
HAL Id: hal-02734719
https://hal.science/hal-02734719v2

Submitted on 6 Jun 2020 (v2), last revised 1 Sep 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An overview of the numerical methods for tokamak
plasma equilibrium computation implemented in the

NICE code
Blaise Faugeras

To cite this version:
Blaise Faugeras. An overview of the numerical methods for tokamak plasma equilibrium computation
implemented in the NICE code. [Research Report] RR-9347, INRIA Sophia Antipolis - Méditerranée.
2020. �hal-02734719v2�

https://hal.science/hal-02734719v2
https://hal.archives-ouvertes.fr


IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
93

47
--

FR
+E

N
G

RESEARCH
REPORT
N° 9347
June 2020

Project-Team CASTOR

An overview of the numerical methods for

tokamak plasma equilibrium computation

implemented in the NICE code

Blaise Faugeras





RESEARCH CENTRE
SOPHIA ANTIPOLIS – MÉDITERRANÉE

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex

An overview of the numerical methods for

tokamak plasma equilibrium computation

implemented in the NICE code

Blaise Faugeras

Project-Team CASTOR

Research Report n° 9347 � June 2020 � 47 pages

Abstract: The code NICE (Newton direct and Inverse Computation for Equilibrium) enables
to solve numerically several problems of plasma free-boundary equilibrium computations in a toka-
mak: plasma free-boundary only reconstruction and magnetic measurements interpolation, full
free-boundary equilibrium reconstruction from magnetic measurements and possibly internal mea-
surements (interferometry, classical linear approximation polarimetry or Stokes model polarimety,
Motional Stark E�ect and pressure), direct and inverse, static and quasi-static free-boundary equi-
librium computations.
NICE uni�es and upgrades 3 former codes VacTH [9], EQUINOX [4] and CEDRES++ [19]. The
strength of NICE is to gather in a single �nite element framework di�erent equilibrium computation
modes. It makes intensive use of Newton method and Sequential Quadratic Programming method
to solve non linear problems.
NICE is used routinely for WEST tokamak operation. It is also adapted to the IMAS (ITER
Modelling and Analysis Suite) format which makes it usable on many di�erent fusion tokamak
reactors.
In this document we give a general overview of the numerical methods implemented in NICE as
well as a number of computation examples.

Key-words: tokamak, plasma equilibrium, equilibrium reconstruction, toroidal harmonics,
�nite element method, Newton method, inverse problem, PDE-constrained optimization



Résumé : Le code NICE (Newton direct and Inverse Computation for Equilibrium) permet
de résoudre numériquement di�érents problèmes d'équilibre de plasma à frontière libre dans
un tokamak: identi�cation de la frontière du plasma et interpolation des mesures magnétiques,
reconstruction de l'équilibre à partir des mesures magnétiques et éventuellement d'autres mesures
internes au plasma (interferométrie, polarimétrie avec ou sans modèle de Stokes, Motional Starck
E�ect (MSE) et pression), calculs directs et inverses, statiques ou quasi-statiques de l'équilibre
à frontière libre.

NICE uni�e et améliore 3 codes plus anciens, VacTH [9], EQUINOX [4] et CEDRES++ [19].
Un des intérêts de NICE est de regrouper dans un unique cadre éléments �nis di�érents modes de
calculs d'équilibre. Le code utilise de manière intensive la méthode de Newton et une méthode
SQP (Sequential Quadratic Programming) pour résoudre des problèmes non linéaires.

NICE est utilisé de manière routinière pour l'opération du tokamak WEST (CEA Cadarache).
Le code est également adapté au format IMAS (ITER Modelling and Analysis Suite) ce qui
permet de l'utiliser sur di�érents tokamaks.

Dans ce document on donne un panorama des méthodes numériques implémentées dans NICE
ainsi que des exemples numériques.

Mots-clés : tokamak, équilibre plasma, reconstruction d'équilibre, harmoniques toroidales,
éléments �nis, méthode de Newton, problème inverse, EDP, optimisation
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4 B. Faugeras

1 Introduction

The aim of this paper is to provide a reference document on the di�erent operation modes and
numerical methods implemented in the code NICE. NICE stands for Newton direct and Inverse
Computation for Equilibrium. Its development started in 2017 with the original goal of devel-
oping an equilibirum reconstruction code able to use polarimetry Stokes vector measurements.
This demanded the computation of derivatives of certain quantities which did not easily �t in the
equilibrium reconstruction code EQUINOX [4] developed by the author and others. Moreover it
soon appeared appealing to unify in a single performant C++ code the di�erent functionalities
from 3 older codes, VacTH [9], EQUINOX [4] and CEDRES++ [19] which share many common
features. These goals are now achieved and on the way, improvements to the original methods
and new functionalities were added.

Several problems of equilibrium computation can be addressed by NICE and are detailed in
this document:

� plasma boundary only reconstruction from magnetic measurements (Section 3). The ref-
erence paper for this mode is [9]. In addition to the method proposed in this reference
the use of an original regularization term which proved to be e�cient is proposed in this
document.

� full equilibrium reconstruction from magnetic measurements and possibly internal mea-
surements (Section 4). NICE uses Sequential Quadratic Programming (SQP) algorithms
to solve partial di�erential equation (PDE) constrained optimization problems and in par-
ticular the inverse problem of equilibrium reconstruction. The default algorithm used in
NICE is a quasi SQP with reduced Hessian algorithm (which we denote QSQP in this
document). Its implementation demands the computation of derivatives of quantities with
respect to the state and control variables and enables to use polarimetry Stokes vector
measurements [10, 12]. The code also incorporates the original optimization algorithm
from EQUINOX [4] which appears to be an approximation of the default QSQP algorithm
used in NICE. A sensitivity method for error bar computations on every reconstructed
equilibrium quantities is also implemented and detailed in Section 4.3.2.

� direct and inverse, static and quasi-static free-boundary equilibrium computations (Section
5). The reference papers for these implemented modes are [19] and [5]. The term direct
refers to the resolution of the equilibrium equation whereas the term inverse refers to the
inverse problem consisting in �nding the currents in the poloidal �eld (PF) coils which
give a desired plasma shape in the static case or the voltages in the suppliers which give
a desired evolution of the plasma shape in the quasi-static case. The di�erence between
static and quasi-static is explained in Section 2.1

The strengh of NICE is to gather in a single uni�ed framework di�erent functionalities or
equilibrium computation modes. It makes intensive use of Newton method and SQP method to
solve non linear problems.

NICE is used routinely for the WEST tokamak operation [27]. NICE is adapted to the IMAS
(ITER Modelling and Analysis Suite [21, 31]) format which makes it usable on many di�erent
tokamaks [8]. Many of the numerical examples provided in this document are obtained using
data in the IMAS format.

The document is organized as follows. Section 2 provides a brief description of the equilibrium
equations used (Section 2.1), of their �nite element discretization (Section 2.2) and of the iterative
Newton and QSQP algorithm used (Section 2.3). This section enables to set matrix notations
which are very close to what is used in the code itself. Section 3 describes the plasma boundary

Inria



An overview of NICE 5

only reconstruction mode of NICE. This �rst mode does not rely on �nite element discretization
but uses a decomposition of the poloidal �ux in toroidal harmonics. All other computation modes
of NICE use �nite elements. Section 4 presents the equilibirum reconstruction mode and Section
5 the direct and inverse equilibrium computation modes. For each mode numerical examples are
provided.

2 Tokamak free-boundary plasma equilibrium

This section presents the general equations which are dealt with in NICE. The �nite element
discretization is also presented which enables us to set the notations for di�erent matrix and
vector operators which are used in the di�erent modes of NICE. Then we present in a generic
framework the QSQP algorithm which will then be applied to the inverse problems of the next
sections.

2.1 Modelization

The equations which govern the equilibrium of a plasma in the presence of a magnetic
�eld in a tokamak are on the one hand Maxwell's equations satis�ed in the whole of space
(including the plasma):

∇ ·B = 0, ∇× (
B

µ
) = j, (1)

and on the other hand the equilibrium equation for the plasma itself

∇p = j×B, (2)

where B is the magnetic �eld, µ is the magnetic permeability, p is the kinetic pressure and j is
the current density.

These equations are su�cient for the static modelization of the plasma equilibrium. In case
of quasi-static plasma evolution modelization they are augmented with Faraday's law and Ohm's
law in PF coils and passive structures. We refer to standard text books (e.g. [14, 3, 36, 15, 22])
and to [4, 19] for details of the derivation and only state the needed equations in what follows.

Introducing a cylindrical coordinate system (er, eφ, ez) (r = 0 is the major axis of the tokamak
torus) and assuming axial symmetry equations (1) and (2) reduce to the following equation for
the poloidal �ux ψ(r, z) in the poloidal plane Ω∞ = (0,∞)× (−∞,∞):

−∆∗ψ = jφ, (3)

where jφ is the toroidal component of j, and the second order elliptic di�erential operator ∆∗ is
de�ned by

∆∗ψ := ∂r

(
1

µ(ψ)r
∂rψ

)
+ ∂z

(
1

µ(ψ)r
∂zψ

)
:= ∇ ·

(
1

µ(ψ)r
∇ψ
)
. (4)

Here ∇ is the 2D operator in the (r, z)-plane and µ(ψ) is the magnetic permeability. It is equal
to the constant permeability of vacuum µ0 everywhere except in the possibly existing iron parts
of the tokamak (see Fig. 1) where it is a given function of ψ, µ(ψ) = µf (|∇ψ|2r−2).

The magnetic �eld can be decomposed in poloidal and toroidal components

B = Bp + Bφ, Bp =
1

r
[∇ψ × eφ], Bφ = Bφeφ =

f

r
eφ, (5)

where f is the diamagnetic function. Equation (5) shows that the magnetic surfaces are generated
by the rotation of the iso-�ux lines around the axis of the torus.
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Figure 1: Schematic representation of the poloidal plane of a tokamak. Ferromagnetic iron
structures (Ωf) are represented in gray, PF coils (Ωci) in orange and a passive structure (Ωps)
in blue. The limiter contour (ΓL) inside which the plasma (Ωp) lies is also shown. Cross-circles
represent magnetic probes and a �ctitious measurement contour Γ is drawn with a green dashed
line.

The toroidal component of the current density jφ is zero everywhere outside the plasma
domain and the poloidal �eld coils (and possibly the passive structures). The di�erent sub-
domains of the poloidal plane of a schematic tokamak (see Figure 1) as well as the corresponding
expression for jφ are described below:

-Ωf is the domain of ferromagnetic iron structures where the permeability µ is not constant.
-ΩL is the domain accessible to the plasma. Its boundary is the limiter ΓL.
-Ωp is the plasma domain where equations (2) and (1) imply that p and f are constant on each

magnetic surface i.e. p = p(ψ) and f = f(ψ). One then deduces the so-called Grad-Shafranov
equilibrium equation in the plasma [16, 35, 25]

−∆∗ψ = rp′(ψ) +
1

µ0r
(ff ′)(ψ). (6)

The right-hand side of (6) is the toroidal component jφ of the plasma current density.
The plasma domain depends on ψ and is unknown, Ωp = Ωp(ψ). We have to deal with a

free-boundary problem. This domain is de�ned by its boundary which is the outermost closed
ψ iso-contour contained within the limiter region ΩL. The plasma can either be limited if this
iso-contour is tangent to the limiter ΓL or de�ned by the presence of an X-point (as in Figure
1). In the latter case the plasma domain is bounded by the magnetic separatrix. Functions p′

and ff ′ are zero outside Ωp.

Inria



An overview of NICE 7

The current density is non-linear in ψ due to the non-linear functions p′ and ff ′ and the
de�nition of the plasma domain Ωp(ψ). While Ωp(ψ) is fully determined for a given ψ, the
two functions p′ and ff ′ are not determined in this modelization. It is the goal of the inverse
equilibrium reconstruction problem to determine them. For now let us consider that we are given
two functions A(x) and B(x) de�ned on [0, 1] such that in the plasma domain Ωp(ψ)

jφ = λ(
r

r0
A(ψN) +

r0

r
B(ψN)). (7)

Here r0 is the major radius of the tokamak vacuum chamber and λ is a scaling coe�cient. The
normalized poloidal �ux ψN(r, z) is

ψN(r, z) =
ψ(r, z)− ψa(ψ)

ψb(ψ)− ψa(ψ)
. (8)

with ψa and ψb being the �ux values at the magnetic axis and at the boundary of the plasma:

ψa(ψ) := ψ(ra(ψ), za(ψ)),

ψb(ψ) := ψ(rb(ψ), zb(ψ)),
(9)

with (ra(ψ), za(ψ)) the magnetic axis, where ψ has its global maximum in ΩL and (rb(ψ), zb(ψ))
the coordinates of the point that determines the plasma boundary. The point (rb, zb) is either
an X-point of ψ or the contact point with the limiter ΓL.

-Domains Ωci represent the poloidal �eld coils carrying currents

jφ =
Ii
Si
, (10)

where Si is the section area of the coil and Ii is the current �owing in the coil. In the static
modelization Ii is a constant whereas in the quasi-static case it relates to voltages vj(t) in the
suppliers and to self and mutual induction

Ii(t) =

Ns∑
j=1

Sijvj(t) +

Nc∑
j=1

Rij
1

Sj

∫
Ωcj

∂ψ

∂t
drdz, 1 ≤ i ≤ Nc (11)

via electric circuit equations (see [19] Appendix A and [5] Appendix B). Here Ns is the number
of suppliers, Nc is the number of coils, matrix S has dimension Nc × Ns and matrix R has
dimension Nc × Nc. In the simplest case where each circuit is composed of one coil and one

voltage supplier, S and R are diagonal with Sii =
ni
Ri

and Rii = −2πn2
i

Ri
, ni being the number

of turns and Ri the resistance.
-Domain Ωps represents passive structures. The expression for jφ in these domains depends

on the modelization considered. For static equilibrium jφ = 0 is usually considered whereas for
quasi-static evolution of the equilibrium

jφ = −σ
r

∂ψ

∂t
(12)

where σ is the conductivity of the passive structure.

Equilibrium equation (3) can either be considered in the whole poloidal plane Ω∞ with
ψ = 0 as boundary condition at in�nity and on the r = 0 axis, or on a restricted bounded
domain (whose boundary can be viewed as a measurement contour Γ and is illustrated by the
green dashed line on Figure 1). Both type of problems are addressed in NICE, the �rst one
for the direct and inverse static and quasi-static modes and the second one for the equilibrium
reconstruction mode.

RR n° 9347



8 B. Faugeras

Figure 2: Example mesh for WEST tokamak in the bounded domain case. In red is the region
inside the limiter.

2.2 FEM discretized operators and derivatives

For the equilibrium reconstruction mode as well as the direct and inverse modes of NICE equation
(3) is discretized using a P1 �nite element method based on a triangular mesh [6, 3, 19]. In
this Section we provide some details on the discretized operators common to di�erent modes
of NICE as well as on the computation of their derivatives which are used in the Newton and
SQP algorithms implemented for the resolution of non-linear direct and inverse problems. More
operators speci�c to a given mode are presented later in the document.

There are two possible choices for the spatial domain to be triangulated. It can either be
a restricted domain enclosed in the measurement contour Γ or a su�ciently large semi-circle
centered at the origin and containing the whole geometry of the tokamak. The �rst case is called
the bounded domain case (see Figure 2) and the second the ABB domain case (see Figures 3 and
4). ABB stands for Albanase, Blum, de Barbieri [2] who �rst introduced the boundary integral
method on the semi-circle used to take into account conditions at in�nity. We refer to [19] for its
precise expression and to [17, Chapter 2.4] for details on its derivation. Alternative approaches
for the incorporation of boundary conditions at in�nity were more recently presented in [11].

Let us denote by λi(r, z) the N Lagrangian basis functions associated to the inner vertices
of the mesh and by λd,i the Nb ones associated to boundary vertices where Dirichlet conditions
are applied (r = 0 in the ABB case or Γ in the bounded domain case).

Approximating the poloidal �ux by ψh =

N∑
i=1

ψiλi(r, z)+

Nb∑
i=1

ψd,iλd,i(r, z) and testing equation

(3) against every inner basis function leads to the de�nition of the following matrices and vectors:

Inria



An overview of NICE 9

Figure 3: The ABB domain for WEST tokamak.
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10 B. Faugeras

Figure 4: Zoom on an example mesh in the ABB domain case for WEST tokamak. Di�erent
parts of the machine appear in di�erent colors (iron structure, PF coils, vacuum vessel, limiter).

state variable: ψ denotes the vector of N �nite elements coe�cients ψi

elliptic operator: split into a linear and a non linear part (if iron is present), Aψ +Aµ(ψ).
Matrix A is of size N ×N and coe�cients

Aij =

∫
Ω−Ωf

1

µ0r
∇λi∇λjdrdz

and vector Aµ(ψ) of dimension N with coe�cients

Aµ,i(ψ) =

∫
Ωf

1

µ(ψh)r
∇λi∇ψhdrdz

The integrals are computed as sums of integrals over the triangles T of the mesh on each of which
the barycentric quadrature rule is used for the integral approximation. The Jacobian Aµ,ψ(ψ)
is computed as

[Aµ,ψ]ij =

∫
Ωf

∇λi∇λj
µ(ψh)r

−
2µ′f (|∇ψh|2r−2)

µ2
f (|∇ψh|2r−2)r3

(∇λi∇ψh)(∇λj∇ψh)drdz

boundary conditions: Dirichlet boundary conditions, a vector ψd of size Nb number of ver-
tices on the boundary, are applied using matrix Ad of size N ×Nb with coe�cients

Ad,ij =

∫
Ω

1

µ0r
∇λi∇λd,jdrdz

This matrix is only used in the bounded domain case since for the ABB domain case, ψd = 0.
In the ABB domain case the boundary integral method on the semi-circle leads to the de�-

nition of a matrix C of size N ×N (see [19]).

Inria



An overview of NICE 11

plasma current density: J(ψ, λ,uA,uB) vector of size N and coe�cient

J(ψ, λ,uA,uB)i =

∫
Ωp(ψh)

λ(
r

r0
A(ψN) +

r0

r
B(ψN))λidrdz

Functions A and B are decomposed in a basis of functions φi de�ned on [0, 1]. In NICE piecewise
linear and cubic splines functions are implemented.

A(x) =

NA∑
i=1

uAiφi(x), B(x) =

NB∑
i=1

uBiφi(x),

and uA, uB denote the vectors of degrees of freedom of A and B in the chosen decomposition
basis. In the direct and inverse modes of NICE functions A and B can also have a parametric
representation of the type

A(x) = β(1− xα)γ , B(x) = (1− β)(1− xα)γ

The mesh does not resolve the boundary of plasma domain Ωp(ψh) and a quadrature rule
needs to be speci�ed for integrals over intersections of mesh triangles with the plasma do-
main T ∩ Ωp(ψh). Barycenter quadrature is used but the quadrature point and weight depend
non linearly on ψh. This needs to be taken into account in the computation of the Jacobian
Jψ(ψ, λ,uA,uB). This di�erentiation is not straightforward and technical details are given in
[19]. The computation of Jacobians JuA(ψ, λ,uA,uB) and JuB(ψ, λ,uA,uB) which are needed
for equilibrium reconstruction on the other hand does not rise any particular di�culty.

Finally we will use the notation

Jp(ψ,uA,uB) =

∫
Ωp(ψh)

(
r

r0
A(ψN) +

r0

r
B(ψN))drdz (13)

such that the total plasma current is computed as

Ip = λJp(ψ,uA,uB)

PF coils: matrix L of size N ×Nc and vector uI of size Nc holding the currents Ii of the Nc
coils contained in the domain under consideration (all coils in the ABB domain case but not in
the bounded domain case), with coe�cients

Lij =
1

Sj

∫
Ωcj

λidrdz

such that the PF coils term in the static case is LuI and in the quasi-static evolution case is

LSv +LRLT
dψ

dt
with v the vector of the Ns voltages

passive structures: matrix Jps of size N×N , associated to the inductive terms in the passive
structures with coe�cients

[Jps]ij = −
Nps∑
k=1

∫
Ωpsk

σk
r
λiλjdrdz

where Nps is the number of passive structure and σk their conductivity.

RR n° 9347



12 B. Faugeras

2.3 Newton and PDE-constrained optimization algorithms

With the matrix and vector operators de�ned in the previous section di�erent direct and inverse
problems can be formulated in NICE and are detailed in the remaining sections of this document.
Here we present the main algorithms using a generic formulation. We will de�ne di�erent model
equations e, state y and control u variables as well as cost functions J(y,u). They will di�er
from one mode to the other in the code but the resolution algorithms are the same.

The direct problem formulation is:

�nd y such that e(y,u) = 0,

where u is here a constant parameter.

The inverse problem formulation is:

min
y,u

J(y,u) under the constraint e(y,u) = 0,

Throughout this document several explicit formulations are given for e and J . As a starter
and to make it more concrete let us consider the static equilibrium problem in the ABB domain
detailed in Section 5. The sate variable is y := ψ, the control variable is u := uI the currents in
the coils and p′ and ff ′ are given (thus uA, uB and λ are �xed parameters). The direct model
in ABB domain is

e(y,u) := (A+C)ψ + Aµ(ψ)− J(ψ, λ,uA,uB)−LuI = 0

and the cost function is

J(y,u) =
1

2
||Ky||2 +

1

2
||Ru||2

with a quadratic mis�t term, imposing a levelset of the poloidal �ux to go through a set of desired
points, and a regularization term (see Section 5).

In NICE direct problems are solved thanks to Newton's method. If we denote the Newton
increment by ∆y = −e−1

y (yn,u)e(yn,u) this iterative algorithm reads:

yn+1 = yn + ∆y

Inverse problems are solved thanks to a quasi-SQP method with reduced Hessian (QSQP).
SQP methods are well documented [29, 20] and a clear summary is found in [5, Appendix A]. An
SQP method can be seen as a Newton method to solve the non-linear system given by the �srt
order optimality condition for the Lagrangian of the PDE-constrained optimization problem

L(y,u,p) = J(y,u) + (p, e(y,u)) (14)

where vector p of size N is the adjoint variable or Lagrange multiplier for the constraint of the
model. This �rst method also known as Newton-Lagrange method is implemented in NICE and
was used in [10] for equilibrium reconstruction. It was also already used in [19] for the static
inverse problem (presented below in Section 5). The drawback of this method is that it demands
the resolution of linear systems of size (2N + Nu), where N is the dimension of the state and
adjoint variables and Nu the dimension of the control. When N is large this can become time
consumming and an excellent alternative is the SQP formulation with reduced Hessian which is
intensively used in NICE and was already used in [5] for the quasi-static inverse problem (see
Section 5.2). It is the following two-step iterative algorithm.

Inria



An overview of NICE 13

quasi SQP with reduced Hessian algorithm (QSQP):

1. control variable update step
M(un+1 − un) = −m (15)

2. state variable update step

yn+1 = yn + ∆y + S(un+1 − un) (16)

where
∆y = −e−1

y (yn,un)e(yn,un), (17)

S = −e−1
y (yn,un)eu(yn,un), (18)

M = Juu(yn,un) + STJyu(yn,un) + Juy(yn,un)S + STJyy(yn,un)S (19)

and

m = JTu (yn,un) + STJTy (yn,un) + Juy(yn,un)∆y + STJyy(yn,un)∆y (20)

At each iteration this algorithm demands the resolution of Nu + 1 linear systems (17)-(18) of
size N involving the same matrix ey(yn,un) with di�erent righ-hand sides which can be done
very e�ciently and of one smaller linear system of size Nu in (15).

One can notice that second order derivatives appear only for the cost function and not for
the model equation in (19) and (20). This is due to the fact that we want to avoid the expensive
computation of second order derivatives of J(ψ, λ,uA,uB) and thus NICE uses a quasi SQP
algorithm. Neglecting the second order derivatives of the model equation also allows to avoid
having to compute the adjoint variable.

It should also be noted that if one neglects the �rst order derivative Jψ term in the computa-
tion of model derivative ey this algorithm applied to the equilibrium reconstruction problem of
Section 4 is exactly the original algorithm from the code EQUINOX. In the original EQUINOX
paper [4] it is described as a �xed-point method to solve the model equation in ψ for which the
control variable u is updated at each iteration. It appears clearly that this method is another
(more approximated) quasi SQP with reduced Hessian method.

2.4 Cost functions notation

Throughout this document cost functions of the following type appear

J(ψ,u) =
1

2
||M(ψ,u)−m||2 +

1

2
||Ru||2 (21)

The �rst term is the data mis�t term and the second the regularization term.
Each measurement data mi is a given quantity which goes together with a given absolute

measurement error, abserr, and an relative measurement error, relerr, and we form the quantity
σi = max(abserr, relerr|mi|). All vectorial quantities related to measurements which appear
in cost functions are normalized quantities. The vector m of measurements has components
mi = mi/σi and the observation operator M(ψ,u) computes from the model the equivalent
of these normalized measured quantities. In NICE absolute and relative errors can either be
provided together with the used data set (for example these quantities should be provided in
IMAS) or set by the user through input code parameters.

Regularization terms are needed due to the ill-posedness of the inverse problems under con-
sideration and they guarantee smoothness of the identi�ed quantities. Regularization and penal-
ization parameters are included in R matrices and are provided by the user through input code
parameters.
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14 B. Faugeras

3 NICE magnetic measurements interpolation and plasma

boundary reconstruction mode

The goal of this section is to present the magnetic measurements interpolation and plasma
boundary reconstruction mode of NICE.

3.1 Method

Toroidal harmonics are used to represent the poloidal �ux in an annular domain surrounding the
plasma. In such a domain ψ satis�es

−∆∗ψ = 0

and can be expanded in a series of toroidal harmonics (see [9] and references therein).

This method allows a fast �t to magnetic measurements and the poloidal �eld function can
then be used to compute the plasma boundary. It allows also to compute precisely the poloidal
�ux and its gradient on any contour surrounding the plasma and thus on Γ the measurements
contour in NICE bounded domain case (green dashed line in Figure 1). These Cauchy conditions
on Γ, (g = ψ, h = ∂nψ), can then be used in a second step to reconstruct the full non-linear
free-boundary Grad-Shafranov equilibrium problem inside the domain Ω limited by Γ. This is
presented in the following Section 4.

Below we propose to use a simple additional regularization term which was not originally
present in [9]. This regularization operates directly on the toroidal harmonics expansion in order
to obtain a smooth representation of �ux even faraway from the measurements contour Γ inside
the domain Ω.

The toroidal coordinates system [32, 24] or bipolar coordinates system (if we ignore the
angular toroidal variable) (ζ, η) ∈ IR+

∗ × [0, 2π] about the pole F0 = (r0, z0) is related to the
cylindrical coordinates system (r, z) by

r =
r0 sinh ζ

cosh ζ − cos η
and z − z0 =

r0 sin η

cosh ζ − cos η

We assume that F0 lies inside the plasma domain where the homogeneous equation, −∆∗ψ = 0,
is not satis�ed.

Following [9] the poloidal �ux in the vacuum surrounding the plasma is written as ψ =
ψC + ψth. The term ψC is the given contribution of the poloidal �eld coils Ck with current

density jCk =
Ik
Sk

evaluated thanks to the free space Green function:

ψC(x) =
∑
k

∫
Ck

jCkG(y, x)dy

The toroidal harmonics expansion is represented by ψth, sum of two terms ψex and ψin, corre-
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An overview of NICE 15

sponding respectively to external and internal harmonics:

ψth = ψex + ψin,

ψex =
r0 sinh ζ√

cosh ζ − cos η
×

[

nea∑
n=0

aenQ
1
n−1/2(cosh ζ) cos(nη) +

neb∑
n=1

benQ
1
n−1/2(cosh ζ) sin(nη)],

ψin =
r0 sinh ζ√

cosh ζ − cos η
×

[

nia∑
n=0

ainP
1
n−1/2(cosh ζ) cos(nη) +

nib∑
n=1

binP
1
n−1/2(cosh ζ) sin(nη)],

(22)

where P 1
n−1/2 and Q1

n−1/2 are the associated Legendre functions of �rst and second kind, of

degree one and half integer order [1], also called toroidal harmonics when evaluated at point
cosh ζ. Functions P 1

n−1/2 have a singularity when ζ → ∞ that is to say at point F0. On the

contrary functions Q1
n−1/2 are singular when ζ → 0 that is to say on the axis r = 0.

We denote by u the vector of the unknown expansion coe�cients

u = (ae0, . . . , a
e
nea
, be1, . . . , b

e
neb
, ai0, . . . , a

i
nia
, bi1, . . . , b

i
nib

).

The optimal set of coe�cients uopt can be computed from the minimization of the least-square
cost function

J0(u) =
1

2
||M(u)−m||2 (23)

where m is the vector of (normalized) �ux loops and Bprobes measurements corrected from
their known ψC contribution, and M(u) the equivalent quantities computed from the toroidal
harmonics expansion of Eq. (22).

J0 is quadratic in u and is minimized simply by solving the associated normal equation to
�nd the optimal set of coe�cients uopt.

Assuming enough toroidal harmonics are used the resulting representation of the poloidal
�eld is always precise on Γ the measurements contour but might become highly disturbed when
moving towards the pole F0 which is a singular point for the internal harmonics. Hence let us
introduce the regularized functional

J(u) = J0(u) +R(u) (24)

where the regularization term R involves the second order tangential derivative of ψ along a
particular circle C surrounding the pole F0,

R(u) =
ε

2

∫
C

|d
2ψth(u)

ds2
|2ds

and is quadratic in u.
The following remark leads to an obvious choice for the circle C. In toroidal coordinates the

curves of constant ζ are non-intersecting circles of di�erent radii

(r − r0 coth ζ)2 + (z − z0)2 =
r2
0

sinh2 ζ

that surround the pole but are not concentric. The ζ = 0 curve corresponds to the z-axis (r = 0).
As the magnitude of ζ increases, the radius of the circles decreases and their centers approach the
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16 B. Faugeras

pole F0. We choose the circle C to be the circle of a constant ζ0 value. This choice considerably
simpli�es the computation of the second order tangential derivative since it is only required to
compute derivatives with respect to η to obtain the expression of the regularization term.

The curvilinear abscissa along the constant-ζ0 circle is given by

s(η) =

∫ η

−π

r0

cosh ζ0 − cos t
dt

The second order tangential derivative along the circle of ψ seen as a function of s is

d2ψth
ds2

=
∂2ψth
∂η2

(η, ζ0)(
dη

ds
)2 +

∂ψth
∂η

(η, ζ0)
d2η

ds2

with
dη

ds
=

cosh ζ0 − cos η

r0
and

d2η

ds2
=

(cosh ζ0 − cos η) sin η

r2
0

and we obtain the expression of the regularization term∫
Cζ0

|d
2ψth
ds2

|2ds =

∫ π

−π
[
∂2ψth
∂η2

(η, ζ0)(
cosh ζ0 − cos η

r0
)2

+
∂ψth
∂η

(η, ζ0)
(cosh ζ0 − cos η) sin η

r2
0

]2[
r0

cosh ζ0 − cos η
]dη

(25)

The ψth derivatives with respect to η can be easily explicitely computed from Eq. (22) and the
integral computed using a standard quadrature method.

Let us conclude this section with the complete algorithm implemented in NICE.

Algorithm

1. Initialization: prepare �laments description of PF coils, provide code parameters for num-
ber of toroidal harmonics, regularization parameters, test parameter d (see point 4 below),
points de�ning contour Γ, number Np of required plasma boundary points

2. Choose the pole of the coordinates system F0. Default initial guess is F0 = (r0, 0).
Assemble and minimize cost function (24) to �nd uopt.

3. Compute the current center Fc = (rc, zc) de�ned as moments of the plasma current density
[37, 7] which can be precisely computed as integrals on the limiter contour ΓL at every
point of which the �ux and the poloidal magnetic �eld can be evaluated thanks to the
representation ψ = ψth(uopt) + ψC

Ip =

∫
ΓL

1

µ0
Bsds (26)

zcIp =

∫
ΓL

1

µ0
(−r log rBn + zBs)ds (27)

r2
cIp =

∫
ΓL

1

µ0
(2rzBn + r2Bs)ds (28)

4. If ||Fc − F0|| > d set F0 := Fc, re-assemble and minimize cost function (24) again, since
M(u) in (23) depends on the pole of the coordinate system, to �nd a new uopt.
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An overview of NICE 17

Figure 5: Measured and computed Bprobes values for a WEST plasma boundary reconstruction.

5. Output Cauchy conditions (ψ, ∂nψ) on measurement contour Γ and/or compute plasma
boundary with the following algorithm:

� �nd Pb the point de�ning the plasma boundary ψb value. Either a limiter point or an
X-point found thanks to a quasi Newton method for ∇ψ = 0

� starting from the [Fc, Pb) ray de�ne Np − 1 rays [Fc, Pk) with a rotation of ∆θ =
2π/(Np − 1) between each of them. Use Newton method along each ray to �nd the
plasma boundary point where ψ(r, z)− ψb = 0

3.2 Numerical examples

This mode of NICE also known as VacTH is routinely used at WEST for plasma shape identi-
�cation and control during a shot [27]. Here is provided a typical example of plasma boundary
reconstruction at WEST. The poloidal �ux is computed using 24 toroidal harmonics for ψth (15
external harmonics with nea = neb = 7 and 9 internal harmonics with nia = nib = 4) and 24
�laments of currents modelizing the given current density in the PF coils for ψC . Figure 5 shows
the �t to Bprobes measurements with a resulting root mean square error of 2mT.

The ζ value de�ning the regularization circle is chosen such that the radius of this circle
is a(rlimiterMax − rlimiterMin) where a = 0.1 is a code parameter. Another code parameter
provides the value of regularization parameter which is here set to ε = 0.001. A 60 points plasma
boundary is computed by the method described above and is shown on Figure 6.

The algorithm is not machine dependant and was successfully applied to other tokamaks such
as JET (Figure 7), TCV (Figure 8), AUG, ISTTOK [33].
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18 B. Faugeras

Figure 6: Poloidal �ux ψ = ψth(uopt) +ψC computed by a �t of toroidal harmonics to magnetic
measurements for WEST tokamak. The measurement contour Γ is shown in black, Bprobes are
black circles and �ux loops black squares. The limiter contour is the dashed black line. The
plasma boundary with a low Xpoint is the thick red contour whereas the regularization circle is
the thin red line surrounding the pole of the coordinate system.
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An overview of NICE 19

Figure 7: Poloidal �ux ψ = ψth(uopt) +ψC computed by a �t of toroidal harmonics to magnetic
measurements for JET tokamak. The measurement contour Γ is shown in black, Bprobes are
black circles and �ux loops black squares. The limiter contour is the dashed black line. The
plasma boundary with a low Xpoint is the thick red contour whereas the regularization circle is
the thin red line surrounding the pole of the coordinate system.

RR n° 9347



20 B. Faugeras

Figure 8: Poloidal �ux ψ = ψth(uopt) +ψC computed by a �t of toroidal harmonics to magnetic
measurements for TCV tokamak. The measurement contour Γ is shown in black, Bprobes are
black circles and �ux loops black squares. The limiter contour is the dashed black line. The
plasma boundary with an upper Xpoint is the thick red contour whereas the regularization circle
is the thin red line surrounding the pole of the coordinate system.
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4 NICE equilibrium reconstruction mode

The goal of this section is to introduce the algorithm implemented in NICE for equilibrium recon-
struction. Basic measurements used for equilibrium reconstruction are magnetic measurements
but NICE can also use interferometry, polarimetry, motional Stark e�ect (MSE) and pressure
measurements. These are introduced in Section 4.2 and we start by using magnetics only for
simplicity.

4.1 Problem formulation on a bounded domain with magnetic mea-

surements

Here magnetic measurements are in fact Cauchy data (ψ, ∂ψ∂n ) provided on the measurement
contour Γ. These data are usually computed from a �rst call to NICE magnetics interpolation
mode described in Section 3 but can also be provided by another code speci�c to a Tokamak
which computes the poloidal �ux outside the plasma such as XLOC at JET [30, 34].

Using the matrix notations of Sections 2.2, 2.3 and 2.4 Dirichlet data provide the ψd vector
used in the resolution of the boundary value problem whereas Neumann data are considered
as measurements and used in a cost function to be minimized to reconstruct the equilibrium.
NICE uses Nb values of

∂ψ
∂n given at the middle point of each segment of the mesh forming the

Γ contour.
We denote bym the vector of these (normalized) measurements and the equivalent quantities,

Hψ+Hdψd computed from the FEM representation of the poloidal �ux thanks to the Nm×N
matrix H and the Nm ×Nb matrix Hd.

The cost function, which depends on y := ψ and u := (uA,uB) the degrees of freedom of
functions A and B, we consider is the following

J(y,u) :=
1

2
||Hψ +Hdψd −m||2 +

1

2
||RAuA||2 +

1

2
||RBuB||2 (29)

The �rst term on the right hand-side is the mis�t term and the two others are regularization
terms. They are the discrete expressions for

εA
2

∫ 1

0

(A′′(x))2dx+
αA
2
|A(1)|2

and
εB
2

∫ 1

0

(B′′(x))2dx+
αB
2
|B(1)|2

Parameters ε enable to tune the smoothness of the identi�ed functions whereas parameters α
tune the penalization to zero of their value on the plasma boundary.

The free-boundary equilibrium model equation is

e(y,u) := Aψ +Adψd − J(ψ, λ,uA,uB)−LuI = 0 (30)

and the equilibrium reconstruction problem is formulated as the folowing PDE-constrained op-
timization problem:

min
y,u

J(y,u) such that e(y,u) = 0 (31)

This problem is solved thanks to the QSQP algorithm given in Section 2.3. A �rst initializa-
tion step is used to set λ in the current density term given the total plasma current Ip which is
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either given with magnetic measurements or comes out from the toroidal harmonics procedure.
Given initial guess ψ0, u0

A and u0
B, λ is chosen to satisfy

Ip − λJp(ψ0,u0
A,u

0
B) = 0 (32)

Using the notation of Section 2.3, the ingredients needed for the QSQP algorithm in equations
(15), (16), (17), (18), (19) and (20) are

∆y = −(A− Jψ(ψn, λ,unA,u
n
B))−1(Aψn +Adψd − J(ψn, λ,unA,u

n
B)−LuI). (33)

S = −(A− Jψ(ψn, λ,unA,u
n
B))−1(Ju(ψn, λ,unA,u

n
B)). (34)

JTy = HT (Hψ +Hdψd −m), JTu =

[
RT
ARAuA
RT
BRBuB

]
(35)

Jyy = HTH, Juu =

[
RT
ARA 0

0 RT
BRB

]
, Jyu = 0, Juy = 0 (36)

4.2 Internal measurements

In addition to magnetics NICE can use internal measurements for equilibrium reconstruction.

4.2.1 Interferometry and polarimetry

Classical polarimetry Polarimetry measurements in �rst approxiamtion give the Faraday
rotation of the angle of an infrared radiation crossing the section of the plasma along di�erent
lines of sight, Li:

αiobs ≈
∫
Li
cNeBp.tdl

where c is a constant, Ne is the electronic density in the plasma and t is the unit vector tangent
to the line of sight. In order to be able to use polarimetric measurements the electronic density
Ne has to be known. It is therefore also being identi�ed thanks to interferometric measurements
which give the density line integrals over each of the NL line of sights

N i
e,obs ≈

∫
Li
Nedl

In NICE the electronic density, assumed constant on magnetic surfaces, is represented as

Ne(ψN) = λNeC(ψN,uC)

where λNe is a scaling parameter and function C is either decomposed in a basis of piecewise
linear or cubic spline functions

C(x,uC) =

NC∑
i=1

uC,iφi(x)

or given as a parametric function [18]

C(x,uC) = (M −m)(1− αhz)E(z) +m

where E(z) =
e−z

e−z + ez
, z =

x− x0

h
and the vector of degrees of freedom is uC = (x0, h, α,m,M).
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The interferometry observation operator W(ψ,uC) is a vector of size NL computed from the
FEM discretiezation as

W(ψ,uC)i =

∫
Li
λNeC(ψN(ψh),uC)dl

and for polarimetry we de�ne Z(ψ,uC) in a similar way by

Z(ψ,uC)i =

∫
Li
cλNeC(ψN(ψh),uC)Bp(ψh).tdl

Here again we have omitted normalization by the assumed observation error. Integrals along the
lines of sight are approximated using the trapezoidal quadrature rule.

The vector of state variable is still y := ψ whereas the one of all control variables is now
u = (uA,uB,uC) and we can now de�ne the cost function

J(y,u) =
1

2
||Hψ +Hdψd −m||2

+
1

2
||W(ψ,uC)−mNe||2 +

1

2
||Z(ψ,uC)−mFar||2

+
1

2
||RAuA||2 +

1

2
||RBuB||2 +

1

2
||RCuC ||2

(37)

which has to be minimized under the constraint of the equilibrium model (30).

In order to use the SQP algorithm we need to compute derivatives Wψ(ψ,uC) WuC (ψ,uC)
Zψ(ψ,uC) and ZuC (ψ,uC). In NICE we compute the exact derivatives of the discrete operators
This is done on the �y in the same loop as the one used for the assembly of vectors W(ψ,uC)
and Z(ψ,uC).

The computation of ∆y and S in (33) and (34) are unchanged. Concerning the gradients of
the cost function we have

JTy (y,u) = HT (Hψ +Hdψd −m) + Wψ(ψ,uC)
T (W(ψ,uC)−mNe)

+ Zψ(ψ,uC)
T (Z(ψ,uC)−mFar)

(38)

JTu =

 RT
ARAuA
RT
BRBuB

RT
CRCuC + WT

uC
(W −mNe) + ZTuC

(Z−mFar)

 (39)

Concerning the second order derivative terms we avoid a complete computation by only
considering terms involving products of �rst order derivatives and form the following quantities

Jyy = HTH + WT
ψWψ + ZTψZψ (40)

Juu =

RT
ARA 0 0

0 RT
BRB 0

0 0 RT
CRC + WT

uC
WuC + ZTuC

ZuC

 (41)

Jyu =
[
0 0 WT

ψWuC + ZTψZuC

]
, Juy =

 0
0

WT
uC

Wψ + ZTuC
Zψ

 (42)
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Stokes model for polarimetry The project of performing equilibrium reconstruction using
interferometry and Stokes model for polarimetry is at the origin of the development of NICE.
It was �rst presented in [10] where a Newton-Lagrange SQP algorithm is used in the ABB
domain case for ITER. In this section we brie�y restate the discretization method implemented
for Stokes model and describe the more recent QSQP method used for the inverse equilibrium
reconstruction problem. The method presented here was used in [13] with real measurements at
JET.

Stokes model consists in a system of di�erential equations for the the Stokes vector s of
dimension 3 to be solved along each line of sight. The system is linear in s but coe�cients
depend on the electronic density and on the magnetic �eld. Each of the NL line of sight Li is
discretized in N i points and a Crank-Nicolson scheme is implemented for the integration of the
Stokes model. This can be written

M i(ψ,uB,uC)S
i − Si0 = 0

where M i is a 3N i × 3N i band diagonal matrix, Si = (si,1, . . . , si,N
i

) is the vector of all Stokes
vector states along the line of sight and Si0 = (si0, 0, . . . , 0) represents the initial conditions.

The measured quantity can be assumed to be the Stokes vector at the end of the line of sight
after integration through the plasma and the observation operator is given a matrix Ei of size
3× 3N i such that EiSi = si,N

i

.
De�ning the block diagonal matrices

M = diag(M1, . . . ,MNL)

and
E = diag(E1, . . . ,ENL),

and collecting the Stokes vector states for all line of sights in a vector

S = (S1, . . . ,SNL)

one can de�ne a direct model e(y,u) = 0 for the state variable y = (ψ,S) and control parameters
u = (uA,uB,uC) by

e(y,u) :=

[
Aψ +Adψd − J(ψ, λ;uA,uB)−LuI

M(ψ,uB,uC)S− S0

]
= 0 (43)

as well as the following cost function for equilibrium reconstruction using magnetics, interferom-
etry and Stokes model polarimetry,

J(y,u) =
1

2
||Hψ +Hdψd −m||2 +

1

2
||W(ψ,uC)−mNe||2

+
1

2
||ES−ms||2 +

1

2
||RAuA||2 +

1

2
||RBuB||2 +

1

2
||RCuC ||2

(44)

which is minimized under the constraint of the model (equation 43).
The Jacobians needed in Eqn. (17) and (18) of the QSQP algorithm are

ey(y,u) =

[
A− Jψ(ψ, λ;uA,uB) 0
Dψ[M(ψ,uB,uC)S] M(ψ,uB,uC)

]
(45)

and

eu(y,u) =

[
−JuA(ψ, λ;uA,uB) −JuB(ψ, λ;uA,uB) 0

0 DuB [M(ψ,uB,uC)S] DuC [M(ψ,uB,uC)S]

]
(46)
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Concerning the gradients of the cost function we have

JTy (y,u) =

[
HT (Hψ +Hdψd −m) + Wψ(ψ,uC)

T (W(ψ,uC)−mNe)

ET (ES−ms)

]
(47)

JTu =

 RT
ARAuA
RT
BRBuB

RT
CRCuC + WT

uC
(W −mNe)

 (48)

Concerning the second order derivative terms we avoid a complete computation by only
considering terms involving products of �rst order derivatives and form the following quantities

Jyy =

[
HTH + WT

ψWψ 0

0 ETE

]
(49)

Juu =

RT
ARA 0 0

0 RT
BRB 0

0 0 RT
CRC + WT

uC
WuC

 (50)

Jyu =

[
0 0 WT

ψWuC

0 0 0

]
, Juy =

 0 0
0 0

WT
uC

Wψ 0

 (51)

Finally let us mention that in [12] dependance on electron temperature is considered in the
Stokes model and the numerical experiments are performed for the identi�cation of the Te pro�le
together with p′, ff ′ and the Ne pro�les. As for other pro�les the Te pro�le is decomposed in
a function basis with control parameters uD. With the notations of this Section this mainly
consists in augmenting the control vector to u = (uA,uB,uC ,uD) and adding a dependence of
the Stokes model to Te that is to say using a matrix M(ψ,uB,uC ,uD).

4.2.2 Motional Start e�ect

Motional Stark e�ect (MSE) measurements are angular measurements depending on the magnetic
�eld inside the plasma domain. They are given at NMSE points pi = (ri, zi) as

mi
MSE = tan γi =

ai0Bz(p
i) + ai1Br(p

i) + ai2Bφ(pi)

ai3Bz(p
i) + ai4Br(p

i) + ai5Bφ(pi)

where the a coe�cients are given constants. In NICE the MSE observation operator M(ψ,uB)
is the vector of components

M(ψ,uB)i =
ai0Bz(ψh(pi)) + ai1Br(ψh(pi)) + ai2Sf (ψN(ψh(pi)))/ri

ai3Bz(ψh(pi)) + ai4Br(ψh(pi)) + ai5Sf (ψN(ψh(pi)))/ri

where we have noted Sf (ψN) = f(ψ) which depends on uB since it is obtained from integration
of B as follows

Sf (ψN) = [(B0r0)2 − 2(ψb − ψa)λµ0r0

∫ 1

ψN

B(x)dx]1/2 (52)

B0 is the vacuum toroidal �eld at r = r0.
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During assembling of vector M(ψ,uB) �rst order derivatives, Mψ(ψ,uB) and MuB(ψ,uB)
are also computed. We can now formulate the cost function used for equilibrium reconstruction
from magnetic and MSE measurement

J(y,u) =
1

2
||Hψ +Hdψd −m||2 +

1

2
||M(ψ,uB)−mMSE ||2

+
1

2
||RAuA||2 +

1

2
||RBuB||2

(53)

which has to be minimized under the constraint of the equilibrium model (30).
The computation of ∆y and S in (33) and (34) are unchanged. Concerning the gradients of

the cost function we have

JTy (y,u) = HT (Hψ +Hdψd −m) + Mψ(ψ,uB)T (M(ψ,uB)−mMSE) (54)

JTu =

[
RT
ARAuA

RT
BRBuB + MT

uB
(M−mMSE)

]
(55)

Very similar to what is done using interfero-polarimetry the following approximated second
order derivative quantities are considered to form matrixM and vector m of the SQP algorithm

Jyy = HTH + MT
ψMψ (56)

Juu =

[
RT
ARA 0

0 RT
BRB + MT

uB
MuB

]
(57)

Jyu =
[
0 MT

ψMuB

]
, Juy =

[
0

MT
uB

Mψ

]
(58)

4.2.3 Pressure

The way pressure measurements can be obtained combining di�erent diagnostics is out of the
scope of this paper but when available they can be used for equilibrium reconstruction in NICE.
Pressure measurements can be given as function of space, that is to say Np values pi given at
points pi = (ri, zi). They can also be given as a function ψN that is to say Np values p

i given
for Np values ψiN. In either case it leads to the construction of a pressure observation operator
P(ψ,uA) with components

P(ψ,uA)i = −(ψb − ψa)
λ

r0

∫ 1

ψiN

A(x)dx

where ψiN is either a �xed given quantity or computed as ψN(ψh(pi)) which leads to di�erences in
the computation of derivatives Pψ(ψ,uA) and PuA(ψ,uA) done during the assembling. We can
now formulate the cost function used for equilibrium reconstruction from magnetic and pressure
measurements

J(y,u) =
1

2
||Hψ +Hdψd −m||2 +

1

2
||P(ψ,uA)−mp||2

+
1

2
||RAuA||2 +

1

2
||RBuB||2

(59)

which has to be minimized under the constraint of the equilibrium model (30).
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The computation of ∆y and S in (33) and (34) are unchanged. Concerning the gradients of
the cost function we have

JTy (y,u) = HT (Hψ +Hdψd −m) + Pψ(ψ,uA)T (P(ψ,uA)−mp) (60)

JTu =

[
RT
ARAuA + PTuA

(P−mp)

RT
BRBuB

]
(61)

Similar to what is done for interfero-polarimetry and MSE the following approximated second
order derivative quantities are considered to form matrixM and vector m of the SQP algorithm

Jyy = HTH + PTψPψ (62)

Juu =

[
RT
ARA + PTuA

PuA 0

0 RT
BRB

]
(63)

Jyu =
[
PTψPuA 0

]
, Juy =

[
PTuA

Pψ
0

]
(64)

4.3 Outputs and uncertainty quanti�cation

4.3.1 Equilibrium outputs, �ux surface averages and geometric coe�cients

Numerous outputs can be extracted from the equilibrium poloidal �ux map computed. These
include purely geometric information on the plasma shape (plasma boundary, geometric axis,
elongation . . . ), global parameters (such as total plasma current Ip, poloidal beta βp, internal
inductance li, . . . ), 1D pro�les of quantities constant on �ux isolines in the plasma and 2D maps
(ψ itself but also Br, Bz, jp, . . . ). All these outputs are standardized and follow the IMAS
conventions. We are not going to detail all of them in this paper. Let us however give some
details on the computation of some of the important 1D pro�les in the plasma.

For ψN ∈ [0, 1], Sf (ψN) = f(ψ) is computed by integration of B as shown in (52). Let us
de�ne a discretization of the unit interval [0, 1] by S + 1 values ψ0

N = 0, . . . , ψSN = 1. These
points are taken as abscissa for all computed 1D pro�les. For each ψsN the contour line ΓψsN is
extracted from the �nite element representation of the solution as a list of Ns segments between
ml
s,1 = (rls,1, z

l
s,1) and ml

s,2 = (rls,2, z
l
s,2) with length |Lls|, for l = 1 to Ns.

The toroidal �ux coordinate is de�ned as ρ(ψN) =
√
φ(ψN)/πB0 where φ(ψN) =

∫
ΩψN

f(ψh(r,z))
r drdz

and ΩψN is the domain bounded by the line of �ux ΓψN . This contour is not resolved by the
mesh and the quantities φs and ρs are computed from the discrete ψh for all ψsN using the same
barycentric quadrature rule as for the integrated plasma current density J in Section 2.2:

φs =
∑
T

Sf (ψN(bT (ψh)))

rT (ψh)
|T ∩ ΩψsN |. (65)

The pro�les ψs and ρs being known one can compute (∂ψ∂ρ )s = ψ′s using �nite di�erences.
In the same way the volume pro�le is computed as

V ols = 2π
∑
T

rT (ψh)|T ∩ ΩψsN | (66)

and (∂V ol∂ρ )s = V ol′s using �nite di�erences.
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Following [3] the average of a quantity A over magnetic surfaces can be computed as

〈A〉s = (

∫
Γψs

N

Ar

|∇ψh|
dl)/(

∫
Γψs

N

r

|∇ψh|
dl). (67)

A number of 1D pro�les, also called geometric coe�cients, are computed as such averages, e.g.
〈1/r2〉 or 〈|∇ρ|2/r2〉 . The integrals over �ux contour lines involved are approximated as follows:

∫
Γψs

N

Ar

|∇ψh|
dl ≈

Ns∑
l=1

1

2

(
rls,1A(ml

s,1)

|∇ψh|T ls |
+
rls,2A(ml

s,2)

|∇ψh|T ls |

)
|Lls|. (68)

where T ls is the triangle which is intersected by the segment between ml
s,1 and ml

s,2 and ml
s,· =

(rls,·, z
l
s,·) . |∇ψh|T ls | is constant in the triangle and computed from the 3 values at the nodes of

T ls.

4.3.2 Sensitivity method for error bars computation

At convergence of the SQP iterations an optimal u is found and the constraint given by the model
is satis�ed. Hence y = y(u) and one can de�ne the reduced cost function Ĵ(u) = J(y(u),u).
A good approximation to the Hessian of the reduced cost function is SQP algorithm matrix,
Ĵuu ≈ M . This matrix would be the exact Hessian if we hadn't neglected some of the second
order derivatives terms.

Its diagonal elements are the inverse of the squared a posteriori standard deviations on the
components of u also called error bars. Moreover the error bar of any scalar quantity g depending
on u (such as the reconstructed functions A(ψN) or B(ψN) at a given ψN for example) is computed
as

σ2
g = ∇ug

TM−1∇ug

This enables the computation of the error bar on any output quantity at low numerical cost. If
g(u) is in the form g(u) = G(y(u),u) we use

∇ug = yTu∇yG+∇uG

where the Jacobian yu = S is already known from SQP algorithm.

4.4 Final remarks on equilibrium reconstruction

The equilibrium reconstruction problem can be formulated on the ABB domain. With this for-
mulation magnetic Bprobes and �ux loops measurements are directly used without having to
perform a �rst interpolation step on the measurement contour as with the formulation on a
bounded domain. However there are two drawbacks to this method. First of all it is computa-
tionally more demanding since the mesh is necessarily much larger, and secondly it is does not
work well for tokamaks with ferromagnetic structures since the modelization of the magnetic
permeability is certainly not very precise. Nevertheless the method works well for iron-free toka-
maks and a numerical example is provided in Section 5.3. This method is closer to the algorithms
implemented in codes like EFIT [23], EQUAL [38], CLISTE [26] or LIUQE [28], which however
do not make use of derivative with respect to the state variable as is done here in the QSQP
algorithm.
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The cost function to be minimized is very similar to (29)

J(ψ,u) =
1

2
||HBψ −mB ||2 +

1

2
||HFψ −mF ||2

+
1

2
||RAuA||2 +

1

2
||RBuB||2

(69)

Here mB (resp. mF ) are the Bprobes measurements (resp. the �ux loops measurements) and
HB (resp. HF ) the associated linear observation operators mapping the FEM representation of
the poloidal �ux to the measurements.

For an iron-free tokamak the model equation constraint reads

(A+C)ψ − J(ψ, λ,uA,uB)−LuI = 0 (70)

The QSQP algorithm follows as in the preceding sections.

Clearly the di�erent measurements of the previous sections (magnetics, interferometry, po-
larimetry, MSE, pressure) can be used all together. In NICE this is controled by code parameters
and the user can decide to use any combination of measurments. Finally one can also perform
a magnetics only reconstruction and then use the obtained �ux map to reconstruct in a second
step the electron density pro�le using interferometry measurements only.

4.5 Numerical examples

TCV reconstruction with magnetics only This �rst example shows results from a TCV
equilibrium reconstrucion using magnetics only. Figure 9 shows the computation domain and
the obtained �ux map. Cauchy measurements on the domain boundary are computed with
the �rst mode of NICE described in Section 3 using toroidal harmonics of order 5, then the
QSQP algorithm of section 4.1 is run. Functions A and B are decomposed in a basis of 6
cubic splines each. The regularization parameters are εA = εB = 0.1. The relative residual,

relresid =
||(y,u)n+1 − (y,u)n||

||(y,u)n||
, rapidly converges to the tolerance value set to 10−10. Figure

10 shows the identi�ed p′ and ff ′ pro�les as well as the obtained averaged current density and
safety factor. Computed error bars on these pro�les are also shown.

WEST reconstruction with magnetics and interfero-polarimetry This second example
shows results from a WEST equilibrium reconstrucion using magnetics and interfero-polarimetry
measurements. Figure 11 shows the computation domain and the obtained �ux map. Cauchy
measurements on the domain boundary are computed with the �rst mode of NICE described in
Section 3 using external harmonics of order 7 and inner of order 4, then the QSQP algorithm of
section 4.2.1 is run. Functions A and B are decomposed in a basis of 7 cubic splines each whereas
C uses 8. The regularization parameters are εA = εB = 0.1. The regularization parameter εC
varies radially from 1 on the magnetic axis to 10−2 at the plasma boundary. Values of A and B
at the plasma boundary are forced to 0 with large penalization parameters whereas C is left free.
The relative residual rapidly converges to the tolerance value set to 10−10. Figure 12 shows the
identi�ed p′ and ff ′ pro�les as well as the obtained averaged current density and safety factor.
Computed error bars on these pro�les are also shown. Figure 13 shows the identi�ed electron
density pro�le with error bars as well as the interferometry and polarimetry data. Because
of unvalid measurments 8 chords out of 10 are used for interferometry while 7 are used for
polarimetry.
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Figure 9: Poloidal �ux map for a TCV equilibrium reconstruction with magnetics and pressure
measurements. The plasma boundary is shown in red. The limiter contour is the doted line and
the dashed lines.
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Figure 10: TCV equilibrium reconstruction with magnetics. Reconstructed p′, ff ′, jtor = (p′+ <
1/r2 > (1/µ0)ff ′)/ < 1/r > and safety factor q pro�les, and associated computed error bars.

JET reconstruction with magnetics and pressure This third example shows results from
a JET equilibrium reconstrucion using magnetics and pressure measurements. Figure 14 shows
the computation domain and the obtained �ux map. Cauchy measurements on the domain
boundary are computed with the �rst mode of NICE described in Section 3 using external
harmonics of order 5 and inner of order 3, then the QSQP algorithm of section 4.2.3 is run.
Function A is decomposed in a basis of 14 cubic splines and the regularization parameter εA
varies radially from 10−1 on the magnetic axis to 10−3 near the plasma boundary where the
function is left free. Function B is decomposed in a basis of 12 cubic splines and the regularization
parameter is εA = 10−1 and B(1) is forced to 0 with a large penalization parameter. The relative
residual rapidly converges to the tolerance value set to 10−10. Figure 15 shows the identi�ed p′

and ff ′ pro�les as well as the obtained averaged current density and safety factor. Computed
error bars on these pro�les are also shown. Figure 16 shows the identi�ed pressure pro�le with
error bars as well as the pressure data.

5 NICE direct and inverse equilibrium computation modes

5.1 Static equilibrium computation

Two types of direct static equilibrium computation can be performed with NICE, Ip-free or Ip-
�xed computations. Although it is possible to perform this type of computation in the bounded
domain case it is most usually performed in the ABB domain case where all poloidal �eld coils
are included. In both types of computation the currents in these coils are given, that is u := uI
the control variable for the inverse problem to come, is a given �xed parameter.
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Figure 11: Poloidal �ux map for a WEST equilibrium reconstruction with magnetics and
interfero-polarimetry. The plasma boundary is shown in red. The limiter contour is the doted
line and the dashed lines are the interfero-polarimetry chords
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Figure 12: WEST equilibrium reconstruction with magnetics and interfero-polarimetry. Recon-
structed p′, ff ′, jtor = (p′+ < 1/r2 > (1/µ0)ff ′)/ < 1/r > and safety factor q pro�les, and
associated computed error bars.
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Figure 13: WEST equilibrium reconstruction with magnetics and interfero-polarimetry. Re-
constructed electron density Ne and associated computed error bars. Computed and measured
interferometry and Faraday angle data.
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Figure 14: Poloidal �ux map for a JET equilibrium reconstruction with magnetics and pressure
measurements. The plasma boundary is shown in red. The limiter contour is the doted line and
the dashed lines.
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Figure 15: JET equilibrium reconstruction with magnetics and pressure. Reconstructed p′, ff ′,
jtor = (p′+ < 1/r2 > (1/µ0)ff ′)/ < 1/r > and safety factor q pro�les, and associated computed
error bars.
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Figure 16: JET equilibrium reconstruction with magnetics and pressure. Reconstructed pressure
p and associated computed error bars. Computed and measured pressure data.

In Ip-free computations the current density functions p
′ and ff ′ are given, that is λ, uA and

uB are given and �xed. The state variable is y := ψ and the model equation is

e(y,u) := (A+C)ψ + Aµ(ψ)− J(ψ, λ;uA,uB)−LuI = 0. (71)

In Ip-�xed computations the current density functions are given up to the scaling factor λ.
The state variable is augmented with λ, y := (ψ, λ) and the model equation augmented with an
equation imposing a given Ip value

e(y,u) :=

[
(A+C)ψ + Aµ(ψ)− J(ψ, λ;uA,uB)−LuI

Ip − λJp(ψ,uA,uB)

]
= 0. (72)

The direct static Ip-free or Ip-�xed computation consists in �nding y such that e(y,u) = 0
using Newton's method.

The associated inverse problem is to �nd the currents in the coils, hence u such that the
plasma has a desired shape and position. A number Np + 1 of points xi = (ri, zi) de�ning
the desired plasma boundary are provided. They are either given from another simulation are
provided from the parametric representation taken from [17, Chap. 4, p84]. The cost function is

J(y,u) =
1

2
||Kψ||2 +

1

2
||R(uI − uI0)||2 (73)

where ||Kψ||2 =

Np∑
i=1

(ψh(xi) − ψh(x0))2 is the mis�t term imposing an iso�ux line to go

through the given desired points and the second term is a penalization to given currents uI0 in
which the diagonal matrix R holds weights Rii = 1/σ2

i .
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As for the equilibrium reconstruction problem the inverse problem

min
y,u

J(y,u) such that e(y,u) = 0

is solved thanks to the QSQP method. The needed ingredients are

ey(y,u) = A+C + Aµ,ψ(ψ)− Jψ(ψ, λ;uA,uB), eu(y,u) = −L (74)

JTy (y,u) = KTKψ, JTu (y,u) = RT (RuI − uI0) (75)

Jyy(y,u) = KTK, Juu(y,u) = RTR, Jyu = Juy = 0 (76)

for the Ip-free case and

ey(y,u) =

[
A+C + Aµ,ψ(ψ)− Jψ(ψ, λ;uA,uB) −Jλ(ψ, λ;uA,uB)

−λJp,ψ(ψ,uA,uB) −Jp(ψ,uA,uB)

]
(77)

eu(y,u) =

[
−L
0

]
(78)

JTy (y,u) =

[
KTKψ

0

]
, JTu (y,u) = RT (RuI − uI0) (79)

Jyy(y,u) =

[
KTK 0

0 0

]
, Juu(y,u) = RTR, Jyu = Juy = 0 (80)

for the Ip-�xed case.

5.2 Quasi-static equilibrium evolution computation

In order to compute the quasi-static equilibrium evolution on time interval [0, T ] an implicit
Euler scheme with time step ∆t is used starting from an initial condition y0. The computation
of the equilibirum at tk from the one at tk−1 is done by solving the following problem:

�nd yk such that ek(yk,yk−1,uV ) = 0

where
ek(yk,yk−1,uV ) :=(A+C)ψk + Aµ(ψk)− J(ψk, λk,ukA,u

k
B)

−E(ψk −ψk−1)−GkuV
(81)

with yk := ψk in the Ip-free case and

ek(yk,yk−1,uV ) :=

(A+C)ψk + Aµ(ψk)− J(ψk, λk,ukA,u
k
B) . . .

· · · −E(ψk −ψk−1)−GkuV
Ikp − λkJp(ψ

k,ukA,u
k
B)

 (82)

with yk := (ψk;λk) in the Ip-�xed case.
Similar to Section 5.1, in Ip-free computations the current density functions p′ and ff ′ are

given that is λk, ukA and ukB are given at each time step. In Ip-�xed computations the current
density functions are given up to the scaling factor λ which is computed at each time given a
prescribed value of the plasma current Ikp .
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Moreover with have de�ned matrices

E :=
1

∆t
(Jps +LRLT )

and
Gk := LSBk.

The voltage vi(t) of each of the Nv power supplies is a given function of time decomposed in a
basis of Nbv piecewise linear or spline functions

vi(t) =

Nbv∑
j=1

ui,jφj(t)

Noting uV the vector of size NvNbv of all decomposition coe�cients ui,j for all power supllies,
the Nv ×NvNbv matrix B(t) is such that B(t)uV = v(t) the vector of all voltages.

As for the static case inverse problems can be de�ned for the quasi-static evolution case. It
consists in �nding the voltages, hence controling u = uV , such that the plasma shape follows a
prescribed evolution. In order to stick with the notations of this document one can de�ne a state
variable concatenating the states at each time step y := (y1, . . .yNT ) and a model

e(y,u) :=

 e1(y1,y0,uV )
. . .

eNT (yNT ,yNT−1,uV )


The simplest cost function which can be de�ned is the following

J(y,u) =
1

2

NT∑
k=1

Nd∑
i=1

wk(ψkh(xki )− ψkh(xk0))2 +
1

2
w

NT∑
k=1

Nv∑
i=1

([BkuV ]i)
2

with a mis�t term to a desired plasma boundary at each time step and a penalization term on
voltages. This can be rewritten

J(y,u) =
1

2
||Kψ||2 +

1

2
||RuV ||2

and the QSQP algorithm to solve the PDE-constrained optimization problem follows. Other
types of penalization terms are also implemented in NICE: penalization on the maximum and
minimum voltage values and penalization on induced currents in passive strutures. we refer to
[5] for a study of this type of inverse problems for the design of tokamak scenarios.

5.3 Numerical examples

JT60-SA equilibrium reconstruction in ABB domain with synthetic magnetics gen-
erated from a static inverse In this �rst example we perform an equilibrium reconstruction
with synthetic magnetic data for JT60-SA tokamak in ABB domain. In a �rst step, the Ip-�xed
static inverse mode of NICE is run to compute the currents in the PF coils giving a desired
plasma boundary shape provided as a list of input points. The 12 reference currents in (73) are
uI0 = 0 and the penalization weights are chosen as σi = 108. A parametric representation for A
and B is given. The relative residual rapidly converges to 10−10.

This provides a reference equilibrium with known p′ and ff ′ functions. From the computed
�ux map we compute the equivalent of magnetics measurements. A 1% noise is added to these
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Figure 17: JT60-SA equilibrium reconstruction with synthetic magnetics. Poloidal �ux map in
ABB domain.

measurements. Then in a second step we run the equilibrium reconstruction mode of NICE
in ABB domain that is to say without using the toroidal harmonics step. Functions A and
B are to be identi�ed in a basis of 11 cubic splines each. The regularization parameters are
εA = εB = 10−2. The computed poloidal �ux map is shown on Figure 17. Figure 18 shows the
reference and identi�ed p′ and ff ′ pro�les as well as the averaged current density and safety
factor. Computed error bars on these pro�les are also shown.

ITER vertical displacement event In this second example an initial ITER plasma is com-
puted thanks to the Ip-�xed static inverse mode on NICE in a �rst step. It is shown on Figure
19. The desired plasma shape is provided thanks to a parametric representation.

Then in a second step the quasi-static evolution mode is run. All voltages are set to zero
and the time step is ∆t = 10−3s. At each time step the Newton relative residual converges
in few iterations to the tolerance value of 10−10. A vertical displacement event occurs after
approximately 1s. The evolution of the plasma is shown on Figure 20 and the �nal poloidal �ux
map at t = 1.5s is shown on Figure 21.

ITER quasi-static evolution inverse mode In this third example we use the quasi-static
evolution inverse mode of NICE to compute the voltages which drive an ITER limiter plasma
upwards. The di�erent desired plasma boundaries as time increases are shown on Figure 22
together with the initial poloidal �ux map. The comutation is in Ip-�xed mode and function
A and B are given by a parametric representation. Each of the 12 voltages time dependent
functions to be identi�ed are decomposed in a basis of 11 piecewise linear functions. The weights
in the regularization term are chosen as σi = 10−5, 11 time steps of 0.1s are considered. The
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Figure 18: JT60-SA equilibrium reconstruction with synthetic magnetics. Reconstructed p′, ff ′,
jtor = (p′+ < 1/r2 > (1/µ0)ff ′)/ < 1/r > and safety factor q pro�les, and associated computed
error bars. The reference equilibrium are in black and the reconstructed ones in blue.

Figure 19: Initial poloidal �ux map in ITER geometry.
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Figure 20: Evolution of the plasma boundary during a VDE in ITER geometry for t = 1, 1.1,
1.2, 1.3, 1.4 and 1.5s

Figure 21: Final poloidal �ux map in ITER geometry at t = 1.5s.
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Figure 22: Initial poloidal �ux map in ITER geometry and successive desired plasma boundaries
for the time evolution.

size of the control vector u is 132. The mesh size is 12574 giving a state variable vector y of size
138314. The QSQP algorithm converges to the tolerance value of 10−10 in 10 iterations. Figure
23 shows the poloidal �ux map at �nal time with a good match between desired and computed
plasma boundaries. Figure 24 shows the voltages computed by the QSQP algorithm.

6 Conclusion

This document provides a general overview of the numerical methods implemented in the di�erent
e�ective modes of the code NICE. The code is available on the svn repository of the EUROFU-
SION gateway. It is still evolving and new features a regularly added. Currently the possibility of
using higher order C1 �nite elements is under development. Other future developments will also
deal with the use of the 1D resistive di�usion equation either in a coupling with the quasi-static
evolution mode or as an additional constraint in successive equilibrium reconstructions.
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Figure 23: Final poloidal �ux map in ITER geometry. Matching computed and desired plasma
boundary are shown.

Figure 24: Computed voltages driving the desired plasma boundary evolution.
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