
HAL Id: hal-02734894
https://hal.science/hal-02734894

Submitted on 2 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Communication-based and Communication-less
approaches for Robust Cooperative Planning in

Construction with a Team of UAVs
Elena Umili, Marco Tognon, Dario Sanalitro, Giuseppe Oriolo, Antonio

Franchi

To cite this version:
Elena Umili, Marco Tognon, Dario Sanalitro, Giuseppe Oriolo, Antonio Franchi. Communication-
based and Communication-less approaches for Robust Cooperative Planning in Construction with a
Team of UAVs. International Conference on Unmanned Aircraft Systems (ICUAS 2020), Sep 2020,
Athènes, Greece. �10.1109/ICUAS48674.2020.9214044�. �hal-02734894�

https://hal.science/hal-02734894
https://hal.archives-ouvertes.fr

Preprint version, final version at http://ieeexplore.ieee.org/ IEEE International Conference on Unmanned Aircraft Systems (ICUAS) 2020

Communication-based and Communication-less approaches for
Robust Cooperative Planning in Construction with a Team of UAVs

Elena Umili1, Marco Tognon3,2, Dario Sanalitro2, Giuseppe Oriolo1, Antonio Franchi4,2

Abstract—In this paper, we analyze the coordination problem
of groups of aerial robots for assembly applications. With
the enhancement of aerial physical interaction, construction
applications are becoming more and more popular. In this
domain, the multi-robot solution is very interesting to reduce
the execution time. However, new methods to coordinate teams
of aerial robots for the construction of complex structures are
required. In this work, we propose an assembly planner that
considers both assembly and geometric constraints imposed by
the particular desired structure and employed robots, respec-
tively. An efficient graph representation of the task dependencies
is employed. Based on this framework, we design two assembly
planning algorithms that are robust to robot failures. The first is
centralized and communication-based. The second is distributed
and communication-less. The latter is a solution for scenarios in
which the communication network is not reliable. Both methods
are validated by numerical simulations based on the assembly
scenario of Challenge 2 of the robotic competition MBZIRC2020.

Index Terms—multi-robot systems, task planning, aerial vehi-
cles application

I. INTRODUCTION

In the last decades, Unmanned Aerial Vehicles (UAVs)
become extremely popular in a wide range of applications.
Recently, the advance of aerial physical interaction led to
new applications ranging from contact-based inspection [1] to
transportation [2] and assembly. In the fields of manipulation
of large objects and assembly of structures, the use of a
multi-robot system is becoming very popular [3]. It allows
to increase the overall payload and manipulation capabilities,
and from the other side, as well as to perform multiple tasks
in parallel, minimizing the execution time.

In this work, we focus on the second aspect, i.e., multi-robot
assembly tasks. In particular, we consider a group of UAVs
that have to cooperatively assemble a structure composed of
several elements, sharing the tasks, the resources, and the
working environment. The robots must autonomously find the
best assembly plan that optimizes the available resources and

1Sapienza University of Rome, Rome, Italy, umili@diag.uniroma1.it,
oriolo@diag.uniroma1.it

2LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France,
dario.sanalitro@laas.fr, antonio.franchi@laas.fr,

3Autonomous Systems Lab, Department of Mechanical and Process Engineer-
ing, ETH Zurich, 8092 Zürich, Switzerland, mtognon@ethz.ch

4Robotics and Mechatronics lab, Faculty of Electrical Engineering, Mathemat-
ics & Computer Science, University of Twente, Enschede, The Netherlands
a.franchi@utwente.nl

This work was partially funded by: a grant of the Mohamed Bin Za-
yed International Robotics Challenge (MBZIRC) with the LAAS-CNRS,
Toulouse, France; the ANR, Project ANR-17-CE33-0007 MuRoPhen; and the
European Union’s Horizon 2020 research and innovation programme under
grant agreement ID: 871479 AERIAL-CORE

minimizes the assembly time. We aim at conceiving a task
planning algorithm for the group of UAVs under assembly
constraints imposed by the specific structure, and geometric
constraints due to the sharing of the work-space and resources.

Assembly planning is the process of finding a valid se-
quence of operations to assemble a product made by different
parts. The problem is a NP (Non-deterministic Polynomial
time) complete problem [4]. Many algorithms have been
proposed to solve assembly planning problems [5]–[8]. How-
ever, most of the proposed solutions do not embed in the
problem formulation geometric constraints imposed by the
characteristics of the specific robots. Different robots have
different embodiment and feasible movements that imply spe-
cific constraints during the interaction with the environment.
Additionally to geometric constraints, assembly constraints
should be considered as well. These are imposed by the
particular envisioned construction and ensure at every step of
the assembly process its correctness and solidity. Nevertheless,
assembly constraints alone do not grant the feasibility of the
task considering the available agents.

In most of the previous works, the two types of constraints
are treated separately: first, a high-level assembly plan is com-
puted considering assembly constraints only. Subsequently,
robot actions and movements are planned considering geomet-
ric constraints only [9], [10]. This approach implicitly assumes
that for any given assembly plan, it is possible to find a set
of feasible robot motions. Though, this is difficult to be met
in practice. Some works attempted to combine assembly and
geometric planning. In [11], [12] the two aspects are treated
separately, but the two planners are implemented in a loop-like
framework. The low-level (motion) planner can influence the
decisions of the assembly planner at the higher-level.

In this paper, we aim at designing an assembly planner for
a group of UAVs assembling a wall-like construction made by
blocks. Assembly and geometric constraints are considered at
the same planning level. In particular, we shall show that the
application of these constraints results in a directed acyclic
graph [13], here called “assembly graph”, which encodes both
assembly and geometric dependencies between tasks.

Aiming at real applications, we assume that robots may fail
actions and be temporarily (or permanently) inoperative. This
requires the system to be adaptive with respect to the number
of available robots [14]. We design the proposed approach such
that to be robust to changes in the number of operative robots.
This makes the execution time highly variable, stressing the
need for fine coordination and re-allocation mechanisms. If
needed, the proposed online planner can explore other feasible
assembly plans in real-time without a global re-planning,

mailto:umili@diag.uniroma1.it
mailto:oriolo@diag.uniroma1.it
mailto:dario.sanalitro@laas.fr
mailto:antonio.franchi@laas.fr
mailto:mtognon@ethz.ch
mailto:a.franchi@utwente.nl

making the approach more flexible to unforeseen events.
Our objective is to optimize the use of available robots min-

imizing the construction time. With this aim, we implement
an online assembly planner that, at each iteration, decides the
task to be executed according to the current and close future
system state (robots and construction).

Similarly to self-triggered control [15], the state prediction
is used to check assembly constraints in advance and allocate
tasks before they become feasible. Early task allocations yield
more efficient cooperation, at the cost of higher uncertainty.

Another important point in multi-agent applications is the
possibility to exploit inter-robots communication to enhance
the agent’s cognitive capabilities. Nevertheless, unstable com-
munication networks could dramatically impact the perfor-
mances of communication-based strategies for multi-robot
coordination. In these conditions, distributed strategies that are
robust to communication failures are advisable [16], [17].

To face these two communication scenarios, we design two
algorithms. The first assumes an ideal error-free communica-
tion network. Under this assumption, tasks are allocated to
the robots by a central decision entity which, relying on the
communication with the robots, has complete knowledge of
the system. The central planner performs assembly planning,
task allocation, fault detection, and task re-allocation.

In the second scenario, we assume that robots cannot com-
municate. Under this assumption, the usual paradigm is swarm
intelligence [18], i.e., single agents are able to coordinate with
each other in a distributed way, relying on local information
only. However, distributed paradigms have been used for
construction applications in only a few cases [19]–[21]. In the
proposed approach, every agent a plans and executes its tasks
in an online fashion, without communicating its own plan to
the others. Nevertheless, the actions of a have consequences
on the construction state. The other agents can sense and
estimate the construction state, exploiting it to coordinate their
plan with that of a and to reallocate tasks if needed. The
designed reallocation mechanism guarantees the resilience of
the system. Additionally, we employ an initial task allocation
optimized to equally share the tasks between the agents and
to minimize the need for coordination during execution.

The two proposed methods are validated by numerical
simulations based on the assembly scenario of Challenge 2
of the robotic competition Mohamed Bin Zayed International
Robotic Competition 2020 (MBZIRC2020)1. A video of the
simulation results is available at https://youtu.be/s3zizrCBuuc.

The rest of the paper is organized as follows. In section II we
formulate the assembly and geometric constraints, describing
the representation of dependencies between tasks and the
current construction state. In section III we define the single
atomic actions composing a task. The communication-based
and the communication-less planning algorithms are described
in section IV and V, respectively. In section VI simulation
results are presented. Section VII concludes the paper.

1https://www.mbzirc.com/

II. ASSEMBLY PLANNING

General assembly planning is the problem of finding a
valid sequence of operations to assemble a product made
by different parts. It has been shown that it is a complete
NP problem [4]. It requires specific data structures to encode
temporal constraints between different parts and to represent
all possible object states during the assembly process [22].

In this paper, we focus on block-based constructions (like
walls), namely objects that can be assembled adding parts to
one sub-assembly. This kind of construction includes a wide
variety of objects. Rather than using AND/OR graphs [23]
(complete but memory inefficient data structure), we represent
the assembly problem with a directed acyclic graph (DAG) of
dependencies between the blocks:

G = (V,E), (1)

where V is the set of vertexes and E is the set of edges.
Each vertex of the graph is a block, while edges between
blocks represent assembly constraints. In particular, an edge
e = (bi, bj) belongs to E if block bi must be placed after
block bj , or, in other words, if bi depends on bj .

We call C(t) the assembly state at time t, which is the set
containing all the blocks already assembled in the construction
at time t. Given the assembly graph G and the assembly state
C(t), the block b ∈ V is considered feasible if the outgoing
neighborhood of b, denoted as NG(b) = {bj ∈ V | e =
(b, bj) ∈ E}, is contained in C(t). We denote with Vfeasible(t)
the set of feasible blocks at time t, such that:

Vfeasible = {b ∈ V |NG(b) ⊆ C(t)}. (2)

The problem of computing a sequence of assembly opera-
tions respecting all the dependencies in E is equivalent to find
a topological ordering of the graph vertexes. This operation
can be performed offline in linear time with known algorithms,
e.g., Kahn’s algorithm [24].

Notice that G may not contain a Hamiltonian path, i.e.,
a tour in G that visits each vertex exactly once. As a
consequence, more than one topological ordering can be
found. Furthermore, the execution times of the tasks are
non-deterministic and the scheduled sequence of assembly
operations may not be respected due to unexpected events.
For these reasons, our approach runs online, deciding at every
iteration the next task allocation among the feasible ones.

A. Example

Our approach has been evaluated on an L-shaped wall made
of bricks of different sizes (see Fig. 1). This model of example
is similar to the target construction of Challenge 2 in the
robotic competition MBZIRC2020.

The set E contains all brick dependencies which are defined
by the following assembly and geometric constraints:

1) Each brick can be placed only if it lies on the ground or
entirely on other bricks previously placed on the wall;

2) Each brick can be placed in an empty row if it is the
central brick of that row, or if the row is not empty and
the brick is adjacent to another one already placed;

Preprint version, final version at http://ieeexplore.ieee.org/ 2 IEEE International Conference on Unmanned Aircraft Systems (ICUAS) 2020

https://youtu.be/s3zizrCBuuc

Fig. 1: Example of construction: a 3D wall made of bricks of
different size.

Fig. 2: Assembly and geometric constraints: on the left the
accepted configurations, on the right the forbidden ones.
Colored in pink the bricks already placed on the wall, in
yellow the new one to be placed, in dashed line the brick that
is impossible to place in the future due to control inaccuracy
or robot embodiment. In particular, case B violates the first
constraint only, case C violates constraints 1 and 2, and case E
and F violate constraint 2 and 3, respectively, while respecting
the others.

3) Each brick can be placed if the difference in height with
the bricks already placed at the left and at right is shorter
than the length of the UAV gripper.

Constraint 1) ensures wall stability during the construction.
Notice that it doesn’t depend on the robot performing the
task. On the other hand, the following constraints are UAV-
specific geometric constraints. Constraint 2) is set to avoid
the creation of ‘holes’ in one line of bricks. Filling the hole
requires a perfect brick positioning, which is hard to achieve
using current flying robots. Constraint 3) is imposed by the
robot embodiment. It is set to ensure that the UAVs are always
able to reach the missing brick positions from above without
colliding with the bricks already assembled. Figure 2 shows
some allowed and forbidden bricks configurations. Finally,
Figure 3 graphically shows G resulting from the application
of the constraints to the considered wall model.

We remark that these assembly constraints are specific for
the construction of the wall here considered using UAVs. In
general, assembly constraints must be carefully set by problem
experts. They are necessary to avoid unstable configurations of
the construction, as well as deadlocks and assembly sequences
with low chances of success.

III. TASK DEFINITION

Each part of the construction is considered as a single task
that is individually assignable to one robot using the assembly

Fig. 3: Assembly graph for the wall. Each block (brick)
corresponds to a vertex in V. The blue arrows represent the
directed edges in E.

graph defined in the previous section. At every time t, a
generic task can be:

• Closed: the task is completed;
• Assigned: a robot is executing the task;
• Open: the task is not completed and not yet assigned.

Notice that C(t) results in the set of closed tasks. Additionally,
we denote as A(t) and O(t) the set of assigned and open tasks,
respectively. It results that V = C(t) ∪̇A(t) ∪̇ O(t).

We call pick-and-place the complete macro-action which
can be decomposed in a sequence of 4 atomic actions:

1) fly-to the position in the map where the brick is stored,
2) pick the brick using the gripper,
3) fly-to a safe point close to the wall,
4) place the brick on the wall.
We assume that a low-level motion planner and posi-

tion/force controller are provided to allow the robot to execute
each action. In this work, we do not focus on these low-
level aspects. Nevertheless, the atomic actions 2) and 4) are
considered non-deterministic, i.e., we suppose that they may
fail with a constant probability p. The two atomic actions
must be then repeated until they succeed; eventually, they
will succeed with probability 1. Furthermore, we consider
that a robot may stop working at any time (e.g., because
of malfunctioning sensors or of a crash). The robot will not
complete the task which must be re-assigned to another agent.

IV. COMMUNICATION-BASED TASK ALLOCATION

Assuming an error-free communication network, the task
allocation can be performed using a classical centralized
approach. A single decision entity, called the planner, is re-
sponsible for the task allocation and re-allocation. The planner
can run in one of the robots or on a remote computer.

We remark that, at every time instant t, the planner should
know the assembly graph, G, and the current assembly state,
C(t), A(t) and O(t). Each UAV communicates with the
planner in order to request and receive a new task defined
by bnext. After completing bnext, it notifies the planner of the
success or failure of the tasks. In the following, we detail the
algorithm from both the planner and the robot points of view.

Notice that if the planner cannot directly sense the assembly
state, the latter can be inferred collecting the robots’ notifica-
tions (we assume that false notifications are not possible).

A. Planner Side

Algorithm 1 shows the pseudo-code of the task allocation
method. This process is triggered by the request message of

Preprint version, final version at http://ieeexplore.ieee.org/ 3 IEEE International Conference on Unmanned Aircraft Systems (ICUAS) 2020

Algorithm 1: online task allocation
Input: new task request from robot ri
Output: message
tr: current time;
C(tr): current construction state;
V : goal construction state;
if C(tr) = V then

message.type ← go-home;
else

S(tr) = feasibleBricks(C(tr)−A(tr)) ;
if S(tr) = ∅ then

R(tr, ri) = collectRiskyTasks(ri);
if R(tr, ri) = ∅ then

message.type ← wait;
else

bnext ← bestHeuristicValueBrick(R(tr, ri));
message.type ← task;
message.task ← bnext;
message.risky = true;

else
bnext ← bestHeuristicValueBrick(S(tr));
message.type ← task;
message.task ← bnext;
message.risky = false;

recordAssignmentTime(bnext);
sendMessage(message)

a new task by a robot ri at time tr. At each request, the
algorithm performs the following activities:

1) task classification: open tasks are classified to compute a
set of next allocation candidates: Candidates ⊆ O(tr);

2) decision making: if Candidates is not empty a task
bnext ∈ Candidates is selected;

3) communication: the planner allocates bnext to ri sending
all the information about the task to ri. In case bnext is
not available, the planner sends a special message to ri.

This sequence of activities is maintained also in the
communication-less algorithm.

In the following, the criteria used in the task classification,
as well as the policies used in the decision-making activities
are explained in detail.

Task classification: The planner partitions the set of open
tasks O(tr) into three categories:

O(tr) = S(tr) ∪̇ R(tr, ri) ∪̇ U(tr). (3)

• S(tr) is the set of candidates for safe allocation, i.e., open
tasks that are feasible according to the assembly state at
time tr, and in particular to C(tr):

S(tr) = {b ∈ O(tr)|NG(b) ⊆ C(tr)}. (4)

Allocating a task in S(tr) guarantees that the brick will
be placed respecting the assembly constraints. All the task

Fig. 4: The current wall is composed of the colored bricks,
that are the closed tasks. The grey brick is assigned but not
yet closed and it is expected to be closed at time 20 seconds.
The white bricks are open and not assigned tasks. In this
configuration the planner finds two candidates allocation: one
safe and one risky task (the time expected to close this task
is higher than 20 seconds).

dependencies are satisfied even before the robot starts the
task execution.
However, the chances of finding a safe allocation decrease
with the number n of robots composing the team. This
motivates the search also for “risky” allocations.

• R(tr, ri) is the set of candidates for a risky allocation,
i.e., the bricks whose dependencies are not closed at the
current time tr, and that are likely to be closed soon
according to the planner estimate based on the available
information. In particular, R(tr, ri) contains all the open
tasks whose dependencies are closed or are assigned
to other robots that will complete their task before ri
will attempt to execute the place action. Notice that to
compute R(tr, ri), the planner must be able to build
beliefs about the completion time ct(r, b) of any task b
assigned to robot r. These beliefs can be also used to
estimate if a robot failed and the corresponding task must
be reassigned.

• U(tr) is the set of unfeasible tasks. It contains all the
bricks not classified in other categories. They will not be
considered for an allocation.

The next brick to allocate, bnext, is chosen among safe or
risky candidates:

Candidates = S(tr) ∪̇ R(tr, ri). (5)

An example of task classification for the wall model in a
particular assembly state is shown in Fig. 4.

Algorithm 2 shows how to infer R(tr, ri), i.e., the set of
risky task candidates. Let us define N(tr) as the set of open
bricks depending on closed tasks and at least one assigned
task at time tr, then

N(tr) = {b ∈ O(tr)|NG(b) ⊆ (C(tr)∪A(tr))}−S(tr). (6)

The bricks in N(tr) can populate R(tr, ri). For each brick b
in N(tr), the time tplc(ri, b) at which robot ri will execute the
place action is predicted. The assembly state estimated at time
tplc(ri, b) is C(tplc(ri, b)). If the brick b is feasible according
to the estimated assembly state, b is a possible risky allocation.

Decision making: it is the process of selecting a brick
bnext among the candidates sets S(tr) or R(tr, ri) computed
in the previous step. In the proposed communication-based
algorithm, safe allocations are always preferred to risky ones.

Preprint version, final version at http://ieeexplore.ieee.org/ 4 IEEE International Conference on Unmanned Aircraft Systems (ICUAS) 2020

Algorithm 2: collect risky tasks
Input: new task request from robot ri and S(tr) = ∅,
Output: R(tr, ri)
tr: current time;
O(tr): set of open tasks at time tr;
A(tr): set of tasks assigned at time tr;
S(tr): set of safe allocations at time tr;
R(tr, ri) = ∅;
N(tr) = feasibleBricks(C(tr) ∪A(tr))− S(tr);
for brick bn in N(tr) do

tplc(ri, bn) = predictPlaceTime(ri, bn);
C(tplc(ri, bn)) = C(t);
for brick b in A(tr) do

if b.tplace < tplc(ri, bn) then
C(tplc(ri, bn)) = C(tplc(ri, bn)) ∪ b;

feasible = checkBrickFeasibility(C(tplc(ri, bn)),
bn);

if feasible then
R(tr, ri)← R(tr, ri) ∪ bn;

return R(tr, ri);

Fig. 5: Robot life cycle in the communication-based scenario.
Operations in solid line boxes are atomic actions, while the
ones in dashed line boxes are complex macro-action.

The planner tries to allocate a safe task. Only if S(t) is empty
(no possible safe allocations), R(t) is computed and one task
in it is chosen. This kind of cautious policy can represent a
non-optimal choice in the general case. We shall show in the
next section this is true for the communication-less case.

Finally, the algorithm chooses one brick in the selected class
using a heuristic defined by the user. The heuristic choice
will prefer some particular assembly plans over other possible
ones, influencing the final construction time. In Sec. VI some
heuristics for a specific case are compared and discussed. In
particular, the tested heuristics were designed to always have
non-empty candidates set. In this way, the planner is always
able to assign a task to each request.

B. Robot Side

Next, we describe the algorithms from the robot side. Each
robot cannot decide its task, it only executes what the planner
commands. Figure 5 illustrates their simple behavior. The
generic robot sends a message to request a new task and warn
the planner in case of changes of the construction state. The
planner replies using one of the following messages:

Fig. 6: Pick-and-place: task execution control flow

• Task message: it contains the description of the new task
the robot must execute;

• Wait message: the robot must wait because the planner
did not find a task allocation candidate. The robot waits
for a fixed amount of time and repeats the request;

• Go-home message: the construction is complete achiev-
ing the goal, and the robot can terminate the mission.

Robots ri continuously demand tasks until the go-home
message is received. This mechanism ensures reliability even
in scenarios where no more than one robot can accomplish the
assignment due to possible robot failures. Figure 6 shows the
pick-and-place control flow.

After the start signal, the robot flies over the bricks stock
(fly-to action) and try to pick it (pick action). Action fly-to is
always considered executed with success. On the other hand,
the pick and place actions are repeated in a loop until their
fulfillment. Once the pick is executed and the robot is over the
wall ready for the place, it has to first check the task status
(if closed or not) and feasibility (if assembly dependencies are
satisfied). In the best-case scenario, the robot will place the
brick. However, it could happen that its given task has been
already closed by another robot or that the task was a risky one
and all the dependencies are not yet satisfied. The first case
happens when a pick-and-place operation takes more time than
expected. Because of the wrong estimation of the pick-and-
place time, the planner re-assigns the task considering that the
corresponding robot failed. In the second case, when a robot
receives a risky task, it might be not feasible at the moment
of the place. The robot must wait until all the dependencies
are fulfilled and the task becomes feasible.

Notice that the over and underestimation of the execu-
tion time causes the lack of candidates and inopportune re-
allocations, respectively. This implies the waste of resources
and delays in total execution time. It is then advisable to embed
an online prediction mechanism for the task execution time.

V. COMMUNICATION-LESS TASK ALLOCATION

Here we present a communication-less algorithm for task
allocation and re-allocation. The robots operate in the same
world domain described so far, but without communications
among them nor with a remote decision entity. Therefore, it is

Preprint version, final version at http://ieeexplore.ieee.org/ 5 IEEE International Conference on Unmanned Aircraft Systems (ICUAS) 2020

not possible to allocate tasks one by one during the execution
as in the previous case. Conversely, tasks have to be assigned
to the robots offline, before the execution starts. Nevertheless,
we do not force robots following the precomputed plan. We
rather designed an on-line re-allocation strategy that, during
the construction process, can change the order of tasks and
execute new ones not originally included in their plan to
face unforeseen events. This stigmergy mechanism is suitable
for treating possible failures since each agent is uniquely
responsible for a subset of tasks. At the same time, the
proposed strategy can handle unexpected events. We highlight
that without the presence of a communication network, the
use of some onboard sensors is necessary to estimate the
construction state and react accordingly.

A. Initial task allocation

Defining n the number of agents and considering 0 < i ≤ n,
we partition the set of tasks V into n subsets, Ai, containing
the tasks initially assigned to robot i such that:

V =
⋃̇n

i=1
Ai. (7)

Tasks must be assigned in order to minimize possible
dependencies between tasks belonging to different robots.
This reduces possible waiting periods necessary for a task to
become feasible. Our offline task allocation approach aims at
minimizing and maximizing the inter- and intra-dependencies,
respectively. The firsts are dependencies connecting tasks as-
signed to different agents, while the seconds are dependencies
between tasks assigned to the same agent.

Let us consider u and v vertices of a graph G. They are
connected if there exists a path of any length connecting u to
v. Let us define with connG(u) the set of vertices connected
with u through a directed path in G, and with connG(A),
where A ⊆ V , the set of vertices connected in G with at least
one vertex in A. In other words:

connG(u) = {v ∈ V | ∃ a path from u to v} (8)

connG(A) =
⋃
u∈A

connG(u). (9)

Let us define a cluster as a set of bricks densely connected with
each other and poorly connected with the rest of the bricks.
Each robot will be assigned a cluster Ai. Then, the aim is to
minimize the following function:

n∑
i=1

|connG(Ai) ∩ (V −Ai)|, (10)

where | ? | is the cardinality of any generic set ?. To evaluate
a task allocation, we need to consider the number of:

• direct inter-dependencies: bricks assigned to different
robots connected by a path with length 1 (called arc);

• indirect inter-dependencies: bricks assigned to different
robots connected by a path with a length greater than 1.

The reason is to account for the transitivity of assembly
constraints. In fact, there are temporal constraints whereby if

Fig. 7: three examples of task allocation for n = 3 robots. The
brick colour indicates the robot the brick is assigned to. Case
A is an example of sparse allocation, it is not a good allocation
because it has a big number of direct inter-dependencies. Case
B has a small number of direct inter-dependencies but a lot of
indirect intra-dependencies. Case C has few direct and indirect
inter-dependencies, and it’s therefore the best allocation among
the three.

Fig. 8: Robot algorithm in the communication-less scenario.

brick A has to be placed after brick B and brick B after brick
C, it follows that brick A has to be assembled after brick C.

Figure 7 shows different allocations for a wall with n = 3.
• Case A is an example of sparse allocation where there

are many direct inter-dependencies.
• Cases B (like Case C) shows sets composed by ad-

jacent bricks, therefore direct inter-dependencies are
minimized. However, Case B shows many indirect
inter-dependencies. Indeed, connG(A2) ⊇ A1 and
connG(A3) ⊇ A2 ∪ A1. In this example, robots’ opera-
tions can run in parallel only in a minimal part. In fact,
robot 1 can start immediately, while robot 2 is obliged to
wait that robot 1 has almost completed its tasks before
starting, and robot 3 has to wait until robot 2 has almost
completed its tasks before starting.

• Case C has a small number of direct inter-dependencies
and not many indirect inter-dependencies representing the
best allocation shown until now. However, even in case C,
inter-dependencies cannot be completely avoided because
the graph of the considered wall is connected (there are
not disconnected parts).

B. Robot life cycle

Hereafter, we present the algorithm concerning each aerial
vehicle (see Fig. 8). At the beginning of each new task, the

Preprint version, final version at http://ieeexplore.ieee.org/ 6 IEEE International Conference on Unmanned Aircraft Systems (ICUAS) 2020

Algorithm 3: choose next task
Output: bnext – next task to execute
Si(t) = feasibleBricks(C(t)) ∩Ai;
Ĉi(t)← C(t);
taskList = topologicalOrder(V);
for b in taskList do

if b in O(t) ∩Aj , j6=i then
if checkBrickFeasibility(Ĉi(t), b) then

Ĉi(t)← Ĉi(t) ∪ b;

Ri(t) = feasibleBricks(Ĉi(t))− Si(t);
bestSafeBrick = bestHeuristicValueBrick(Si(t));
bestRiskyBrick = bestHeuristicValueBrick(Ri(t));
bnext = decisionMaking(bestSafeBrick, bestRiskyBrick);
if bnext ∈ Si(t) then

return bnext;

tempt ← 0;
feasible ← false;
while not feasible and tempt< threshold do

C(t) = observeConstructionState();
feasible = checkBrickFeasibility(C(t),bnext);
if feasible then

return bnext;
else

tempt ← tempt+ 1;

if bestSafeBrick not null then
return bestSafeBrick;

return shortestPathReallocation(C(t), bnext)

robot detects the construction state by means of its sensors.
This operation is necessary to decide future actions. If the
construction is complete the robot can terminate its mission.
Otherwise, it has to first close the tasks composing its cluster
and then, if the construction is still incomplete, it has to extend
its cluster boundaries taking care of the other tasks not yet
closed by other robots.

The proposed algorithm for selecting bnext is illustrated in
Algorithm 3. After the estimation of the future construction
state, the proposed approach performs a task classification
which is followed by a decision making phase and an emergent
task reallocation.

1) Future construction state estimation: The first step con-
sists in estimating the construction state in the near future.
In this scenario, each robot ri decides its task relying on the
perceived state C(t), without any knowledge regarding other
robots, e.g., their state nor which task they are executing. On
the contrary, robot ri can sense C(t) and make a hypothesis
on the future construction state, called Ĉi(t). In particular, ri
will add to the hypothetical construction all the bricks pre-
assigned to other agents that can be assembled to the current
construction. If we define the set of the open bricks O(t) as

the bricks not yet placed in the construction, we have that:

O(t) = V − C(t). (11)

Ĉi(t) contains both closed bricks and all the open bricks
assigned to the other robots that do not have dependencies
with open bricks assigned to ri:

Ĉi(t) = C(t) ∪ (Aj 6=i ∩ (V − connG(Oi(t))) , (12)

where Aj 6=i =
⋃n

j=1,j 6=i Aj , and Oi(t) = Ai ∩O(t). Figure 9
shows an example of how each robot computes Ĉi(t).

2) Task classification: At this stage, ri tags all the open
tasks, in its subset Ai, in safe, risky and unfeasible, according
to the current construction state C(t) and the future construc-
tion state Ĉi(t). The classification follows the same principle
described for the communication-based planner algorithm:

Ai ∩O(t) = Si(t) ∪̇ Ri(t) ∪̇ Ui(t), (13)

where
• Si(t) contains safe tasks depending on closed tasks only

Si(t) = {b ∈ (Ai ∩O(t))|NG(b) ⊆ C(t)}. (14)

• Ri(t) is the set of risky tasks, namely the ones depending
on at least one brick contained in Ĉi(t) and not in C(t)

Ri(t) = {b ∈ (Ai∩O(t)−Si(t))|NG(b) ⊆ Ĉi(t)}. (15)

• Ui(t) is the set of unfeasible tasks, containing the rest of
open tasks of ri

Ui(t) = Ai ∩O(t)− Si(t)−Ri(t). (16)

In Fig. 9 an example of future wall estimation and task
classification for a certain wall state and a particular initial
task allocation is shown.

3) Decision making: Once bricks are classified, the robot
has to choose one target brick in the set of risky or safe
candidates.

candidatesi(t) = Si(t) ∪̇ Ri(t) (17)

If in the communication-based approach the best policy was to
choose safe options, in this case, the cautious policy is not the
most effective. Indeed, the cautious policy pushes the agents to
place bricks within the boundaries of their sub-construction as
long as they can and to place the bricks on the borders only
when no other choices are possible. In general, this makes
tasks that depend on other robots to be postponed, resulting
in a non-optimal cooperative behavior. In case G cannot be
divided into n disconnected parts, bricks located on the border
of a sub-construction Ai are connected with at least another
subset Aj . This means that ri might wait for a brick assigned
to robot rj or vice versa. Placing bricks at the border can
potentially be the riskiest task. But, at the same time, they are
the most necessary to let other agents continue their tasks.

Preprint version, final version at http://ieeexplore.ieee.org/ 7 IEEE International Conference on Unmanned Aircraft Systems (ICUAS) 2020

Fig. 9: Wall estimation and task classification in the
communication-less scenario. The current wall state C(t) is
composed by the coloured green and orange bricks only, the
wall estimated by the robots are Ĉ1(t), Ĉ2(t) and Ĉ3(t). They
contain the closed tasks (green and orange bricks) plus the
bricks that others can place in the best hypothesis (grey bricks).
According to the estimation, each robot classifies its open tasks
in safe, risky or unfeasible.

4) Emergent task reallocation: After the decision making
process, if the task selected is safe the robot can start the
execution, otherwise, if it is risky, the robot needs to wait until
the task becomes feasible or to take actions to make the task
feasible. In particular, when robot ri selects a risky option br,
it remains in an observation state for a while. During this time
it monitors the construction state and, as soon as br becomes
feasible, it starts the execution.

In case br depends on a task assigned to a robot that
failed, ri will indefinitely stay in the observation state. For
this reason, a threshold-based reallocation mechanism is
implemented. If br is still unfeasible after a certain maximum
time, ri decides to allocate to itself one of the bricks needed
to make br feasible. Indirectly, it assumes that the robot
originally responsible for these bricks failed. We remark that
the reallocated brick, breall, is a feasible brick among the direct
or indirect dependencies of br, accordingly to C(t):

breall ∈ {b ∈ connG(br) ∩O(t)|NG(b) ⊆ C(t)}. (18)

In particular, breall is chosen among the brick connected with
br by the shortest path.

VI. SIMULATION RESULTS

The two task allocation algorithms were tested in simula-
tion, using a framework based on the Robotic Operative Sys-
tem (ROS) and the Gazebo robotic simulator. The simulated
environment resembles the scenario of Challenge 2 of the
MBZIRC competition (see Fig. 10). The target construction
used for testing is the wall depicted in Fig. 1. A video of the
simulation results is available at https://youtu.be/s3zizrCBuuc.

Fig. 10: On the left the MBZIRC –challenge 2– environment.
On the right the simulated environment used to test our task
allocation algorithms

The probability of atomic actions to fail was set to 0.25. We
evaluate the task allocation methods according to the global
execution time and the average active ratio, defined by ar as:

ar =
1

n

n∑
i=0

ai
wi

, (19)

where ai and wi are the time robot i spent in an ac-
tive and waiting states, respectively. For the decentralized
communication-less algorithm we recorded also the total num-
ber of dropped bricks, caused by a small re-allocation thresh-
old, as well as the total number of emergent reallocations.

A. Communication-based task allocation results

The centralized communication-based task allocation was
first tested with different heuristics for selecting the target task
among several candidates without exploiting the possible risky
allocations. The best heuristic was then used with also risky
allocations to achieve the final result. The heuristics used for
the wall model are hereafter explained:
h0) Random choice: first we tested the algorithm without

using any heuristics, the decision-making module simply
chooses one random task among the class of candidates
(S(t) or R(t)). The results are used as a baseline;

h1) Distance from the base middle point: here the candidate
bricks are evaluated according to their position in the
wall. In particular, the selected brick is the closest to the
middle point of the wall. Given the assembly constraints
explained in section II, constructing the wall starting from
the center increases the number of feasible tasks in the
next steps;

h2) Distance from the central vertical line: the selected brick
is the closest to the vertical line located in the center of
the wall;

h3) Position in the wall and brick length: this heuristic
combines the position in the wall and the brick dimension.
Longer bricks closer to the central vertical line are
selected first. If the bricks are considerably different in
dimensions, like in our test example, placing first the
longest ones increases the number of feasible options in
the next steps.

As it is clear from Tab. I, h3) is the best heuristics and
the performance further improves with the use of the risky

Preprint version, final version at http://ieeexplore.ieee.org/ 8 IEEE International Conference on Unmanned Aircraft Systems (ICUAS) 2020

https://youtu.be/s3zizrCBuuc

Heuristic Risky allocations Execution time Active ratio

h0 No 267 s 60%
h1 No 263 s 62%
h2 No 262 s 62%
h3 No 249 s 66%
h3 Yes 169 s 88%

TABLE I: Results of the centralized communication-base task
allocation method.

allocation strategy. Nevertheless, we remark that heuristics
are strongly linked to this particular scenario. Other heuristics
could be investigated in different scenarios.

B. Communication-less task allocation results

The decentralized communication-less task allocation algo-
rithm was tested in the same scenario, using the offline task
allocation (Case C) shown in Fig. 7. For the decision making
of Algorithm 3, a random policy with uniform probability has
been employed. In Fig. 11 the results obtained varying the
re-allocation threshold between 1 and 10 seconds are shown.
For each value, the statistical results over 100 simulations
are represented through a box and whisker plot. The red line
indicates the median value, while the box extends from the
lower to upper quartile values of the data. The whiskers show
the range of the non-outliers data and flier are outliers data.

One can notice that the execution time grows with bigger
threshold values, while the active ratio decreases otherwise.
On the other hand, the total number of reallocation is higher
with low threshold values. Notice that the number of dropped
bricks is minimum with a re-allocation threshold between 4
and 5. These values provide the best performance, namely the
maximum active ratio, the minimum execution time, and the
minimum number of re-allocations.

VII. CONCLUSION AND FUTURE WORK

In conclusion, this paper proposes two task allocation al-
gorithms for the construction of structures made by blocks,
using a group of cooperative UAVs. Both are based on directed
acyclic graph, here simply called assembly graph, to encode
the temporal constraints between the tasks. This is also used to
plan and execute feasible sequences of assembly operations.

The first method is a centralized algorithm based on ideal
communication conditions. In this scenario, tasks are allocated
to the robots in real-time through messages exchanged with
the planner. The latter implements the decisional part of the
algorithm, while the robots actuate performs the tasks. To
improve the performances, the planner exploits an estimation
of the future construction state to allocate tasks that are not yet
feasible but that will be in the near future. The planner is also
responsible for detecting robot failures and for the reallocation
of tasks. This algorithm achieves the best results in terms
of global execution time and average active ratio. However,
it requires robots-planner communication which results in a
single point of failure for the method.

Fig. 11: Box and whisker plots showing results obtained with
the decentralized communication-less task allocation, using
different fault threshold values. Each box shows the statistical
distribution of the global execution time, average active ration,
emergent reallocations, and dropped bricks, respectively, over
100 simulations.

The second is a distributed algorithm which uses none
communication between agents. A preliminary ideal plan is
computed offline to minimize the direct and indirect depen-
dencies between tasks allocated to different agents. However,
if inter-dependencies cannot be avoided, the robots must
coordinate each other exploiting only the observation of the
environment. Each robot autonomously decides the order of
tasks execution and when to re-allocate tasks in order to
cover possible fails of another robots. This approach is more
robust to communication-failures, but at the expense of lower
performance. Nevertheless, results can be enhanced tuning the
system parameters, e.g., the reallocation threshold.

A possible future work is to suitably blend the
communication-based and less approaches in order to have
a strategy that exploits communication as much as possible,
but, at the same time, is robust to the failure of the commu-
nication network. Other improvements of the heuristics could
be obtained by the use of learning-based methods, such as
genetic algorithms or reinforcement learning.

REFERENCES

[1] M. Tognon, H. A. Tello Chávez, E. Gasparin, Q. Sablé, D. Bicego,
A. Mallet, M. Lany, G. Santi, B. Revaz, J. Cortés, and A. Franchi, “A
truly redundant aerial manipulator system with application to push-and-
slide inspection in industrial plants,” IEEE Robotics and Automation
Letters, vol. 4, no. 2, pp. 1846–1851, 2019.

[2] M. Bernard, K. Kondak, I. Maza, and A. Ollero, “Autonomous trans-
portation and deployment with aerial robots for search and rescue
missions,” Journal of Field Robotics, vol. 28, no. 6, pp. 914–931, 2011.

[3] D. Sanalitro, H. J. Savino, M. Tognon, J. Cortés, and A. Franchi, “Full-
pose manipulation control of a cable-suspended load with multiple UAVs
under uncertainties,” IEEE Robotics and Automation Letters, vol. 5,
no. 2, pp. 2185–2191, 2020.

Preprint version, final version at http://ieeexplore.ieee.org/ 9 IEEE International Conference on Unmanned Aircraft Systems (ICUAS) 2020

[4] L. Kavraki, J. Latombe, and R. H. Wilson, “On the complexity of
assembly partitioning,” Information Processing Letters, vol. 48, no. 5,
pp. 229–235, 1993.

[5] R. H. Wilson and J. Latombe, “Geometric reasoning about mechanical
assembly,” Artificial Intelligence, vol. 71, no. 2, pp. 371–396, 1994.

[6] D. Halperin, J. Latombe, and R. H. Wilson, “A general framework for
assembly planning: The motion space approach,” Algorithmica, vol. 26,
no. 3-4, pp. 577–601, 2000.

[7] J. Cortés, L. Jaillet, and T. Siméon, “Disassembly path planning for
complex articulated objects,” IEEE Transactions on Robotics, vol. 24,
no. 2, pp. 475–481, 2008.

[8] R. A. Knepper, T. Layton, J. Romanishin, and D. Rus, “Ikeabot: An
autonomous multi-robot coordinated furniture assembly system,” in 2013
IEEE Int. Conf. on Robotics and Automation, Karlsruhe, Germany, Oct.
2013, pp. 855–862.

[9] M. Dogar, A. Spielberg, S. Baker, and D. Rus, “Multi-robot grasp plan-
ning for sequential assembly operations,” Autonomous Robots, vol. 43,
no. 3, pp. 649–664, 2019.

[10] H. Mosemann and F. M. Wahl, “Automatic decomposition of planned
assembly sequences into skill primitives,” IEEE transactions on Robotics
and Automation, vol. 17, no. 5, pp. 709–718, 2001.

[11] R. Lallement, J. Cortés, M. Gharbi, A. Boeuf, R. Alami, C. J. Fernandez-
Agüera, and I. Maza, “Combining assembly planning and geometric task
planning,” in Aerial Robotic Manipulation. Springer, 2019, pp. 299–
316.

[12] J. Munoz-Morera, F. Alarcon, I. Maza, and A. Ollero, “Combining a
hierarchical task network planner with a constraint satisfaction solver
for assembly operations involving routing problems in a multi-robot
context,” International Journal of Advanced Robotic Systems, vol. 15,
no. 3, 2018.

[13] K. Thulasiraman and M. N. S. Swamy, Graphs: theory and algorithms.
John Wiley & Sons, 2011.

[14] L. E. Parker, “Alliance: An architecture for fault tolerant multirobot
cooperation,” IEEE transactions on robotics and automation, vol. 14,
no. 2, pp. 220–240, 1998.

[15] C. Nowzari, “Self-triggered optimal servicing in dynamic environ-
ments with acyclic structure,” IEEE Transactions on Automatic Control,
vol. 58, pp. 1236–1249, 05 2013.

[16] L. E. Parker, “Distributed intelligence: Overview of the field and its
application in multi-robot systems.” in AAAI Fall Symposium: Regarding
the Intelligence in Distributed Intelligent Systems, 2007, pp. 1–6.

[17] M. Tognon, C. Gabellieri, L. Pallottino, and A. Franchi, “Aerial co-
manipulation with cables: The role of internal force for equilibria,
stability, and passivity,” IEEE Robotics and Automation Letters, Special
Issue on Aerial Manipulation, vol. 3, no. 3, pp. 2577 – 2583, 2018.

[18] J. Kennedy, “Swarm intelligence,” in Handbook of nature-inspired and
innovative computing. Springer, 2006, pp. 187–219.

[19] S. Yun, M. Schwager, and D. Rus, “Coordinating construction of
truss structures using distributed equal-mass partitioning,” in Robotics
Research. Springer, 2011, pp. 607–623.

[20] J. Werfel, K. Petersen, and R. Nagpal, “Designing collective behavior in
a termite-inspired robot construction team,” Science, vol. 343, no. 6172,
pp. 754–758, 2014.

[21] ——, “Distributed multi-robot algorithms for the termes 3d collective
construction system,” in Proceedings of Robotics: Science and Systems.
Institute of Electrical and Electronics Engineers, 2011.

[22] P. Jiménez, “Survey on assembly sequencing: a combinatorial and
geometrical perspective,” Journal of Intelligent Manufacturing, vol. 24,
no. 2, pp. 235–250, 2013.

[23] R. A. Knepper, D. Ahuja, G. Lalonde, and D. Rus, “Distributed assembly
with and/or graphs,” in Workshop on AI Robotics at the Int. Conf. on
Intelligent Robots and Systems (IROS), 2014.

[24] A. B. Kahn, “Topological sorting of large networks,” Communications
of the ACM, vol. 5, no. 11, pp. 558–562, 1962.

Preprint version, final version at http://ieeexplore.ieee.org/ 10 IEEE International Conference on Unmanned Aircraft Systems (ICUAS) 2020

	Introduction
	Assembly planning
	Example

	Task definition
	Communication-based task allocation
	Planner Side
	Robot Side

	Communication-less task allocation
	Initial task allocation
	Robot life cycle
	Future construction state estimation
	Task classification
	Decision making
	Emergent task reallocation

	Simulation Results
	Communication-based task allocation results
	Communication-less task allocation results

	Conclusion and future work
	References

