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AdaVol: An Adaptive Recursive Volatility Prediction Method

Nicklas Wergea, Olivier Wintenbergera

aLPSM, Sorbonne Université, 4 place Jussieu, 75005 Paris, France

Abstract

Quasi-Maximum Likelihood (QML) procedures are theoretically appealing and widely used for statistical inference. While there
are extensive references on QML estimation in batch settings, the QML estimation in streaming settings has attracted little attention
until recently. An investigation of the convergence properties of the QML procedure in a general conditionally heteroscedastic time
series model is conducted, and the classical batch optimization routines extended to the framework of streaming and large-scale
problems. An adaptive recursive estimation routine for GARCH models named AdaVol is presented. The AdaVol procedure relies
on stochastic approximations combined with the technique of Variance Targeting Estimation (VTE). This recursive method has
computationally efficient properties, while VTE alleviates some convergence difficulties encountered by the usual QML estimation
due to a lack of convexity. Empirical results demonstrate a favorable trade-off between AdaVol’s stability and the ability to adapt
to time-varying estimates for real-life data.

Keywords: volatility models, quasi-likelihood, recursive algorithm, GARCH, prediction method, stock index

1. Introduction

A crucial issue for time series analysis is modeling het-
eroscedasticity of the conditional variance, e.g., volatility clus-
tering in financial time series. The most known models captur-
ing this feature are the autoregressive conditional heteroscedas-
ticity (ARCH) model and generalized ARCH (GARCH) model
introduced by Engle (1982) and Bollerslev (1986), respectively.
Many reasons can explain these models’ success; they consti-
tute a stationary time series model with a time-varying condi-
tional variance. Another one is that they can model time series
with heavier tails than the Gaussian one, which often occurs in
financial time series.

Quasi-Maximum Likelihood (QML) estimation is widely
used for statistical inference in GARCH models due to their ap-
pealing theoretical nature and tolerance to overdispersion, often
observed in real data. This paper studies the Quasi-Maximum
Likelihood Estimator (QMLE) for the broader class of con-
ditionally heteroscedastic time series models of multiplicative
form given by

Xt = ht(θ0)Zt, t ∈ Z, (1.1)

where θ0 is the true underlying parameter vector and the (non-
negative) volatility process (ht)t∈Z is defined as

ht(θ) = gθ
(
Xt−1, . . . , Xt−p, ht−1(θ), . . . , ht−q(θ)

)
, p, q ≥ 0,

(1.2)

where (Zt) is a sequence of i.i.d. random variables with E[Z0] =

0 and E[Z2
0 ] = 1. Suppose that the parameter set Θ ⊂ Rd and
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{gθ|θ ∈ Θ} denotes the (finite) parametric family of non-negative
functions on Rp × [0,∞)q, fulfilling certain regularity condi-
tions. We also require that ht is Ft−1-measurable where for all
t ∈ Z, Ft = σ(Zk : k ≤ t) denotes the σ-field generated by the
random variables {Zk : k ≤ t}.

The stability of model (1.1)-(1.2) is accomplished under
the assumption that "gθ is a contraction". This condition is
a random Lipschitz coefficient condition where the Lipschitz
coefficient has a negative logarithmic moment. The notion
of contractivity is clarified in Straumann and Mikosch (2006)
where they study QML inference of general conditionally het-
eroscedastic models with emphasis on the approximation (̂ht)
of the stochastic volatility (ht).

QML estimation of the parameters in the class of condition-
ally heteroscedastic time series models has been studied fre-
quently in recent years, see e.g., Berkes et al. (2003), Francq
and Zakoïan (2004), Straumann and Mikosch (2006), and Win-
tenberger (2013). However, all these references consider iter-
ative estimation, where one assembles a batch of data and af-
terward performs the statistical inference. Thus, one evaluates
an objective function consisting of a sum of n loss terms. Each
iteration would then have a cost of O(nd), making the recur-
sion cost O(mnd), where m is the number of iterations. As the
amount of data grows, these optimizers become prohibitively
expensive and increasingly computational inefficient. More-
over, iterative optimizers become unsuitable for streaming set-
tings where we are modeling and predicting data as they arrive.

Many financial practices, such as banks, asset managers, and
financial services institutes, find themselves estimating thou-
sands of volatility models every day for risk and pricing pur-
poses. In addition, the sampling of financial time series is in-
creasingly at high frequency. Therefore, recursive procedures
must undoubtedly be advantageous, since one only processes
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observations once. In recursive QML estimation, we update the
previous QML estimate with the new observations at time t to
yield the QMLE of the parameters at time t.

Thus, in modern statistical analysis, it is becoming increas-
ingly common to work with streaming data where one observes
only a group of observations at a time. Naturally, this has led to
an expanded interest in time-scalable recursive estimation pro-
cedures with a cost of only O(d) computations per recursion,
e.g., see Bottou and Bousquet (2007). However, there has only
been given a little amount of attention to recursive estimation
in conditionally heteroscedastic time series models.

Dahlhaus and Subba Rao (2007) presented a recursive
method to estimate the parameters in an ARCH process. Un-
der sufficient conditions on the underlying process, Aknouche
and Guerbyenne (2006) showed consistency of their recur-
sive least squares method for GARCH processes. Kierkegaard
et al. (2000) also developed a recursive estimation method for
GARCH processes supported by empirical evidence. The au-
thors of Gerencsér et al. (2010) show convergence analysis
of recursive QML estimation for GARCH processes based on
BMP-theory with the use of a resetting mechanism. A self-
weighted recursive estimation algorithm for GARCH models
was proposed by Cipra and Hendrych (2018) with a robustifi-
cation in Hendrych and Cipra (2018). However, none of the
above references mention problems with convexity or estima-
tion of small ω parameter values for GARCH models.

In the setting of streaming data, the difficulty of estimating
time-varying parameters of statistical models increases. To sus-
tain computational efficiency and be adaptive to changes in the
estimates, one may decrease the number of observations in each
iteration in the optimization procedure, which may increase the
statistical inference instability. We propose a natural adapta-
tion of the QML method relying on stochastic approximations
combined with the Variance Targeting Estimation (VTE) tech-
nique called AdaVol. This recursive method is time-scalable
and memory-efficient, as it only requires the previous estimate
to process a new observation, and it only needs to treat observa-
tions once. We present empirical evidence that AdaVol achieves
a favorable trade-off between adaptation ability and stability.

2. QML Estimation in Conditionally Heteroscedastic Time
Series Models

The approximate QMLE θ̂∗n is defined as

θ̂∗n ∈ arg min
θ∈K

L̂n(θ), (2.1)

where the parameter set K is a suitable compact subset of the
parameter space Θ. The QL function Ln(θ) and approximate
QL function L̂n(θ) are, respectively, given by

Ln(θ) =

n∑
t=1

lt(θ) and L̂n(θ) =

n∑
t=1

l̂t(θ), (2.2)

with the QL losses, lt(θ) and l̂t(θ), are defined as

lt(θ) =
1
2

(
X2

t

ht(θ)
+ log ht(θ)

)
and l̂t(θ) =

1
2

 X2
t

ĥt(θ)
+ log ĥt(θ)

 ,
(2.3)

where (̂ht) is an approximation of (ht) defined recursively for
t ≥ 1 thanks to (1.2) with initialization ĥ−q+1 = · · · = ĥ0 = 0
or any deterministic constant. Whatever is the initialization the
error between (̂ht) and the true (ht) will vanish exponentially
fast almost surely from (Straumann, 2005, Proposition 5.2.12).
Assuming that Z0 is standard normal distributed, note that Xt is
also Gaussian with variance ht conditionally on Ft−1. The QL
function Ln(·) in (2.2) is derived under this Gaussian assump-
tion.

The consistency and asymptotic properties of the QMLE θ̂∗n,
combined with the robustness of the QL function for overdis-
persion, make the method highly used in practice (e.g., see Pat-
ton (2006)). Under the conditions in (Straumann and Mikosch,
2006, N.1, N.2, N.3 and N.4), then the QMLE θ̂∗n is strongly
consistent and asymptotically normal, i.e.,

θ̂∗n
a.s.
→ θ0 and

√
n
(̂
θ∗n − θ0

)
→ N (0,V0) as n→ ∞, (2.4)

with θ0 as the true parameter vector and V0 the asymptotic co-
variance matrix.

Unfortunately, these asymptotic properties in (2.4) come
with a drawback on the QL loss; the consistency is achieved
through careful domination of logarithm moments. The con-
cavity of those logarithms makes the criterion insensitive to ex-
treme values, but it also implies that the criterion behaves itself
as a concave function. As most optimization algorithms are
based on convex assumptions, then this is striking.

In the next section, we show that the approximate Hessian
Ĥn(θ) = n−1∇2

θ L̂n (θ) admits strictly positive eigenvalues for
n large enough depending on the model specifications and the
underlying data process. Meaning, for sufficiently large batch
sizes of observations, then the QMLE θ̂∗n can be seen as the
unique solution of a locally strongly convex optimization prob-
lem; the existence and uniqueness of θ̂∗n ensure that usual iter-
ative optimization routines can efficiently approximate it for n
large enough.

2.1. Asymptotic Convex Properties of the QL Function
To establish the asymptotic local convexity of the QL func-

tion of model (1.1)-(1.2), we need the following assumptions;
Assumption W1, W2, and W3, which naturally emerges by the
arguments and properties (Straumann and Mikosch, 2006, N.1,
N.2, N.3 and N.4) made to ensure stability of the QL function
and QMLE procedure. We will use two different matrix norms:
let ‖A‖op denote the matrix operator norm of matrix A ∈ Rd×d

with respect to the Euclidean norm, i.e., ‖A‖op = supv,0 |Av|/|v|.
Denote ‖A‖K the norm of the continuous matrix-valued func-
tion A on K , i.e., ‖A‖K = supx∈K‖A(x)‖op, where K is a com-
pact set of Rd.

Assumption W1. Assume model (1.1)-(1.2) with θ = θ0 ad-
mits a unique stationary ergodic solution.
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Assumption W2. Assume K ⊂ Θ is a compact set with
true parameter vector θ0 ∈ K in the interior. The random
functions fulfill certain conditions, such that E[‖l0‖K ] < ∞,
E[‖∇2

θ l0‖K ] < ∞, and further have the following uniform con-
vergences: ‖n−1L̂n − Ln‖K

a.s.
−→ 0 and n−1‖∇2

θ L̂n −∇
2
θLn‖K

a.s.
−→ 0

for n→ ∞.

Assumption W3. Assume the components of the vector
∇θgθ(X0, h0) from (1.2) with θ = θ0 are linearly independent
random variables.

The following Theorem 2.1 is an extension of Ip et al. (2006),
which established similar results for the likelihood function of
GARCH models under the assumption that (Xt) is strictly sta-
tionary and strongly mixing with geometric rate, and (Zt) is
Gaussian. Solving the QML estimation problem in (2.1) for
θ̂∗n is known to be computationally heavy since one has to find
the solution of the non-linear equation (2.2). Nonetheless, The-
orem 2.1 ensures the existence of an N such that we have a
unique global QMLE θ̂∗n.

Theorem 2.1. Under Assumption W1, W2, and W3, there exist
positive constants C, δ > 0, and a random positive integer N ∈
N+ such that we have

gT Ĥn(θ)g > CgT g, ∀n ≥ N, a.s., (2.5)

for all θ ∈ B(θ0, δ) with g ∈ Rd \ {0}.

The results above shows local strong convexity of the QL
function L̂n. The following corollary arises from the proof of
Theorem 2.1:

Corollary 2.1. Under Assumption W1, W2, and W3, the QMLE
θ̂∗n exists and is unique, namely

θ̂∗n = arg min
θ∈K

L̂n(θ).

Local strong convexity is crucial for guaranteeing conver-
gence of an optimization algorithm. Thus, Theorem 2.1 is an
essential result to compute the QMLE θ̂∗n for the parameters
in model (1.1)-(1.2). Nevertheless, to guarantee the property
in (2.5), we need a sufficiently large (and maybe unbounded)
random N, which depends on the true parameter vector θ0, the
parameter estimates (̂θ∗t ), and the observations (Xt). One often
has a fixed size of observations in practice, so the iterative algo-
rithm may not converge. To our experience, this phenomenon
will occur when the true parameter vector θ0 is near the bound-
ary of K or if the initial values θ̂∗0 are far away from the true
parameters θ0.

2.2. QML Estimation of GARCH(p, q) Parameters
The general class of conditionally heteroscedastic time series

models includes the very popular ARCH and GARCH models.
For more than three decades, these models have attracted con-
siderable amounts of attention in the literature since their intro-
duction. A process (Xt) is called a GARCH(p, q) process with
parameter vector θ = (ω, α1, . . . , αp, β1, . . . , βq)T if it satisfiesXt = σtZt,

σ2
t = ω +

∑p
i=1 αiX2

t−i +
∑q

j=1 β jσ
2
t− j,

(2.6)

where ω, αi, and β j for 1 ≤ i ≤ p and 1 ≤ j ≤ q are non-
negative parameters ensuring the non-negativity of the condi-
tional variance process (σ2

t ). The innovations (Zt) is a sequence
of i.i.d. random variables with E[Z0] = 0 and E[Z2

0 ] = 1. Like-
wise, one can define an ARCH(p) process by setting β j = 0 for
1 ≤ j ≤ q in (2.6). The GARCH(p, q) process (Xt) given in
(2.6) has QL losses given by l̂t(θ) = 2−1(X2

t /σ̂
2
t (θ) + log σ̂2

t (θ)),
with first derivative

∇θ̂lt(θ) = ∇θσ̂
2
t (θ)

(
σ̂2

t (θ) − X2
t

2σ̂4
t (θ)

)
(2.7)

and second derivate

∇2
θ l̂t(θ) = ∇θσ̂

2
t (θ)T∇θσ̂

2
t (θ)

(
2X2

t − σ̂
2
t (θ)

2σ̂6
t (θ)

)
+ ∇2

θσ̂
2
t (θ)

(
σ̂2

t (θ) − X2
t

2σ̂4
t (θ)

)
,

(2.8)

where ∇θσ̂2
t (θ) = ϑt(θ) +

∑q
j=1 β j∇θσ̂

2
t− j(θ) with ϑt(θ) =

(1, X2
t−1, . . . , X

2
t−p, σ̂

2
t−1(θ), . . . , σ̂2

t−q(θ))T ∈ Rp+q+1 and Hessian
Ĥn(θ) = n−1 ∑n

t=1 ∇
2
θ l̂t(θ).

The equations (2.6) creates a complicated probabilistic struc-
ture that is not easily understood, although it looks rela-
tively simple. The conditions ensuring the existence and
uniqueness of a stationary solution to the equations (2.6) for
GARCH(1, 1) was provided by Nelson (1990). Bougerol and
Picard (1992) later showed it for the GARCH(p, q) model us-
ing that GARCH(p, q) can be embedded in a Iterated Random
Lipschitz Map (IRLM). See Bougerol (1993) for a formal defi-
nition of IRLMs.

We can illustrate the IRLM method on the GARCH(1, 1)
model with parameter vector θ = (ω, α1, β1)T . The IRLM
for σ2

t is then given by σ2
t = Atσ

2
t−1 + Bt with t ∈ Z where

At = α1Z2
t−1 + β1 and Bt = ω. Remark that ((At, Bt)) constitutes

an i.i.d. sequence. From the literature on IRLMs, it is well
known that the conditions E[log |A0|] < 0 and E[log+ |B0|] < ∞
guarantee the existence and uniqueness of a strictly station-
ary solution of the IRLM Yt = AtYt−1 + Bt for t ∈ Z pro-
vided ((At, Bt)) is a stationary ergodic sequence. Applying
this to the GARCH(1, 1) model, we get the known sufficient
condition for the existence of a stationary solution, namely
E[log(α1Z2

0 + β1)] < 0. This also implies β1 < 1 since
log(β1) ≤ E[log(α1Z2

0 + β1)] < 0. Likewise, the ARCH(1)
process (β1 = 0) then requires E[log(α1Z2

0 )] < 0, which is the
same as α < 2eε ≈ 3.56 with Z0 Gaussian. Thus, the station-
ary condition is much weaker than the second-order stationary
condition in which we demand α1 + β1 < 1.

The statistical inference leads to further nontrivial problems
since the exact distribution of (Zt) remains unspecified, and thus
one usually determines the likelihoods under the hypothesis of
standard Gaussian innovations. Moreover, the volatility (σt) is
an unobserved quantity approximated by mimicking the recur-
sion (2.6) with an initialization X−p+1 = · · · = X0 = 0 and
σ2
−q+1 = · · · = σ2

0 = 0 (for example). Berkes et al. (2003)
showed under minimal assumptions that the QMLE is strongly
consistent and asymptotically normal.

Furthermore, under Assumption W1-W3, we have asymp-
totic local strong convexity of the QL function in GARCH(p, q)
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models by Theorem 2.1. However, the number of observa-
tions needed to guarantee local strong convexity vary. This
can easily be seen by looking at the simplest case, namely,
where (Xt) follows an ARCH(1) process with parameter vector
θ = (ω, α1)T . The volatility processσ2

t (θ) is given asω+α1X2
t−1.

The eigenvalues of ∇2
θ lt(θ) is given by λt = (λt,1, λt,2) = (0, λt,2)

with λt,2 = (1 + X4
t−1)(2X2

t − σ
2
t (θ))2−1σ−6

t (θ). Thus, the non-
negativity of λt,2 would ensure convexity at time t in our QML
procedure. However, the probability of having convexity at
each t is unlikely as P(∩n

t=1∇
2
θ lt(θ) ≥ 0) = P(∩n

t=1Z2
t ≥ 1/2) =

P(Z2
0 ≥ 1/2)n is approximately 0.52n with i.i.d. Gaussian inno-

vations (Zt), i.e., (Z2
t ) is chi-squared distributed with 1 degree

of freedom, Z2
0 ∼ χ

2
1. On the opposite side, increasing the num-

ber of observations used at each iteration would increase the
probability of having local strong convexity.

3. Adaptive Recursive QML Estimation

Our recursive QML method relies on stochastic approxima-
tions introduced by Robbins and Monro (1951), which only re-
quires the previous parameter estimate at each iterate to update
the parameter estimate using the new observation. We perform
the first-order stochastic gradient method defined as

θ̂t = θ̂t−1 − ηt−1∇θ̂lt (̂θt−1), (3.1)

where ηt−1 > 0 is the step-size at the t − 1 step, and ∇θ̂lt (̂θt−1)
is the gradient using the Xt observation and the QMLE esti-
mate θ̂t−1. This method is computationally efficient as it only
requires a cost of O(d) per recursion. Depending on the number
of observations, we have a trade-off between the accuracy of
the recursive QML estimates and the time it takes to perform a
parameter update (Bottou and Bousquet (2007)).

According to Robbins and Monro (1951), we must sched-
ule the step-size such that

∑∞
t=1 ηt = ∞ and

∑∞
t=1 η

2
t < ∞. But

these bounds do not make the choice of an appropriate step-
size ηt easier in practice. A more suitable approach is an adap-
tive learning rate which update the step-size in (3.1) on the
fly pursuant to the gradient ∇θ̂lt(·). Thus, our choice of step-
size ηt have less impact on performance, making convergence
more robust and lower the demand for manually fine-tuning.
Such an approach is often used in settings of streaming data as
generic methods are preferred. Adaptive and separate learning
rates for each parameter was proposed by Duchi et al. (2011)
in their AdaGrad procedure. A different learning rate speeds up
convergence in situations where the appropriate learning rates
vary across parameters. Other well-known examples of adap-
tive learning rates could be AdaDelta by Zeiler (2012), RM-
SProp by Tieleman and Hinton (2012) and ADAM by Kingma
and Ba (2015). As we may expect a lack of convexity, we select
the AdaGrad algorithm since it has shown promising results in
non-convex optimization (Ward et al. (2018)). The AdaGrad
procedure is given by the updates

θ̂t = θ̂t−1 −
η√∑t

i=1 ∇θ̂li (̂θi−1)2 + ε

∇θ̂lt (̂θt−1), (3.2)

(thought element-wise) where η > 0 is a constant learning rate
and ε > 0 a small number ensuring positivity. Good default
values are η = 0.1 and ε = 10−8, e.g., see AdaVol on page 5.
Note ∇θ̂li (̂θi−1)2 indicates the element-wise square ∇θ̂li (̂θi−1) �
∇θ̂li (̂θi−1).

As the QL loss is defined only for θ̂n ∈ K , we will require
that the recursive algorithm always lies inK . Zinkevich (2003)
suggests we project our approximation θ̂n onto K , preventing
large jumps and enforcing our stochastic gradient method to
converge. By implementing this projection on (3.2), we have
our method for updating estimates:

θ̂t = PK

̂θt−1 −
η√∑t

i=1 ∇θ̂li(̂θi−1)2 + ε

∇θ̂lt (̂θt−1)

 . (3.3)

3.1. Adaptive Recursive QML Estimation for GARCH Models
The GARCH process (Xt) parameters are numerically chal-

lenging to estimate in empirical applications. The numerical
optimization algorithms can quickly fail or converge to irregular
solutions (Zumbach (2000)). Therefore, examining the approx-
imative QMLE θ̂∗n must be made with a healthy dose of skepti-
cism. A well-discussed problem for the GARCH(p, q) models
is that the QMLE performs poorly for numerically small (but
still positive) ω values. The parameter ω is a vital and often
tricky parameter to estimate. Stabilizing the estimation of ω
would not only improve the ω estimate but also have a positive
impact on the other model parameters.

On way to overcome small ω values for the GARCH(p, q)
model is by scaling (Xt) with some factor λ > 0 as we have
homogeneity; let (Xt) follow a GARCH(p, q) process with pa-
rameter vector θ = (ω, α1, . . . , αp, β1, . . . , βq)T and innovations
(Zt). Then for any λ > 0, the process (

√
λXt) is a GARCH(p, q)

process with parameter vector θ = (λω, α1, . . . , αp, β1, . . . , βq)T

and identical innovations (Zt).
However, we wish to avoid this form of inference in our re-

cursive algorithm as one then needs to come up with a scal-
ing parameter that has to be estimated beforehand. Instead, we
comprehend this issue by introducing a concept called Vari-
ance Targeting Estimation (VTE) (Francq et al. (2011)). We
apply VTE for estimating ω by use of γ2, which is the uncon-
ditional variance estimated by the sample variance, as seen in
(3.4). Thus we have a two-step estimator where we estimate the
sample variance γ2 recursively, and the remaining parameters
θ = (α1, . . . , αp, β1, . . . , βq)T is estimated by the QML method.
The pseudo-code of our proposed adaptive recursive algorithm
is presented in AdaVol on page 5. The reparametrization is ob-
tained by defining

ω = γ2

1 − p∑
i=1

αi −

q∑
j=1

β j

 . (3.4)

The volatility process in the GARCH(p, q) process can then be
rewritten as

(σ2
t − γ

2) =

p∑
i=1

αi(X2
t−i − γ

2) +

q∑
j=1

β j(σ2
t− j − γ

2). (3.5)
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Similarly, one can define an ARCH(p) process by setting β j = 0
for 1 ≤ j ≤ q. The GARCH(p, q) process (Xt) in (3.5) has
similar QL losses as before except ∇θσ̂2

t (θ) in (2.7) and (2.8)
where ϑt(θ) is given as (X2

t−1 − γ2, . . . , X2
t−p − γ2, σ̂2

t−1(θ) −
γ2, . . . , σ̂2

t−q(θ) − γ2)T ∈ Rp+q and the corresponding K =

{(α1, · · · , αp, β1, . . . , βq) ∈ Rp+q
+ |

∑p
i=1 αi +

∑q
j=1 β j < 1}.

AdaVol: Adaptive recursive QML estimation for
GARCH(p, q) models using the technique of VTE.

Data: (Xt)t≥1 (observations)
input : θ̂0 (initial parameter vector), η = 0.1, ε = 10−8

begin
initialize: σ̂2

1 = X2
1 , µ̂0 = 0, γ̂2

0 = 0, Ĝ0 = ε and t = 0
while θ̂t not converged do

t = t + 1
µ̂t = t(t + 1)−1µ̂t−1 + (t + 1)−1Xt

γ̂2
t = (t − 1)t−1γ̂2

t−1 + t−1 (
Xt − µ̂t

)2

ĝt = ∇θ̂lt (̂θt−1)
Ĝt = Ĝt−1 + ĝ2

t

θ̂t = PK
[̂
θt−1 − ηĜ−1/2

t ĝt

]
σ̂2

t+1 = γ̂2
t +

∑p
i=1 α̂

(t)
i (X2

t−i−γ̂
2
t )+

∑q
j=1 β̂

(t)
j (σ̂2

t− j−γ̂
2
t )

end
end
Result: θ̂t (resulting estimates), σ̂2

t+1 (predicted
volatility)

The VTE ensures a consistent estimate of the long-run vari-
ance, even if the model is misspecified. Additionally, given γ is
well estimated, we reduce the parameter space dimension and
increase the speed of convergence of the recursive optimization
routines. Moreover, the friendly geometry of the new set of op-
timization K lets the projection step in (3.3) being efficiently
implemented following Duchi et al. (2008).

One should be aware that the VTE requires stronger assump-
tions for the existence of the variance and is likely to suffer
from efficiency loss. Francq et al. (2011) also showed that
the VTE would never be asymptotically more accurate than the
QMLE. Another drawback of using the VTE is the need for a
finite fourth moment of the process (Xt). Meaning, one would
need α1 < 0.57 for an ARCH(1) model using standard Gaus-
sian noise as EX4

t < ∞ if and only if α2
1 +(EZ4

0−1)α2
1 < 1. For a

GARCH(1, 1) model, we should have (α1 +β1)2 +(EZ4
0−1)α2

1 <
1. These parameter bounds restrict the usefulness and range of
applications for the VTE techniques. Fortunately, these con-
straints solely concern the batch setting.

4. Applications

In this section, we apply AdaVol on simulated and real-life
observations. Our implementation of AdaVol is provided in a
repository at Werge (2019). We compare our approach to the It-
erative QMLE (IQMLE) approximation θ̃n, which is estimated
at every two thousand incremental using all observations up to

this point, i.e., (̃θt)(k−2000)+1≤t≤k is estimated using (Xt)1≤t≤k for
k = 2000, 4000, . . . , n. In this way, we illuminate the large-
scale learning trade-off of applying our recursive method in-
stead of the iterative method, which is forward-looking with up
to two thousand observations (Bottou and Bousquet (2007)). As
suggested by Ip et al. (2006), we use the (bounded) L-BFGS al-
gorithm to solve the nonlinear optimization problem in (2.1) for
θ̃n with initial guess θ̃0 ∈ K . Our recursive QMLE approxima-
tion θ̂n produced by AdaVol, is described in Section 3.1 for the
GARCH(p, q) model. It takes our initial value θ̂0 ∈ K , learning
rate η = 0.1 and ε = 10−8 as input. At last, for a fair com-
parison, we always use the same initial guess for both methods,
namely θ̂0 = θ̃0 ∈ K .

It is possible to customize AdaVol by tuning the learning pa-
rameter η, e.g., by choosing the best performing learning rate
evaluated on the first part of the observations. We use a fixed
learning rate η = 0.1 across all applications, both for simu-
lations and real-life observations, to clarify our comparisons
without the potential influence coming from the learning rate.
However, one should be aware of the versatility one can achieve
by different learning rate choices. The choice of learning rates
is cumbersome, as an excessive learning rate can cause the algo-
rithm to deviate from the true parameter estimate. In contrast,
too small a learning rate can lead to slow convergence. Never-
theless, a small learning rate may be preferred if one only wants
to keep track of minor parameter estimates changes.

4.1. Simulations

All simulations are performed by the use of twenty thousand
observations (n = 20000), and the simulated data (Xt) is always
generated using Gaussian innovations with zero mean and unit
variance.

4.1.1. ARCH Models
As discussed before, the iterative QMLE approximation θ̃n

performs poorly for numerically small ω > 0 values, which are
often encountered in financial time series. Before moving to
the case of small ω parameter values, we have in Figure 1 the
trajectories of both QMLE approximations using an ARCH(1)
process with true parameter vector and initial values given by

θ0 =

(
ω
α1

)
=

(
2.0
0.6

)
and θ̂0 = θ̃0 =

(
1.5
0.4

)
. (4.1)

Figure 1 shows a very reasonable convergence of both esti-
mators, θ̂n = (ω̂(n), α̂(n)

1 )T and θ̃n = (ω̃(n), α̃(n)
1 )T , when the true

parameter ω = 2.0. Not surprisingly, our method experiences
some fluctuations initially, but as the learning rate decreases,
the fluctuation evaporates, and within the first handful of thou-
sand observations, we hit the true parameter values.

Likewise, in Figure 2, we have the QMLE approximations’
trajectories for an ARCH(1) process but now with true parame-
ter vector and initial guess given as

θ0 =

(
1 · 10−8

0.6

)
and θ̂0 = θ̃0 =

(
5 · 10−8

0.4

)
. (4.2)
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Figure 1: Trajectory of θ̂n (solid line) and θ̃n (semi-dotted line) for an ARCH(1)
process with true parameter vector (dotted line) and initial guess given in (4.1).

Figure 2 indicates a modest convergence of θ̂n but shows slow
convergence of α̃n towards the true α1 parameter. In addition,
α̃n seems bias concerning the initial value α̃0 = 0.4 as it pro-
cesses almost half of the observations before moving closer to
the true α1 = 0.6.

Figure 2: Trajectory of θ̂n (solid line) and θ̃n (semi-dotted line) for an ARCH(1)
process with true parameter vector (dotted line) and initial guess given in (4.2).

A way of demonstrating the variation of θ̂n and θ̃n perfor-
mance for small ω values is presented in Figure 3 and Figure 4,

where we have the average trajectory of one hundred trajecto-
ries with their corresponding boxplots showing the distribution
of these one hundred trajectories.

Figure 3: Average trajectory (solid line) of one hundred θ̂n’s for an ARCH(1)
process with true parameter vector (dotted line) and initial guess from (4.2).
The boxplots shows the distribution of the one hundred trajectories.

Figure 4: Average trajectory (solid line) of one hundred θ̃n’s for an ARCH(1)
process with true parameter vector (dotted line) and initial guess from (4.2).
The boxplots shows the distribution of the one hundred trajectories.

Here, in Figure 3, we can see that AdaVol converges to the
true parameter values with low sensitivity respect to the initial
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values. Moreover, this convergence occurs within the first few
thousand observations. However, in Figure 4, we see the op-
posite in which θ̃n have convergence issues; it is consistently
underestimating the ω parameter. Furthermore, the α1 param-
eter range does not appear to be decreasing over time, and the
range seems larger than AdaVol’s.

As we observe the true volatility process (σt) in this section,
we can evaluate the predicted volatility processes’ accuracy. We
do this using the Mean Percentage Errors (MPE) given as

σ̂MPE =
1
n

n∑
t=1

σt − σ̂t

σt
and σ̃MPE =

1
n

n∑
t=1

σt − σ̃t

σt
, (4.3)

and the Mean Absolute Percentage Errors (MAPE) given by

σ̂MAPE =
1
n

n∑
t=1

|σt − σ̂t |

σt
and σ̃MAPE =

1
n

n∑
t=1

|σt − σ̃t |

σt
, (4.4)

where (σ̂t) is coming from AdaVol and (σ̃t) from the IQMLE
approximation. Note that σ̃t’s estimation is the same as for
the IQMLE approximation θ̃t, i.e., (σ̃t)(k−2000)+1≤t≤k is estimated
using (Xt)1≤t≤k for k = 2000, 4000, . . . , n.

Boxplots of one hundred accuracy scores, MPE in (4.3) and
MAPE in (4.4), can be found in Figure 5. To avoid possible
bias due to the choice of the true parameter vector θ0 and initial
values θ̂0, θ̃0, we calculate the accuracy scores with a random
parameter vector θ0 ∈ K and random initial guesses θ̂0, θ̃0 ∈ K .
In the top graph of Figure 5, one can observe that the MPE
for both methods is symmetric around zero, but σ̃MPE has a
negative tail (meaning the iterative method may overestimate
the volatility in some cases). Also, the spread of σ̃MPE is higher
than the σ̂MPE, which is clearly seen by looking at σ̃MAPE in the
bottom graph of Figure 5.

Another way of measuring the accuracy can be made by
studying the conditional quantiles using the recursive (σ̂t) and
iterative (σ̃t) predicted volatility processes (Biau and Patra
(2011)). Under the assumption of standard Gaussian innova-
tions, Xt is Gaussian with zero mean and variance σ2

t . Thus,
for any α ∈ (0, 1), the α-quantile of a Gaussian distribution
N(0, σ2

t ) is σtΦ
−1(α), where Φ−1(α) is the α-quantile of the

standard Gaussian one. We use the so-called α-quantile loss
function proposed by Koenker and Bassett (1978): The α-
quantile loss function ρα using the volatility process σt is de-
fined as

ρα(Xt, σt) =

α
(
Xt − Φ−1(α)σt

)
, for Xt > Φ−1(α)σt,

(1 − α)
(
Φ−1(α)σt − Xt

)
, for Xt ≤ Φ−1(α)σt,

(4.5)

with tilting parameter α ∈ (0, 1). The idea behind the α-quantile
loss function is to penalize quantiles of low probability more for
overestimation than for underestimation (and contrariwise in
high probability quantiles). We evaluate across the α-quantile
scores ρα of (σt) by the (normalized) cumulative α-quantile
scoring function QS α:

QS α(Xn, σn) =
1
n

n∑
t=1

M∑
m=1

ραm (Xt, σt), (4.6)

Figure 5: Boxplots of one hundred accuracy scores MPE (4.3) and MAPE (4.4)
using an ARCH(1) process with random true parameter vector and initial guess
in K .

with M as the number of quantiles α = {α1, . . . , αM}. The low-
est QS α score indicates the best ability of volatility forecast.
The findings of one hundred QS α(Xn, σ̂n) and QS α(Xn, σ̃n)
scores, with α = {0.01, 0.02, . . . , 0.99} and random true parame-
ter vector and random initialization inK , is presented in Figure
6. The QS α scores in Figure 6 are indistinguishable. This indi-
cates no loss of generality in using our recursive method even
though our estimates are calculated once, making them more
adaptable over time. Surprisingly, the iterative method is not
superior, even when forward-looking (with up to two thousand
observations).

Figure 6: Boxplots of one hundred QS α scores with α = {0.01, 0.02, . . . , 0.99}
using an ARCH(1) model with random true parameter vector and initial value
in K .

4.1.2. GARCH Models
Figure 7 and 8 shows the trajectories of the parameter es-

timates θ̂n = (ω̂(n), α̂(n)
1 , β̂(n)

1 )T and θ̃n = (ω̃(n), α̃(n)
1 , β̃(n)

1 )T for a
GARCH(1, 1) model with the true parameter vector and initial
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guess given by

θ0 =

ωα1
β1

 =

1 · 10−8

0.2
0.7

 and θ̂0 = θ̃0 =

5 · 10−8

0.1
0.8

 . (4.7)

As for the ARCH(1) model, we observe a lower spread in the
parameter trajectories coming from AdaVol θ̂n than from the
IQMLE approximation θ̃n. Moreover, the iterative θ̃n is consis-
tently overestimating the β1 parameter (and underestimating the
α1 parameter), indicating a bias relative to the initial value. It is
worth mentioning that even if all initial values in the stationary
region, i.e., θ̂0 = θ̃0 = θ0 ∈ K , we still have a proper amount of
fluctuation in the parameter trajectories. As discussed before,
this may partially be due to the volatility the recursive gradi-
ent method introduces and the flatness of the QL loss (Zum-
bach (2000)). Nevertheless, our recursive method possesses a
remarkable convergence already after the first few thousand ob-
servations.

Figure 7: Average trajectory (solid line) of one hundred θ̂n’s for a GARCH(1, 1)
process with true parameter vector (dotted line) and initial guess given in (4.7).
The boxplots shows the distribution of the one hundred trajectories.

The accuracy scores, namely MPE from (4.3) and MAPE
from (4.4), can be found in Figure 9 for the GARCH(1, 1)
model using random true parameter vector and random initial

Figure 8: Average trajectory (solid line) of one hundred θ̃n’s for a GARCH(1, 1)
process with true parameter vector (dotted line) and initial guess given in (4.7).
The boxplots shows the distribution of the one hundred trajectories.

values in K . By comparing our methods using random initial-
izations, we circumvent the possible bias from the initial guess,
which we observed in Figure 8 for the iterative method. As
in the ARCH(1) case, we obtain a lower spread for σ̂MPE than
σ̃MPE. Nevertheless, one should still expect some likelihood to
end up with an irregular solution where the AdaVol algorithm
fails to converge.

Figure 10 presents the results of one hundred QS α scores
with random true parameter vector and initial value in K .
Again, the QS α scores are indistinguishable (even when the it-
erative method is forward-looking).

4.2. Real-life Observations

We will now demonstrate AdaVol’s abilities on real-life ob-
servations showing how our technique works in practice. Table
1 shows an overview of the used stock market indices. All em-
pirical studies use the GARCH(1, 1) model, but higher-order
parameters may yield a better fit for some stock market indices.
As the observation period spans over a long time, it is unlikely
that the log-return series is stationary. To exhibit AdaVol’s abil-
ity to adapt to time-varying estimates, we begin by considering
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Figure 9: Boxplots of one hundred accuracy scores MPE (4.3) and MAPE (4.4)
using a GARCH(1, 1) process with true parameter vector and random initial
guess in K .

Figure 10: Boxplots of one hundred QS α scores with α = {0.01, 0.02, . . . , 0.99}
using the GARCH(1, 1) model with random true parameter vector and initial
value in K .

the S&P500 Index in Section 4.2.1. Afterward, in Section 4.2.2,
we investigate the remaining six stock market indices presented
in Table 1, namely the CAC, DAX, DJIA, NDAQ, NKY, and
RUT index.

Stock Market Index Period
CAC 40 (CAC) March 1990 - Sep. 2020
DAX 30 (DAX) Jan. 1988 - Sep. 2020
Dow Jones (DJIA) Feb. 1985 - Sep. 2020
NASDAQ Composite (NDAQ) Feb. 1971 - Sep. 2020
Nikkei 225 (NKY) Jan. 1965 - Sep. 2020
Russell 2000 (RUT) Nov. 1987 - Sep. 2020
Standard & Poor’s 500 (S&P500) Jan. 1950 - Sep. 2020

Table 1: Overview of considered stock market indices including their observa-
tion periods. The observations consist of daily log-returns which are defined as
log differences of the closing prices of the index between two consecutive days.

4.2.1. Application to the S&P500 Index
We apply our method on the S&P500 Index from January

1950 to September 2020, consisting of n = 17672 observations
to test real-life data performance. We employ the GARCH(1, 1)
model with initial values:

θ̂0 = θ̃0 =

5 · 10−5

0.05
0.9

 . (4.8)

The QML trajectories can be seen in Figure 11: The produced
AdaVol estimates θ̂n = (ω̂(n), α̂(n)

1 , β̂(n)
1 )T experience some fluc-

tuations initially, but as it vaporizes, it is clear that our estimates
change over time. Most remarkably is the shifts our estimates
make around some historical market crashes, e.g., Black Mon-
day, the financial crisis and COVID-19. The instantly shifts in
our estimates is an appealing property for detecting structural
breaks. It is noteworthy that the estimates of the IQMLE ap-
proximation θ̃n = (ω̃(n), α̃(n)

1 , β̃(n)
1 )T are predominantly constant

over time with minor changes except for some years between
1990 and 2000, where we detect a shift to lower β̃(n)

1 values and
higher ω̃(n) values.

Figure 11: Trajectory of the recursive θ̂n (solid line) and iterative θ̃n (semi-
dotted line) QML estimate using a GARCH(1, 1) model on S&P500 Index log-
returns from year 1950 to 2020. Both methods use initial value given in (4.8).

In Figure 12, we have the log-returns rt of the S&P500 Index,
and the confidence intervals r̄± 1.96σ̂t and r̄± 1.96σ̃t using the
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recursive σ̂t and iterative σ̃t predicted volatilities, where r̄ is the
mean of the log-returns rt. It seems that the recursive method σ̂t

adapts more rapidly than the iterative one σ̃t to changes in the
S&P500 Index observations rt. Especially in Figure 12, under
the COVID-19 crisis, we encountered a period with a substan-
tial volatility increase. Here, we observe σ̂t’s ability to track
changing volatilities better than σ̃t.

Figure 12: Log-returns rt of S&P500 Index (solid lines) and confidence inter-
vals r̄ ± 1.96σ̂t and r̄ ± 1.96σ̃t (dotted lines) using the recursive σ̂t (blue) and
iterative σ̃t (red) predicted volatilities, where r̄ is the mean of the log-returns rt .
From top to bottom, we have Jan. 1950 to Jan. 1952, Jan. 1985 to Jan. 1987,
and Jan. 2019 to Sep. 2020.

In the absence of the right (unobserved) variance process
(σ2

t ), the efficiency of our recursive (σ̂t) and the iterative (σ̃t)
volatility can be appraised with the use of the squared log-
returns (r2

t ). We use the Mean Absolute Errors (MAE) defined
by

σ̂2
MAE =

1
n

n∑
t=1

|r2
t − σ̂

2
t | and σ̃2

MAE =
1
n

n∑
t=1

|r2
t − σ̃

2
t |. (4.9)

In Table 2, we the MAEs for the same periods used in Figure

12, including for the full dataset. The results in Table 2 confirm
our conclusions about Figure 12; the AdaVol method tracks the
volatility better than the iterative method.

Period σ̂2
MAE σ̃2

MAE
Jan. 1950 - Jan. 1952 8.2388 8.9049
Jan. 1985 - Jan. 1987 7.1214 7.4723
Jan. 2018 - Sep. 2020 26.9205 30.4775
Jan. 1950 - Sep. 2020 10.1861 10.6731

Table 2: MAEs (4.9) using log-returns rt of S&P500 Index with the recursive
σ̂t and iterative σ̃t predicted volatilities. Both methods has initial value given
in (4.8). The σ̂2

MAE and σ̃2
MAE numbers are scaled by 10−5.

Figure 13 contains the results of one hundred QS α scores
using the recursive (σ̂t) and iterative (σ̃t) volatility process,
respectively, with random initial values in K . Remarkably,
AdaVol outperforms the iterative method, although the latter
uses future information, i.e., (σ̃t)(k−2000)+1≤t≤k is estimated us-
ing (rt)1≤t≤k for k = 2000, 4000, . . . , 16000, 17505. Thus, indi-
cating that one could achieve better performance using the re-
cursive method, even if it only predicts volatility using previous
information.

Figure 13: Boxplots of one hundred QS α scores with use of the recursive σ̂t and
iterative σ̃t volatility process, respectively, for α = {0.01, 0.02, . . . , 0.99}, using
the GARCH(1, 1) model on the log-returns rt of S&P500 Index with random
initial value in K .

4.2.2. Other Stock Market Indices
We now extend our analysis with the remaining stock market

indices from Table 1, namely the CAC, DAX, DJIA, NDAQ,
NKY, and RUT index. In Figure 14, we can observe AdaVol’s
ability to adapt to time-varying parameters seems to hold for
several stock market indices. These figures show a clear benefit
in recursive estimation as it increases adaptivity that may be
advantageous under a financial crisis such as the COVID-19.

These conclusions are confirmed in Figure 15, where we
have one hundred QS α scores using the recursive (σ̂t) and iter-
ative (σ̃t) volatility process with random initial values inK . As
for the S&P500 Index (in Figure 13), our findings indicate that
the recursive approach estimates the QS α quantiles better than
the iterative method, both on average and with a lower spread.

The assumption of having an underlying data generation pro-
cess with constant "true" parameters may not hold in real-life
examples. Thus, AdaVol seems to have an advantage compared
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Figure 14: Log-returns rt of the CAC (top-left), DAX (top-right), DJIA (mid-left), NDAQ (mid-right), NKY (bottom-left) and RUT (bottom-right) index (solid
lines) and confidence intervals r̄ ± 1.96σ̂t and r̄ ± 1.96σ̃t (dotted lines) using the recursive σ̂t (blue) and iterative σ̃t (red) predicted volatilities, where r̄ is the mean
of the log-returns rt . The period is Jan. 2019 to Sep. 2020.

to the iterative method, as it estimates the parameters step-by-
step. In contrast, the iterative method always has to estimate
the parameters using all observations over an extensive period
of time.

5. Discussion

We proved asymptotic local convexity of the QL function
in general conditionally heteroscedastic time series models of
multiplicative form. An interesting question arises: can one
prove Theorem 2.1 for a bounded set of N observations? Ex-
pressed differently, can one find a N bounded, such that we
have convergence/convexity of recursive algorithms, e.g., for
the GARCH, EGARCH, and AGARCH models. To our knowl-
edge, this has not been proved yet.

We proposed an adaptive approach to recursively estimate

GARCH model parameters in a streaming setting using the
VTE technique (AdaVol). AdaVol’s design showed to produce
resilient and adaptive estimates in our empirical investigations.
The adaptation to time-varying parameters was a surprising ad-
vantage that appeared when we applied our method to real-life
observations. As the assumption of having constant estimates
seems not to be the case for the stock indices we analyze, then
it is beneficial to have the ability to adapt. One could facilitate
this ability more by incorporating a rolling volatility estimation
of γ instead of using the sample volatility. Combining this with
a different learning rate than AdaGrad, which enables contin-
uous learning (e.g., ADAM by Kingma and Ba (2015)), could
encourage adaptability.

The stability of using our recursive approach to solve the
QML problem could be improved by using a mini-batch ap-
proach. A mini-batch approach will lower each incremental
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Figure 15: Boxplots of one hundred QS α scores with the use of the recursive σ̂t and iterative σ̃t volatility process, respectively, for α = {0.01, 0.02, . . . , 0.99},
using the GARCH(1, 1) model on the log-returns rt of the CAC (top-left), DAX (top-right), DJIA (mid-left), NDAQ (mid-right), NKY (bottom-left) and RUT
(bottom-right) index with random initial values in K .

volatility as one uses more observations per recursion to up-
date the QML estimate. Applying a mini-batch method does
not require much more computational power than the stochas-
tic gradient descent, only O(bd), where b is the number of ob-
servations used in each (mini-batch) recursion. Using more ob-
servations, we could achieve more consistency and smoothness
in the estimation procedure’s convergence while keeping favor-
able computational costs.

Furthermore, an accelerated convergence of our estimates
could be obtained by recursion averaging, also called Polyak-
Ruppert averaging, which is guaranteed under fairly relaxed
conditions (Polyak and Juditsky (1992); Ruppert (1988)). This
"average" estimate could be utilized solely or employed as a
benchmark to detect structural breaks in our estimates.

Appendix A.

Proof of Theorem 2.1. To prove local strong convexity for the
approximate QL function L̂n using the approximate QMLE θ̂∗n,
we first list some bounds for the Hessians: under the regularity
conditions on the derivatives of ht, then using (2.3), we can
write

∇θlt(θ) =
1
2
∇θht(θ)

ht(θ)

(
1 −

X2
t

ht(θ)

)
and

∇2
θ lt(θ) =

1
2h2

t (θ)

(
∇θht(θ)T∇θht(θ)

(
2X2

t

ht(θ)
− 1

)
+ ∇2

θht(θ)
(
ht(θ) − X2

t

) )
,

where the Hessian Hn(θ) is defined as n−1∇2
θLn (θ) =

n−1 ∑n
t=1 ∇

2
θ lt(θ). Similarly, for ∇θ̂lt(θ), ∇2

θ l̂t(θ), and Ĥn(θ), we
replace ht(θ),∇θht(θ) and ∇2

θht(θ) by ĥt(θ),∇θ̂ht(θ) and ∇2
θ ĥt(θ),
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respectively. From Assumption W2, we know n−1‖∇2
θ L̂n −

∇2
θLn‖K

a.s.
−→ 0 for n → ∞. Hence, for some random N1 large

enough, there exists ε > 0 such that n−1‖∇2
θ L̂n −∇

2
θLn‖K < ε for

all n ≥ N1 a.s. As a consequence, we get

‖Ĥn − Hn‖K < ε, a.s., (A.1)

for all n ≥ N1. Similarly, applying the ergodic theorem on the
integrable sequence (uniformly over K) (∇2

θ lt) of continuous
functions over the compact set K , we obtain ‖n−1 ∑n

t=1 ∇
2
θ lt −

E[∇2
θ l0]‖K

a.s.
−→ 0 for n→ ∞. Then there exists N2 such that

‖Hn − H0‖K < ε, a.s., (A.2)

for all n ≥ N2. Thus, by equation (A.1) and (A.2), we know
there exists N = max(N1,N2) such that for all n ≥ N, we have

‖Ĥn − H0‖K ≤ ‖Ĥn − Hn‖K + ‖Hn − H0‖K < 2ε, a.s.

Especially, as ‖Ĥn−H0‖K is defined as supθ∈K‖Ĥn(θ)−H0(θ)‖op,
then

‖Ĥn(θ) − H0(θ)‖op < 2ε, (A.3)

for all θ ∈ K .
From (Straumann and Mikosch, 2006, Lemma 7.2), the

asymptotic Hessian H0(θ0) = E[∇2
θ l0(θ0)] is a symmetric posi-

tive definite matrix a.s. under Assumption W3. As H0(θ) is the
limit of the continuous matrix-valued function Hn(θ), it is it-
self a continuous matrix-valued function. Thus, the eigenvalue
function λi

0(θ) for 1 ≤ i ≤ d of H0(θ) is also continuous. The
eigenvalues λi

0(θ0) are positive real numbers with the smallest
one λmin

0 (θ0) denoted by

λmin
0 (θ0) = min

1≤i≤d
λi

0(θ0) > 0,

satisfying gT H0(θ0)g ≥ λmin
0 (θ0)gT g for all g ∈ Rd \ {0}.

To shorten the notation, we write with no ambiguity H0(θ0) �
λmin

0 (θ0)Id where Id denotes the d-dimensional identity matrix.
By continuity, λmin

0 (θ) is positive on a neighborhood B(θ0, δ)
such there exist ε > 0 satisfying λmin

0 (θ0) − ε > 0, meaning

H0(θ) � (λmin
0 (θ0) − ε)Id,

for θ ∈ B(θ0, δ). Hence, for θ ∈ B(θ0, δ) and g ∈ Rd \ {0}, we
have

gT Ĥn(θ)
gT g

=
gT H0(θ)g

gT g
+

gT
(
Ĥn(θ) − H0(θ)

)
g

gT g

≥ λmin − ε −
gT ‖Ĥn(θ) − H0(θ)‖opg

gT g
> λmin − 3ε
> C, a.s.,

using (A.3) for all n ≥ N by taking 0 < ε < 6−1λmin and letting
C = 2−1λmin. Then we have the desired inequality (2.5).

Proof of Corollary 2.1. The uniqueness of the QMLE θ̂∗n fol-
lows from a Pfanzagl argument (Pfanzagl (1969)). By Theorem
2.1, we know there exists N such that

inf
θ∈B(θ0,δ0)

gT Ĥn(θ)g > CgT g, a.s.,

for all n ≥ N where B(θ0, δ0) denotes the open ball around θ0
with radius δ0 > 0. For each element θi ∈ K , we make an
open ball B(θi, δi) for δi > 0 such that the union of B(θi, δi) for
all i only contains θ0 once, i.e., θ0 < B(θi, δi) for i , 0. As
K is compact and contained in the union of all B(θi, δi), then
there is a finite covering of K , i.e., K ⊆

⋃k
i=0 B(θi, δi). Let

K ′ = K \ B(θ0, δ0). As K ′ is compact, the minimum of the
continuous QL function E[l0] exists. Moreover, as E[l0] is a
unique minimum at θ0 under Assumption W1, we get

inf
θ∈K ′

E[l0(θ)] > E[l0(θ0)] a.s.

From Assumption W2, we know that ‖n−1L̂n − L0‖K ′
a.s.
−→ 0 as

n→ ∞. Hence, we have

inf
θ∈K ′

n−1L̂n(θ)
a.s.
−→ inf

θ∈K ′
L0(θ),

where infθ∈K ′ L0(θ) > E[l0(θ0)]. Thus, the B(θ0, δ0) gives us a
unique global minimum of the QL function L̂n, i.e.,

inf
θ∈K

n−1L̂n(θ) ≥ E[l0(θ0)], a.s.,

where equality only is attained when θ = θ0.
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