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Abstract. The manual segmentation of multiple organs in 3D ultra-
sound (US) sequences and volumes towards their quantitative analy-
sis is very expensive and time-consuming. Fully supervised segmenta-
tion methods still require the collection of large volumes of annotated
data while unlabeled images are abundant. In this work, we propose a
semi-automatic deep learning approach modeled as a weak-label learn-
ing problem: given a few 2-D incomplete annotations for selected slices,
the goal is to propagate the masks to the entire sequence. To this end,
we make use of both positive and negative constraints induced by in-
complete labels to penalize the segmentation loss function. Our model is
composed of one encoder and two decoders to model the segmentation
and an auxiliary reconstruction task. Moreover, we consider the spatio-
temporal information by deploying a Convolutional Long Short Term
Memory module. Our findings suggest that the reconstruction decoder
and the spatio-temporal information lead to a better geometrical esti-
mation of the mask shape. We apply the model to the task of low-limb
muscle segmentation in a dataset of 44 patients and 6160 images.

Keywords: 3-D ultrasound · weakly supervised learning · guided back-
propagation · convolutional LSTM · fully convolutional neural networks.

1 Introduction

Duchenne Muscular Dystrophy (DMD) is a degenerative muscular disorder in
which muscle fibers are replaced with fat. Treatment follow-up is commonly done
through imaging of the lower limb muscles under Magnetic Resonance (MR) [18,
14]. Due to the early onset of the disease, patients are often children, for whom
MRI is unpractical. 3-D US-imaging is rapidly evolving [13] offering an inexpen-
sive and portable alternative, yet needs further clinical validation. An identified
imaging bio-marker for DMD evolution is muscle volume [17]. Quantifying such
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information often requires the segmentation of the 3-D images. Towards the val-
idation of 3-D ultrasound as a viable alternative for DMD follow-up, we propose
an automatic segmentation algorithm for 3-D freehand ultrasound images.

Segmentation in US images comes with unique challenges including low imag-
ing quality, high variability, attenuation, speckle and shadows [13]. Furthermore,
the contrast between areas of interest is often low [3], among others due to and
orientation dependence of the acquisition. These difficulties exist not only for
automatic segmentation algorithms but also for the clinical experts who anno-
tate the “ground-truth” [25]. Moreover, for 3-D US or ultrafast acquisitions, it
is unpractical to label every imageFinally, in certain images, the structures can
be more easy to segment than others, which may lead to incomplete masks.

It is essential to develop advanced methods that handle the above challenges
to make assessment more objective and accurate. Herein, we propose a deep
learning segmentation approach that relies on the spatial coherence of an image
sequence (or contiguous slices of a 3D volume) to better exploit incompletely
annotated data. We design a network architecture based on the encoder-decoder
topology, built using depthwise separable convolutions. Moreover, we rely on
spatio-temporal information to partially compensate the missing sequential an-
notations and recover better boundaries.

Similar to [16], we bring negative evidence from complementary masks from
other organs, to constraint the area of prediction. However, we further propa-
gate the information across the sequence by means of a Convolutional Long Short
Term Memory (CLSTM)[23] placed in the bottleneck of an encoder-decoder ar-
chitecture. The CLSTM captures the possible short and long range muscle de-
formations, while preventing to propagate incorrect or noisy information via the
gated mechanism learning. To improve network convergence and to help pre-
venting over-fitting, separable depth-wise convolutions [24] are favorable as they
have less parametersFinally, to preserve the boundaries and the spatial structure,
we enforce the encoding path to learn a compact representation that preserves
the geometrical properties of the input sequence via an auxiliary reconstruction
decoder trained in a fully unsupervised manner.

We evaluated our method over a total of 44 participants and 6160 images to
evaluate our model performance for muscle segmentation. We performed an ab-
lation study to evaluate the effectiveness and usefulness of each novelty. We show
that the proposed method produces muscle segmentation results of high quality,
scores an average dice similarity coefficient up to 94.5% with full annotation and
up to 70.8% with 50% of the annotations.

2 Related Work

The well-known U-net architecture [19] has been successfully extended in [2]
to fuse features between the encoding and the decoding path in a non-linear
way using LSTMs. Such connections have the advantage of enhancing feature
propagation and encourage feature reuse. Both [19] and [2] are limited by their
inability to incorporate temporal information, that can facilitate the segmen-
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tation task with sequential or volumetric data. To exploit the dynamics, we
integrated a CLSTM within the U-net, similar to [4, 1, 21]. CLSTM can perceive
the entire spatio-temporal context and provide more discriminative features. Our
integration of CLSTM is done at the bottleneck of encoding path, wherein two
CLSTMs for the spatio-temporal encoding path are deployed and followed by
another two CLSTMs for the temporal decoding path. So far, CLSTM is used in
fully supervised way but non of [4, 1, 21] exploit it for feature propagation when
dealing with incomplete masks. In particular, we integrate prior information,
e.g the masks of other easier to segment organs provided by clinical experts, to
guide the network back-propagation. In this way, an interactive semi-automatic
segmentation can be leveraged.

To reduce the cost of full pixel-wise image annotations, weak segmentation
methods exist. [10] proposed a method that seed with weak localization cues,
e.g. object position, and then to expand objects based on information about
which classes can occur in an image. Then, the segmentation is constrained to
coincide with object boundaries. The disadvantage is the dependency of the seg-
mentation quality with respect to the combination of those terms in the loss
function. [5] investigated bounding box annotations as an alternative source of
supervision to train Fully Convolutional Network (FCN) and to recover segmen-
tation masks. Their method deploys region proposal networks [12] to generate
candidate segmentation masks. The FCN is then trained under the supervision
of these approximate masks. Despite the competitive performance demonstrated
for object recognition, this method requires a huge amount of bounding boxes,
up to 123k. Medical data cannot afford such amount of annotation. Simple yet
effective approaches [15, 16] address the weak supervision by compensating the
missing annotations for a specific organ by incorporating background labels. As
missing annotations are usually considered as background pixel classes, prior
knowledge of other known classes could be leveraged to restrict the area of pre-
diction for the missing class. Although interesting, these methods do not prop-
agate the spatio-temporal coherence of sequential data. We consider both the
spatio-temporal feature propagation and the use of prior regarding the other
organs that are easily annotated, to generate a true negative mask related to the
background which compensate the absence of the true positive mask. With the
presence of the true positive annotated mask, e.g at time step t − 8, and using
CLSTM for feature propagation, mask approximated is attained.

Multi-task learning [11, 8] shown to improve the performance of different
tasks with auxiliary objective functions. We explore an unsupervised reconstruc-
tion task that seeks to reproduce the sequential US slices to aid the weak su-
pervision of the segmentation task. We build a model that operates on the the
same encoding path. Our finding shows that the reconstruction task helps to
efficiently preserve the geometrical and appearance structure of the segmented
mask, yielding better shape estimation. To handle multi-task learning, we pro-
pose a principled way of solving multiple loss functions to simultaneously learn
multiple objectives instead of a naive weighted sum combination [6]. The novelty
lies in its strength to update the network parameters twice at the same time for
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Fig. 1. (a) 2-D US image; its manual segmentation masks ((b):GM, (c):GL, (d):SOL);
(e) The background of annotated GM. (f) Generated true negative background.

each iteration. Hence, if the segmentation network parameters are stuck in a sad-
dle point, the optimizer of reconstruction task has the opportunity to re-update
the gradient into a better position. We could think about it as fine-tuning a
model trained for reconstruction task and then it is tuned for the segmentation
task, with main difference, that it happened concurrently.

3 Method

With the long term objective of assisting the volume and other quantitative mea-
surements during the follow-up of DMD patients, we address here the problem of
segmenting muscles in series of 2-D images. Given a 3-D US image of the lower
leg, the goal is to retrieve a segmentation mask for one of the three muscles:
the Gastrocnemius Medialis (GM) and Lateralis (GL), and the Soleus (SOL).
Given the difficulties of manually annotating such difficult sequences, we present
a FCN model and a training strategy that rely on incomplete 2-D annotations,
where only some of the slices are annotated and not necessarily with all the mus-
cle masks (see Fig. 1). To train a deep learning model under these constraints,
we devise a training strategy capable of handling and propagating partial anno-
tations while exploiting all the available information, i.e. the location of other
muscles is advantageous for constraining the extent of the foreground prediction.

We propose a spatio-temporal multi-task approach performing two impor-
tant and complementary tasks: 1) segmentation and 2) image reconstruction.
The segmentation relies on a spatio-temporal U-Net with a CLSTM in the bot-
tleneck ensuring the propagation of information across slices. Furthermore, two
competing masks are considered: the foreground mask containing the muscle of
interest, and the background mask filled with negative evidence from other anno-
tated organs. The purpose of the auxiliary reconstruction task is to compress and
store the important spatio-temporal information into a compact representation.

Model Architecture. The core of the FCN model is a combination of two
decoders sharing the same encoding path (see Fig. 2). The encoding path ex-
tracts compact low resolution features with convolutional blocks. The feature
maps from the last encoder layer are fed to a CLSTM module to capture the
spatio-temporal transition within inter-slices and help compensating for missing
annotations. The output of CLSTM is then passed to two decoders, the first
focusing on reconstructing the original image, while the second on the segmen-
tation task. The last layer of the reconstruction decoder is mapped into one
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Fig. 2. Schematic representation of our network architecture.

channel while the segmentation decoder is mapped onto C maps, where C rep-
resent the number of classes. Afterwards, the output feature maps C are passed
to a pixel-wise softmax layer to generate the probabilities of the predicted masks.

Architecture details: Our model is composed of an encoder with structure of 5
residual depthwise-separable convolutional blocks and max-pooling operations,
gradually projecting the gray-scale channel into 16, 32, 64, 128 and 256 feature
maps at each layer respectively. The CLSTM at the bottleneck is composed of
4 stacked cells of 256 feature maps. The decoder mirrors this structure.

Loss functions. The reconstruction objective function is the average Mean
Square Error (st-MSE) between an input sequence X = {x1, . . . ,xT } of T

frames, and the corresponding output reconstructions X̂ = {x̂1, . . . , x̂T }, which
is achieved by the reconstruction network fθ(.) parameterized by θ. Then the
reconstruction loss is:

st-MSE(X, X̂, θ) =

T∑
t=1

(xt − fθ(xt)) (1)

where xt is the t-th 2-D slice, and fθ(xt) denotes the corresponding output of
the reconstruction branch.

The segmentation loss is the Soft Dice Coefficient (SDC) adapted to suit
sequential data, we refer to as (st-SDC). Consider a sequence of T annota-
tions Y = {y1, . . . ,yT } corresponding to the input sequence X, and the masks

Ŷ = {gω(x1), . . . , ĝω(xT )} estimated by the segmentation network gω(.) param-
eterized by ω. Then the segmentation loss is:

dice(yt, gω(xt)) =

(
2
∑

pixels yt gω(xt)∑
y2
t +

∑
gω(xt)2

)
(2)

st-SDC(Y, Ŷ,ω) =
1

T

T∑
t=1

(1− dice(yt, gω(xt))) (3)

where yt is the available ground truth and gω(xt) is the output of the segmen-
tation branch. The normalization ensures the loss to be between 0 and 1. The
optimisation of the loss is conditioned upon on the type of available annotations
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Fig. 3. a) B-mode image. b) manual annotation over B-mode. c) 3D volume. d) 3D
segmented volumes. e) cross-section with GM,GL and SOL annotations

at time t. Consider a set of annotated frame ya in which their true positive fore-
ground is available. In this case, eq. (3) will be minimized. On the other hand,
consider a set of un-annotated frame yun in which their true negative background
is generated, then eq. (3) will be maximized (or minimizing its negative).

Multi-task learning. Multi-task learning is typically treated as a weighted
sum of two criteria. However, as different tasks may conflict finding suitable
weighting hyperparameters is complex. Instead, we follow a multi-objective ap-
proach, similar to [20]. To this end, we optimise each objective function sep-
arately using two ADAM optimisers [9]. Since both networks fθ(.) and gω(.)
share the same encoder path, we alternatively update the networks parameters
θ and ω. With the proposed multi-task training, the encoder learns to extract
a compact representation that not only serves the segmentation task, but also
the reconstruction. Conditioning the encoder to preserve the spatio-temporal
information required to reconstruct a sequence of images, favors a better ge-
ometrical representation in the bottleneck. The improved representation leads
then to better segmentation masks, especially in the boundaries.

4 Experimental Validation

Data acquisition. A total of 59 acquisitions taken from 44 volunteers aged be-
tween 18 and 45 years old is recorded. Every acquisition consists of a sequence of
2-D B-mode US images (Fig3-a) acquired with a Supersonix Ultrasound machine
and a 40mm linear VERMON probe. Images are recorded every 5 mm displace-
ment in low speed mode. The probe is followed with an optical tracking system
and then the 3-D volumes is reconstructed (Fig3-c) using stradwin software [7].
The B-mode images are of size 227×544 with a pixel spacing of 0.176mm/pixel.
Volumes are recovered to fill a grid of 1372×632×2270. The manual annotation
of the GM, GL and SOL muscles is performed over 300± 96 muscles in B-mode
US images (Fig3-b). For some cases, it was possible to segment GM and GL only.
Hence, a second acquisition was acquired to segment in particular the SOL.

After volume reconstruction (Fig3-c), 3-D annotations (Fig3-d) are obtained
through a surface fitting algorithm [22]. The comparison between the annotations
from two experts lead only to a 3% volumetric difference validating the approach.
The masks used for training were extracted as transverse-sections of the surface
models (Fig3-e) computed from the more expert examiner annotations.
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Experimental setup. For each participant, we extract low resolution cross-
sections (300 × 400 pixels) from the reconstructed volumes and select a sub-
volume with 140 images. The data split consists in 29 train sequences (29 ×
140 = 4060 images) coming from participants in which the ground-truth mask
of the GM, GL and SOL was provided over a single slice. For validation and test
purposes, we used the data of other 5 and 10 (700 and 1400 images) participants
with two sequences (coming from different acquisitions).

In our experimental setting, we consider different ratios of annotations to
train our model. The 100% annotation setting corresponds to the 140 images
available for a subvolume along with their ground truth for the muscle of inter-
est (e.g. GM). However, having 30% of annotations means that only 42 masks
(e.g. GM) out of 140 images are given to the network. Instead of ignoring the 98
images with un-annotated GM masks, we generated a true negative mask using
the prior information about SOL and GL.

In our experimental validation, we perform first an ablation study to deter-
mine the performance contribution of each proposed component. We then present
the results for different amounts of annotation ratios. Finally, we compare our
model performance with the upper bound setting of full supervision with dif-
ferent % of annotation, but without prior information from other muscles. We
use the validation set for hyperparameter tuning, and report the performance
on the test set. We use Dice (DSC), mean Intersection over Union (mIoU), and
Hausdorff distance error (HDE) to quantify the accuracy of the predicted seg-
mentation map, and present also qualitative results.

4.1 Model Ablation study

To validate the contribution of the novel model components with respect to a
plain U-net, we perform a comparative study with full supervision (100% of the
SOL masks for training are used). SOL was chosen being the hardest muscle
to segment. First, we replace the fully convolutional operators with separable
depth-wise convolutions, we refer to this model as Unet-S. Then, we integrate
the second decoder for reconstruction in the Unet-S-R model. Finally, we evalu-
ate our full model including CLSM module on the top of Unet-S-R and we refer
to as Unet-S-R-CLSM. Table 1 demonstrates the effectiveness of using separable
depthwise convolutions with Unet architecture when deployed over a moderate

Ablation studies DSC (%) mIoU (%)

Unet 78 76
Unet-S 82 79
Unet-S-R 87 85

Unet-S-R-CLSM (ours) 91 89

Table 1. Comparison of the baseline (Unet) for segmenting
SOL muscle vs the different variants proposed.

GT Unet Unet-R

Fig. 4. Predicted mask from Unet and
Unet with reconstruction.
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label % DSC mIoU HDE

100 94.5 91 2.42
90 90.1 88 2.85
70 83.4 76 4.20
50 70.8 61 4.87
30 50.6 42 6.50

a) under different annotation ratios.

label % Our model Supervised setting

90 90.1 91.4
70 83.4 88.8
50 70.8 66.2
30 50.6 43.1

b) with and without negative priors.

Table 2. Performance of the proposed model under different annotation setting.

size dataset. Moreover, our finding suggests that deploying the additional re-
construction decoder improves both the mIoU and the DSC measures.Deploying
CLSTM dramatically improves the performance as it exploits the full spatio-
temporal structure of the input data. Finally, Figure 4 shows the visual differ-
ences of the predicted mask between the Unet and Unet with reconstruction
decoder. The geometrical structure is better preserved with the latter.

4.2 Decreasing amounts of annotations and negative priors.

To cope with the difficulty of the manual annotations, we evaluate the model’s
capacity to learn from fewer annotations and to exploit available true negative
knowledge from other muscle masks. The results for the GM muscle are presented
in Table 2. The model obtains reasonable DSC scores with fewer annotation.

To analyse the contribution of negative priors we compare the results above
to a version of the model run on the ground truth masks of the relevant muscle
only, without the prior knowledge from other muscles. The results are presented
in Table 2(b). The first column is the model performance with true negative
evidence. The second column reports the performance when it use only the
available % of the relevant muscle annotations. The contribution of prior negative
knowledge is relevant when the % of un-annotated data is less than 50%.

A second way to transfer knowledge from one muscle to another is fine-tuning.
We train our model over 100% annotations of GL muscle. We then fine-tune the
model with 50% of the GM annotations. We obtain 68.8% of DSC, which is
comparable but less interesting than the 70.8% DSC obtained with our model
in the experiments (Table 2(a)) with 50% annotations.

5 Discussion and Conclusions

In this paper, we proposed a deep learning approach to segment muscles in 3D
freehand ultrasound data. Our model benefits from the spatio-temporal structure
of the data at the feature level as well from an auxiliary reconstruction task. For
the latter we also present a multi-objective training strategy that avoids the
need of finding loss weights. We also explore different means to transfer prior
knowledge from complementary masks and study the behavior of the different
components under less annotations. Experimental results show that with good
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amounts of supervision, the spatio-temporal consistency enforced through the
CLSTM, as well as the addition of a parallel reconstruction decoder are effective
tools to improve the segmentation results. The use of complementary masks is
the most useful when the amount of the annotated ground truth is relatively
small (up to 1000 images). Future work aims at improving the system to handle
patient data. We will also validate the usability when using the proposed method
as mask initialization to reduce time of expert’s segmentation. The methodology
may also benefit other type of sequential data as ultrafast US imaging, as well
as other applications, where muscle images need to be segmented as in sports.
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