
HAL Id: hal-02733944
https://hal.science/hal-02733944

Submitted on 2 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Microstructural analysis of sheared polydisperse
polyhedral grains

David Cantor, Emilien Azéma, Itthichai Preechawuttipong

To cite this version:
David Cantor, Emilien Azéma, Itthichai Preechawuttipong. Microstructural analysis of sheared poly-
disperse polyhedral grains. Physical Review E , 2020, 101 (6), �10.1103/PhysRevE.101.062901�. �hal-
02733944�

https://hal.science/hal-02733944
https://hal.archives-ouvertes.fr


PHYSICAL REVIEW E 101, 062901 (2020)

Microstructural analysis of sheared polydisperse polyhedral grains

David Cantor ,1,* Emilien Azéma ,2,3,† and Itthichai Preechawuttipong1,‡

1Department of Mechanical Engineering, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai, Thailand
2LMGC, University of Montpellier, CNRS, Montpellier, France

3Laboratoire de Micromécanique et Intégrité des Structures (MIST), UM, CNRS, IRSN, France

(Received 29 September 2019; accepted 6 May 2020; published 1 June 2020)

This article presents an analysis of the shear strength of numerical samples composed of polyhedra presenting
a grain size dispersion. Previous numerical studies using, for instance, disks, polygons, and spheres, have
consistently shown that microstructural properties linked to the fabric and force transmission allow granular
media to exhibit a constant shear resistance although packing fraction can dramatically change as a broader
grain-size distribution is considered. To have a complete picture of such behavior, we developed a set of
numerical experiments in the frame of the discrete element method to test the shear strength of polydisperse
samples composed of polyhedral grains. Although the contact networks and force transmission are quite more
complex for such generalized grain shape, we can verify that the shear strength independence still holds up for 3D
regular polyhedra. We make a particular focus upon the role of different contact types in the assemblies and their
relative contributions to the granular connectivity and sample strength. The invariance of shear strength at the
macroscopic scale results deeply linked to fine compensations at the microstructural level involving geometrical
and force anisotropies of the assembly.

DOI: 10.1103/PhysRevE.101.062901

I. INTRODUCTION

Our understanding of the physics and mechanics of granu-
lar materials has considerably stepped forward during recent
years. What we had to describe as an averaged continuum
medium some decades ago can be considered today as the
complex mixtures of solids, voids, and fluids that they are.
This progress is indeed supported by the unceasing develop-
ments of experimental and numerical methods. And, certainly,
the approach that allows one to describe with more detail the
geometry of grains, their interactions, and to probe their bulk
and mechanical properties is, up to now, the discrete element
modeling (DEM).

The DEM has become a convenient tool to explore and dis-
cover phenomena that are hardly observable in experiments.
Among these phenomena, the surprising independence of
shear strength upon the grain size span is the object of this ar-
ticle. This phenomenon has been observed in 2D simulations
using disks [1–3], employing regular and irregular polygons
[4], and in 3D simulations with rigid spheres [5] by some the
authors of this work. The implications of such a counterin-
tuitive observation are vast. Numerous industrial processes,
engineering, and scientific disciplines deal with size varying
granular materials. From geologists analyzing the mechanics
of fault gauges, geotechnical engineers assessing the strength
of soils, or power technology applications, the understanding
of the rheology and bulk properties of size disperse materials
is essential. However, along with grain size, the strength
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properties of the granular media are strongly linked to the
shape of grains. It has been shown in both numerical and ex-
perimental studies that grain shape has a nontrivial effect upon
packing and shear properties of granular materials [6–22]. For
instance, the grains presenting the more angular shapes (in
opposition to rounded) do not show the highest shear strengths
as one could expect. Moreover, real granular materials often
present correlations between particle size and shape [23,24],
making grain shape an essential element yet to be included
in the analysis of the mechanical behavior of size disperse
grains.

In this article, we present a systematic approach to probe
the shear strength of size disperse samples composed of
regular polyhedral particles. For simplicity, we fix the shape of
polyhedra to octahedra. We look to generalize, or the opposite,
the shear strength independence on particle size using very
angular three-dimensional grains. This analysis takes into
account a fine description of the contact configurations and
the mechanisms of force transmission that can arise from
interactions between polyhedra. Note that the transition to
general three-dimensional shapes is not simple. Several issues
related to the contact detection, the kinematics of 3D bodies,
and the quality of the results require special consideration and
a more strict numerical analysis. In effect, the numerical pro-
cedures are considerably time-consuming and require more
computational and storage capacities. Throughout this paper,
we point out and analyze such issues as well.

This article is organized as follows. In Sec. II, we present
the numerical procedures to build and test the shear strength of
samples composed of octahedra. Section III is focused on the
evolution of shear strength and solid fraction up to the steady
flow state. Section IV presents different parameters related
to the granular connectivity and the role of distinct contact
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FIG. 1. Set of different contact types that appear at the interac-
tions between convex grains. (a) vertex-face, (b) edge-edge, (c) edge-
face, and (d) face-face.

between grains. In particular, we focus on the description of
the contact network, its fabric properties, and anisotropies. In
Sec. V, we describe the forces network and the anisotropies
related to the normal and friction contact forces. Then, in
Sec. VI, we present the microstructural elements behind the
macroscopic strength of polyhedra. We verify at this point
whether the shear resistance remains independent of the grain
size span for regular polyhedra. We conclude this article with
a summary and perspectives of this work.

II. NUMERICAL MODEL

We use the discrete element approach known as contact
dynamics (CD) [25–29] to simulate assemblies of angular
rigid grains. This method has systematically been used to
model granular systems under a large variety of configura-
tions, particle shapes, boundary conditions, and static and
dynamic loadings [30–38]. The CD method is a nonsmooth
approach based on an implicit description of the equations
of motion for rigid grains obeying mutual exclusion and a
dry Coulomb contact friction. The contact forces and body
velocities are found, in effect, using an iterative nonlinear
Gauss-Seidel algorithm.

When dealing with three-dimensional regular grains, a rich
contact configuration appears given the different contact types
that can occur (vertex-face, edge-edge, edge-face, face-face;
see Fig. 1). Contacts vertex-vertex and vertex-edge are rare
and usually discarded of the contact resolution and analy-
sis. Note that while vertex-face and edge-edge contacts are
represented by single contact points, contacts edge-face and
face-face are numerically represented by two and three contact

points, respectively, for an adequate resolution. Although the
location of these multiple contact points may vary after a ge-
ometrical criterion, only their resultant and application point
are material. Hence, the loci of the two or three contact points
do not affect the dynamics of the granular system. Then, our
analysis considers only one interaction between the different
bodies regardless of the contact type.

Concerning the contact detection for polyhedra, we used
a method based on the so-called common-plane approach
proposed by Cundall [28,39]. This method iteratively looks
for a plane between the touching (or potentially touching)
bodies by minimizing the distances between the plane and
the vertices of neighboring grains. Among different detection
techniques, the common-plane method remains a robust and
reasonably efficient tool when dealing with assemblies of
several polyhedral grains.

We used the simulation platform LMGC90 [40,41] in
which we created assemblies of 19 000 regular octahedral
grains set into boxes. The grains were deposited using an
algorithm that places the bodies layer by layer in a semi-
compact packing configuration [42]. We built a set of nine
samples where the grain size span varied with parameter S,
defined as

S = dmax − dmin

dmax + dmin
, (1)

from S = 0 to S = 0.8 in steps of 0.1. The grain size distribu-
tion was uniform by volume fractions between the equivalent
minimum and maximum equivalent diameters (dmin and dmax,
respectively). Note that the equivalent diameters are also
computed by particle volumes.

We initially applied an isotropic compression to the assem-
bly up to a stable dense state in which the contact network
presented just small variations in the contact forces (<0.1%
around the mean force). Note that the stable state for polyhe-
dral grain packings has been previously analyzed by Smith
et al. [43,44] and Azéma et al. [10]. Figure 2 shows two
screenshots for the state of samples S = 0 and S = 0.8 at the
end of the isotropic compression.

To apply large shear deformation, we removed the lateral
walls and set periodic boundary conditions along these direc-
tions. The shear tests were performed by fixing the bottom
wall and applying on the upper wall a pressure P in the vertical
direction and a constant velocity vx in the ‘x’ direction. The
particles in contact either with the upper or the lower wall
were bonded and followed the boundary constrains. No grav-
ity was set in our experiments to avoid a differential pressure
field in the samples.

These boundary conditions were set to reproduce a qua-
sistatic shear flow. For this, we additionally used the inertial
number defined as I = γ̇

√
m/PdD−2 with d the average size

of the grains, m the mass of such average particle, D the
dimension, and the shearing rate γ̇ = vx/h0, where h0 is the
height of the sample at the beginning of the test. In all our
tests, I < 1 × 10−3 which assures a quasistatic deformation.
Note that the coefficient of friction μ was set to zero during
the isotropic compression but then switched to μ = 0.4 for
the shear tests. Although our boundary conditions imply that
neighboring bodies do not change very often over several
time steps, the contact detection is performed on every step.
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FIG. 2. Snapshots of samples composed of 19 000 octahedra
with grain size span corresponding to (a) S = 0.0 and (b) S = 0.8.

Though time-consuming, this process improves the quality of
the numerical resolution and particle kinematics by adapting
the contact common-planes to small adjustments in parti-
cle translation and, often more critical, to particle rotations.
Nonetheless, the relatively small particle velocities in our tests
also allow one to simplify the particle rotation scheme by only
considering the linear terms for the body motion updates, as
explained in Ref. [45].

The shearing tests continued up to reaching the steady flow
state (also known as the critical state in soil mechanics [46]) in

which the sample volume and the shear strength only present
small variations around well defined mean values. In the case
of three-dimensional angular grains, this occurs at relatively
high levels of deformation. For this reason, we sheared our
samples up to a cumulative shear strain γ � 100%. Although
these simulations may take several weeks to run, we also
took advantage of the parallel version of the contact dynamics
method available in the platform LMGC90 to reduce the
computing time. Details of the parallel implementation of the
method are available in Ref. [47].

Videos of the shearing tests can be found in the following
link: [48].

III. MACROSCOPIC SHEAR STRENGTH AND
SOLID FRACTION

The steady flow in granular materials is typically character-
ized by the stabilization of the shear strength and the packing
fraction. The shear strength in our tests was determined by
using the granular stress tensor

σ = 1

V

∑

∀c

f c�c, (2)

where V is the volume of the sample and a sum of the dyadic
product between the force vector f and the branch vector �

(i.e., the vector joining the centers of mass of particles in
contact) is done over all the contacts c. Then, the macroscopic
coefficient of friction φ∗ was computed on the steady state
using the relation

sin(φ)∗ = q/p, (3)

with the deviatoric stress q = (σ1 − σ2)/2, the mean pressure
p = (σ1 + σ2)/2, and σ1 and σ2 are the principal stresses on
the shear plane xz. The upper script (∗) indicates parameters
obtained as averaged values in the steady flow state. Hence,
Eq. (3) is only valid after taking q and p as averaged values
in the steady state as well. Note that we assume that stresses
are homogeneous along the y axis and we only consider the
projections on the shear plane. This is not the case for the
transient nonsteady flow (i.e., γ < 0.4). In the steady state,
the lateral components of the stress tensor may present differ-
ences of the order σxx/σyy � 1.1. This ratio is small enough to
allow us to use, for the sake of simplicity, the characterization
of shear strength by only considering the stress components
on the shear plane.

Figure 3 shows the evolution of the relative deviatoric
stresses q/p as a function of the cumulative shear deformation
γ . For all the samples, we can observe an initial increase of
q/p up to a peak strength near γ ∼ 0.1. Then, as the initial
packing state of the samples is relatively dense, the samples
dilate and the shear strength smoothly decreases and reaches
a steady value for γ > 0.6.

The packing fraction (ν∗ = Vs/V with Vs the volume of
the grains) smoothly decreases for the nine samples and
reaches steady values for deformations γ > 0.6 (see Fig. 4).
As expected, the samples presenting a broader variety of grain
sizes show a higher density given the capacity of smaller
grains to fill the pores between the bigger. Such a difference
is not reflected in shear strength, though. Thus, for three-
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FIG. 3. Evolution of the relative deviatoric stress as a function
of the cumulative shear deformation γ for the set of samples having
different grain size span S.

dimensional angular grains, the grain size span does not play
either a role on the shear strength of granular assemblies.

Figures 5(a) and 5(b) show the average shear strength
and packing fraction as a function of the grain size span S
in the steady state for both our results using octahedra and
those reported for spheres in Ref. [5]. The average shear
strength for octahedra is sin(φ)∗ � 0.5 or φ∗ � 30◦ compared
to sin(φ)∗ � 0.34 or φ∗ � 19◦ for spheres. In the case of the
average solid fraction, the evolution for both particle shapes
is nonlinear with the grain size span S showing very similar
growing rates except for the highest size spans. Note, however,
that from Fig. 4 we can deduce that the dilatancy rates are very
similar across grain size spans.

Our results and those reported previously in literature are
consistent and confirm the independence of shear strength
with grain size span. Still, this phenomenon remains puzzling
to observe in physical experiments. It is difficult to control
the grain size and shape with real particulate materials or,
once the grain size dispersion exceeds a given ratio, stan-
dard testing equipment can no longer contain representative
samples. Additionally, the grains may suffer abrasion or even
fragmentation when sheared. These phenomena may strongly
modify the grain shapes and stress transmission resulting in
different shear strength. Nonetheless, the understanding of the
strength behavior of granular materials relies on the granular
structure and contact fabric that we analyze in the following.

FIG. 4. Evolution of the solid fraction as a function of the
cumulative shear strain γ for the different grain size spans tested.

(a)

(b)

FIG. 5. (a) Average macroscopic coefficient of friction and
(b) average solid fraction as a function of the grain size span at the
steady flow state. Error bars represent the standard deviation of the
data.

IV. GRANULAR FABRIC

A. Grain connectivity

1. Coordination number

A first-order characterization of the granular fabric may
be done by using the coordination number defined as Z∗ =
2Nc/Np(1 − Pf ), where Nc is the number of force bearing
contacts, Np is the number of particles in the sample, and Pf

is the proportion of floating particles (i.e., grains having less
that two force bearing contacts).

FIG. 6. Average coordination number at the steady state as a
function of the grain size span. Error bars, presenting the standard
deviation of the date, are practically unnoticeable.
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FIG. 7. Average proportion of force bearing contacts Pk that
particles may support as a function of the grain size span.

Figure 6 presents the average coordination number in
the steady state and suggests that for any grain size span
the coordination number is invariant under for the inertial
number and coefficient of friction considered. This invariance
of the coordination number involves complex compensation
mechanisms related to the grains’ role and size in the contact
network. Figure 7 displays the proportion Pk of particles
having k number of contacts. Although the maximal number
of contacts a grain can carry dramatically increases with S,
we only show the set k = {0 to 9} for the sake of simplicity.
Note, however, that for the sample S = 0.8, we can find
some grains with more than 15 contacts. As also observed
in Ref. [49], the proportion of rattlers Pf = P0 + P1 sharply
increases with S. Indeed, for S = 0.8, less than half of the
particles in the sample are actively participating at the force
transmission. Apart from the set of rattlers, the proportion of
particles having two or three contacts (P2 and P3) is the set
that increases at a higher rate. This set usually corresponds to
small-size particles helping to stabilize the granular backbone
of the sample. On the other hand, proportions P4 to P7 decrease
with S. For k > 7, the proportions Pk slightly increase aside
from some particular cases. See, for instance, P8 in which its
increment reaches a peak and gets stabilized for S > 0.6.

In fact, we can observe that the macroscopic coordination
number, for any grain size span, can be computed by the
local contributions of each proportion of grains having a given
number of contacts as

Z∗ =
Nm

c∑

k=2

kPk, (4)

where the sum is computed over all proportions of contacts
up to the maximal number of contacts per grain in the sample
Nm

c . Equation (4) is one approach to observe and understand
the invariability of coordination across polydisperse samples.

It is possible to observe the correlation size-connectivity in
the assembly by computing the average coordination number
as a function of the relative size of grains as dr = (d −
dmin)/(dmax − dmin). Figure 8 shows the average coordination
number by particle sizes (Zdr ) for all the grain size spans.
We observe a continuous increase of the particle connec-
tivity occurs as a function of the relative particle size. Big
particles are usually surrounded by several small particles
more poorly connected but giving important support to the
granular backbone. Besides, note that the relative particle

FIG. 8. Average coordination number as a function of the relative
particle equivalent diameter in the sample for the different size spans.

size dr � 0.3 appears systematically as a typical particle size
bearing the average coordination sample through the different
samples.

2. Contributions by contact type

The independence of the average number of contacts per
grain with grain size span is an interesting observation that
can be finely analyzed by considering the different types of
contacts between grains. As mentioned before, it is possi-
ble to find four types of contacts between angular convex
grains: vertex-face, edge-edge, edge-face, and face-face. For
simplicity, we label these contact types as v f , ee, e f , and f f ,
respectively.

Figure 9 shows the contributions to the macroscopic coor-
dination number by contact types so

Z∗ = Zv f + Zee + Ze f + Z f f . (5)

This equation reveals that the invariant connectivity is a result
of an increment of contacts edge–face and face–face while
the single contact type vertex–face and edge–edge decrease.
As fewer particles are involved at the stress transmission
as S increases (we observed Pf rapidly increasing with S),
the force bearing should be principally focusing on contacts
f f . Contacts e-e, occurring in a significant proportion, are
mechanically more unstable and seldom seen through the
main granular backbone.

It is also interesting to investigate the evolution of particle
connectivity by contact type across particle sizes. Figure 10

FIG. 9. Coordination decomposition by different contact types
and for the different grain size spans tested.
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a

c d

b

FIG. 10. Evolution of coordination number as a function of the
relative particle size dr for contacts (a) vertex-face, (b) edge-edge,
(c) edge-face, and (d) face-face.

displays the local coordination number as a function of the
relative size dr for the four types of contacts. We observe
that for all contact types, a gradual increase of connectivity
occurs with particles size. The increase of contacts edge-
edge is relatively smoother across particle sizes. Although the
slopes of curves for Zee and Ze f are similar as S increases,
the participation in the macroscopic average connectivity of
contacts edge-face is more important by number proportion.
Note that that type of contact also provides a relatively more
stable mechanism for force bearing. In the case of contacts
face-face, an important contribution to global connectivity can
be observed for the classes of bigger particles. However, for
relative particle sizes dr < 0.3, the connectivity seems to be
less linked to the particle size span. Let us highlight that the
set of contacts f f is the second most important source of
connectivity and, then, of stress transmission in the sample.

For brittle granular materials, the participations to the
granular connectivity may dramatically change as single con-
tacts (i.e., edge-face and edge-edge) usually concentrate high
stresses, making them prompt to damage and fragmentation.
For such cases, the level of stresses applied upon the granular
assemblies can play a central role that may allow one, or
not, to reproduce the shear strength invariance with grain size
span.

B. Contact network

The variability of the local granular connectivity should be
reflected in the contact network. We characterize this network
through the microstructural anisotropies linked to the contact
orientations and the branch vectors.

1. Contact anisotropy

The contact orientations are here described by the proba-
bility distribution defined as

Pc(θ ) = Nc(θ )

Nc
, (6)

FIG. 11. Evolution of the contact orientation anisotropy as a
function of the grain size span. Error bars present the standard devi-
ation of the data. In the inset: polar representation of the probability
distribution of contact orientations Pc(θ ) for samples S = 0, S = 0.4
and S = 0.8.

where Nc is the number of contacts pointing in the direction
θ . Note that we take advantage of the axial symmetry along
the y axis. Then, the angle θ is just the projection of the
normal contact vector on the shear plane xy. Such angular
representation (see inset in Fig. 11), can be characterized with
a first-order approximation of the Fourier series as

P(θ ) = 1

π
{1 + ac cos 2(θ − θc)}, (7)

where θc � 135◦ is the main orientation of the distribution and
ac its anisotropy.

Figure 11 shows the evolution of the contact orientation
anisotropy as a function of the grain size dispersion. At first,
the anisotropy presents a high value for the monodisperse
configuration of grains. Note that the preferential contact
orientation and the orientation of its faces may be affecting
the Pc distribution. Hence, the expected preferred contact
orientation θc ± 30◦ may be affected by local arrangements
and correlated to the particles’ dihedral angles. This observa-
tion should not be misunderstood with particle crystallization
(ordered arrangement of particles). To avoid such ordering,
we added a small grain size dispersion around S = 0 and the
average coordination number, close to that of the polydisperse
samples, let us deduce that our system is truly representing a
disordered medium.

Back to Fig. 11, we observe that ac gradually drops as S
increases. Such a phenomenon is also observed during the
compression of polydisperse packings in 2D [50] and 3D [51]
simulations. As some grains can be accommodated between
the bigger ones, the angular distribution becomes relatively
more homogeneous. Its effect can be seen in the inset of
Fig. 11 for S = 0.8, where a more significant proportion of
contacts appear in the orthogonal direction of θc. The pre-
vious description of connectivity across particle classes and
contact types supports the fact that, locally, bigger grains are
surrounded by an increasing number of load-bearing contacts.
Then, an important homogenizing effect of contact directions
is supported by the presence and concentration of contacts
around the largest classes of particles.
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FIG. 12. Evolution of branch anisotropies aln and alt as a func-
tion of the grain size span. Error bars present the standard deviation
of the data. In the inset: polar representation of average branch length
projections on the modified contact frame n′ and t ′.

2. Branch anisotropies

The branch network is the structure created by the vectors
joining the center of particles having force bearing contacts.
Such vectors, in the case of nonspherical particles, have
orientations that do not necessarily match those of the normal
contact vectors n. For coherence with the previous section, the
branch vectors � are projected on the modified contact local
attached to the shear plane xy. Let us define the vector n′ as
the projection on the shear plane of the normal contact vector.
The corresponding tangential orientation t ′ is defined by a
counterclockwise rotation of 90◦ of vector n′ still on the plane
xy. Thus, the branch vector � has “normal” and “tangential”
projections defined in the new frame as �n = � · n′ and �t =
� · t ′, where (·) is the dot product.

Then, the expressions

〈�n〉(θ ) = 1

Nc(θ )

∑

c∈δθ

�n (8)

and

〈�t 〉(θ ) = 1

Nc(θ )

∑

c∈δθ

�t , (9)

describe the probability density functions of branch lengths
linked to the normal contact orientation on the shear plane.
This computation considers a summation of branch com-
ponents pointing at the contact orientations δθ (i.e., small
intervals of angle in the range [0, 2π ]).

The inset of Fig. 12 shows the polar distribution of �n and
�t for three different samples S = 0, S = 0.4 and S = 0.8. We
can observe that the normal branch orientations present a sub-
tle stretching along the orientation � 135◦. The preferential
orientations for �t are related to the normal branch orientation
θ�n ± 45◦ since tangential branch length is maximal when
∠(�, n) = 45◦ using octahedra.

Similar to the contact orientations, the branch distributions
can be described by expressions

〈�n〉(θ ) = 〈�n〉
{
1 + a�n cos 2(θ − θ�n )

}
(10)

and

〈�t 〉(θ ) = 〈�n〉
{
a�t sin 2(θ − θ�t )

}
, (11)

FIG. 13. Probability density functions of normal contact forces
normalized by the corresponding mean force for the different grain
size spans.

where a�n and a�t are the normal and tangential branch
anisotropies, respectively, and θ�n and θ�t are the principal
orientation of each distribution.

Figure 12 presents the evolution of the branch anisotropies
as a function of the grain size span. Although both values are
relatively small when compared with the contact anisotropy,
we observe that a�n increases non linearly with S as a con-
sequence of the increasing variability of branch length as
particles of different sizes get in contact. Additionally, the
tangential branch anisotropy slightly increases with the grain
size span and its effect is barely noticeable on the polar
representation of 〈�t 〉 (see inset of Fig. 12).

V. FORCE NETWORK

The geometrical structure that particles and contacts create
is complemented by the contact forces whose properties may
be affected by the grain size dispersity.

Consider, for instance, the normal contact force distribu-
tion. As observed in Fig. 13, the probability density function
of normalized normal forces by the mean force becomes
broader as the grain size span increases. During shearing,
forces between monodisperse polyhedra can reach up to 15
times the mean normal force while for highly polydisperse
samples the maximal normal force could easily exceed 20
times 〈 fn〉.

Focusing on small forces, Fig. 14 allows us to observe
that higher grain size spans produce a more important set
of weak forces. Although subtle, such a difference translates
the broader force configuration that polydisperse assemblies
present. Although a bimodal distribution of forces may be
still recognized as typically done in granular media (i.e., an
exponential distribution for fn > 〈 fn〉, and a power law for
fn < 〈 fn〉 [52–56]), our study suggests that such transition
between regimes dims for samples containing broader grain
size distributions. These observations are also consistent with
those undertaken on polydisperse packings of spheres under
compression in Refs. [57,58]

A. Contributions by contact type

The contribution to force transmission can be analyzed as
well as partitions considering each type of contact. Figure 15
allows us to visualize and highlight the strong heterogeneities
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FIG. 14. Probability density functions of normal contact forces
in log - log scale revealing the evolution of small contact forces for
the different grain size spans.

of the force network and the role of contact types in the
system.

As mentioned before, the face-face contacts are supporting
an important part of the loads, making them easily identifi-
able (red bars) as they are concentrated along the granular
backbone (extended force chains transmitting relatively high
proportion of the load between the walls). On the other hand,
single point and edge-face contacts are particularly more
present in the secondary structure of weak forces (thin bars)
bringing support to the backbone.

As a first indicator of the force transmission evolution
across grain size spans, Fig. 16 shows the average contact
force during the steady state by contact type for each of
the size spans. Note that these values are normalized by
the average normal contact force in the sample, revealing
the relative contributions of each contact type. We can ob-
serve that more stable contacts face-face are usually bearing
the highest forces above the mean, while contacts vertex-
face and edge-edge (single point contacts) are supporting,
on average, similar levels of forces under the mean. The
contacts edge-face bear forces rather close to the mean
force.

The evolution of these average contact forces by contact
type slightly changes as S increases. Although our discrete
approach using rigid grains does not allow us to account
for bodies stresses distribution, we can induce that only the
contacts type edge-edge may present a relative offload as
〈 f ee

n 〉 remains nearly constant and its proportion of contacts
relatively increase (see Fig. 9 above). In contrast, the set of
contacts for 〈 f v f

n 〉 decrease, supporting the fact that these
more unstable interactions may present significant stress con-
centrations.

B. Forces anisotropies

The variability of force orientations may be captured using
the angular distributions of its components. Let us consider
the angular variations of normal and tangential force intensi-
ties on the shear plane through the expressions

〈 fn〉(θ ) = 1

Nc(θ )

∑

c∈δθ

fn (12)

FIG. 15. Snapshots displaying the distribution of contact types
and their role in the force networks for samples (a) S = 0.0 and
(b) S = 0.8. The contact forces are represented by bars between the
centers of grains and their thickness is proportional to the intensity
of the normal contact force. Black bars represent vertex-face and
edge-edge contacts, yellow bars represent edge-face contacts and red
bars represent face-face contacts.

and

〈 ft 〉(θ ) = 1

Nc(θ )

∑

c∈δθ

ft , (13)

where fn and ft are the intensities of the normal and friction
forces. These angular distributions can be observed above of
Fig. 17. The intensity of normal contact forces is strongly
linked to the contact orientation probability Pc(θ ) while the
friction forces are preferentially pointing at such orientation
±45◦. Akin to the branch distributions, we can approximate
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FIG. 16. Average normal contact forces by contact type as a
function of the grain size span.

the forces distributions by Fourier series as

〈 fn〉(θ ) = 〈 fn〉{1 + a fn cos 2(θ − θ fn )} (14)

and

〈 ft 〉(θ ) = 〈 fn〉{a ft sin 2(θ − θ ft )}, (15)

where a fn and a ft quantify the anisotropy in each case and θ fn

and θ ft the preferential orientations.
Figure 17 shows the evolution of the normal and friction

forces anisotropies as a function of the grain size span. We
observe that the anisotropy of forces increases with the size
span and, as observed on the probability density functions of
fn (Figs. 13 and 14), it is related to a broadening of contact
forces as S increases.

Curiously, the friction forces anisotropy remains rather
constant and independent of the grain size span. This is related
to the proportion of sliding contacts in the assembly (i.e., con-
tacts where | ft |/μ fn = 1). Such proportion remains constant

FIG. 17. Evolution of the anisotropy of normal and friction
forces as a function of the grain size span. Error bars represent the
standard deviation of the data. Above, the polar distribution normal
and friction forces for the size spans S = 0, S = 0.4, and S = 0.8.

FIG. 18. Contribution of each type of contact to the macroscopic
shear strength. The total shear strength (black line) is presented
along the contributions of vertex-face contacts (red line), edge-edge
contacts (green line), edge-face contacts (blue line), and face-face
contacts (yellow line).

through all the spans S and all the contact orientations. This
is a fundamental micromechanical similarity that arises from
all the samples independently of the size span and is deeply
linked to the invariability of the shear strength.

VI. SHEAR STRENGTH DECOMPOSITION

A. Contributions by contact type

The macroscopic shear strength can be split to account for
the contributions of each contact type as

q/p = qv f + qee + qe f + q f f

p
, (16)

where qv f , qee, qe f , and q f f are the deviatoric stresses of
partial tensors built after considering only each type of con-
tact. This decomposition lets us estimate the relative levels of
stresses carried by families of contacts.

Figure 18 presents the contributions to the deviatoric
stresses by contact type in parallel with the total shear
strength. We observe that the set of contacts edge-face is
supporting the highest level of deviatoric stresses in the
assemblies while the set of contacts vertex-face (i.e., more
unstable interactions) is supporting relatively lighter stresses.
These results are surprising because, despite the complex
mechanisms evolving related to the connectivity and the force
bearing mechanisms, we can observe that the contributions by
family of contacts remain as well independent of the grain size
span.

Along with the invariance of the macroscopic coordination
number, the stresses partition by contact family is a comple-
mentary micromechanical element behind the shear strength
independence on the grain size span.

B. Microstructural compensations

It is well known that a decomposition of the stress tensor
[Eq. (2)] is possible employing the angular distribution of
branches and contact forces [1,3,59,60]. Such analysis yield
to the conclusion that the macroscopic shear strength, at the
steady flow state, can be estimated through the microstructural
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FIG. 19. Macroscopic shear strength sin(φ)∗ and its estimation
using the microscopic anisotropies. Error bars represent the standard
deviation of the data.

anisotropies as the half sum

sin(φ)∗ � 1
2

(
ac + aln + alt + a fn + a ft

)
. (17)

Figure 19 presents the macroscopic measures of shear
strength using the granular stress tensor and the approxima-
tion using the half sum of anisotropies. As it can be observed,
this micromechanical decomposition allows us to predict very
well the shear strength for our set of samples. Thus, the
macroscopic shear strength independence on grain size span
can be explained by means of the compensations between
the drop of contact anisotropy, the increase of normal forces
anisotropy, and a subtle increment in the branch anisotropies.
Outstandingly, geometrical and force bearing elements are
meeting at the grain and contact scale to produce such invari-
ant macroscopic behavior. The shear strength decomposition
reveals the importance of both the fine characterization of
granular fabric and the suitability of the contacts dynamic
approach to simulate and analyze geometrical and microme-
chanical properties linked to the particle kinematics and con-
tacts network.

Note, however, that Eq. (17) contains some hypotheses and
simplifications that are important to mention. On the one hand,
instead of working with the spherical harmonics of the 3D
distribution of contacts, branches, and forces orientations, we
are simplifying our analysis by projecting these vectors on the
shear plane. This allows us to use simpler Fourier series for
angular distributions. In a generalized 3D case, the branch
vector may present quite different orientation respect to the
corresponding force vector. In effect, an orthonormal compo-
nent to the n-t plane may exist and a third branch orientation
(and anisotropy) should be considered. In our simulations, we
observed that such a third component of � is minimal and
may be discarded of the analysis. For more complex samples
considering nonconvex or platy grains, Eq. (17) may no longer
hold up in part because of disregarding that additional branch
anisotropy.

Also, we assume as well that the fabric tensor and stress
tensor present equal principal orientations. This is not nec-
essarily true during the transient nonsteady flow. For this
reason, this analysis is strictly restrained to the steady state.
Finally, during the development of the stress tensor decompo-
sition, some higher-order products are ignored for the sake of

simplicity of the micro-macro relation. See Ref. [10] for a de-
tailed accounting of high order microstructural anisotropies.

VII. SUMMARY AND PERSPECTIVES

We developed a set of numerical experiments in the frame-
work of the discrete element approach known as contact
dynamics. We built a set of nine samples composed of angular
rigid bodies (octahedra), where the grain size span varied
from a configuration containing equal size particles up to
one containing a uniform distribution of sizes and a ratio
maximum/minimum equivalent diameter ∼10.

By means of periodic shearing of samples composed of
19 000 grains, we analyzed the steady flow state under
quasistatic conditions. It allowed us to generalize to three-
dimensional angular grains the observation that grain size
span does not affect the shear strength although the solid
fraction increases as a broader grain size distribution is con-
sidered.

To explore the microstructural elements behind such be-
havior, we started by analyzing the grain connectivity in terms
of coordination number, the proportions of grains bearing
a given number of contacts, and the proportion of contacts
vertex-face, edge-edge, edge-face, and face-face. Such anal-
ysis revealed that the mean number of contacts per grain
also remains invariable with the size span. This stability of
the coordination number is explained by increments of low-
coordinated particles having two or three contacts and a drop
in more highly coordinated particles bearing four contacts or
more. A family of very connected particles, bearing more than
nine contacts, is also created as the grain size span increases.
However, their proportion is less significant in the description
of the invariability of the macroscopic mean coordination
number with respect to the low-coordinated grains.

We also described the intergranular force bearing in terms
of probability distribution functions of normal contact forces.
Such analysis revealed a broadening of the normal contact
intensities as the grain size span is increased both for very
large and very small forces.

The contact and forces networks were as well analyzed
considering their orientations in space. By means of an anal-
ysis on the shear plane, we could measure the anisotropies
related to the contact orientations, the branch lengths, and
the normal and friction forces. In particular, as the grain size
span increases, the contact anisotropy drops as a consequence
of a richer contact configuration (small grains getting in the
poral space created by bigger grains) while the normal contact
anisotropy increases (broadening of the contact force range),
together with the normal and tangential branch anisotropies.
Finally, we used a decomposition of the stress tensor to
explain the macroscopic shear strength in terms of structural
elements (the anisotropies). Such analysis indicated that the
compensations between the geometrical anisotropies (contact
and branch) and the force transmission anisotropies nicely
explain the invariance of shear strength with grain size dis-
persion.

Throughout this article, we insisted on the force bearing
characteristics of each contact type regarding their connec-
tivity and the relative levels of stress that they can support.
The modeling used in this paper does not allow to account
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explicitly for stress distribution inside the bodies. However,
the modeling and analysis of the effect of size and shape
polydispersity with grains that may break is an interesting per-
spective that will conduct to a conciliation between numerical
approaches, experimental setups and observations.
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