉 (resp. 〈A,B〉 and 〈A,B〉) their inner products. For matrices
this can be written as 〈A,B〉 =

∑
i,jAi,jBi,j = tr(A>B), where tr stands for the trace, while for (say,

three dimensional) tensors we write similarly 〈A,B〉 =
∑
i,j,k Ai,j,kBi,j,k. We define the Euclidean norm

(Frobenius) for tensors and matrices simply as ‖A‖F =
√
〈A,A〉 and ‖A‖F =

√
〈A,A〉. If W (resp.

W) is a matrix (resp. tensor) with positive entries, we introduce the weighted entrywise `1-norm given by
‖A‖1,W = 〈W , |A|〉, (resp. ‖A‖1,W = 〈W, |A|〉) where |A| (resp. |A|) contains the absolute values of
the entries of A (resp. A). If A is a vector, matrix or tensor then ‖A‖0 is the number of non-zero entries
of A, while supp(A) stands for the support of A (indices of non-zero entries) For another vector, matrix or
tensor A′ with the same shape, the notation [A′]supp(A) stands for the vector, matrix or tensor with the same
coordinates as A′ where we put 0 at indices outside of supp(A). We also use the notation u∨ v = max(u, v)
for a, b ∈ R.

If A = UΣV > is the SVD of a m × n matrix A, with the columns uj of U and vk of V being,
respectively, the orthonormal left and right singular vectors ofA, the projection matrix onto the space spanned
by the columns (resp. rows) of A is given by PU = UU> (resp. PV = V V >). The operator PA :

9
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Rm×n → Rm×n given by PA(B) = PUB + BPV − PUBPV is the projector onto the linear space
spanned by the matrices ujx> and yv>k for all 1 ≤ j, k ≤ rank(A) and x ∈ Rn, y ∈ Rm. The projector onto
the orthogonal space is given by P⊥A(B) = (I − PU )B(I − PV ).

Definition 5 Fix θ = (µ,A) where µ ∈ Rd and A ∈ Rd×d×K+ and define A = hstack(A). We define the
constant κ(θ) ∈ (0,+∞] such that, for any θ′ = (µ′,A′) andA′ = hstack(A′) satisfying

1

3
‖(µ′)supp(µ)⊥‖1,ŵ +

1

2
‖(A′)supp(A)⊥‖1,Ŵ +

1

2
τ̂‖P⊥A(A′)‖∗

≤ 5

3
‖(µ′)supp(µ)‖1,ŵ +

3

2
‖(A′)supp(A)‖1,Ŵ +

3

2
τ̂‖PA(A′)‖∗,

we have
‖(µ′)supp(µ)‖2 ∨ ‖(A′)supp(A)‖F ∨ ‖PA(A′)‖F ≤ κ(θ)‖λθ′‖T .

The constant 1/κ(θ) is a restricted eigenvalue depending on the “support” of θ, which is naturally associated
with the problem considered here. Roughly, it requires that for any parameter θ′ that has a support close to
the one of θ (measured by domination of the `1 norms outside the support of θ by the `1 norm inside it), we
have that the L2 norm of the intensity given by ‖λθ′‖T can be compared with the L2 norm of θ′ in the support
of θ. Note that for a given θ, we simply allow κ(θ) = +∞, so the restricted eigenvalue is zero, whenever the
inequality is not met (which makes in such as case the statement of Theorem 6 trivial).

Theorem 6 Fix x > 0, and let θ̂ be given by (16) and (20) with tuning parameters given by (21), (22)
and (23). Then, the inequality

‖λθ̂ − λ‖
2
T ≤ inf

θ=(µ,A)

{
‖λθ − λ‖2T + 1.25κ(θ)2

(
‖(ŵ)supp(µ)‖22

+ ‖(Ŵ)supp(A)‖2F + τ̂2 rank(hstack(A))
)} (24)

holds with a probability larger than 1− 70.35e−x.

The proof of Theorem 6 is given in Section 8.5 below. Note that no assumption is required on the ground
truth intensity λ of the multivariate counting process N in Theorem 6. Moreover, if one forgets in Section 4
about the negligible terms `τ (T ), `j(T ) and Lj,j′,k(T ) and if one keeps only the dominating L2 terms in
O(1/T ) (while L∞ terms are O(1/T 2) in the large T regime), we obtain upper bounds, up to numerical
constants (denoted .), for the terms involved in Theorem 5:

‖(ŵ)supp(µ)‖22 . ‖µ‖0 max
j∈supp(µ)

1
TNj(T )(x+ log d)

T
,

where ‖µ‖0 stands for the sparsity of µ,

‖(Ŵ)supp(A)‖2F . ‖A‖0 max
(j,j′,k)∈supp(A)

1
T

∫ T
0
Hj,j′,k(t)2dNj(t)(x+ log(Kd2))

T
,

where ‖A‖0 stands for the sparsity of A, and finally

τ̂2 . rank(hstack(A))
1
T λmax(V̂ (T ))(x+ log(2d))

T
.

Hence, Theorem 6 proves that θ̂ achieves an optimal trade-off between approximation and complexity, where
the complexity is, roughly, measured by

‖µ‖0(x+ log d)

T
max
j

Nj(T )

T
+
‖A‖0(x+ log(Kd2))

T
max
j,j′,k

1

T

∫ T

0

Hj,j′,k(t)2dNj(t)

+
rank(hstack(A))(x+ log(2d))

T

1

T
λmax(V̂ (T )).

10
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Note that typically K ≤ d so that log(Kd2) ≤ 3 log d, which means that log(Kd2) scales as log d. The
complexity term depends on both the sparsity of A and the rank of hstack(A). The rate of convergence has
the “expected” shape (log d)/T , recalling that T is the length of the observation interval of the process, and
these terms are balanced by the empirical variance terms coming out of the new concentration results given
in Section 3.3 above.

6. Numerical experiments
In this Section we conduct experiments on synthetic datasets to evaluate the performance of our method, based
on the proposed data-driven weighting of the penalizations, compared to unweighted penalizations (Zhou
et al., 2013). Throughout this Section, we consider the most widely used sum of exponentials kernel, defined
in Equation (3).

6.1. Simulation setting

We generate Hawkes processes using Ogata’s thinning algorithm (Ogata, 1981) with d = 30 nodes. Baseline
intensities µj are constant on blocks, we use K = 3 basis kernels hj,j′,k(t) = αke

−αkt with α1 = 0.5,
α1 = 2 and α3 = 5. We consider three examples for the slices A•,•,1, A•,•,2 and A•,•,3 of the adja-
cency tensor A, including settings with overlapping boxes, and noisy entries over the block structure, as
illustrated in Figure 2. These blocks correspond to the overlapping communities reacting at different time
scales. The tensor A is rescaled so that the operator norm of the matrix

∑3
k=1 A•,•,k is equal to 0.8, guar-

anteeing to obtain a stationary process. For each simulated data, we increase the length of the time interval
T = 5000, 7000, 10000, 15000, 20000, and fit each time the procedures. An overall averaging of the results
is computed on 100 separate simulations.

6.2. Procedures and metrics

We consider a procedure based on the minimization of the least-squares functional (4). This objective is
convex, with a goodness-of-fit term which is gradient-Lipschitz: we use first-order optimization algorithms,
based on proximal gradient descent. Namely, we use Fista (Beck and Teboulle, 2009) for problems with a
single penalization on A (`1-norm or trace norm penalization of hstack(A)) and GFB (generalized forward
backward, see Pino et al. (1999)) for mixed `1 penalization of A and trace-norm penalization of hstack(A).
For both procedures we choose a fixed gradient step equal to 1/L where L is the Lipschitz constant of the
loss, namely the largest singular value of the Hessian (which is constant for this least-squares functional). We
limit our algorithms to 25, 000 iterations and stop when the objective relative decrease is less than 10−10 for
Fista and 10−7 for GFB. We only penalize A and consider the following procedures:

• L1: non-weighted L1 penalization;

• wL1: weighted L1 penalization;

• Nuclear: non-weighted trace-norm penalization;

• L1Nuclear: non-weighted L1 penalization and trace-norm penalization;

• wL1Nuclear: weighted L1 penalization and trace-norm penalization.

Note that L1Nuclear is the same as the procedure considered in Zhou et al. (2013), however, we use a different
optimization algorithm, based on an proximal gradient descent (a first-order method, which is typically faster
than an algorithm based on ADMM, as proposed in Zhou et al. (2013)). The data-driven weights used in
our procedures are the ones derived from our analysis, see (21) and (23), where we simply put x = log T .
For each metric, we tune the constant in front the `1 penalization, and the constant in front of the trace-norm
penalization in order to obtain the best possible metrics for each procedure, on average over all separate
simulations. Namely, there is no test set, we simply display the best metrics obtained by each procedure for a
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0 1
0
1

0

5

10

15

20

25

0

0 5 10 15 20 25

(ai, j, 0)0 i, j d

0 5 10 15 20 25

(ai, j, 1)0 i, j d

0 5 10 15 20 25

(ai, j, 2)0 i, j d

0 1
0
1

0

5

10

15

20

25

0

0 5 10 15 20 25

(ai, j, 0)0 i, j d

0 5 10 15 20 25

(ai, j, 1)0 i, j d

0 5 10 15 20 25

(ai, j, 2)0 i, j d

0 1
0
1

0

5

10

15

20

25

0

0 5 10 15 20 25

(ai, j, 0)0 i, j d

0 5 10 15 20 25

(ai, j, 1)0 i, j d

0 5 10 15 20 25

(ai, j, 2)0 i, j d

Figure 2: Ground truth vector µ and tensor A in dimension 30. Each row corresponds to a different example
used in our experiments.
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fair comparison. All experiments are done using our tick library for Python3, see Bacry et al. (2018), its
GitHub page is https://github.com/X-DataInitiative/tick and documentation is available
here https://x-datainitiative.github.io/tick/. The following metrics are considered in
order to assess the procedures.

Estimation error: the relative `2 estimation error of A, given by ‖Â− A‖22/‖A‖22

AUC: we compute the AUC (area under the ROC curve) between the binarized ground truth matrix A and
the solution Â with entries scaled in [0, 1]. This allows us to quantify the ability of the procedure to
detect the support of the connectivity structure between nodes.

Kendall: we compute Kendall’s tau-b between all entries of the ground truth matrix A and the solution Â.
This correlation coefficient takes value between −1 and 1 and compare the number of concordant and
discordant pairs. This allows us to quantify the ability of the procedure to rank correctly the intensity
of the connectivity between nodes.

6.3. Results

In Figure 3 we observe, on an instance of the problem, the strong improvements of wL1 and wL1Nuclear over
L1, Nuclear and L1Nuclear respectively. We observe in particular that a sharp tuning of the penalizations,
using data-driven weights, leads to a much smaller number of false positives outside the node communities
(better viewed on a computer). In Figure 4, we compare all the procedures in terms of estimation error, AUC
and Kendall coefficient and confirm the fact that weighted penalizations systematically lead to an improve-
ment, both over unweighted L1, Nuclear and L1Nuclear.

6.4. A comparison of the least-squares and likelihood functionals

This paper considers, mostly for theoretical reasons, least-squares as a goodness-of-fit for the Hawkes pro-
cess. However, estimation in this model is usually achieved by minimizing the goodness-of-fit given by the
negative log-likelihood. In what follows, we provide some numerical insights in order to compare objectively
both approaches.

First, one can precompute for both functionals some weights in order to accelerate future gradient and
value computations. In both cases, the precomputations have similar complexities, unless the number of
kernels K is large (see Table 1 below). However, given such precomputations, a remarkable property of
the least-squares versus the log likelihood is that value and gradient computation is independent of the total
number of observed events (denoted n): complexity isO(K2d3) for least-squares, while it isO(nKd) for log
likelihood, which means that such computations for least-squares can be orders of magnitude faster whenever
n � Kd2, which is the case in the setting considered in our experiments. For instance, experiments used
to produce Figures 3 and 4 for T = 20, 000 use about n ≈ 500, 000 events, and d = 30,K = 3. Note
that, however, the least-squares approach considered here does not scale with respect to d because of its
O(d3) complexity, we recommend to use instead the negative log-likelihood whenever d is large (larger than
1000, say). The complexity of each operation is described in Table 1 below and a numerical illustration
of this complexity is displayed in Figure 5, which confirms that computations with least-squares are orders
of magnitude faster than with log-likelihood in the considered setting. We don’t provide proofs for these
complexities, since it follows straightforward arguments, however details about this can be found in Chapter 2
of Bompaire (2018).

Another important point is related to smoothness properties: the negative log-likelihood does not satisfy
the gradient-Lipschitz assumption, while this property is required by most first order optimization algorithms
to obtain convergence guarantees and an easy tuning of the step-size used in gradient descent. Therefore, for
the negative log-likelihood, convergence can be very unstable, while on the contrary, least-squares is gradient
Lipschitz and is easy to optimize since it is a quadratic function. Note that in Bompaire et al. (2018) is
proposed an alternative approach based on duality, in particular for the negative log-likelihood of the Hawkes
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Figure 3: Ground truth tensor A and recovered tensors using all procedures. We observe that wL1 and
wL1Nuclear leads to a much better support recovery, since we observe less false positives outside
of the node communities.
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Figure 4: Average metrics achieved by all procedures on the three considered examples of A (in the same
order as the display from Figure 2), and 95% confidence bands, with increasing observation length
T over repeated simulations. Weighted penalizations systematically lead to improvements over L1,
Nuclear and L1 + Nuclear penalization.
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pre-computation memory value gradient
Least squares O(nK2d) O(K2d3) O(K2d3) O(K2d3)

Likelihood O(nKd) O(nKd) O(nKd) O(nKd)

Table 1: From left to right: Weights precomputation complexity, memory storage, value and gradient com-
plexity for both functionals. Note that for least-squares, the complexity of the value and the gradient
with precomputed weights is independent on the number of events n.
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Figure 5: Average time needed for weights (left) and value computation (right) (and 95% confidence bands)
for least squares and log-likelihood with precomputations, over repeated simulations. We observe
that value computations are order of magnitude faster for least-squares (y-scale is logarithmic
on the right hand side) and constant with an increasing observation length, while it is strongly
increasing for the log-likelihood.

process. Herein one can observe the strong instability of standard first order algorithms (such as the one
considered here) for the negative log-likelihood.

In Figure 6 below, we compare the performances of ISTA and FISTA with linesearch for automatic
step-size tuning, both for least-squares and negative log-likelihood. This figure confirms that the number of
iterations required for least-squares is much smaller than for the negative log-likelihood. This gap is even
stronger if we look at the computation times, since each iteration is computationally faster with least squares,
and even more so when the observation length increases.

In this Section, we compared least-squares and log-likelihood for the Hawkes process through a compu-
tational perspective only, and concluded that least-squares is typically order of magnitude faster. Now, let
us compare the statistical performances of both approaches on the same simulation setting as before, with
T = 20, 000, using the metrics defined above, namely Estimation Error, AUC and Kendall. We simply use
for this L1 penalization on A, with a strength parameter tuned for each metric and for each goodness-of-fit.

In Figure 7, we observe that both functionals roughly achieve the same performance measured by the
Kendall coefficient, but that the negative log-likelihood achieves a slightly better AUC and estimation error
than least-squares, at a stronger computational cost. The slightly better statistical performance of maximum
likelihood is not surprising, since vanilla maximum likelihood is known to be statistically efficient asymptot-
ically for Hawkes processes, see Ogata (1978), while up to our knowledge, vanilla least-squares estimator is
not. This leads to the conclusion that least squares are a very good alternative to maximum likelihood when
dealing with a large number of events: statistical accuracy is only slightly deteriorated, but the computational
cost is order of magnitudes smaller, and convergence is much more stable.

In Figure 8, we observe the performances achieved by `1 versus weighted-`1 for the estimators based
on the log-likelihood functional. The point here is that we use the weights Ŵ from Equation (23) that are
derived for the least-squares functional. We observe that, however, these data-driven weights allow to strongly
improve over the vanilla `1-penalization for the negative log-likelihood estimator as well. This behavior is
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Figure 6: Convergence speed of least squares and likelihood losses with ISTA and FISTA optimization al-
gorithms on two simulations of a Hawkes process with parameters from Figure 2 with observation
length T = 1000 (top) and T = 5000 (bottom). Once again, we observe that the computations are
much faster with least-squares, in particular with a large observation length.
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actually expected, since both functionals are actually close to each other, and the least-squares functional can
even be understood as an approximation of the negative log-likelihood one, see Bacry et al. (2016a).
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Figure 8: Performances of `1 versus weighted-`1 for estimators based on the negative log-likelihood func-
tional, where the data-driven weights used in the `1 penalization are the ones derived for the least-
squares functional. We observe that these weights allow to improve significantly the performances
of `1-penalized estimators based on the log-likelihood functional, for all the considered metrics.
This is expected, since both functionals are actually close to each other.

6.5. Sensitivity to the penalization level and weights

In Figure 9, we display the values of the metrics as a function of the penalization level used, both for un-
weighted and weighted `1 penalization. We observe that the weighted `1-penalization is more sensitive to its
unweighted counterpart, but leads anyway to much better performances even if the penalization level is not
perfectly tuned.

In Figure 10 we display the weights Ŵ from Equation (23) used in the weighted-`1 penalization for a
single simulation from the first setting (corresponding to tensor A displayed in the first row of Figure 2). We
observe that these weights are far from being uniform, and effectively induce a strongly varying scaling across
kernels k = 1, 2, 3 and between nodes. Although this display is hard to interpret, it can be better understood
when looked together with the first row of Figure 2: we observe a similarly looking block structure, which
means that these weights scale the penalization level roughly following the block structure of the adjacency
matrix A and the intensity of the baseline vector µ.

7. Conclusion

In this paper we proposed a careful analysis of the generalization error of the multivariate Hawkes process.
Our theoretical analysis required a new concentration inequality for matrix-martingales in continuous time,
with an observable variance term, which is a result of independent interest. This analysis led to a new data-
driven tuning of sparsity-inducing penalizations, that we assessed on a numerical example. Future works will
focus on other theoretical results for non-convex matrix factorization techniques applied to this problem.
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Figure 9: Sensitivity of the metrics (top: AUC, middle: Estimation error, bottom: Kendall) with respect
to the penalization level both for unweighted (left-hand side) and weighted (right-hand side) `1
penalizations. Weighted `1-penalization is more sensitive to its unweighted counterpart, but leads
to much better performances even if not perfectly tuned.
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Figure 10: Visualization of the weights used in the weighted-`1 penalization for a single simulation from the
first setting (corresponding to tensor A displayed in the first row of Figure 2). This corresponds
to the weights from Equation (23), namely Ŵ•,•,1 (left), Ŵ•,•,2 (middle) and Ŵ•,•,3 (right).
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8. Proofs
This Section contains the proofs of all the results given in the paper. First, we prove the statements concerned
with deviation inequalities, namely Theorems 1, 3, Proposition 2 and Theorem 4. Then, we give the proof of
Theorem 6, concerning the oracle inequality for the procedure.

8.1. Proof of Theorem 1

In Bacry et al. (2016b), a deviation inequality is proven in a slightly more general setting than the one
considered in this paper. There are mainly two differences.

• This paper considers only counting processes with uniform jumps of size 1 whereas in Bacry et al.
(2016b), jump sizes are controlled by a predictable process J . Therefore, it suffices to set J = 1 and
Cs = 1 in Equations (2) and (3) of Bacry et al. (2016b), where 1 stands for the all-ones matrices with
relevant shapes.

• In Bacry et al. (2016b), the deviation inequality is proved in a general context where no symmetry
is assumed on Ts. It forces to consider a symmetric version of WT(s) as in Eq. (9) increasing the
dimension of the working space by a factor of 2, which leads to less precise deviation inequality. In
this paper we consider both cases, symmetric and non symmetric, in order to obtain slightly better
constants (see the definition of Km,n).

With those two differences in mind, following carefully the proof of the concentration inequality in Bacry
et al. (2016b) (see the beginning of Appendix B.1 herein) one gets

P
[
λmax(S (Zt))

b
≥ 1

ξ
λmax

(∫ t

0

φ
(
ξJmax‖Cs‖∞max(‖Ts‖op;∞, ‖T>s ‖op;∞)b−1

)
J2
max‖Cs‖2∞max(‖Ts‖2op;∞, ‖T>s ‖2op;∞)

W sds
)
+
x

ξ
,

bT(t) ≤ b
]
≤ (m+ n)e−x,

where ξ ∈ (0, 3) and λmax(S (Zt)) = ‖Z‖op (see the beginning of Appendix B.1 in Bacry et al. (2016b)).
Setting J = 1, C = 1 and taking care of the symmetric case at the same time as the non symmetric one, one
gets:

P
[
‖Zt‖op

b
≥ 1

ξ
λmax

(∫ t

0

φ
(
ξmax(‖Ts‖op;∞, ‖T>s ‖op;∞)b−1

)
max(‖Ts‖2op;∞, ‖T>s ‖2op;∞)

W sds
)
+
x

ξ
,

bT(t) ≤ b
]
≤ Km,ne

−x,

using the definitions Km,n and W s introduced previously (depending on the symmetric properties of the
tensor Ts). Let us note that on {bT(t) ≤ b} one has max(‖Ts‖op;∞, ‖T>s ‖op;∞)b−1 ≤ 1 for any s ∈ [0, t].
Thus, since φ(xh) ≤ h2φ(x) for any h ∈ [0, 1] and x > 0, one gets

P
[
‖Zt‖op

b
≥ φ(ξ)

ξb2
λmax

(∫ t

0

W sds
)
+
x

ξ
, bT(t) ≤ b

]
≤ Km,ne

−x

and finally

P
[
‖Zt‖op ≥

φ(ξ)

ξb
λmax(V t) +

xb

ξ
, bT(t) ≤ b

]
≤ Km,ne

−x

which proves the first part of the Theorem. The second part (i.e., Inequality (13)) can be obtained following
some standard tricks (see e.g. Massart (2007)):

(i) on (0, 3), φ(ξ) ≤ ξ2

2(1−ξ/3) and
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(ii) minξ∈(0,1/c)
(
aξ

1−cξ +
x
ξ

)
= 2
√
ax+ cx for any a, c, x > 0.

Thus applying (i) leads to

P
[
‖Zt‖op ≥

ξ

2b(1− ξ/3)
λmax(V t) +

xb

ξ
, bT(t) ≤ b

]
≤ Km,ne

−x

or equivalently

P
[
‖Zt‖op ≥

ξ

2b(1− ξ/3)
v +

xb

ξ
, λmax(V t) ≤ v, bT(t) ≤ b

]
≤ Km,ne

−x.

Then optimizing on ξ using (ii) with c = 1/3 and a = v/2b2, one gets

P
[
‖Zt‖op ≥

√
2vx+

xb

3
, λmax(V t) ≤ v, bT(t) ≤ b

]
≤ Km,ne

−x

which concludes the proof of Theorem 1.

8.2. Proof of Proposition 2

This Proposition provides a deviation between λmax(V (t)) and λmax(V̂ (t)). Let us notice that it is a gener-
alization to arbitrary matrices of dimensions m×n of an analog inequality originally proven by Hansen et al.
(2012) for scalar martingales (i.e., in dimension 1). The proof below follows the same lines as these authors.
The proof is based on the observation that the difference V T(t) − V̂ T(t) can be written as a martingale
ZH(t)

V T(t)− V̂ T(t) = ZH(t) =

∫ t

0

Hs ◦ dM s,

where
Hs = T2

s (25)

when Ts is symmetric, while

Hs =

[
TsT

>
s 0

0 T>s Ts

]
(26)

if Ts is not symmetric. Then applying Eq. (12) of Theorem 1 to the martingale ZH(t) (we are in the
symmetric case of the Theorem since H>s = Hs), one gets

P
[
‖ZH(t)‖op ≥

φ(ξ)

ξb
λmax

(
V H(t)) +

xb

ξ
, bH(t) ≤ b

]
≤ Km,ne

−x, (27)

with

V H(t) =

∫ t

0

H2
s ◦ λsds . (28)

Since
‖ZH(t)‖op ≥ λmax(V T(t))− λmax(V̂ T(t)),

we have

P
[
λmax(V T(t)) ≥ λmax(V̂ T(t)) +

φ(ξ)

ξb
λmax

(
V H(t)) +

xb

ξ
, bH(t) ≤ b

]
≤ Km,ne

−x, (29)

One can first notice that, from the definitions of H and bT(t), one has bH(t) ≤ b2T(t). Moreover, since

TsT
>
s 4 b

2
T(s)Im and T>s Ts 4 b

2
T(s)In
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for all s, we have from Eq. (28),
V H(t) 4 b

2
T(t)V T(t) (30)

and therefore
λmax(V H(t)) ≤ b2T(t)λmax(V T(t)).

Inequality (29) then gives:

P
[
λmax(V T(t)) ≥ λmax(V̂ T(t)) +

φ(ξ)

ξ
λmax(V T(t)) +

xb2

ξ
, bT(t) ≤ b

]
≤ Km,ne

−x, (31)

and thus

P
[
λmax(V T(t)) ≥

ξλmax(V̂ T(t))

ξ − φ(ξ)
+

xb2

ξ − φ(ξ)
, bT(t) ≤ b

]
≤ Km,ne

−x, (32)

which proves the first inequality stated in Proposition 2. Now, an easy computation proves that the choice
ξ = −W−1(− 2

3e
−2/3)− 2/3 ≈ 0.762 provides the second desired inequality. �

8.3. Proof of Theorem 3

Introduce the set
Et = {λmax(V T(t)) ≤ 2λmax(V̂ T(t)) + 2.62b2x}.

We know from Proposition 2 that P[E{
t , bT(t) ≤ b] ≤ Km,ne

−x. Now, on the set

Et ∩ {λmax(V̂ T(t)) ≤ v} ∩ {bT(t) ≤ b}

we have

φ(ξ)

ξb
λmax(V (t)) +

xb

ξ
≤ φ(ξ)

ξb
2v +

bx

ξ
+

2.62φ(3)

3
bx

for any ξ ∈ (0, 3), since ξ 7→ φ(ξ)/ξ is increasing. Using again points (i) and (ii) from Section 8.1 proves
that the minimum for ξ ∈ (0, 3) of the right hand size of this last inequality is equal to

2
√
vx+

2.62φ(3) + 1

3
xb ≤ 2

√
vx+ cxb

with c = 14.39. Now, the conclusion easily follows from the following decomposition:

P
[
‖ZT(t)‖op ≥ 2

√
vx+ cbx, λmax(V̂ T(t)) ≤ v, bT(t) ≤ b

]
≤ P[E{

t , bT(t) ≤ b] + P
[
‖ZT(t)‖op ≥ 2

√
vx+ cbx, Et, λmax(V̂ T(t)) ≤ v, bT(t) ≤ b

]
≤ Km,ne

−x + P
[
‖Zt‖op ≥

ξ

2b(1− ξ/3)
λmax(V t) +

xb

ξ
, bT(t) ≤ b

]
≤ 2Km,ne

−x,

where we used Equation (12) from Theorem 1 in the last inequality.

8.4. Proof of Theorem 4

In order to prove this theorem, we are going to use peeling arguments. For any ε > 0 and z > 0 we define
the interval

Iz,ε = [z, z(1 + ε)].
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Let, v0, b0, ε > 0 and let us define vj = v0(1 + ε)j , bj = b0(1 + ε)j . Let us define also the events

V−1 = {λmax(V̂ T(t)) ≤ v0}, B−1 = {bT(t) ≤ b0},

and
Vj = {λmax(V̂ T(t)) ∈ Ivj ,ε}, Bj = {bT(t) ∈ Ibj ,ε}

for any j ∈ N. We set v0 = w0x, then, from Equation (14), one gets successively

P
[
‖ZT(t)‖op ≥ x

(
2
√
w0 + cb0

)
, V−1 ∩B−1

]
≤ 2Km,ne

−x

P
[
‖ZT(t)‖op ≥ x

(
2
√
w0 + c(1 + ε)bT(t)

)
, V−1 ∩Bj

]
≤ 2Km,ne

−x

P
[
‖ZT(t)‖op ≥ 2

√
λmax(V̂ T(t))(1 + ε)x+ cxb0, Vi ∩B−1

]
≤ 2Km,ne

−x

P
[
‖ZT(t)‖op ≥ 2

√
λmax(V̂ T(t))(1 + ε)x+ c(1 + ε)xbT(t), Vi ∩Bj

]
≤ 2Km,ne

−x

for all i, j ≥ 0. If one denotes A = 2
√
w0/c+ b0, previous inequalities entail, for any i, j ≥ −1:

P
[
‖ZT(t)‖op ≥ 2

√
λmax(V̂ T(t))(1 + ε)x+ c(1 + ε)(A+ bT(t))x, Vi ∩Bj

]
≤ 2Km,ne

−x. (33)

Let α > 0 and define

`x(t) = α log

(
log
(λmax(V̂ T(t))

w0x
(1 + ε)2 ∨ (1 + ε)

))
+ α log

(
log
(bT(t)

b0
(1 + ε)2 ∨ (1 + ε)

))
. (34)

Since, ∀i, j ≥ −1, λmax(V̂ T(t)) ≥ xw0(1 + ε)i(1− δ−1,i) and bT(t) ≥ b0(1 + ε)j(1− δ−1,j) on Vi ∩Bj ,
then one has

`x(t) ≥ `i,j = log
(
(i+ 2)α(j + 2)α(log(1 + ε))2α

)
on Vi ∩Bj

for any i, j ≥ −1. Then making the change of variable x← x+ `i,j in (33) gives

P
[
‖ZT(t)‖op ≥ 2

√
λmax(V̂ T(t))(1 + ε)(x+ `i,j) + c(1 + ε)(A+ bT(t))(x+ `i,j), Vi ∩Bj

]
≤ 2Km,ne

−xe−`i,j

and then

P
[
‖ZT(t)‖op ≥ 2

√
λmax(V̂ T(t))(1 + ε)(x+ `x(t)) + c(1 + ε)(x+ `x(t))(A+ bT(t)), Vi ∩Bj

]
≤ 2Km,n

[
log(1 + ε)

]−2α
e−x

[
(i+ 2)(j + 2)

]−α
for any i, j ≥ −1. Since the whole probability space can be partitioned as

⋃
i,j∈≥−1 Vi ∩Bj , one has finally

P
[
‖ZT(t)‖op ≥ 2

√
λmax(V̂ T(t))(1 + ε)(x+ `x(t)) + c(1 + ε)(x+ `x(t))(A+ bT(t))

]
=

∞∑
i,j=−1

P
[
‖ZT(t)‖op ≥ 2

√
λmax(V̂ T(t))(1 + ε)(x+ `x(t))

+ c(1 + ε)(x+ `x(t))(A+ bT(t)), Vi ∩Bj
]

≤ 2Km,n

[
log(1 + ε)

]−2α( ∞∑
i=1

i−α
)2
e−x.
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Finally, choosing ε = b0 = w0 = 1 and α = 2 leads to Equation (15) and concludes the proof of the
Theorem.

8.5. Proof of Theorem 6

If A,B are vectors, matrices or tensors of matching dimensions, we denote by A � B their entrywise prod-
uct (Hadamard product). We recall also that Aj,• the j-th row of a matrix A and recall that ‖A‖∞,2 =
maxj ‖Aj,•‖2. The proof is based on the proof of a sharp oracle inequality for trace norm penalization,
see Koltchinskii et al. (2011) and Koltchinskii (2011). We endow the space Rd × Rd×d×K with the inner
product

〈θ, θ′〉 = 〈µ, µ′〉+ 〈A,A′〉,
where θ = (µ,A) and θ′ = (µ′,A′) with 〈µ, µ′〉 = µ>µ′ and

〈A,A′〉 =
∑

1≤j,j′≤d
1≤k≤K

Aj,j′,kA′j,j′,k.

We denote for short aj,j′,k = Aj,j′,k. For any θ, one has

〈∇RT (θ̂), θ̂ − θ〉 = 2
∑

1≤j≤d

(µ̂j − µj)
∂RT (θ̂)

∂µ̂j
+

∑
1≤j,j′≤d
1≤k≤K

(âj,j′,k − aj,j′,k)
∂RT (θ̂)

∂âj,j′,k
.

Let us recall that Hj,j′,k(t) =
∫
(0,t)

hj,j′,k(t− s)dNj′(s). Since

∂λj,θ(t)

∂µj
= 1 and

∂λj,θ(t)

∂aj,j′,k
= Hj,j′,k(t),

we have that the derivatives of the empirical risk are given by

∂RT (θ̂)

∂µj
=

2

T

(∫ T

0

λj,θ(t)dt−
∫ T

0

dNj(t)
)

and

∂RT (θ̂)

∂aj,j′,k
=

2

T

(∫ T

0

Hj,j′,k(t)λj,θ(t)dt−
∫ T

0

Hj,j′,k(t)dNj(t)
)
.

It leads to

〈∇RT (θ̂), θ̂ − θ〉 =
2

T

d∑
j=1

∫ T

0

(λj,θ̂(t)− dNj(t))(µ̂j − µj)

+
2

T

∑
1≤j,j′≤d
1≤k≤K

∫ T

0

Hj,j′,k(t)(λj,θ̂(t)− dNj(t))(âj,j′,k − aj,j′,k)

=
2

T

d∑
j=1

∫ T

0

(λj,θ̂(t)− λj,θ(t))(λj,θ̂(t)dt− dNj(t)).

Let us remind that Mj(t) = Nj(t) −
∫ t
0
λj(s)ds are martingales coming from the Doob-Meyer decomposi-

tion, so that dMj(t) = dNj(t)− λj(t)dt. So, recalling that

〈f, g〉T =
1

T

∑
1≤j≤d

∫
[0,T ]

fj(t)gj(t)dt,
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we obtain the decomposition

〈∇RT (θ̂), θ̂ − θ〉 = 2〈λθ̂ − λθ, λθ̂ − λ〉T −
2

T

d∑
j=1

∫ T

0

(λj,θ̂(t)− λj,θ(t))dMj(t).

Namely, we end up with

2〈λθ̂ − λθ, λθ̂ − λ〉T = 〈∇RT (θ̂), θ̂ − θ〉+
2

T

d∑
j=1

∫ T

0

(λj,θ̂(t)− λj,θ(t))dMj(t). (35)

The parallelogram identity gives

2〈λθ̂ − λθ, λθ̂ − λ〉T = ‖λθ̂ − λ‖
2
T + ‖λθ̂ − λθ‖

2
T − ‖λθ − λ‖2T ,

where we put ‖f‖2T = 〈f, f〉T . Let us point out that, in the case 〈λθ̂ − λθ, λθ̂ − λ〉T < 0, one obtains

‖λθ̂ − λ‖
2
T ≤ ‖λθ − λ‖2T ,

which directly implies the inequality of the Theorem. Thus, from now on, let us assume that

〈λθ̂ − λθ, λθ̂ − λ〉T ≥ 0. (36)

The first order condition for θ̂ ∈ argminθ{RT (θ) + pen(θ)} gives

−∇RT (θ̂) ∈ ∂ pen(θ̂).

Let θ̂∂ = −∇RT (θ̂). Since the subdifferential is a monotone mapping, we have 〈θ̂− θ, θ̂∂ − θ∂〉 ≥ 0 for any
θ∂ ∈ ∂ pen(θ). Thus from (35), one gets ∀θ∂ ∈ ∂ pen(θ),

2〈λθ̂ − λθ, λθ̂ − λ〉T ≤ −〈θ∂ , θ̂ − θ〉+
2

T

d∑
j=1

∫ T

0

(λj,θ̂(t)− λj,θ(t))dMj(t). (37)

We need now to characterize the structure of the subdifferentials involved in pen(θ), to describe θ∂ . If
g1(µ) =

∑d
j=1 ŵj |µj |, for ŵj ≥ 0, we have

∂g1(µ) =
{
ŵ � sign(µ) + ŵ � f : ‖f‖∞ ≤ 1, µ� f = 0

}
. (38)

If g2(A) =
∑

1≤j,j′≤d,1≤k≤K Ŵj,j′,k|Aj,j′,k|, for Ŵj,j′,k ≥ 0, we have

∂g2(A) =
{
Ŵ� sign(A) + Ŵ� F : ‖F‖∞ ≤ 1,A� F = 0

}
. (39)

Now let A = hstack(A) and Â = hstack(Â). Let us recall that if A = UΣV > is the SVD of A, we have
PA(B) = PUB +BPV −PUBPV and P⊥A(B) = (I −PU )B(I −PV ) (projection onto the column
and row space ofA and projection onto its orthogonal space). Now, for g3(A) = τ̂‖A‖∗, we have

∂g3(A) =
{
τ̂UV > + τ̂P⊥A(F ) : ‖F ‖op ≤ 1

}
, (40)

see for instance (Lewis, 1995). Now, write

−〈θ∂ , θ̂ − θ〉 = −〈µ∂ , µ̂− µ〉 − 〈A∂,1, Â− A〉 − 〈A∂,∗, Â−A〉
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with µ∂ ∈ ∂g1(µ), A∂,1 ∈ ∂g2(A) andA∂,∗ ∈ ∂g3(A). Using Equation (38), (39) and (40), we can write

−〈θ∂ , θ̂ − θ〉 = −〈ŵ � sign(µ), µ̂− µ〉 − 〈ŵ � f, µ̂− µ〉

− 〈Ŵ� sign(A), Â− A〉 − 〈Ŵ� F1, Â− A〉

− τ̂〈UV >, Â−A〉 − τ̂〈F ∗,P⊥A(Â−A)〉,

where by duality between the norms ‖ · ‖1 and ‖ · ‖∞, and between ‖ · ‖∗ and ‖ · ‖op, we can choose f,F1

and F ∗ such that

〈ŵ � f, µ̂− µ〉 = ‖(µ̂− µ)supp(µ)⊥‖1,ŵ, 〈Ŵ� F1, Â− A〉 = ‖(Â− A)supp(A)⊥‖1,Ŵ
and

〈F ∗,P⊥A(Â−A)〉 = ‖P⊥A(Â−A)‖∗,
which leads to

−〈θ∂ , θ̂ − θ〉 ≤ ‖(µ̂− µ)supp(µ)‖1,ŵ − ‖(µ̂− µ)supp(µ)⊥‖1,ŵ
+ ‖(Â− A)supp(A)‖1,Ŵ − ‖(Â− A)supp(A)⊥‖1,Ŵ
+ τ̂‖PA(Â−A)‖∗ − τ̂‖P⊥A(Â−A)‖∗.

Now, we decompose the noise term of (37):

2

T

d∑
j=1

∫ T

0

(λj,θ̂(t)− λj,θ(t))dMj(t)

=
2

T

d∑
j=1

(µ̂j − µj)
∫ T

0

dMj(t) +
2

T

∑
1≤j,j′≤d
1≤k≤K

(âj,j′,k − aj,j′,k)
∫ T

0

Hj,j′,k(t)dMj(t)

=
2

T
〈µ̂− µ,M(T )〉+ 2

T
〈Â− A,Z(T )〉,

where M(T ) = [M1(T ) · · ·Md(T )]
> and where Z(T ) is the d× d×K tensor with entries

Zj,j′,k(T ) =
∫ T

0

Hj,j′,k(t)dMj(t).

Recall that hstack is the horizontally stacking operator defined by (19). The following upper bounds

|〈µ̂− µ,M(T )〉| ≤
d∑
j=1

|µ̂j − µj ||Mj(T )|

|〈Â− A,Z(T )〉| ≤
∑

1≤j,j′≤d
1≤k≤K

|Âj,j′,k − Aj,j′,k||Zj,j′,k(T )|

|〈Â− A,Z(T )〉| = 〈hstack(Â− A),hstack(Z(T ))〉 ≤ ‖hstack(Z(T ))‖op‖ hstack(Â− A)‖∗,

entail that we need to upper bound the three terms

|Mj(T )|, |Zj,j′,k(T )| and ‖ hstack(Z(T ))‖op

by data-driven quantities. Let us start with ‖ hstack(Z(T ))‖op. Denote for short Z(t) = hstack(Z(t)) and
H(t) = hstack(H(t)) where H(t) is defined by (18). We note that

Z(t) =

∫ t

0

diag(dM(s))H(s),
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namely

(Z(t))j,j′+(k−1)d =

∫ t

0

(H(t− s))j,j′,kdMj(s)

for any 1 ≤ j, j′ ≤ d and 1 ≤ k ≤ K. We need the following corollary.

Corollary 7 The following deviation inequality holds

P
[
‖Z(t)‖op ≥ 2

√
λmax(V̂ (t))(x+ log(2d) + `(t))

+ 14.39(x+ log(2d) + `(t))(1 + sup
0≤s≤t

‖H(s)‖∞,2)
]
≤ 23.45e−x,

(41)

where

λmax(V̂ (t)) = λmax

(∫ t

0

H>(s)H(s) diag(dN(s))
) ∨

max
j=1,...,d

∫ t

0

‖Hj,•(s)‖22dNj(s),

and where

`(t) = 2 log log
(4λmax(V̂ (t))

x
∨ 2
)
+ 2 log log

(
4 sup
0≤s≤t

‖H(s)‖∞,2 ∨ 2
)
.

The proof of Corollary 7 is given in Section 8.6 below. Corollary 7 proves that 1
T ‖Z(t)‖op ≤ τ̂

2 holds
with probability 1− 23.45e−x, with

τ̂ = 4

√
λmax(V̂ (T )/T )(x+ log(2d) + `(T ))

T

+ 28.78
x+ log(2d) + `(T ))(1 + sup0≤t≤T ‖H(t)‖∞,2)

T
,

which leads to the choice of τ̂ given in Section 4. This entails that, on an event of probability larger than
1− 23.45e−x, we have

1

T
|〈Â− A,Z(T )〉| ≤ τ̂

2
‖ hstack(Â− A)‖∗.

Using again Corollary 7 with H(t) ≡ 1 (constant number equal to 1) and M = Mj gives that 1
T |Mj(T )| ≤

ŵj

3 for all j = 1, . . . , d with probability 1− 23.45e−x with

ŵj = 6

√
(Nj(T )/T )(x+ log d+ `j(T ))

T
+ 86.34

x+ log d+ `j(T )

T
,

with `j(T ) = 2 log log(
4Nj(T )

x ∨ 2) + 2 log log 4. This entails that, on an event of probability larger than
1− 23.45e−x, we have

2

T
|〈µ̂− µ,M(T )〉| ≤ 2

3
‖µ̂− µ‖1,ŵ.

Using a last time Corollary 7 withH(t) = Hj,j′,k(t) and M =Mj gives 1
T |Zj,j′,k(T )| ≤

Ŵj,j′,k
2 uniformly

for j, j′, k for

Ŵj,j′,k = 4

√
1
T

∫ T
0
Hj,j′,k(t)2dNj(t)(x+ log(Kd2) + Lj,j′,k(T ))

T

+ 28.78
(x+ log(Kd2) + Lj,j′,k(T ))(1 + sup0≤t≤T |Hj,j′,k(t)|)

T
,
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where

Lj,j′,k(T ) = 2 log log
(4 ∫ T

0
Hj,j′,k(t)

2dNj(t)

x
∨ 2
)
+ 2 log log

(
4 sup
0≤t≤T

|Hj,j′,k(t)| ∨ 2
)
,

which entails that on an event of probability larger than 1− 23.45e−x, we have

1

T
|〈Â− A,Z(T )〉| ≤ 1

2
‖Â− A‖1,Ŵ.

This entails that, with a probability larger than 1− 3× 23.45e−x, one has

0 ≤ −〈θ∂ , θ̂ − θ〉+
2

T

d∑
j=1

∫ T

0

(λj,θ̂(t)− λj,θ(t))dMj(t)

≤ 5

3
‖(µ̂− µ)supp(µ)‖1,ŵ −

1

3
‖(µ̂− µ)supp(µ)⊥‖1,ŵ

+
3

2
‖(Â− A)supp(A)‖1,Ŵ −

1

2
‖(Â− A)supp(A)⊥‖1,Ŵ

+
3

2
τ̂‖PA(Â−A)‖∗ −

1

2
τ̂‖P⊥A(Â−A)‖∗,

where we recall once again that A = hstack(A) and Â = hstack(Â). This matches the constraint of
Definition 5 with µ′ = µ̂− µ and A′ = Â− A, so that it entails

‖(µ̂− µ)supp(µ)‖2 ∨ ‖(Â− A)supp(A)‖F ∨ ‖PA(Â−A)‖F ≤ κ(θ)‖λθ̂ − λθ‖T . (42)

Putting all this together gives

−〈θ∂ ,θ̂ − θ〉+
2

T
〈µ̂− µ,M(T )〉+ 2

T
〈Â− A,Z(T )〉

≤ 5

3
‖(µ̂− µ)supp(µ)‖1,ŵ −

1

3
‖(µ̂− µ)supp(µ)⊥‖1,ŵ

+
3

2
‖(Â− A)supp(A)‖1,Ŵ −

1

2
‖(Â− A)supp(A)⊥‖1,Ŵ

+
3

2
τ̂‖PA(Â−A)‖∗ −

1

2
τ̂‖P⊥A(Â−A)‖∗

≤ 5

3
‖(ŵ)supp(µ)‖2‖(µ̂− µ)supp(µ)‖2 +

3

2
‖(Ŵ)supp(A)‖F ‖(Â− A)supp(A)‖F

+
3

2
τ̂
√
rank(A)‖PA(Â−A)‖F ,

where we used Cauchy-Schwarz’s inequality. This finally gives

‖λθ̂ − λ‖
2
T ≤ ‖λθ − λ‖2T − ‖λθ̂ − λθ‖

2
T

+ κ(θ)
(5
3
‖(ŵ)supp(µ)‖2 +

3

2
‖(Ŵ)supp(A)‖F +

3

2
τ̂
√

rank(A)
)
‖λθ̂ − λθ‖T

where we used (42). The conclusion of the proof of Theorem 6 follows from the fact that ax − x2 ≤ a2/4
for any a, x > 0.

8.6. Proof of Corollary 7

We simply use Theorem 4. First, we remark that Z(t) =
∫ t
0
T(s) ◦ diag(dM(s)) for the tensor T(t) of size

d×Kd× d× d given by
(T(t))i,j;k,l = (I)i,k(H(t))l,j (43)
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for 1 ≤ i, k, l ≤ d and 1 ≤ j ≤ Kd. Note that we have

T•,•;k,l(t) = ekH l,•(t)
> and T•,•;k,l(t)

> =H l,•(t)e
>
k (44)

where ek ∈ Rd stands for the k-th element of the canonical basis of Rd and whereH l,•(t) ∈ RKd stands for
the vector corresponding to the l-th row of the matrixH(t). Therefore, we have

T•,•;k,l(t)T
>
•,•;k,l(t) = ‖H l,•(t)‖22eke>k and T>•,•;k,l(t)T•,•;k,l(t) =H l,•(t)H l,•(t)

>

and therefore
‖T•,•;k,l(t)‖op =

√
λmax(T•,•;k,l(t)T>•,•;k,l(t)) = ‖H l,•(t)‖2

and
‖T(t)‖op;∞ = max

1≤l≤d
‖H l,•(t)‖2 = ‖H(t)‖∞,2.

One can prove in the same way that ‖T>(t)‖op;∞ = ‖H(t)‖∞,2, so that for this choice of tensor T(t), we
have bT(t) = ‖H(t)‖∞,2. Now, let us explicit what V̂ T(t) is for the tensor (43). First, let us remind that

V̂ T(t) =

[∫ t
0
T(s)T>(s) ◦ diag(dN(s)) 0

0
∫ t
0
T>(s)T(s) ◦ diag(dN(s))

]
.

Using (44) we get

(T(t)T(t)>)•,•;,k,l = ekH l,•(t)
>H l,•(t)e

>
k = ‖H l,•(t)‖22eke>k

so that
∫ t
0
(T(s)T>(s)) ◦ diag(dN(s)) is the diagonal matrix with entries(∫ t

0

(T(s)T>(s)) ◦ diag(dN(s))
)
j,j

=

∫ t

0

‖Hj,•(s)‖22dNj(s),

or equivalently ∫ t

0

(T(s)T>(s)) ◦ diag(dN(s)) =

∫ t

0

diag(H>(s)H(s)) diag(dN(s)).

Using again (44) we get

(T>(t)T(t))•,•;,k,l =H l,•(t)e
>
k ekH l,•(t)

> =H l,•(t)H l,•(t)
>

so that
∫ t
0
(T>(s)T(s)) ◦ diag(dN(s)) is the matrix with entries(∫ t

0

(T>(s)T(s)) ◦ diag(dN(s))
)
i,j

=

d∑
l=1

∫ t

0

H l,i(s)H l,j(s)dNl(s)

or equivalently ∫ t

0

(T>(s)T(s)) ◦ diag(dN(s)) =

∫ t

0

H>(s)H(s) diag(dN(s)).

Finally, we obtain that

λmax(V̂ t) = λmax

(∫ t

0

H>(s)H(s) diag(dN(s))
) ∨

max
j=1,...,d

∫ t

0

‖Hj,•(t)‖22dNj(s).

This concludes the proof of the corollary. �
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