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Abstract

The code NICE (Newton direct and Inverse Computation for Equilibrium) en-
ables to solve numerically several problems of plasma free-boundary equilibrium
computations in a tokamak: plasma free-boundary only reconstruction and mag-
netic measurements interpolation, full free-boundary equilibrium reconstruction
from magnetic measurements and possibly internal measurements (interferom-
etry, classical linear approximation polarimetry or Stokes model polarimety,
Motional Stark Effect and pressure), direct and inverse, static and quasi-static
free-boundary equilibrium computations.

NICE unifies and upgrades 3 former codes VacTH [9], EQUINOX [4] and
CEDRES++ [19]. The strength of NICE is to gather in a single finite element
framework different equilibrium computation modes. It makes intensive use of
Newton method and Sequential Quadratic Programming method to solve non
linear problems.

NICE is used routinely for WEST tokamak operation. It is also adapted to
the IMAS (ITER Modelling and Analysis Suite) format which makes it usable
on many different fusion tokamak reactors.

In this document we give a general overview of the numerical methods im-
plemented in NICE as well as a number of computation examples.

Key words: tokamak, plasma equilibrium, equilibrium reconstruction, toroidal
harmonics, finite element method, Newton method, inverse problem, PDE-
constrained optimization

1 Introduction

The aim of this paper is to provide a reference document on the different op-
eration modes and numerical methods implemented in the code NICE. NICE
stands for Newton direct and Inverse Computation for Equilibrium. Its de-
velopment started in 2017 with the original goal of developing an equilibirum
reconstruction code able to use polarimetry Stokes vector measurements. This
demanded the computation of derivatives of certain quantities which did not
easily fit in the equilibrium reconstruction code EQUINOX [4] developed by the
author and others. Moreover it soon appeared appealing to unify in a single
performant C++ code the different functionalities from 3 older codes, VacTH
[9], EQUINOX [4] and CEDRES++ [19] which share many common features.
These goals are now achieved and on the way, improvements to the original
methods and new functionalities were added.

Several problems of equilibrium computation can be addressed by NICE and
are detailed in this document:

• plasma boundary only reconstruction from magnetic measurements (Sec-
tion 3). The reference paper for this mode is [9]. In addition to the method
proposed in this reference the use of an original regularization term which
proved to be efficient is proposed in this document.

• full equilibrium reconstruction from magnetic measurements and possibly
internal measurements (Section 4). NICE uses Sequential Quadratic Pro-
gramming (SQP) algorithms to solve partial differential equation (PDE)
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constrained optimization problems and in particular the inverse problem
of equilibrium reconstruction. The default algorithm used in NICE is a
quasi SQP with reduced Hessian algorithm (which we denote QSQP in this
document). Its implementation demands the computation of derivatives
of quantities with respect to the state and control variables and enables
to use polarimetry Stokes vector measurements [10, 12]. The code also in-
corporates the original optimization algorithm from EQUINOX [4] which
appears to be an approximation of the default QSQP algorithm used in
NICE. A sensitivity method for error bar computations on every recon-
structed equilibrium quantities is also implemented and detailed in Section
4.3.2.

• direct and inverse, static and quasi-static free-boundary equilibrium com-
putations (Section 5). The reference papers for these implemented modes
are [19] and [5]. The term direct refers to the resolution of the equilibrium
equation whereas the term inverse refers to the inverse problem consisting
in finding the currents in the poloidal field (PF) coils which give a de-
sired plasma shape in the static case or the voltages in the suppliers which
give a desired evolution of the plasma shape in the quasi-static case. The
difference between static and quasi-static is explained in Section 2.1

The strengh of NICE is to gather in a single unified framework different
functionalities or equilibrium computation modes. It makes intensive use of
Newton method and SQP method to solve non linear problems.

NICE is used routinely for the WEST tokamak operation [27]. NICE is
adapted to the IMAS (ITER Modelling and Analysis Suite [21, 31]) format
which makes it usable on many different tokamaks [8]. Many of the numerical
examples provided in this document are obtained using data in the IMAS format.

The document is organized as follows. Section 2 provides a brief descrip-
tion of the equilibrium equations used (Section 2.1), of their finite element dis-
cretization (Section 2.2) and of the iterative Newton and QSQP algorithm used
(Section 2.3). This section enables to set matrix notations which are very close
to what is used in the code itself. Section 3 describes the plasma boundary
only reconstruction mode of NICE. This first mode does not rely on finite el-
ement discretization but uses a decomposition of the poloidal flux in toroidal
harmonics. All other computation modes of NICE use finite elements. Section
4 presents the equilibirum reconstruction mode and Section 5 the direct and
inverse equilibrium computation modes. For each mode numerical examples are
provided.

2 Tokamak free-boundary plasma equilibrium

This section presents the general equations which are dealt with in NICE. The
finite element discretization is also presented which enables us to set the nota-
tions for different matrix and vector operators which are used in the different
modes of NICE. Then we present in a generic framework the QSQP algorithm
which will then be applied to the inverse problems of the next sections.

4



2.1 Modelization

The equations which govern the equilibrium of a plasma in the pres-
ence of a magnetic field in a tokamak are on the one hand Maxwell’s equations
satisfied in the whole of space (including the plasma):

∇ ·B = 0, ∇× (
B

µ
) = j, (1)

and on the other hand the equilibrium equation for the plasma itself

∇p = j×B, (2)

where B is the magnetic field, µ is the magnetic permeability, p is the kinetic
pressure and j is the current density.

These equations are sufficient for the static modelization of the plasma equi-
librium. In case of quasi-static plasma evolution modelization they are aug-
mented with Faraday’s law and Ohm’s law in PF coils and passive structures.
We refer to standard text books (e.g. [14, 3, 36, 15, 22]) and to [4, 19] for details
of the derivation and only state the needed equations in what follows.

Introducing a cylindrical coordinate system (er, eφ, ez) (r = 0 is the major
axis of the tokamak torus) and assuming axial symmetry equations (1) and (2)
reduce to the following equation for the poloidal flux ψ(r, z) in the poloidal
plane Ω∞ = (0,∞)× (−∞,∞):

−∆∗ψ = jφ, (3)

where jφ is the toroidal component of j, and the second order elliptic differential
operator ∆∗ is defined by

∆∗ψ := ∂r

(
1

µ(ψ)r
∂rψ

)
+ ∂z

(
1

µ(ψ)r
∂zψ

)
:= ∇ ·

(
1

µ(ψ)r
∇ψ
)
. (4)

Here ∇ is the 2D operator in the (r, z)-plane and µ(ψ) is the magnetic perme-
ability. It is equal to the constant permeability of vacuum µ0 everywhere except
in the possibly existing iron parts of the tokamak (see Fig. 1) where it is a given
function of ψ, µ(ψ) = µf (|∇ψ|2r−2).

The magnetic field can be decomposed in poloidal and toroidal components

B = Bp + Bφ, Bp =
1

r
[∇ψ × eφ], Bφ = Bφeφ =

f

r
eφ, (5)

where f is the diamagnetic function. Equation (5) shows that the magnetic
surfaces are generated by the rotation of the iso-flux lines around the axis of
the torus.

The toroidal component of the current density jφ is zero everywhere
outside the plasma domain and the poloidal field coils (and possibly the passive
structures). The different sub-domains of the poloidal plane of a schematic toka-
mak (see Figure 1) as well as the corresponding expression for jφ are described
below:

-Ωf is the domain of ferromagnetic iron structures where the permeability µ
is not constant.
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Figure 1: Schematic representation of the poloidal plane of a tokamak. Ferro-
magnetic iron structures (Ωf) are represented in gray, PF coils (Ωci) in orange
and a passive structure (Ωps) in blue. The limiter contour (ΓL) inside which
the plasma (Ωp) lies is also shown. Cross-circles represent magnetic probes and
a fictitious measurement contour Γ is drawn with a green dashed line.

-ΩL is the domain accessible to the plasma. Its boundary is the limiter ΓL.
-Ωp is the plasma domain where equations (2) and (1) imply that p and

f are constant on each magnetic surface i.e. p = p(ψ) and f = f(ψ). One
then deduces the so-called Grad-Shafranov equilibrium equation in the plasma
[16, 35, 25]

−∆∗ψ = rp′(ψ) +
1

µ0r
(ff ′)(ψ). (6)

The right-hand side of (6) is the toroidal component jφ of the plasma current
density.

The plasma domain depends on ψ and is unknown, Ωp = Ωp(ψ). We have
to deal with a free-boundary problem. This domain is defined by its boundary
which is the outermost closed ψ iso-contour contained within the limiter region
ΩL. The plasma can either be limited if this iso-contour is tangent to the limiter
ΓL or defined by the presence of an X-point (as in Figure 1). In the latter case
the plasma domain is bounded by the magnetic separatrix. Functions p′ and
ff ′ are zero outside Ωp.

The current density is non-linear in ψ due to the non-linear functions p′

and ff ′ and the definition of the plasma domain Ωp(ψ). While Ωp(ψ) is fully
determined for a given ψ, the two functions p′ and ff ′ are not determined in this
modelization. It is the goal of the inverse equilibrium reconstruction problem to
determine them. For now let us consider that we are given two functions A(x)
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and B(x) defined on [0, 1] such that in the plasma domain Ωp(ψ)

jφ = λ(
r

r0
A(ψN) +

r0

r
B(ψN)). (7)

Here r0 is the major radius of the tokamak vacuum chamber and λ is a scaling
coefficient. The normalized poloidal flux ψN(r, z) is

ψN(r, z) =
ψ(r, z)− ψa(ψ)

ψb(ψ)− ψa(ψ)
. (8)

with ψa and ψb being the flux values at the magnetic axis and at the boundary
of the plasma:

ψa(ψ) := ψ(ra(ψ), za(ψ)),

ψb(ψ) := ψ(rb(ψ), zb(ψ)),
(9)

with (ra(ψ), za(ψ)) the magnetic axis, where ψ has its global maximum in
ΩL and (rb(ψ), zb(ψ)) the coordinates of the point that determines the plasma
boundary. The point (rb, zb) is either an X-point of ψ or the contact point with
the limiter ΓL.

-Domains Ωci represent the poloidal field coils carrying currents

jφ =
Ii
Si
, (10)

where Si is the section area of the coil and Ii is the current flowing in the coil.
In the static modelization Ii is a constant whereas in the quasi-static case it
relates to voltages vj(t) in the suppliers and to self and mutual induction

Ii(t) =

Ns∑
j=1

Sijvj(t) +

Nc∑
j=1

Rij
1

Sj

∫
Ωcj

∂ψ

∂t
drdz, 1 ≤ i ≤ Nc (11)

via electric circuit equations (see [19] Appendix A and [5] Appendix B). Here Ns
is the number of suppliers, Nc is the number of coils, matrix S has dimension
Nc×Ns and matrix R has dimension Nc×Nc. In the simplest case where each
circuit is composed of one coil and one voltage supplier, S and R are diagonal

with Sii =
ni
Ri

and Rii = −2πn2
i

Ri
, ni being the number of turns and Ri the

resistance.
-Domain Ωps represents passive structures. The expression for jφ in these

domains depends on the modelization considered. For static equilibrium jφ = 0
is usually considered whereas for quasi-static evolution of the equilibrium

jφ = −σ
r

∂ψ

∂t
(12)

where σ is the conductivity of the passive structure.

Equilibrium equation (3) can either be considered in the whole poloidal
plane Ω∞ with ψ = 0 as boundary condition at infinity and on the r = 0
axis, or on a restricted bounded domain (whose boundary can be viewed as a
measurement contour Γ and is illustrated by the green dashed line on Figure
1). Both type of problems are addressed in NICE, the first one for the direct
and inverse static and quasi-static modes and the second one for the equilibrium
reconstruction mode.
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Figure 2: Example mesh for WEST tokamak in the bounded domain case. In
red is the region inside the limiter.

2.2 FEM discretized operators and derivatives

For the equilibrium reconstruction mode as well as the direct and inverse modes
of NICE equation (3) is discretized using a P1 finite element method based
on a triangular mesh [6, 3, 19]. In this Section we provide some details on the
discretized operators common to different modes of NICE as well as on the com-
putation of their derivatives which are used in the Newton and SQP algorithms
implemented for the resolution of non-linear direct and inverse problems. More
operators specific to a given mode are presented later in the document.

There are two possible choices for the spatial domain to be triangulated. It
can either be a restricted domain enclosed in the measurement contour Γ or
a sufficiently large semi-circle centered at the origin and containing the whole
geometry of the tokamak. The first case is called the bounded domain case (see
Figure 2) and the second the ABB domain case (see Figures 3 and 4). ABB
stands for Albanase, Blum, de Barbieri [2] who first introduced the boundary
integral method on the semi-circle used to take into account conditions at infin-
ity. We refer to [19] for its precise expression and to [17, Chapter 2.4] for details
on its derivation. Alternative approaches for the incorporation of boundary
conditions at infinity were more recently presented in [11].

Let us denote by λi(r, z) the N Lagrangian basis functions associated to
the inner vertices of the mesh and by λd,i the Nb ones associated to boundary
vertices where Dirichlet conditions are applied (r = 0 in the ABB case or Γ in
the bounded domain case).

Approximating the poloidal flux by ψh =

N∑
i=1

ψiλi(r, z) +

Nb∑
i=1

ψd,iλd,i(r, z)

and testing equation (3) against every inner basis function leads to the definition
of the following matrices and vectors:
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Figure 3: The ABB domain for WEST tokamak.

Figure 4: Zoom on an example mesh in the ABB domain case for WEST toka-
mak. Different parts of the machine appear in different colors (iron structure,
PF coils, vacuum vessel, limiter).
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state variable: ψ denotes the vector of N finite elements coefficients ψi

elliptic operator: split into a linear and a non linear part (if iron is present),
Aψ +Aµ(ψ). Matrix A is of size N ×N and coefficients

Aij =

∫
Ω−Ωf

1

µ0r
∇λi∇λjdrdz

and vector Aµ(ψ) of dimension N with coefficients

Aµ,i(ψ) =

∫
Ωf

1

µ(ψh)r
∇λi∇ψhdrdz

The integrals are computed as sums of integrals over the triangles T of the
mesh on each of which the barycentric quadrature rule is used for the integral
approximation. The Jacobian Aµ,ψ(ψ) is computed as

[Aµ,ψ]ij =

∫
Ωf

∇λi∇λj
µ(ψh)r

−
2µ′f (|∇ψh|2r−2)

µ2
f (|∇ψh|2r−2)r3

(∇λi∇ψh)(∇λj∇ψh)drdz

boundary conditions: Dirichlet boundary conditions, a vector ψd of size Nb
number of vertices on the boundary, are applied using matrix Ad of size N ×Nb
with coefficients

Ad,ij =

∫
Ω

1

µ0r
∇λi∇λd,jdrdz

This matrix is only used in the bounded domain case since for the ABB domain
case, ψd = 0.

In the ABB domain case the boundary integral method on the semi-circle
leads to the definition of a matrix C of size N ×N (see [19]).

plasma current density: J(ψ, λ,uA,uB) vector of size N and coefficient

J(ψ, λ,uA,uB)i =

∫
Ωp(ψh)

λ(
r

r0
A(ψN) +

r0

r
B(ψN))λidrdz

Functions A and B are decomposed in a basis of functions φi defined on [0, 1].
In NICE piecewise linear and cubic splines functions are implemented.

A(x) =

NA∑
i=1

uAiφi(x), B(x) =

NB∑
i=1

uBiφi(x),

and uA, uB denote the vectors of degrees of freedom of A and B in the chosen
decomposition basis. In the direct and inverse modes of NICE functions A and
B can also have a parametric representation of the type

A(x) = β(1− xα)γ , B(x) = (1− β)(1− xα)γ

The mesh does not resolve the boundary of plasma domain Ωp(ψh) and a
quadrature rule needs to be specified for integrals over intersections of mesh
triangles with the plasma domain T ∩ Ωp(ψh). Barycenter quadrature is used
but the quadrature point and weight depend non linearly on ψh. This needs
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to be taken into account in the computation of the Jacobian Jψ(ψ, λ,uA,uB).
This differentiation is not straightforward and technical details are given in [19].
The computation of Jacobians JuA(ψ, λ,uA,uB) and JuB(ψ, λ,uA,uB) which
are needed for equilibrium reconstruction on the other hand does not rise any
particular difficulty.

Finally we will use the notation

Jp(ψ,uA,uB) =

∫
Ωp(ψh)

(
r

r0
A(ψN) +

r0

r
B(ψN))drdz (13)

such that the total plasma current is computed as

Ip = λJp(ψ,uA,uB)

PF coils: matrix L of size N×Nc and vector uI of size Nc holding the currents
Ii of the Nc coils contained in the domain under consideration (all coils in the
ABB domain case but not in the bounded domain case), with coefficients

Lij =
1

Sj

∫
Ωcj

λidrdz

such that the PF coils term in the static case is LuI and in the quasi-static

evolution case is LSv +LRLT
dψ

dt
with v the vector of the Ns voltages

passive structures: matrix Jps of size N × N , associated to the inductive
terms in the passive structures with coefficients

[Jps]ij = −
Nps∑
k=1

∫
Ωpsk

σk
r
λiλjdrdz

where Nps is the number of passive structure and σk their conductivity.

2.3 Newton and PDE-constrained optimization algorithms

With the matrix and vector operators defined in the previous section different
direct and inverse problems can be formulated in NICE and are detailed in the
remaining sections of this document. Here we present the main algorithms using
a generic formulation. We will define different model equations e, state y and
control u variables as well as cost functions J(y,u). They will differ from one
mode to the other in the code but the resolution algorithms are the same.

The direct problem formulation is:

find y such that e(y,u) = 0,

where u is here a constant parameter.
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The inverse problem formulation is:

min
y,u

J(y,u) under the constraint e(y,u) = 0,

Throughout this document several explicit formulations are given for e and
J . As a starter and to make it more concrete let us consider the static equi-
librium problem in the ABB domain detailed in Section 5. The sate variable is
y := ψ, the control variable is u := uI the currents in the coils and p′ and ff ′

are given (thus uA, uB and λ are fixed parameters). The direct model in ABB
domain is

e(y,u) := (A+C)ψ + Aµ(ψ)− J(ψ, λ,uA,uB)−LuI = 0

and the cost function is

J(y,u) =
1

2
||Ky||2 +

1

2
||Ru||2

with a quadratic misfit term, imposing a levelset of the poloidal flux to go
through a set of desired points, and a regularization term (see Section 5).

In NICE direct problems are solved thanks to Newton’s method. If we denote
the Newton increment by ∆y = −e−1

y (yn,u)e(yn,u) this iterative algorithm
reads:

yn+1 = yn + ∆y

Inverse problems are solved thanks to a quasi-SQP method with reduced
Hessian (QSQP). SQP methods are well documented [29, 20] and a clear sum-
mary is found in [5, Appendix A]. An SQP method can be seen as a Newton
method to solve the non-linear system given by the fisrt order optimality con-
dition for the Lagrangian of the PDE-constrained optimization problem

L(y,u,p) = J(y,u) + (p, e(y,u)) (14)

where vector p of size N is the adjoint variable or Lagrange multiplier for
the constraint of the model. This first method also known as Newton-Lagrange
method is implemented in NICE and was used in [10] for equilibrium reconstruc-
tion. It was also already used in [19] for the static inverse problem (presented
below in Section 5). The drawback of this method is that it demands the res-
olution of linear systems of size (2N + Nu), where N is the dimension of the
state and adjoint variables and Nu the dimension of the control. When N is
large this can become time consumming and an excellent alternative is the SQP
formulation with reduced Hessian which is intensively used in NICE and was
already used in [5] for the quasi-static inverse problem (see Section 5.2). It is
the following two-step iterative algorithm.

quasi SQP with reduced Hessian algorithm (QSQP):

1. control variable update step

M(un+1 − un) = −m (15)

2. state variable update step

yn+1 = yn + ∆y + S(un+1 − un) (16)
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where
∆y = −e−1

y (yn,un)e(yn,un), (17)

S = −e−1
y (yn,un)eu(yn,un), (18)

M = Juu(yn,un) + STJyu(yn,un) + Juy(yn,un)S + STJyy(yn,un)S (19)

and

m = JTu (yn,un) + STJTy (yn,un) + Juy(yn,un)∆y + STJyy(yn,un)∆y (20)

At each iteration this algorithm demands the resolution of Nu + 1 linear
systems (17)-(18) of size N involving the same matrix ey(yn,un) with different
righ-hand sides which can be done very efficiently and of one smaller linear
system of size Nu in (15).

One can notice that second order derivatives appear only for the cost func-
tion and not for the model equation in (19) and (20). This is due to the fact
that we want to avoid the expensive computation of second order derivatives
of J(ψ, λ,uA,uB) and thus NICE uses a quasi SQP algorithm. Neglecting the
second order derivatives of the model equation also allows to avoid having to
compute the adjoint variable.

It should also be noted that if one neglects the first order derivative Jψ
term in the computation of model derivative ey this algorithm applied to the
equilibrium reconstruction problem of Section 4 is exactly the original algorithm
from the code EQUINOX. In the original EQUINOX paper [4] it is described
as a fixed-point method to solve the model equation in ψ for which the control
variable u is updated at each iteration. It appears clearly that this method is
another (more approximated) quasi SQP with reduced Hessian method.

2.4 Cost functions notation

Throughout this document cost functions of the following type appear

J(ψ,u) =
1

2
||M(ψ,u)−m||2 +

1

2
||Ru||2 (21)

The first term is the data misfit term and the second the regularization term.
Each measurement data mi is a given quantity which goes together with a

given absolute measurement error, abserr, and an relative measurement error,
relerr, and we form the quantity σi = max(abserr, relerr|mi|). All vectorial
quantities related to measurements which appear in cost functions are normal-
ized quantities. The vector m of measurements has components mi = mi/σi
and the observation operator M(ψ,u) computes from the model the equiva-
lent of these normalized measured quantities. In NICE absolute and relative
errors can either be provided together with the used data set (for example these
quantities should be provided in IMAS) or set by the user through input code
parameters.

Regularization terms are needed due to the ill-posedness of the inverse prob-
lems under consideration and they guarantee smoothness of the identified quan-
tities. Regularization and penalization parameters are included in R matrices
and are provided by the user through input code parameters.
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3 NICE magnetic measurements interpolation
and plasma boundary reconstruction mode

The goal of this section is to present the magnetic measurements interpolation
and plasma boundary reconstruction mode of NICE.

3.1 Method

Toroidal harmonics are used to represent the poloidal flux in an annular domain
surrounding the plasma. In such a domain ψ satisfies

−∆∗ψ = 0

and can be expanded in a series of toroidal harmonics (see [9] and references
therein).

This method allows a fast fit to magnetic measurements and the poloidal
field function can then be used to compute the plasma boundary. It allows
also to compute precisely the poloidal flux and its gradient on any contour
surrounding the plasma and thus on Γ the measurements contour in NICE
bounded domain case (green dashed line in Figure 1). These Cauchy conditions
on Γ, (g = ψ, h = ∂nψ), can then be used in a second step to reconstruct the
full non-linear free-boundary Grad-Shafranov equilibrium problem inside the
domain Ω limited by Γ. This is presented in the following Section 4.

Below we propose to use a simple additional regularization term which was
not originally present in [9]. This regularization operates directly on the toroidal
harmonics expansion in order to obtain a smooth representation of flux even
faraway from the measurements contour Γ inside the domain Ω.

The toroidal coordinates system [32, 24] or bipolar coordinates system (if
we ignore the angular toroidal variable) (ζ, η) ∈ IR+

∗ × [0, 2π] about the pole
F0 = (r0, z0) is related to the cylindrical coordinates system (r, z) by

r =
r0 sinh ζ

cosh ζ − cos η
and z − z0 =

r0 sin η

cosh ζ − cos η

We assume that F0 lies inside the plasma domain where the homogeneous equa-
tion, −∆∗ψ = 0, is not satisfied.

Following [9] the poloidal flux in the vacuum surrounding the plasma is
written as ψ = ψC +ψth. The term ψC is the given contribution of the poloidal

field coils Ck with current density jCk =
Ik
Sk

evaluated thanks to the free space

Green function:

ψC(x) =
∑
k

∫
Ck

jCkG(y, x)dy

The toroidal harmonics expansion is represented by ψth, sum of two terms ψex
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and ψin, corresponding respectively to external and internal harmonics:

ψth = ψex + ψin,

ψex =
r0 sinh ζ√

cosh ζ − cos η
×

[

nea∑
n=0

aenQ
1
n−1/2(cosh ζ) cos(nη) +

neb∑
n=1

benQ
1
n−1/2(cosh ζ) sin(nη)],

ψin =
r0 sinh ζ√

cosh ζ − cos η
×

[

nia∑
n=0

ainP
1
n−1/2(cosh ζ) cos(nη) +

nib∑
n=1

binP
1
n−1/2(cosh ζ) sin(nη)],

(22)
where P 1

n−1/2 and Q1
n−1/2 are the associated Legendre functions of first and

second kind, of degree one and half integer order [1], also called toroidal har-
monics when evaluated at point cosh ζ. Functions P 1

n−1/2 have a singularity

when ζ →∞ that is to say at point F0. On the contrary functions Q1
n−1/2 are

singular when ζ → 0 that is to say on the axis r = 0.
We denote by u the vector of the unknown expansion coefficients

u = (ae0, . . . , a
e
nea
, be1, . . . , b

e
neb
, ai0, . . . , a

i
nia
, bi1, . . . , b

i
nib

).

The optimal set of coefficients uopt can be computed from the minimization
of the least-square cost function

J0(u) =
1

2
||M(u)−m||2 (23)

where m is the vector of (normalized) flux loops and Bprobes measurements
corrected from their known ψC contribution, and M(u) the equivalent quantities
computed from the toroidal harmonics expansion of Eq. (22).

J0 is quadratic in u and is minimized simply by solving the associated normal
equation to find the optimal set of coefficients uopt.

Assuming enough toroidal harmonics are used the resulting representation
of the poloidal field is always precise on Γ the measurements contour but might
become highly disturbed when moving towards the pole F0 which is a singu-
lar point for the internal harmonics. Hence let us introduce the regularized
functional

J(u) = J0(u) +R(u) (24)

where the regularization term R involves the second order tangential deriva-
tive of ψ along a particular circle C surrounding the pole F0,

R(u) =
ε

2

∫
C

|d
2ψth(u)

ds2
|2ds

and is quadratic in u.
The following remark leads to an obvious choice for the circle C. In toroidal

coordinates the curves of constant ζ are non-intersecting circles of different radii

(r − r0 coth ζ)2 + (z − z0)2 =
r2
0

sinh2 ζ
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that surround the pole but are not concentric. The ζ = 0 curve corresponds to
the z-axis (r = 0). As the magnitude of ζ increases, the radius of the circles de-
creases and their centers approach the pole F0. We choose the circle C to be the
circle of a constant ζ0 value. This choice considerably simplifies the computation
of the second order tangential derivative since it is only required to compute
derivatives with respect to η to obtain the expression of the regularization term.

The curvilinear abscissa along the constant-ζ0 circle is given by

s(η) =

∫ η

−π

r0

cosh ζ0 − cos t
dt

The second order tangential derivative along the circle of ψ seen as a function
of s is

d2ψth
ds2

=
∂2ψth
∂η2

(η, ζ0)(
dη

ds
)2 +

∂ψth
∂η

(η, ζ0)
d2η

ds2

with
dη

ds
=

cosh ζ0 − cos η

r0
and

d2η

ds2
=

(cosh ζ0 − cos η) sin η

r2
0

and we obtain the expression of the regularization term∫
Cζ0

|d
2ψth
ds2

|2ds =

∫ π

−π
[
∂2ψth
∂η2

(η, ζ0)(
cosh ζ0 − cos η

r0
)2

+
∂ψth
∂η

(η, ζ0)
(cosh ζ0 − cos η) sin η

r2
0

]2[
r0

cosh ζ0 − cos η
]dη

(25)
The ψth derivatives with respect to η can be easily explicitely computed from
Eq. (22) and the integral computed using a standard quadrature method.

Let us conclude this section with the complete algorithm implemented in
NICE.

Algorithm

1. Initialization: prepare filaments description of PF coils, provide code pa-
rameters for number of toroidal harmonics, regularization parameters, test
parameter d (see point 4 below), points defining contour Γ, number Np of
required plasma boundary points

2. Choose the pole of the coordinates system F0. Default initial guess is
F0 = (r0, 0).
Assemble and minimize cost function (24) to find uopt.

3. Compute the current center Fc = (rc, zc) defined as moments of the
plasma current density [37, 7] which can be precisely computed as in-
tegrals on the limiter contour ΓL at every point of which the flux and
the poloidal magnetic field can be evaluated thanks to the representation
ψ = ψth(uopt) + ψC

Ip =

∫
ΓL

1

µ0
Bsds (26)

zcIp =

∫
ΓL

1

µ0
(−r log rBn + zBs)ds (27)

r2
cIp =

∫
ΓL

1

µ0
(2rzBn + r2Bs)ds (28)
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4. If ||Fc−F0|| > d set F0 := Fc, re-assemble and minimize cost function (24)
again, since M(u) in (23) depends on the pole of the coordinate system,
to find a new uopt.

5. Output Cauchy conditions (ψ, ∂nψ) on measurement contour Γ and/or
compute plasma boundary with the following algorithm:

• find Pb the point defining the plasma boundary ψb value. Either a
limiter point or an X-point found thanks to a quasi Newton method
for ∇ψ = 0

• starting from the [Fc, Pb) ray define Np − 1 rays [Fc, Pk) with a ro-
tation of ∆θ = 2π/(Np − 1) between each of them. Use Newton
method along each ray to find the plasma boundary point where
ψ(r, z)− ψb = 0

3.2 Numerical examples

This mode of NICE also known as VacTH is routinely used at WEST for plasma
shape identification and control during a shot [27]. Here is provided a typical
example of plasma boundary reconstruction at WEST. The poloidal flux is
computed using 24 toroidal harmonics for ψth (15 external harmonics with nea =
neb = 7 and 9 internal harmonics with nia = nib = 4) and 24 filaments of currents
modelizing the given current density in the PF coils for ψC . Figure 5 shows the
fit to Bprobes measurements with a resulting root mean square error of 2mT.

The ζ value defining the regularization circle is chosen such that the radius
of this circle is a(rlimiterMax − rlimiterMin) where a = 0.1 is a code parameter.
Another code parameter provides the value of regularization parameter which is
here set to ε = 0.001. A 60 points plasma boundary is computed by the method
described above and is shown on Figure 6.

The algorithm is not machine dependant and was successfully applied to
other tokamaks such as JET (Figure 7), TCV (Figure 8), AUG, ISTTOK [33].

4 NICE equilibrium reconstruction mode

The goal of this section is to introduce the algorithm implemented in NICE
for equilibrium reconstruction. Basic measurements used for equilibrium recon-
struction are magnetic measurements but NICE can also use interferometry,
polarimetry, motional Stark effect (MSE) and pressure measurements. These
are introduced in Section 4.2 and we start by using magnetics only for simplicity.

4.1 Problem formulation on a bounded domain with mag-
netic measurements

Here magnetic measurements are in fact Cauchy data (ψ, ∂ψ∂n ) provided on the
measurement contour Γ. These data are usually computed from a first call
to NICE magnetics interpolation mode described in Section 3 but can also be
provided by another code specific to a Tokamak which computes the poloidal
flux outside the plasma such as XLOC at JET [30, 34].

Using the matrix notations of Sections 2.2, 2.3 and 2.4 Dirichlet data provide
the ψd vector used in the resolution of the boundary value problem whereas
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Figure 5: Measured and computed Bprobes values for a WEST plasma boundary
reconstruction.

Figure 6: Poloidal flux ψ = ψth(uopt)+ψC computed by a fit of toroidal harmon-
ics to magnetic measurements for WEST tokamak. The measurement contour
Γ is shown in black, Bprobes are black circles and flux loops black squares.
The limiter contour is the dashed black line. The plasma boundary with a low
Xpoint is the thick red contour whereas the regularization circle is the thin red
line surrounding the pole of the coordinate system.
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Figure 7: Poloidal flux ψ = ψth(uopt)+ψC computed by a fit of toroidal harmon-
ics to magnetic measurements for JET tokamak. The measurement contour Γ is
shown in black, Bprobes are black circles and flux loops black squares. The lim-
iter contour is the dashed black line. The plasma boundary with a low Xpoint
is the thick red contour whereas the regularization circle is the thin red line
surrounding the pole of the coordinate system.

Figure 8: Poloidal flux ψ = ψth(uopt)+ψC computed by a fit of toroidal harmon-
ics to magnetic measurements for TCV tokamak. The measurement contour Γ
is shown in black, Bprobes are black circles and flux loops black squares. The
limiter contour is the dashed black line. The plasma boundary with an upper
Xpoint is the thick red contour whereas the regularization circle is the thin red
line surrounding the pole of the coordinate system.
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Neumann data are considered as measurements and used in a cost function to
be minimized to reconstruct the equilibrium. NICE uses Nb values of ∂ψ

∂n given
at the middle point of each segment of the mesh forming the Γ contour.

We denote by m the vector of these (normalized) measurements and the
equivalent quantities, Hψ +Hdψd computed from the FEM representation of
the poloidal flux thanks to the Nm×N matrix H and the Nm×Nb matrix Hd.

The cost function, which depends on y := ψ and u := (uA,uB) the degrees
of freedom of functions A and B, we consider is the following

J(y,u) :=
1

2
||Hψ +Hdψd −m||2 +

1

2
||RAuA||2 +

1

2
||RBuB||2 (29)

The first term on the right hand-side is the misfit term and the two others are
regularization terms. They are the discrete expressions for

εA
2

∫ 1

0

(A′′(x))2dx+
αA
2
|A(1)|2

and
εB
2

∫ 1

0

(B′′(x))2dx+
αB
2
|B(1)|2

Parameters ε enable to tune the smoothness of the identified functions whereas
parameters α tune the penalization to zero of their value on the plasma bound-
ary.

The free-boundary equilibrium model equation is

e(y,u) := Aψ +Adψd − J(ψ, λ,uA,uB)−LuI = 0 (30)

and the equilibrium reconstruction problem is formulated as the folowing PDE-
constrained optimization problem:

min
y,u

J(y,u) such that e(y,u) = 0 (31)

This problem is solved thanks to the QSQP algorithm given in Section 2.3.
A first initialization step is used to set λ in the current density term given the
total plasma current Ip which is either given with magnetic measurements or
comes out from the toroidal harmonics procedure. Given initial guess ψ0, u0

A
and u0

B, λ is chosen to satisfy

Ip − λJp(ψ0,u0
A,u

0
B) = 0 (32)

Using the notation of Section 2.3, the ingredients needed for the QSQP
algorithm in equations (15), (16), (17), (18), (19) and (20) are

∆y = −(A− Jψ(ψn, λ,unA,u
n
B))−1(Aψn +Adψd − J(ψn, λ,unA,u

n
B)−LuI).

(33)
S = −(A− Jψ(ψn, λ,unA,u

n
B))−1(Ju(ψn, λ,unA,u

n
B)). (34)

JTy = HT (Hψ +Hdψd −m), JTu =

[
RT
ARAuA
RT
BRBuB

]
(35)

Jyy = HTH, Juu =

[
RT
ARA 0

0 RT
BRB

]
, Jyu = 0, Juy = 0 (36)
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4.2 Internal measurements

In addition to magnetics NICE can use internal measurements for equilibrium
reconstruction.

4.2.1 Interferometry and polarimetry

Classical polarimetry Polarimetry measurements in first approxiamtion give
the Faraday rotation of the angle of an infrared radiation crossing the section
of the plasma along different lines of sight, Li:

αiobs ≈
∫
Li
cNeBp.tdl

where c is a constant, Ne is the electronic density in the plasma and t is the
unit vector tangent to the line of sight. In order to be able to use polarimetric
measurements the electronic density Ne has to be known. It is therefore also
being identified thanks to interferometric measurements which give the density
line integrals over each of the NL line of sights

N i
e,obs ≈

∫
Li
Nedl

In NICE the electronic density, assumed constant on magnetic surfaces, is
represented as

Ne(ψN) = λNeC(ψN,uC)

where λNe is a scaling parameter and function C is either decomposed in a basis
of piecewise linear or cubic spline functions

C(x,uC) =

NC∑
i=1

uC,iφi(x)

or given as a parametric function [18]

C(x,uC) = (M −m)(1− αhz)E(z) +m

where E(z) =
e−z

e−z + ez
, z =

x− x0

h
and the vector of degrees of freedom is

uC = (x0, h, α,m,M).
The interferometry observation operator W(ψ,uC) is a vector of size NL

computed from the FEM discretiezation as

W(ψ,uC)i =

∫
Li
λNeC(ψN(ψh),uC)dl

and for polarimetry we define Z(ψ,uC) in a similar way by

Z(ψ,uC)i =

∫
Li
cλNeC(ψN(ψh),uC)Bp(ψh).tdl

Here again we have omitted normalization by the assumed observation error.
Integrals along the lines of sight are approximated using the trapezoidal quadra-
ture rule.
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The vector of state variable is still y := ψ whereas the one of all control
variables is now u = (uA,uB,uC) and we can now define the cost function

J(y,u) =
1

2
||Hψ +Hdψd −m||2

+
1

2
||W(ψ,uC)−mNe||2 +

1

2
||Z(ψ,uC)−mFar||2

+
1

2
||RAuA||2 +

1

2
||RBuB||2 +

1

2
||RCuC ||2

(37)

which has to be minimized under the constraint of the equilibrium model (30).
In order to use the SQP algorithm we need to compute derivatives Wψ(ψ,uC)

WuC (ψ,uC) Zψ(ψ,uC) and ZuC (ψ,uC). In NICE we compute the exact deriva-
tives of the discrete operators This is done on the fly in the same loop as the
one used for the assembly of vectors W(ψ,uC) and Z(ψ,uC).

The computation of ∆y and S in (33) and (34) are unchanged. Concerning
the gradients of the cost function we have

JTy (y,u) = HT (Hψ +Hdψd −m) + Wψ(ψ,uC)
T (W(ψ,uC)−mNe)

+ Zψ(ψ,uC)
T (Z(ψ,uC)−mFar)

(38)

JTu =

 RT
ARAuA
RT
BRBuB

RT
CRCuC + WT

uC
(W −mNe) + ZTuC

(Z−mFar)

 (39)

Concerning the second order derivative terms we avoid a complete computa-
tion by only considering terms involving products of first order derivatives and
form the following quantities

Jyy = HTH + WT
ψWψ + ZTψZψ (40)

Juu =

RT
ARA 0 0

0 RT
BRB 0

0 0 RT
CRC + WT

uC
WuC + ZTuC

ZuC

 (41)

Jyu =
[
0 0 WT

ψWuC + ZTψZuC

]
, Juy =

 0
0

WT
uC

Wψ + ZTuC
Zψ

 (42)

Stokes model for polarimetry The project of performing equilibrium re-
construction using interferometry and Stokes model for polarimetry is at the
origin of the development of NICE. It was first presented in [10] where a Newton-
Lagrange SQP algorithm is used in the ABB domain case for ITER. In this sec-
tion we briefly restate the discretization method implemented for Stokes model
and describe the more recent QSQP method used for the inverse equilibrium
reconstruction problem. The method presented here was used in [13] with real
measurements at JET.

Stokes model consists in a system of differential equations for the the Stokes
vector s of dimension 3 to be solved along each line of sight. The system is linear
in s but coeficients depend on the electronic density and on the magnetic field.
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Each of the NL line of sight Li is discretized in N i points and a Crank-Nicolson
scheme is implemented for the integration of the Stokes model. This can be
written

M i(ψ,uB,uC)S
i − Si0 = 0

where M i is a 3N i × 3N i band diagonal matrix, Si = (si,1, . . . , si,N
i

) is the
vector of all Stokes vector states along the line of sight and Si0 = (si0, 0, . . . , 0)
represents the initial conditions.

The measured quantity can be assumed to be the Stokes vector at the end
of the line of sight after integration through the plasma and the observation
operator is given a matrix Ei of size 3× 3N i such that EiSi = si,N

i

.
Defining the block diagonal matrices

M = diag(M1, . . . ,MNL)

and
E = diag(E1, . . . ,ENL),

and collecting the Stokes vector states for all line of sights in a vector

S = (S1, . . . ,SNL)

one can define a direct model e(y,u) = 0 for the state variable y = (ψ,S) and
control parameters u = (uA,uB,uC) by

e(y,u) :=

[
Aψ +Adψd − J(ψ, λ; uA,uB)−LuI

M(ψ,uB,uC)S− S0

]
= 0 (43)

as well as the following cost function for equilibrium reconstruction using mag-
netics, interferometry and Stokes model polarimetry,

J(y,u) =
1

2
||Hψ +Hdψd −m||2 +

1

2
||W(ψ,uC)−mNe||2

+
1

2
||ES−ms||2 +

1

2
||RAuA||2 +

1

2
||RBuB||2 +

1

2
||RCuC ||2

(44)

which is minimized under the constraint of the model (equation 43).
The Jacobians needed in Eqn. (17) and (18) of the QSQP algorithm are

ey(y,u) =

[
A− Jψ(ψ, λ; uA,uB) 0
Dψ[M(ψ,uB,uC)S] M(ψ,uB,uC)

]
(45)

and

eu(y,u) =

[
−JuA(ψ, λ; uA,uB) −JuB(ψ, λ; uA,uB) 0

0 DuB [M(ψ,uB,uC)S] DuC [M(ψ,uB,uC)S]

]
(46)

Concerning the gradients of the cost function we have

JTy (y,u) =

[
HT (Hψ +Hdψd −m) + Wψ(ψ,uC)

T (W(ψ,uC)−mNe)

ET (ES−ms)

]
(47)

JTu =

 RT
ARAuA
RT
BRBuB

RT
CRCuC + WT

uC
(W −mNe)

 (48)
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Concerning the second order derivative terms we avoid a complete computa-
tion by only considering terms involving products of first order derivatives and
form the following quantities

Jyy =

[
HTH + WT

ψWψ 0

0 ETE

]
(49)

Juu =

RT
ARA 0 0

0 RT
BRB 0

0 0 RT
CRC + WT

uC
WuC

 (50)

Jyu =

[
0 0 WT

ψWuC

0 0 0

]
, Juy =

 0 0
0 0

WT
uC

Wψ 0

 (51)

Finally let us mention that in [12] dependance on electron temperature is
considered in the Stokes model and the numerical experiments are performed
for the identification of the Te profile together with p′, ff ′ and the Ne profiles.
As for other profiles the Te profile is decomposed in a function basis with control
parameters uD. With the notations of this Section this mainly consists in aug-
menting the control vector to u = (uA,uB,uC ,uD) and adding a dependence of
the Stokes model to Te that is to say using a matrix M(ψ,uB,uC ,uD).

4.2.2 Motional Start effect

Motional Stark effect (MSE) measurements are angular measurements depend-
ing on the magnetic field inside the plasma domain. They are given at NMSE

points pi = (ri, zi) as

mi
MSE = tan γi =

ai0Bz(p
i) + ai1Br(p

i) + ai2Bφ(pi)

ai3Bz(p
i) + ai4Br(p

i) + ai5Bφ(pi)

where the a coefficients are given constants. In NICE the MSE observation
operator M(ψ,uB) is the vector of components

M(ψ,uB)i =
ai0Bz(ψh(pi)) + ai1Br(ψh(pi)) + ai2Sf (ψN(ψh(pi)))/ri

ai3Bz(ψh(pi)) + ai4Br(ψh(pi)) + ai5Sf (ψN(ψh(pi)))/ri

where we have noted Sf (ψN) = f(ψ) which depends on uB since it is obtained
from integration of B as follows

Sf (ψN) = [(B0r0)2 − 2(ψb − ψa)λµ0r0

∫ 1

ψN

B(x)dx]1/2 (52)

B0 is the vacuum toroidal field at r = r0.
During assembling of vector M(ψ,uB) first order derivatives, Mψ(ψ,uB)

and MuB(ψ,uB) are also computed. We can now formulate the cost function
used for equilibrium reconstruction from magnetic and MSE measurement

J(y,u) =
1

2
||Hψ +Hdψd −m||2 +

1

2
||M(ψ,uB)−mMSE ||2

+
1

2
||RAuA||2 +

1

2
||RBuB||2

(53)
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which has to be minimized under the constraint of the equilibrium model (30).
The computation of ∆y and S in (33) and (34) are unchanged. Concerning

the gradients of the cost function we have

JTy (y,u) = HT (Hψ +Hdψd −m) + Mψ(ψ,uB)T (M(ψ,uB)−mMSE)
(54)

JTu =

[
RT
ARAuA

RT
BRBuB + MT

uB
(M−mMSE)

]
(55)

Very similar to what is done using interfero-polarimetry the following ap-
proximated second order derivative quantities are considered to form matrix M
and vector m of the SQP algorithm

Jyy = HTH + MT
ψMψ (56)

Juu =

[
RT
ARA 0

0 RT
BRB + MT

uB
MuB

]
(57)

Jyu =
[
0 MT

ψMuB

]
, Juy =

[
0

MT
uB

Mψ

]
(58)

4.2.3 Pressure

The way pressure measurements can be obtained combining different diagnos-
tics is out of the scope of this paper but when available they can be used for
equilibrium reconstruction in NICE. Pressure measurements can be given as
function of space, that is to say Np values pi given at points pi = (ri, zi). They
can also be given as a function ψN that is to say Np values pi given for Np

values ψiN. In either case it leads to the construction of a pressure observation
operator P(ψ,uA) with components

P(ψ,uA)i = −(ψb − ψa)
λ

r0

∫ 1

ψiN

A(x)dx

where ψiN is either a fixed given quantity or computed as ψN(ψh(pi)) which leads
to differences in the computation of derivatives Pψ(ψ,uA) and PuA(ψ,uA)
done during the assembling. We can now formulate the cost function used for
equilibrium reconstruction from magnetic and pressure measurements

J(y,u) =
1

2
||Hψ +Hdψd −m||2 +

1

2
||P(ψ,uA)−mp||2

+
1

2
||RAuA||2 +

1

2
||RBuB||2

(59)

which has to be minimized under the constraint of the equilibrium model (30).
The computation of ∆y and S in (33) and (34) are unchanged. Concerning

the gradients of the cost function we have

JTy (y,u) = HT (Hψ +Hdψd −m) + Pψ(ψ,uA)T (P(ψ,uA)−mp) (60)

JTu =

[
RT
ARAuA + PT

uA
(P−mp)

RT
BRBuB

]
(61)
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Similar to what is done for interfero-polarimetry and MSE the following
approximated second order derivative quantities are considered to form matrix
M and vector m of the SQP algorithm

Jyy = HTH + PT
ψPψ (62)

Juu =

[
RT
ARA + PT

uA
PuA 0

0 RT
BRB

]
(63)

Jyu =
[
PT
ψPuA 0

]
, Juy =

[
PT

uA
Pψ

0

]
(64)

4.3 Outputs and uncertainty quantification

4.3.1 Equilibrium outputs, flux surface averages and geometric co-
efficients

Numerous outputs can be extracted from the equilibrium poloidal flux map
computed. These include purely geometric information on the plasma shape
(plasma boundary, geometric axis, elongation . . . ), global parameters (such as
total plasma current Ip, poloidal beta βp, internal inductance li, . . . ), 1D profiles
of quantities constant on flux isolines in the plasma and 2D maps (ψ itself but
also Br, Bz, jp, . . . ). All these outputs are standardized and follow the IMAS
conventions. We are not going to detail all of them in this paper. Let us however
give some details on the computation of some of the important 1D profiles in
the plasma.

For ψN ∈ [0, 1], Sf (ψN) = f(ψ) is computed by integration of B as shown
in (52). Let us define a discretization of the unit interval [0, 1] by S + 1 values
ψ0

N = 0, . . . , ψSN = 1. These points are taken as abscissa for all computed 1D
profiles. For each ψsN the contour line ΓψsN is extracted from the finite element

representation of the solution as a list of Ns segments between ml
s,1 = (rls,1, z

l
s,1)

and ml
s,2 = (rls,2, z

l
s,2) with length |Lls|, for l = 1 to Ns.

The toroidal flux coordinate is defined as ρ(ψN) =
√
φ(ψN)/πB0 where

φ(ψN) =
∫

ΩψN

f(ψh(r,z))
r drdz and ΩψN is the domain bounded by the line of flux

ΓψN . This contour is not resolved by the mesh and the quantities φs and ρs are
computed from the discrete ψh for all ψsN using the same barycentric quadrature
rule as for the integrated plasma current density J in Section 2.2:

φs =
∑
T

Sf (ψN(bT (ψh)))

rT (ψh)
|T ∩ ΩψsN |. (65)

The profiles ψs and ρs being known one can compute (∂ψ∂ρ )s = ψ′s using finite
differences.

In the same way the volume profile is computed as

V ols = 2π
∑
T

rT (ψh)|T ∩ ΩψsN | (66)

and (∂V ol∂ρ )s = V ol′s using finite differences.
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Following [3] the average of a quantity A over magnetic surfaces can be
computed as

〈A〉s = (

∫
Γψs

N

Ar

|∇ψh|
dl)/(

∫
Γψs

N

r

|∇ψh|
dl). (67)

A number of 1D profiles, also called geometric coefficients, are computed as
such averages, e.g. 〈1/r2〉 or 〈|∇ρ|2/r2〉 . The integrals over flux contour lines
involved are approximated as follows:∫

Γψs
N

Ar

|∇ψh|
dl ≈

Ns∑
l=1

1

2

(
rls,1A(ml

s,1)

|∇ψh|T ls |
+
rls,2A(ml

s,2)

|∇ψh|T ls |

)
|Lls|. (68)

where T ls is the triangle which is intersected by the segment between ml
s,1 and

ml
s,2 and ml

s,· = (rls,·, z
l
s,·) . |∇ψh|T ls | is constant in the triangle and computed

from the 3 values at the nodes of T ls.

4.3.2 Sensitivity method for error bars computation

At convergence of the SQP iterations an optimal u is found and the constraint
given by the model is satisfied. Hence y = y(u) and one can define the reduced
cost function Ĵ(u) = J(y(u),u). A good approximation to the Hessian of the
reduced cost function is SQP algorithm matrix, Ĵuu ≈M . This matrix would
be the exact Hessian if we hadn’t neglected some of the second order derivatives
terms.

Its diagonal elements are the inverse of the squared a posteriori standard
deviations on the components of u also called error bars. Moreover the error
bar of any scalar quantity g depending on u (such as the reconstructed functions
A(ψN) or B(ψN) at a given ψN for example) is computed as

σ2
g = ∇ug

TM−1∇ug

This enables the computation of the error bar on any output quantity at low
numerical cost. If g(u) is in the form g(u) = G(y(u),u) we use

∇ug = yTu∇yG+∇uG

where the Jacobian yu = S is already known from SQP algorithm.

4.4 Final remarks on equilibrium reconstruction

The equilibrium reconstruction problem can be formulated on the ABB do-
main. With this formulation magnetic Bprobes and flux loops measurements
are directly used without having to perform a first interpolation step on the
measurement contour as with the formulation on a bounded domain. However
there are two drawbacks to this method. First of all it is computationally more
demanding since the mesh is necessarily much larger, and secondly it is does
not work well for tokamaks with ferromagnetic structures since the modeliza-
tion of the magnetic permeability is certainly not very precise. Nevertheless the
method works well for iron-free tokamaks and a numerical example is provided
in Section 5.3. This method is closer to the algorithms implemented in codes
like EFIT [23], EQUAL [38], CLISTE [26] or LIUQE [28], which however do not
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make use of derivative with respect to the state variable as is done here in the
QSQP algorithm.

The cost function to be minimized is very similar to (29)

J(ψ,u) =
1

2
||HBψ −mB ||2 +

1

2
||HFψ −mF ||2

+
1

2
||RAuA||2 +

1

2
||RBuB||2

(69)

Here mB (resp. mF ) are the Bprobes measurements (resp. the flux loops
measurements) and HB (resp. HF ) the associated linear observation operators
mapping the FEM representation of the poloidal flux to the measurements.

For an iron-free tokamak the model equation constraint reads

(A+C)ψ − J(ψ, λ,uA,uB)−LuI = 0 (70)

The QSQP algorithm follows as in the preceding sections.
Clearly the different measurements of the previous sections (magnetics, inter-

ferometry, polarimetry, MSE, pressure) can be used all together. In NICE this
is controled by code parameters and the user can decide to use any combination
of measurments. Finally one can also perform a magnetics only reconstruction
and then use the obtained flux map to reconstruct in a second step the electron
density profile using interferometry measurements only.

4.5 Numerical examples

TCV reconstruction with magnetics only This first example shows re-
sults from a TCV equilibrium reconstrucion using magnetics only. Figure 9
shows the computation domain and the obtained flux map. Cauchy measure-
ments on the domain boundary are computed with the first mode of NICE
described in Section 3 using toroidal harmonics of order 5, then the QSQP al-
gorithm of section 4.1 is run. Functions A and B are decomposed in a basis of
6 cubic splines each. The regularization parameters are εA = εB = 0.1. The

relative residual, relresid =
||(y,u)n+1 − (y,u)n||

||(y,u)n||
, rapidly converges to the

tolerance value set to 10−10. Figure 10 shows the identified p′ and ff ′ profiles
as well as the obtained averaged current density and safety factor. Computed
error bars on these profiles are also shown.

WEST reconstruction with magnetics and interfero-polarimetry This
second example shows results from a WEST equilibrium reconstrucion using
magnetics and interfero-polarimetry measurements. Figure 11 shows the com-
putation domain and the obtained flux map. Cauchy measurements on the
domain boundary are computed with the first mode of NICE described in Sec-
tion 3 using external harmonics of order 7 and inner of order 4, then the QSQP
algorithm of section 4.2.1 is run. Functions A and B are decomposed in a basis
of 7 cubic splines each whereas C uses 8. The regularization parameters are
εA = εB = 0.1. The regularization parameter εC varies radially from 1 on the
magnetic axis to 10−2 at the plasma boundary. Values of A and B at the plasma
boundary are forced to 0 with large penalization parameters whereas C is left
free. The relative residual rapidly converges to the tolerance value set to 10−10.
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Figure 9: Poloidal flux map for a TCV equilibrium reconstruction with mag-
netics and pressure measurements. The plasma boundary is shown in red. The
limiter contour is the doted line and the dashed lines.

Figure 10: TCV equilibrium reconstruction with magnetics. Reconstructed p′,
ff ′, jtor = (p′+ < 1/r2 > (1/µ0)ff ′)/ < 1/r > and safety factor q profiles, and
associated computed error bars.
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Figure 11: Poloidal flux map for a WEST equilibrium reconstruction with
magnetics and interfero-polarimetry. The plasma boundary is shown in red.
The limiter contour is the doted line and the dashed lines are the interfero-
polarimetry chords

Figure 12 shows the identified p′ and ff ′ profiles as well as the obtained aver-
aged current density and safety factor. Computed error bars on these profiles
are also shown. Figure 13 shows the identified electron density profile with er-
ror bars as well as the interferometry and polarimetry data. Because of unvalid
measurments 8 chords out of 10 are used for interferometry while 7 are used for
polarimetry.

JET reconstruction with magnetics and pressure This third example
shows results from a JET equilibrium reconstrucion using magnetics and pres-
sure measurements. Figure 14 shows the computation domain and the obtained
flux map. Cauchy measurements on the domain boundary are computed with
the first mode of NICE described in Section 3 using external harmonics of or-
der 5 and inner of order 3, then the QSQP algorithm of section 4.2.3 is run.
Function A is decomposed in a basis of 14 cubic splines and the regularization
parameter εA varies radially from 10−1 on the magnetic axis to 10−3 near the
plasma boundary where the function is left free. Function B is decomposed in a
basis of 12 cubic splines and the regularization parameter is εA = 10−1 and B(1)
is forced to 0 with a large penalization parameter. The relative residual rapidly
converges to the tolerance value set to 10−10. Figure 15 shows the identified
p′ and ff ′ profiles as well as the obtained averaged current density and safety
factor. Computed error bars on these profiles are also shown. Figure 16 shows
the identified pressure profile with error bars as well as the pressure data.
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Figure 12: WEST equilibrium reconstruction with magnetics and interfero-
polarimetry. Reconstructed p′, ff ′, jtor = (p′+ < 1/r2 > (1/µ0)ff ′)/ < 1/r >
and safety factor q profiles, and associated computed error bars.

Figure 13: WEST equilibrium reconstruction with magnetics and interfero-
polarimetry. Reconstructed electron density Ne and associated computed error
bars. Computed and measured interferometry and Faraday angle data.
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Figure 14: Poloidal flux map for a JET equilibrium reconstruction with mag-
netics and pressure measurements. The plasma boundary is shown in red. The
limiter contour is the doted line and the dashed lines.

Figure 15: JET equilibrium reconstruction with magnetics and pressure. Re-
constructed p′, ff ′, jtor = (p′+ < 1/r2 > (1/µ0)ff ′)/ < 1/r > and safety
factor q profiles, and associated computed error bars.
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Figure 16: JET equilibrium reconstruction with magnetics and pressure. Re-
constructed pressure p and associated computed error bars. Computed and
measured pressure data.

5 NICE direct and inverse equilibrium compu-
tation modes

5.1 Static equilibrium computation

Two types of direct static equilibrium computation can be performed with
NICE, Ip-free or Ip-fixed computations. Although it is possible to perform this
type of computation in the bounded domain case it is most usually performed in
the ABB domain case where all poloidal field coils are included. In both types
of computation the currents in these coils are given, that is u := uI the control
variable for the inverse problem to come, is a given fixed parameter.

In Ip-free computations the current density functions p′ and ff ′ are given,
that is λ, uA and uB are given and fixed. The state variable is y := ψ and the
model equation is

e(y,u) := (A+C)ψ + Aµ(ψ)− J(ψ, λ; uA,uB)−LuI = 0. (71)

In Ip-fixed computations the current density functions are given up to the
scaling factor λ. The state variable is augmented with λ, y := (ψ, λ) and the
model equation augmented with an equation imposing a given Ip value

e(y,u) :=

[
(A+C)ψ + Aµ(ψ)− J(ψ, λ; uA,uB)−LuI

Ip − λJp(ψ,uA,uB)

]
= 0. (72)

The direct static Ip-free or Ip-fixed computation consists in finding y such
that e(y,u) = 0 using Newton’s method.

The associated inverse problem is to find the currents in the coils, hence u
such that the plasma has a desired shape and position. A numberNp+1 of points
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xi = (ri, zi) defining the desired plasma boundary are provided. They are either
given from another simulation are provided from the parametric representation
taken from [17, Chap. 4, p84]. The cost function is

J(y,u) =
1

2
||Kψ||2 +

1

2
||R(uI − uI0)||2 (73)

where ||Kψ||2 =

Np∑
i=1

(ψh(xi)−ψh(x0))2 is the misfit term imposing an isoflux

line to go through the given desired points and the second term is a penalization
to given currents uI0 in which the diagonal matrix R holds weights Rii = 1/σ2

i .
As for the equilibrium reconstruction problem the inverse problem

min
y,u

J(y,u) such that e(y,u) = 0

is solved thanks to the QSQP method. The needed ingredients are

ey(y,u) = A+C + Aµ,ψ(ψ)− Jψ(ψ, λ; uA,uB), eu(y,u) = −L (74)

JTy (y,u) = KTKψ, JTu (y,u) = RT (RuI − uI0) (75)

Jyy(y,u) = KTK, Juu(y,u) = RTR, Jyu = Juy = 0 (76)

for the Ip-free case and

ey(y,u) =

[
A+C + Aµ,ψ(ψ)− Jψ(ψ, λ; uA,uB) −Jλ(ψ, λ; uA,uB)

−λJp,ψ(ψ,uA,uB) −Jp(ψ,uA,uB)

]
(77)

eu(y,u) =

[
−L
0

]
(78)

JTy (y,u) =

[
KTKψ

0

]
, JTu (y,u) = RT (RuI − uI0) (79)

Jyy(y,u) =

[
KTK 0

0 0

]
, Juu(y,u) = RTR, Jyu = Juy = 0 (80)

for the Ip-fixed case.

5.2 Quasi-static equilibrium evolution computation

In order to compute the quasi-static equilibrium evolution on time interval [0, T ]
an implicit Euler scheme with time step ∆t is used starting from an initial
condition y0. The computation of the equilibirum at tk from the one at tk−1 is
done by solving the following problem:

find yk such that ek(yk,yk−1,uV ) = 0
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where

ek(yk,yk−1,uV ) :=(A+C)ψk + Aµ(ψk)− J(ψk, λk,ukA,u
k
B)

−E(ψk −ψk−1)−GkuV
(81)

with yk := ψk in the Ip-free case and

ek(yk,yk−1,uV ) :=

(A+C)ψk + Aµ(ψk)− J(ψk, λk,ukA,u
k
B) . . .

· · · −E(ψk −ψk−1)−GkuV
Ikp − λkJp(ψ

k,ukA,u
k
B)

 (82)

with yk := (ψk;λk) in the Ip-fixed case.
Similar to Section 5.1, in Ip-free computations the current density functions

p′ and ff ′ are given that is λk, ukA and ukB are given at each time step. In
Ip-fixed computations the current density functions are given up to the scaling
factor λ which is computed at each time given a prescribed value of the plasma
current Ikp .

Moreover with have defined matrices

E :=
1

∆t
(Jps +LRLT )

and
Gk := LSBk.

The voltage vi(t) of each of the Nv power supplies is a given function of time
decomposed in a basis of Nbv piecewise linear or spline functions

vi(t) =

Nbv∑
j=1

ui,jφj(t)

Noting uV the vector of size NvNbv of all decomposition coefficients ui,j for all
power supllies, the Nv × NvNbv matrix B(t) is such that B(t)uV = v(t) the
vector of all voltages.

As for the static case inverse problems can be defined for the quasi-static
evolution case. It consists in finding the voltages, hence controling u = uV , such
that the plasma shape follows a prescribed evolution. In order to stick with the
notations of this document one can define a state variable concatenating the
states at each time step y := (y1, . . .yNT ) and a model

e(y,u) :=

 e1(y1,y0,uV )
. . .

eNT (yNT ,yNT−1,uV )


The simplest cost function which can be defined is the following

J(y,u) =
1

2

NT∑
k=1

Nd∑
i=1

wk(ψkh(xki )− ψkh(xk0))2 +
1

2
w

NT∑
k=1

Nv∑
i=1

([BkuV ]i)
2

with a misfit term to a desired plasma boundary at each time step and a penal-
ization term on voltages. This can be rewritten

J(y,u) =
1

2
||Kψ||2 +

1

2
||RuV ||2
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Figure 17: JT60-SA equilibrium reconstruction with synthetic magnetics.
Poloidal flux map in ABB domain.

and the QSQP algorithm to solve the PDE-constrained optimization problem
follows. Other types of penalization terms are also implemented in NICE: pe-
nalization on the maximum and minimum voltage values and penalization on
induced currents in passive strutures. we refer to [5] for a study of this type of
inverse problems for the design of tokamak scenarios.

5.3 Numerical examples

JT60-SA equilibrium reconstruction in ABB domain with synthetic
magnetics generated from a static inverse In this first example we per-
form an equilibrium reconstruction with synthetic magnetic data for JT60-SA
tokamak in ABB domain. In a first step, the Ip-fixed static inverse mode of
NICE is run to compute the currents in the PF coils giving a desired plasma
boundary shape provided as a list of input points. The 12 reference currents
in (73) are uI0 = 0 and the penalization weights are chosen as σi = 108. A
parametric representation for A and B is given. The relative residual rapidly
converges to 10−10.

This provides a reference equilibrium with known p′ and ff ′ functions. From
the computed flux map we compute the equivalent of magnetics measurements.
A 1% noise is added to these measurements. Then in a second step we run the
equilibrium reconstruction mode of NICE in ABB domain that is to say without
using the toroidal harmonics step. Functions A and B are to be identified in
a basis of 11 cubic splines each. The regularization parameters are εA = εB =
10−2. The computed poloidal flux map is shown on Figure 17. Figure 18 shows
the reference and identified p′ and ff ′ profiles as well as the averaged current
density and safety factor. Computed error bars on these profiles are also shown.
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Figure 18: JT60-SA equilibrium reconstruction with synthetic magnetics. Re-
constructed p′, ff ′, jtor = (p′+ < 1/r2 > (1/µ0)ff ′)/ < 1/r > and safety
factor q profiles, and associated computed error bars. The reference equilibrium
are in black and the reconstructed ones in blue.

ITER vertical displacement event In this second example an initial ITER
plasma is computed thanks to the Ip-fixed static inverse mode on NICE in a first
step. It is shown on Figure 19. The desired plasma shape is provided thanks to
a parametric representation.

Then in a second step the quasi-static evolution mode is run. All voltages
are set to zero and the time step is ∆t = 10−3s. At each time step the Newton
relative residual converges in few iterations to the tolerance value of 10−10. A
vertical displacement event occurs after approximately 1s. The evolution of the
plasma is shown on Figure 20 and the final poloidal flux map at t = 1.5s is
shown on Figure 21.

ITER quasi-static evolution inverse mode In this third example we use
the quasi-static evolution inverse mode of NICE to compute the voltages which
drive an ITER limiter plasma upwards. The different desired plasma boundaries
as time increases are shown on Figure 22 together with the initial poloidal flux
map. The comutation is in Ip-fixed mode and function A and B are given by
a parametric representation. Each of the 12 voltages time dependent functions
to be identified are decomposed in a basis of 11 piecewise linear functions. The
weights in the regularization term are chosen as σi = 10−5, 11 time steps of 0.1s
are considered. The size of the control vector u is 132. The mesh size is 12574
giving a state variable vector y of size 138314. The QSQP algorithm converges
to the tolerance value of 10−10 in 10 iterations. Figure 23 shows the poloidal
flux map at final time with a good match between desired and computed plasma
boundaries. Figure 24 shows the voltages computed by the QSQP algorithm.
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Figure 19: Initial poloidal flux map in ITER geometry.

Figure 20: Evolution of the plasma boundary during a VDE in ITER geometry
for t = 1, 1.1, 1.2, 1.3, 1.4 and 1.5s
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Figure 21: Final poloidal flux map in ITER geometry at t = 1.5s.

Figure 22: Initial poloidal flux map in ITER geometry and successive desired
plasma boundaries for the time evolution.
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Figure 23: Final poloidal flux map in ITER geometry. Matching computed and
desired plasma boundary are shown.

Figure 24: Computed voltages driving the desired plasma boundary evolution.
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6 Conclusion

This document provides a general overview of the numerical methods imple-
mented in the different effective modes of the code NICE. The code is available
on the svn repository of the EUROFUSION gateway. It is still evolving and
new features a regularly added. Currently the possibility of using higher or-
der C1 finite elements is under development. Other future developments will
also deal with the use of the 1D resistive diffusion equation either in a coupling
with the quasi-static evolution mode or as an additional constraint in successive
equilibrium reconstructions.
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