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An Adaptive Recursive Volatility Prediction Method

Nicklas Wergea, Olivier Wintenbergera

aLPSM, Sorbonne Université, 4 place Jussieu, 75005 Paris, France

Abstract

The Quasi-Maximum Likelihood (QML) procedure is widely used for statistical inference due to its robustness against overdisper-
sion. However, while there are extensive references on non-recursive QML estimation, recursive QML estimation has attracted little
attention until recently. In this paper, we investigate the convergence properties of the QML procedure in a general conditionally
heteroscedastic time series model, extending the classical offline optimization routines to recursive approximation. We propose an
adaptive recursive estimation routine for GARCH models using the technique of Variance Targeting Estimation (VTE) to alleviate
the convergence difficulties encountered in the usual QML estimation. Finally, empirical results demonstrate a favorable trade-off

between the ability to adapt to time-varying estimates and stability of the estimation routine.
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1. Introduction

Time series analysis has attracted considerable attention in
the last three decades. A crucial issue for time series anal-
ysis is modeling heteroscedasticity of the conditional vari-
ance e.g. volatility clustering in financial time series. The
most known models capturing this feature are the autoregres-
sive conditional heteroscedasticity (ARCH) model and general-
ized ARCH (GARCH) model introduced by Engle (1982) and
Bollerslev (1986), respectively. The success of these models
can be explained by many reasons; one of them is that they
constitute a stationary time series model with a time-varying
conditional variance; another one is that they model time series
with heavier tails than the Gaussian one which often occurs in
financial time series.

Quasi-Maximum Likelihood (QML) estimation is widely
used for statistical inference in GARCH models since it tol-
erates this overdispersion. In this paper, we study the Quasi-
Maximum Likelihood Estimator (QMLE) for the broader class
of conditionally heteroscedastic time series models of multi-
plicative form given by

Xt = ht(θ0)Zt, t ∈ Z, (1.1)

where θ0 is the true underlying parameter vector and the (non-
negative) volatility process (ht)t∈Z is defined as

ht(θ) = gθ
(
Xt−1, . . . , Xt−p, ht−1(θ), . . . , ht−q(θ)

)
, p, q ≥ 0,

(1.2)

where (Zt) is a sequence of i.i.d. random variables with E[Z0] =

0 and E[Z2
0 ] = 1. Suppose that the parameter set Θ ⊂ Rd and

{gθ|θ ∈ Θ} denotes the (finite) parametric family of non-negative
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functions on Rp × [0,∞)q, fulfilling certain regularity condi-
tions. We also require that ht is Ft−1-measurable where for all
t ∈ Z, Ft = σ(Zk : k ≤ t) denotes the σ-field generated by the
random variables {Zk : k ≤ t}.

The stability of model (1.1)-(1.2) is accomplished under
the assumption that "gθ is a contraction". This condition is
a random Lipschitz coefficient condition where the Lipschitz
coefficient has a negative logarithmic moment. The notion
of contractivity is clarified in Straumann and Mikosch (2006)
where they study QML inference of general conditionally het-
eroscedastic models with emphasis on the approximation (ĥt)
of the stochastic volatility (ht).

QML estimation of the parameters in the class of condition-
ally heteroscedastic time series models has been studied fre-
quently in recent years, see e.g. Berkes et al. (2003), Francq
and Zakoïan (2004), Straumann and Mikosch (2006) and Win-
tenberger (2013). However, all these references consider non-
recursive (offline) estimation where one assemble a batch of
data and afterward perform the statistical inference. Neverthe-
less, recursive estimates made using recursive algorithms are
arguably advantageous as one treats only the observations once.
Indeed in recursive QML estimation, we update the QMLE at
time t−1 with the new observations at time t to yield the QMLE
of the parameters at time t.

In modern statistics analysis, it is becoming increasingly
common to work with streaming data where one observes only
a group of observations at a time. Naturally, this has led to
an expanded interest in scalable (in time) recursive estimation
procedures e.g. see Bottou and Bousquet (2007). However,
only a little amount of attention has been given to recursive
(online) estimation in conditionally heteroscedastic time series
models. Dahlhaus and Subba Rao (2007) presented a recursive
method to estimate the parameters in an ARCH process. Un-
der sufficient conditions on the underlying process, Aknouche
and Guerbyenne (2006) showed consistency of their recur-
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sive least squares method for GARCH processes. Kierkegaard
et al. (2000) also developed a recursive estimation method for
GARCH processes supported by empirical evidence. The au-
thors of Gerencsér et al. (2010) show convergence analysis
of recursive QML estimation for GARCH processes based on
BMP-theory with the use of a resetting mechanism. A self-
weighted recursive estimation algorithm for GARCH models
was proposed by Cipra and Hendrych (2018) with a robustifica-
tion in Hendrych and Cipra (2018). However, none of the above
references mention convexity nor estimation issues of small ω
parameter values for GARCH models.

In settings with streaming data sets, the difficulty of estimat-
ing time-varying parameters of statistical models increases. To
sustain computational efficiency and being adaptive one may
decrease the number of observations in each iteration in the
optimization procedure which may increase the instability of
the statistical inference. We propose a natural adaptation of
the QML method relying on stochastic approximations with
the use of Variance Targeting Estimation (VTE) technique. We
give empirical evidence that the procedure achieves a favorable
trade-off between adaptation ability and stability.

2. QML Estimation in Conditionally Heteroscedastic Time
Series Models

The approximate QMLE θ̂∗n is defined as

θ̂∗n ∈ arg min
θ∈K

L̂n(θ), (2.1)

where the parameter set K is a suitable compact subset of the
parameter space Θ. The QL function Ln(θ) and approximate
QL function L̂n(θ) are, respectively, given by

Ln(θ) =

n∑
t=1

lt(θ) and L̂n(θ) =

n∑
t=1

l̂t(θ), (2.2)

where the QL losses, lt(θ) and l̂t(θ), are given by

lt(θ) =
1
2

(
X2

t

ht(θ)
+ log ht(θ)

)
and l̂t(θ) =

1
2

(
X2

t

ĥt(θ)
+ log ĥt(θ)

)
,

(2.3)

where (ĥt) is an approximation of (ht) defined recursively for t ≥
1 thanks to Eqn. (1.2) with initialization ĥ−q+1 = · · · = ĥ0 = 0
or any deterministic constant. Whatever is the initialization the
error between (ĥt) and the true (ht) will vanish exponentially
fast almost surely from (Straumann, 2005, Proposition 5.2.12).
Assuming that Z0 is standard normal distributed, note that Xt is
also Gaussian with variance ht conditionally on Ft−1. The QL
function Ln(·) in (2.2) is derived under this Gaussian assump-
tion.

The consistency and asymptotic properties of the QMLE
θ̂∗n, combined with the robustness of the QL function with re-
spect to overdispersion (See Patton (2006)) makes the method
highly used in practice. Under the conditions in (Straumann

and Mikosch, 2006, N.1, N.2, N.3 and N.4) then the QMLE θ̂∗n
is strongly consistent and asymptotically normal, i.e.

θ̂∗n
a.s.
→ θ0 and

√
n
(
θ̂∗n − θ0

)
→ N (0,V0) as n→ ∞, (2.4)

with θ0 as the true parameter vector and V0 the asymptotic co-
variance matrix.

Unfortunately, these asymptotic properties in (2.4) come
with a drawback on the QL loss; the robustness is achieved
thanks to careful domination with logarithms. The concavity
of those logarithms makes the criterion insensitive to extreme
values but it also implies that the criterion behaves itself as a
concave function. As most optimization algorithms are based
on convex assumptions then this is striking.

In the next section, we show that the approximate Hessian
Ĥn(θ) = n−1∇2L̂n (θ) admits strictly positive eigenvalues for n
large enough depending on the model specifications and the un-
derlying data process. Meaning, for sufficiently large batch
sizes of observations then the QMLE θ̂∗n can be seen as the
unique solution of a locally strongly convex optimization prob-
lem; The existence and uniqueness of θ̂∗n ensure that it can be ef-
ficiently approximated by usual (offline) optimization routines
for n large enough.

2.1. Asymptotic Convex Properties of the QL Function
In order to establish the asymptotic local convexity of the QL

function of model (1.1)-(1.2) we need the following assump-
tions; Assumption W1, W2 and W3, which naturally emerges
by the arguments and properties (Straumann and Mikosch,
2006, N.1, N.2, N.3 and N.4) made in order to have stabil-
ity of the QL function and QMLE procedure. We will in this
paper use two different matrix norms: Let ‖A‖op denote the
matrix operator norm of matrix A ∈ Rd×d with respect to the
Euclidean norm i.e. ‖A‖op = supv,0 |Av|/|v|. Denote ‖A‖K
the norm of the continuous matrix-valued function A on K i.e.
‖A‖K = supx∈K‖A(x)‖op, where K is a compact set of Rd.

Assumption W1. Assume model (1.1)-(1.2) with θ = θ0 ad-
mits a unique stationary ergodic solution.

Assumption W2. Assume K ⊂ Θ is a compact set with
true parameter vector θ0 ∈ K in the interior. The random
functions fulfill certain conditions, such that E[‖l0‖K ] < ∞,
E[‖∇2l0‖K ] < ∞ and further have the following uniform con-
vergences: ‖n−1L̂n − Ln‖K

a.s.
−→ 0 and n−1‖∇2L̂n −∇

2Ln‖K
a.s.
−→ 0

for n→ ∞.

Assumption W3. Assume the components of the vector
∇θgθ(X0, h0) from (1.2) with θ = θ0 are linearly independent
random variables.

The following Theorem 2.1 is an extension of Ip et al. (2006)
which established similar results for the likelihood function of
GARCH models under the assumption that (Xt) is strictly sta-
tionary and strongly mixing with geometric rate and (Zt) is
Gaussian. Solving the QML estimation problem (2.1) for θ̂∗n
is known to be computationally heavy since one has to find the
solution of the non-linear equation (2.2). Nonetheless, Theo-
rem 2.1 ensures the existence of a N such that we have a unique
global QMLE θ̂∗n.

2



Theorem 2.1. Under Assumption W1, W2 and W3 there exist
positive constants C, δ > 0 and a random positive integer N ∈
N+ such that we have

gT Ĥn(θ)g > CgT g, ∀n ≥ N, g ∈ Rd \ {0}, a.s., (2.5)

for all θ ∈ B(θ0, δ).

The above results shows local strongly convexity of the QL
function L̂n. The following corollary arises from the proof of
Theorem 2.1:

Corollary 2.1. Under Assumption W1, W2 and W3, the QMLE
θ̂∗n exists and is unique, namely

θ̂∗n = arg min
θ∈K

L̂n(θ).

Local strong convexity is crucial in order to have conver-
gence of an optimization algorithm. Thus, Theorem 2.1 is an
essential result to compute the QMLE θ̂∗n for the parameters
in model (1.1)-(1.2). But to guarantee the property in (2.5),
we need a sufficiently large (and maybe unbounded) random N
which depends on the true parameter vector, the parameter es-
timates and the observations. In practice, one often has a fixed
size of observations, which is why the iterative algorithm may
not converge. To our experience, this phenomena will occur
when the true parameter vector is near the boundary of K or if
the initial values are far away from the true parameters.

2.2. QML Estimation of GARCH(p, q) Parameters

The general class of conditionally heteroscedastic time series
models includes the very popular ARCH and GARCH models.
These models have for more than three decades, since their in-
troduction, attracted considerable amounts of attention in the
literature. A process (Xt) is called a GARCH(p, q) process with
parameter vector θ = (ω, α1, . . . , αp, β1, . . . , βq)T if it satisfiesXt = σtZt,

σ2
t = ω +

∑p
i=1 αiX2

t−i +
∑q

j=1 β jσ
2
t− j,

(2.6)

where ω, αi and β j for 1 ≤ i ≤ p and 1 ≤ j ≤ q are non-
negative parameters ensuring the non-negativity of the condi-
tional variance process (σ2

t ). The innovations (Zt) is a sequence
of i.i.d. random variables with E[Z0] = 0 and E[Z2

0 ] = 1. Simi-
larly, one can define an ARCH(p) process by setting β j = 0 for
1 ≤ j ≤ q in (2.6). A GARCH(p, q) process (Xt) given in (2.6)
has QL losses given by l̂t(θ) = 2−1(X2

t /σ̂
2
t (θ) + log σ̂2

t (θ)) with
first derivative

∇l̂t(θ) = ∇σ̂2
t (θ)

(
σ̂2

t (θ) − X2
t

2σ̂4
t (θ)

)
, (2.7)

and second derivate

∇2 l̂t(θ) = ∇σ̂2
t (θ)T∇σ̂2

t (θ)
(

2X2
t − σ̂

2
t (θ)

2σ̂6
t (θ)

)
+ ∇2σ̂2

t (θ)
(
σ̂2

t (θ) − X2
t

2σ̂4
t (θ)

)
,

(2.8)

where ∇σ̂2
t (θ) = ϑt(θ) +

∑q
j=1 β j∇σ̂

2
t− j(θ) with ϑt(θ) =

(1, X2
t−1, . . . , X

2
t−p, σ̂

2
t−1(θ), . . . , σ̂2

t−q(θ))T ∈ Rp+q+1 and Hessian
Ĥn(θ) = n−1 ∑n

t=1 ∇
2 l̂t(θ).

The equation (2.6) creates a complicated probabilistic struc-
ture that is not easily understood although it looks rather simple.
A solution for the problem of finding conditions for the exis-
tence and uniqueness of a stationary solution to the equations
(2.6) for GARCH(1, 1) was provided by Nelson (1990) while
Bougerol and Picard (1992) showed it for the GARCH(p, q)
model. Bougerol and Picard (1992) make use of the fact that
GARCH(p, q) can be embedded in a Random Iterated Lipschitz
Map (RILM). See Bougerol (1993) for a formal definition of
RILMs.

We can illustrate the RILM method on the GARCH(1, 1)
model with parameter vector θ = (ω, α1, β1)T . The RILM for
σ2

t is then given by σ2
t = Atσ

2
t−1 + Bt with t ∈ Z where At =

α1Z2
t−1 + β1 and Bt = ω. Remark that ((At, Bt)) constitutes an

i.i.d. sequence. From the literature on RILMs, it is well known
that the conditions E[log |A0|] < 0 and E[log+ |B0|] < ∞ guaran-
tee the existence and uniqueness of a strictly stationary solution
of the RILM Yt = AtYt−1 + Bt for t ∈ Z, provided ((At, Bt)) is a
stationary ergodic sequence. Applying this to the GARCH(1, 1)
model we have E[log(α1Z2

0 + β1)] < 0 which is known as the
sufficient condition for the existence of a stationary solution.
This also implies β1 < 1 since log(β1) ≤ E[log(α1Z2

0 +β1)] < 0.
In the same way, the ARCH(1) process (β1 = 0) then require
E[log(α1Z2

0 )] < 0 which is the same as α < 2eε ≈ 3.56 with
Z0 Gaussian. Thus, the condition for stationary is much weaker
than the second order stationary condition where α1 < 1 is de-
manded.

The statistical inference leads to further nontrivial problems
since the exact distribution of (Zt) remains unspecified and thus
one usually determines the likelihoods under the hypothesis of
standard Gaussian innovations. Moreover, the volatility (σt) is
an unobserved quantity that is approximated by mimicking the
recursion (2.6) with an initialization X−p+1 = · · · = X0 = 0
and σ2

−q+1 = · · · = σ2
0 = 0 (for example). Berkes et al. (2003)

showed under minimal assumptions that the QMLE is strongly
consistent and asymptotically normal.

Furthermore, under Assumption W1-W3 we have asymp-
totic local strong convexity of the QL function in GARCH(p, q)
models by Theorem 2.1. However, the number of observations
needed to guarantee local strong convexity vary. This can eas-
ily be seen by looking at the simplest case, namely, where (Xt)
is an ARCH(1) process with parameter vector θ = (ω, α1)T .
The volatility process σ2

t (θ) is given as ω + α1X2
t−1. The non-

negativity of ∇2lt(θ) given by (1 + X4
t−1)(2X2

t − σ
2
t (θ))σ−6

t (θ),
would ensure convexity at iteration t in our QML procedure.
However, the probability of having convexity at each iteration
is unlikely as P(∩n

t=1∇
2lt(θ) ≥ 0) = P(∩n

t=1Z2
t ≥ 1/2) = P(Z2

0 ≥

1/2)n is approximately 0.52n with i.i.d. Gaussian innovations
(Zt) i.e. (Zt) is chi-squared distributed with 1 degree of free-
dom, Z2

0 ∼ χ
2
1. On the opposite side, increasing the number of

observations used at each iteration would increase the probabil-
ity of having local strong convexity.
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3. Adaptive Recursive QML Estimation

Our recursive QML method relies on stochastic approxima-
tions introduced by Robbins and Monro (1951) which only re-
quires the previous parameter estimate at each iterate to update
the parameter estimate using the new observation. We perform
the first-order stochastic gradient method defined as

θ̂t = θ̂t−1 − ηt−1∇l̂t(θ̂t−1), (3.1)

where ηt−1 > 0 is the step-size at the t − 1 step and ∇l̂t(θ̂t−1)
is the gradient using the Xt observation and the QMLE esti-
mate θ̂t−1. Depending on the amount of observations, we have
a trade-off between the accuracy of the QML estimates and the
time it takes to perform a parameter update (See Bottou and
Bousquet (2007)).

According to Robbins and Monro (1951) we must schedule
the step-size such that

∑∞
t=1 ηt = ∞ and

∑∞
t=1 η

2
t < ∞. But these

bounds does not make the choice of an appropriate step-size
ηt easier in practice. A more suitable approach is an adaptive
learning rate which update the step-size in (3.1) on the fly pur-
suant to the gradient ∇l̂t(·). Thus, our choice of step-size ηt have
less impact on performance, making convergence more robust
and lower the demand for manual fine-tuning. This is often
used in streaming settings where generic methods are preferred.
Adaptive learning rates and a separate learning rate for each pa-
rameter was proposed by Duchi et al. (2011) in their AdaGrad
procedure. This speeds up convergence in situations where the
appropriate learning rates vary across parameters. Other well-
known examples of adaptive learning rates could be AdaDelta
by Zeiler (2012), RMSProp by Tieleman and Hinton (2012) and
ADAM by Kingma and Ba (2015). As we may expect a lack
of convexity then we select the AdaGrad algorithm since it has
shown promising result in non-convex optimization (See Ward
et al. (2018)). The AdaGrad procedure is given by the updates

θ̂t = θ̂t−1 −
η√∑t

i=1 ∇l̂i(θ̂i−1)2 + ε

∇l̂t(θ̂t−1), (3.2)

(thought element-wise) where η > 0 is a constant learning rate
and ε > 0 a small number ensuring positivity. Note ∇l̂i(θ̂i−1)2

indicates the element-wise square ∇l̂i(θ̂i−1) � ∇l̂i(θ̂i−1).
As the QL loss is only defined for θ̂n ∈ K , we will require

that the recursive algorithm always lies in K . As suggested
by Zinkevich (2003) we project our approximation θ̂n onto K
preventing large jumps and enforcing our stochastic gradient
method to converge. This is implemented on (3.2) and our
method is given by

θ̂t = ProjectionK

θ̂t−1 −
η√∑t

i=1 ∇l̂i(θ̂i−1)2 + ε

∇l̂t(θ̂t−1)

 .
(3.3)

3.1. Adaptive Recursive QML Estimation for GARCH Models

The parameters in a GARCH process (Xt) are numerically
difficult to estimate in empirical applications. The numerical

optimization algorithms can easily fail or converge to irregular
solutions (See Zumbach (2000)). Therefore, the approximation
of the QMLE θ̂∗n must be examined with a healthy dose of skep-
ticism. A well-discussed problem for the GARCH(p, q) models
is that the QMLE performs badly for numerically small (but still
positive) ω values. The parameter ω is a vital and often tricky
parameter to estimate. Stabilizing the estimation of ω would
not only improve the ω estimate but also have a positive impact
on the other model parameters.

On way to overcome small ω values for the GARCH(p, q)
model is by scaling (Xt) with some factor λ > 0 since we have
homogeneity1. However, we wish to avoid this form of infer-
ence in our recursive algorithm as one then need to come up
with a scaling parameter which have to be estimated before-
hand. Instead, we comprehend this issue by introducing a con-
cept called Variance Targeting Estimation (VTE) (see Francq
et al. (2011)). We apply VTE for estimating ω by use of γ2

which is the unconditional variance estimated by the sample
variance as seen in (3.4). Thus we have a two-step estimator
where we estimate γ2 recursively as the sample variance and
the remaining parameters are estimated by the QML method.
Pseudo-code of our proposed adaptive recursive algorithm is
presented in Algorithm 1. The reparametrization is obtained by
defining

ω = γ2

1 − p∑
i=1

αi −

q∑
j=1

β j

 . (3.4)

The volatility process in the GARCH(p, q) process can then be
rewritten as

(σ2
t − γ

2) =

p∑
i=1

αi(X2
t−i − γ

2) +

q∑
j=1

β j(σ2
t− j − γ

2). (3.5)

Similarly, one can define an ARCH(p) process by setting β j = 0
for 1 ≤ j ≤ q. The GARCH(p, q) process (Xt) in (3.5) has
similar QL losses as before except from ∇σ̂2

t (θ) in (2.7) and
(2.8) where ϑt(θ) is given as (X2

t−1 − γ
2, . . . , X2

t−p − γ
2, σ̂2

t−1(θ)−
γ2, . . . , σ̂2

t−q(θ) − γ2)T ∈ Rp+q and the corresponding K =

{(α1, · · · , αp, β1, . . . , βq) ∈ Rp+q
+ |

∑p
i=1 αi +

∑q
j=1 β j ≤ 1}.

An advantage with VTE is that we ensure a consistent esti-
mate of the long-run variance even if the model is misspecified.
Also, given γ is well estimated, we reduce the dimension of
the parameter space and increase the speed of convergence of
the optimization routines. Moreover, the nice geometry of the
new set of optimizationK lets the projection step in (3.3) being
efficiently implemented following Duchi et al. (2008). How-
ever, VTE requires stronger assumptions for the existence of
the variance and is likely to suffer from efficiency loss. Francq
et al. (2011) also showed that VTE will never be asymptoti-
cally more accurate than the QMLE. Another drawback of us-
ing VTE is that one needs a finite fourth moment of the process

1Let (Xt) follow a GARCH(p, q) process with parameter vector θ =

(ω, α1, . . . , αp, β1, . . . , βq)T and innovations (Zt). Then for any λ > 0
the process (

√
λXt) is a GARCH(p, q) process with parameter vector θ =

(λω, α1, . . . , αp, β1, . . . , βq)T and identical innovations (Zt).
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Algorithm 1: Adaptive recursive QML estimation for
GARCH(p, q) models using the technique of VTE ap-
plied on (Xt)t≥1 with an initialization X−p+1 = · · · =

X0 = 0 and σ̂2
−q+1 = · · · = σ̂2

0 = 0. The projection
onto K is indicated by PK [·]. All vector operations are
element-wise e.g. ĝ2

t denotes the element-wise square
ĝt � ĝt. Good default settings are η = 0.1 and ε = 10−8.

input : θ̂0 (initial parameter vector)
begin

initialize: σ̂2
1 = X2

1 , µ̂0 = 0, γ̂2
0 = 0, Ĝ0 = 0 and t = 0

while θ̂t not converged do
t = t + 1
µ̂t = t(t + 1)−1µ̂t−1 + (t + 1)−1Xt

γ̂2
t = (t − 1)t−1γ̂2

t−1 + t−1 (Xt − µ̂t)2

ĝt = ∇l̂t(θ̂t−1)
Ĝt = Ĝt−1 + ĝ2

t

θ̂t = PK
[
θ̂t−1 − η(Ĝt + ε)−1/2ĝt

]
σ̂2

t+1 = γ̂2
t +

∑p
i=1 α̂

(t)
i (X2

t−i−γ̂
2
t )+

∑q
j=1 β̂

(t)
j (σ̂2

t− j−γ̂
2
t )

end
end
Result: θ̂t (resulting estimates)

(Xt). Meaning, one would need α1 < 0.57 for an ARCH(1)
model using standard Gaussian noise as EX4

t < ∞ if and only
if α2

1 + (EZ4
0 − 1)α2

1 < 1. For a GARCH(1, 1) model we should
have (α1 + β1)2 + (EZ4

0 − 1)α2
1 < 1. These parameter bounds

restrict the usefulness and range of applications for our method.

4. Applications

In this section, we apply our recursive method on simulated
and real-life data. Our implementation of Algorithm 1 is pro-
vided in a repository at Werge (2019). We compare our ap-
proach to the non-recursive QMLE approximation θ̃n which is
estimated at every two thousand incremental using all obser-
vations up to this point i.e. (θ̃t)(k−2000)+1≤t≤k is estimated us-
ing (Xt)1≤t≤k for k = 2000, 4000, . . . . As suggested by Ip et al.
(2006), we use the L-BFGS-B algorithm to solve the nonlinear
optimization problem in (2.1) for θ̃n with initial guess θ̃0 ∈ K .
Our two-step recursive QMLE approximation θ̂n is described
in Section 3.1 for the GARCH(p, q) model. It takes our initial
value θ̂0 ∈ K , learning rate η = 0.1 and ε = 10−8 as input2. At
last, for a fair comparison, we always use the same initial guess
for both methods, namely θ̂0 = θ̃0 ∈ K .

2Algorithm 1 can be tuned by changing the learning parameter η e.g. by
choosing the best performing learning rate η using the first part of the observa-
tions. The choice of learning rates is arduous as a too large learning rate may
cause the algorithm to diverge away from the parameter estimate. Contrarily, a
too small learning rate may result in slow convergence. However, a small learn-
ing rate can be preferred if one only wishes to keep track of minor changes in
the parameter estimates.

4.1. Simulations
All simulations are performed by the use of twenty thousand

observations (n = 20000), and the simulated data (Xt) is always
generated using Gaussian innovations with zero mean and unit
variance.

4.1.1. ARCH Models
As discussed before, the non-recursive QMLE approxima-

tion θ̃n performs badly for numerically small ω > 0 values
which is a situation often encountered in financial time series.
However, before moving to the case of small ω parameter val-
ues then in Figure 1 we have the trajectories of both QMLE
approximations using an ARCH(1) process with true parameter
vector and initial values given by

θ0 =

(
ω
α1

)
=

(
2.0
0.6

)
and θ̂0 = θ̃0 =

(
1.5
0.4

)
. (4.1)

Figure 1 shows a very reasonable convergence of both estima-
tors, θ̂n = (ω̂(n), α̂(n)

1 )T and θ̃n = (ω̃(n), α̃(n)
1 )T , when the true

parameter ω = 2.0. Not surprisingly, our method experience
some fluctuations in the beginning but as the learning rate de-
crease the fluctuation evaporates.

Figure 1: Trajectory of the recursive θ̂n (solid line) and non-recursive θ̃n (semi-
dotted line) for an ARCH(1) process with true parameter vector (dotted line)
and initial guess given in (4.1).

Likewise, in Figure 2 we have the trajectories of the QMLE
approximations for an ARCH(1) process but now with true pa-
rameter vector and initial guess given as

θ0 =

(
1 · 10−8

0.6

)
and θ̂0 = θ̃0 =

(
5 · 10−8

0.4

)
. (4.2)

Figure 2 indicates a modest convergence of θ̂n but shows slow
convergence of α̃n towards the true α1 parameter, in addition,
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α̃n seems bias with respect to the initial value α̃0 = 0.4 as it
processes almost half of the observations before moving closer
to the true α1 = 0.6.

Figure 2: Trajectory of the recursive θ̂n (solid line) and non-recursive θ̃n (semi-
dotted line) for an ARCH(1) process with true parameter vector (dotted line)
and initial guess given in (4.2).

A way of demonstrating the variation in performance of θ̂n

and θ̃n for small ω values is presented in Figure 3 and Figure
4, respectively, where we have the average trajectory of one
hundred trajectories with their corresponding boxplots showing
the distribution of these one hundred trajectories. Here, in Fig-
ure 3, we can see that our recursive algorithm converges to the
true parameter values with low sensitivity respect to the initial
values. But one should still expect some likelihood to end up
with an irregular solution where the algorithm fails to converge.
However, in Figure 4 we see somehow the opposite in which θ̃n

have convergence issues; it is consistently underestimating the
ω parameter and for some iterations also the α parameter.

As we observe the true volatility process (σt) in this section
then we can evaluate the accuracy of our recursive (σ̂t) and the
non-recursive (σ̃t) volatility process. We do this by use of the
Mean Percentage Errors (MPE), given as

σ̂MPE =
1
n

n∑
t=1

σt − σ̂t

σt
and σ̃MPE =

1
n

n∑
t=1

σt − σ̃t

σt
, (4.3)

and the Mean Absolute Percentage Errors (MAPE), given by

σ̂MAPE =
1
n

n∑
t=1

|σt − σ̂t |

σt
and σ̃MAPE =

1
n

n∑
t=1

|σt − σ̃t |

σt
. (4.4)

Boxplots of one hundred accuracy scores, MPE in (4.3) and
MAPE in (4.4), can be found in Figure 5. To avoid bias due
to the choice of the true parameter vector θ0 and initial values

Figure 3: Average trajectory (solid line) of one hundred recursive θ̂n’s for an
ARCH(1) process with true parameter vector (dotted line) and initial guess from
(4.2). The boxplots shows the distribution of the one hundred trajectories.

Figure 4: Average trajectory (solid line) of one hundred non-recursive θ̃n’s for
an ARCH(1) process with true parameter vector (dotted line) and initial guess
from (4.2). The boxplots shows the distribution of the one hundred trajectories.

θ̂0, θ̃0, we then have the accuracy scores with a random param-
eter vector θ0 ∈ K and random initial guesses θ̂0, θ̃0 ∈ K in
Figure 5. In the top graph of Figure 5, one can observe that the
MPE for both methods is symmetric around zero but σ̃MPE has
a negative tail (meaning the non-recursive method may overes-
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timate the volatility in some cases). Also, the spread of σ̃MPE is
higher than the σ̂MPE, which is clearly seen by looking at σ̃MAPE
in the bottom graph of Figure 5.

Figure 5: Boxplots of accuracy scores, MPE from (4.3) and MAPE from (4.4),
for one hundred trajectories of θ̂n and θ̃n using an ARCH(1) process with ran-
dom true parameter vector and initial guess in K .

Another way of measuring the accuracy can be made by
studying the conditional quantiles using the recursive (σ̂t) and
non-recursive (σ̃t) predicted volatility processes (See Biau and
Patra (2011)). Under the assumption of standard Gaussian in-
novations then Xt is Gaussian with zero mean and variance σ2

t .
Thus, for any α ∈ (0, 1), the α-quantile of a Gaussian distri-
bution N(0, σ2

t ) is σtΦ
−1(α), where Φ−1(α) is the α-quantile

of the standard Gaussian one. We use the so-called α-quantile
loss function proposed by Koenker and Bassett (1978): The α-
quantile loss function ρα using the volatility process σt is de-
fined as

ρα(Xt, σt) =

α
(
Xt − Φ−1(α)σt

)
, for Xt > Φ−1(α)σt

(1 − α)
(
Φ−1(α)σt − Xt

)
, for Xt ≤ Φ−1(α)σt

(4.5)

with tilting parameter α ∈ (0, 1). The idea of the α-quantile
loss function is to penalize quantiles of low probability more
for overestimation than for underestimation (and contrariwise
in the case of high probability quantiles). We evaluate across
the α-quantile scores ρα of (σt) by the (normalized) cumulative
α-quantile scoring function QS α:

QS α(Xn, σn) =
1
n

n∑
t=1

M∑
m=1

ραm (Xt, σt), (4.6)

with M as the number of quantiles α = {α1, . . . , αM}. The
best ability of volatility forecast is indicated by the lowest
QS α score. The findings of one hundred QS α(Xn, σ̂n) and

QS α(Xn, σ̃n) scores, with α = {0.01, 0.02, . . . , 0.99} and ran-
dom true parameter vector and random initialization in K , is
presented in Figure 6. The QS α scores in Figure 6 are indistin-
guishable.

Figure 6: Boxplots of one hundred QS α scores using the recursive σ̂t and non-
recursive σ̃t volatility process, respectively, for α = {0.01, 0.02, . . . , 0.99}, for
an ARCH(1) model with random true parameter vector and initial value in K .

4.1.2. GARCH Models
We have similar findings for the GARCH(1, 1) model pre-

sented in Figure 7 for the recursive θ̂n and Figure 8 for the non-
recursive θ̃n with true parameter vector and initial guess given
by

θ0 =

ωα1
β1

 =

1 · 10−8

0.2
0.7

 and θ̂0 = θ̃0 =

5 · 10−8

0.1
0.8

 . (4.7)

That said, the non-recursive θ̃n is consistently overestimating
the β parameter. It is worth mentioning that even if all initial
values are chosen in the stationary region i.e. θ̂0 = θ̃0 = θ0,
we still have a proper amount of fluctuation in our estimates
trajectories. As discussed before, this may partially be due to
the volatility the stochastic gradient descent introduce and the
flatness of the QL loss (See Zumbach (2000)).

The accuracy scores, namely MPE in (4.3) and MAPE in
(4.4), can be found in Figure 9 for the GARCH(1, 1) model us-
ing both random true parameter vector and random initial val-
ues in K . As in the ARCH(1) case, we obtain lower spread for
σ̂MPE than σ̃MPE.

Figure 10 present the results of one hundred QS α scores with
random true parameter vector and initial value inK . Again, the
QS α scores are indistinguishable (even when the non-recursive
method is forward looking).

4.2. Real-life Observations
We demonstrate our method on real-life observations, show-

ing how our technique works in practice. Table 1 shows an
overview of the used stock market indices. All empirical stud-
ies are made using the GARCH(1, 1) model but parameters of
higher-order may yield a better fit. As the observation period
spans over a long time then it is unlikely that the log-return se-
ries is stationary. To exhibit our method ability to adapt to time-
varying estimates then we begin by considering the S&P500 In-
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Figure 7: Average trajectory (solid line) of one hundred θ̂n’s for a GARCH(1, 1)
process with true parameter vector (dotted line) and initial guess given in (4.7).
The boxplots shows the distribution of the one hundred trajectories.

dex in Section 4.2.1. Thereafter, in Section 4.2.2, we investigate
the remaining six stock market indices presented in Table 1.

Stock Market Index Period (years)
CAC 40 (CAC) 1991-2020
DAX 30 (DAX) 1988-2020
Dow Jones Industrial Average (DJIA) 1986-2020
NASDAQ Composite (NDAQ) 1971-2020
Nikkei 225 (NKY) 1965-2020
Russell 2000 (RUT) 1988-2020
Standard & Poor’s 500 (S&P500) 1950-2020

Table 1: Overview of considered stock market indices including their observa-
tion periods. The observations consist of daily log-returns which are defined as
log differences of the closing prices of the index between two consecutive days.

4.2.1. Application to the S&P500 Index
We apply our method on the S&P500 Index for the years

1950 to 2020 (consisting of n = 17505 observations) to test the
performance on real-life data. We use the GARCH(1, 1) model

Figure 8: Average trajectory (solid line) of one hundred θ̃n’s for a GARCH(1, 1)
process with true parameter vector (dotted line) and initial guess given in (4.7).
The boxplots shows the distribution of the one hundred trajectories.

with initial values:

θ̂0 = θ̃0 =

5 · 10−5

0.05
0.9

 . (4.8)

The QML trajectories can been seen in Figure 11: Our recursive
approximation θ̂n = (ω̂(n), α̂(n)

1 , β̂(n)
1 )T fluctuates more than the

QMLE approximation θ̃n = (ω̃(n), α̃(n)
1 , β̃(n)

1 )T which is estimated
incremental for every two thousand observation. Remember,
the fluctuations we experience in the recursive method can be
reduced by lowering the learning rate η. It is remarkable that the
QMLE approximation θ̃n estimate β̃(n)

1 is so low in some years
between 1990 and 2000 even when it is estimated using over
half of the observations.

In Figure 12, we have the log-returns rt of the S&P500 Index
and the confidence intervals r̄± 1.96σ̂t and r̄± 1.96σ̃t using the
recursive σ̂t and non-recursive σ̃t predicted volatilities, respec-
tively, where r̄ is the mean of the log-returns rt. It seems that the
recursive method σ̂t adapts more rapidly than the non-recursive
one σ̃t to changes in the S&P500 Index observations rt.

The efficiency of our recursive (σ̂t) and the non-recursive
(σ̃t) volatility can be appraised with use of the squared log-
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Figure 9: Boxplots of accuracy scores, MPE from (4.3) and MAPE from (4.4),
for one hundred trajectories of θ̂n and θ̃n using a GARCH(1, 1) process with
true parameter vector and random initial guess in K .

Figure 10: Boxplots of one hundred QS α scores using the recursive σ̂t and
non-recursive σ̃t volatility process, respectively, for α = {0.01, 0.02, . . . , 0.99},
using the GARCH(1, 1) model with random true parameter vector and initial
value in K .

returns (r2
t ) in absence of the true (unobserved) variance process

(σ2
t ). In Table 2, we have the Mean Absolute Errors (MAE) de-

fined by

σ̂2
MAE =

1
n

n∑
t=1

|r2
t − σ̂

2
t | and σ̃2

MAE =
1
n

n∑
t=1

|r2
t − σ̃

2
t |, (4.9)

for the same periods used in Figure 12, including for the full
dataset. The results in Table 2 confirm our conclusions about
Figure 12; the recursive method tracks the volatility better than
the non-recursive method.

Figure 13 contain the results of one hundred QS α scores
using the recursive (σ̂t) and non-recursive (σ̃t) volatility pro-
cess, respectively, with random initial values in K . It is
remarkable that the recursive method outperforms the non-
recursive method although the latter uses future information
i.e. (θ̃t)(k−2000)+1≤t≤k is estimated using (rt)1≤t≤k for k =

Figure 11: Trajectory of recursive QML estimates θ̂n (solid line) and non-
recursive θ̃n (semi-dotted line) using a GARCH(1, 1) model on S&P500 Index
log-returns from year 1950 to 2020. Both methods use initial value from (4.8).

Periods (years) Recursive σ̂2
MAE Non-recursive σ̃2

MAE
1950-1952 7.9177 8.5628
1985-1987 7.1374 7.4949
2018-2020 9.6666 9.7905
1950-2020 9.7360 10.1409

Table 2: MAEs (4.9) using log-returns rt of S&P500 Index with the recursive
σ̂t and non-recursive σ̃t predicted volatilities, respectively. Both methods has
initial value given in (4.8). The σ̂2

MAE and σ̃2
MAE numbers are scaled by 10−5.

2000, 4000, . . . , 16000, 17505. Thus, indicating one could ob-
tain proper performance using the recursive method which pre-
dicts the volatility only by use of the previous estimate.

4.2.2. Other Stock Market Indices
The results of one hundred QS α scores using the recursive

(σ̂t) and non-recursive (σ̃t) volatility process, respectively, with
random initial values in K is presented in Figure 14 for the
remaining six stock market indices in Table 1 (i.e. the CAC,
DAX, DJIA, NDAQ, NKY and RUT index). As for the S&P500
Index (See Figure 13), these findings indicate that the recursive
approach estimate the quantiles better than the non-recursive
method, both on average but also with a lower spread.
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Figure 12: Log-returns rt of S&P500 Index (solid lines) and confidence inter-
vals r̄ ± 1.96σ̂t and r̄ ± 1.96σ̃t (dotted lines) using the recursive σ̂t (blue) and
non-recursive σ̃t (red) predicted volatilities, respectively, where r̄ is the mean
of the log-returns rt . From top to bottom we have the periods: year 1950 to
1952, 1985 to 1987 and 2018 to 2020.

Figure 13: Boxplots of one hundred QS α scores with use of the recursive σ̂t and
non-recursive σ̃t volatility process, respectively, for α = {0.01, 0.02, . . . , 0.99},
using the GARCH(1, 1) model on the log-returns rt of S&P500 Index with ran-
dom initial value in K .

The assumption of having an underlying data generation pro-
cess with constant "true" parameters may not hold in real-life
examples. Thus, our recursive method seems to have an advan-
tage compared to the non-recursive method, as it estimates the
parameters step-by-step whereas the non-recursive method al-
ways has to estimate the parameters using all observations over
a large period of time.

5. Discussion

We proved asymptotic local convexity of the QL function in a
general conditionally heteroscedastic time series model of mul-
tiplicative form. An interesting question arises: can one prove
Theorem 2.1 for a bounded set of N observations? Expressed
differently, can one find a N bounded, such that we have conver-
gence/convexity of recursive algorithms e.g. for the GARCH,
EGARCH and AGARCH models. To our knowledge, this is not
been proved yet.

We proposed an adaptive approach to recursively estimate
the parameters of GARCH models in an online setting with use
of the VTE technique (See Algorithm 1). We obtain a more
stable, reliable and adaptive method. We know that the stabil-
ity of using our recursive approach to solve the QML problem
could be improved by using a mini-batch approach. This would
be lowering the volatility in each incremental as one use more
observations per iteration to update the QML estimate.

Furthermore, applying a mini-batch method does not require
much more computational power compared to the stochastic
gradient descent, and by using more observations we could get
more consistency and smoothness in the convergence of the es-
timation procedure. The size of the mini-batch to use is left to
future research work.

Appendix A.

Proof of Theorem 2.1. To prove local strong convexity for the
approximate QL function L̂n using the approximate QMLE θ̂∗n
we first list some bounds for the Hessians: Under the regularity
conditions on the derivatives of ht, then by use of (2.3) we can
write

∇lt(θ) =
1
2
∇ht(θ)
ht(θ)

(
1 −

X2
t

ht(θ)

)
,

∇2lt(θ) =
1

2h2
t (θ)

(
∇ht(θ)T∇ht(θ)

(
2X2

t

ht(θ)
− 1

)
+ ∇2ht(θ)

(
ht(θ) − X2

t

) )
,

where the Hessian Hn(θ) is defined as n−1∇2Ln (θ) =

n−1 ∑n
t=1 ∇

2lt(θ). Similarly, for ∇l̂t(θ), ∇2 l̂t(θ) and Ĥn(θ) we
replace ht(θ),∇ht(θ) and ∇2ht(θ) by ĥt(θ),∇ĥt(θ) and ∇2ĥt(θ),
respectively. From Assumption W2, we know n−1‖∇2L̂n −

∇2Ln‖K
a.s.
−→ 0 for n → ∞. Hence, for some random N1 large

enough there exists ε > 0 such that n−1‖∇2L̂n − ∇
2Ln‖K < ε for

all n ≥ N1 a.s. As a consequence, we get

‖Ĥn − Hn‖K < ε, a.s., (A.1)
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Figure 14: Boxplots of one hundred QS α scores with use of the recursive σ̂t and non-recursive σ̃t volatility process, respectively, for α = {0.01, 0.02, . . . , 0.99},
using the GARCH(1, 1) model on the log-returns rt of the CAC (top left), DAX (top right), DJIA (mid left), NDAQ (mid right), NKY (bottom left) and RUT (bottom
right) index with random initial value in K .

for all n ≥ N1. Similarly, applying the ergodic theorem on the
integrable sequence (uniformly over K) (∇2lt) of continuous
functions over the compact set K , we obtain ‖n−1 ∑n

t=1 ∇
2lt −

E[∇2l0]‖K
a.s.
−→ 0 for n→ ∞. Then there exists N2 such that

‖Hn − H0‖K < ε, a.s., (A.2)

for all n ≥ N2. Thus, by equation (A.1) and (A.2) we know
there exists N = max(N1,N2) such that for all n ≥ N we have

‖Ĥn − H0‖K ≤ ‖Ĥn − Hn‖K + ‖Hn − H0‖K < 2ε, a.s.

Especially, as ‖Ĥn−H0‖K is defined as supθ∈K‖Ĥn(θ)−H0(θ)‖op

then

‖Ĥn(θ) − H0(θ)‖op < 2ε, (A.3)

for all θ ∈ K .

From (Straumann and Mikosch, 2006, Lemma 7.2), the
asymptotic Hessian H0(θ0) = E[∇2l0(θ0)] is a symmetric posi-
tive definite matrix a.s. under Assumption W3. As H0(θ) is the
limit of the continuous matrix-valued function Hn(θ) then it is
itself a continuous matrix-valued function. Thus, the eigenvalue
function λi

0(θ) for 1 ≤ i ≤ d of H0(θ) is also continuous. The
eigenvalues λi

0(θ0) are positive real numbers with the smallest
one λmin

0 (θ0) denoted by

λmin
0 (θ0) = min

1≤i≤d
λi

0(θ0) > 0,

satisfying gT H0(θ0)g ≥ λmin
0 (θ0)gT g for all g ∈ Rd \ {0}.

To shorten the notation we write with no ambiguity H0(θ0) �
λmin

0 (θ0)Id where Id denote the d-dimensional identity matrix.
Note that by continuity λmin

0 (θ) is also positive on a neighbor-
hood B(θ0, δ) so that ∃ε > 0 satisfying λmin

0 (θ0)−ε > 0, meaning

H0(θ) � (λmin
0 (θ0) − ε)Id,
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for θ ∈ B(θ0, δ). Hence, for θ ∈ B(θ0, δ) and g ∈ Rd \ {0}, we
have

gT Ĥn(θ)
gT g

=
gT H0(θ)g

gT g
+

gT
(
Ĥn(θ) − H0(θ)

)
g

gT g

≥ λmin − ε −
gT ‖Ĥn(θ) − H0(θ)‖opg

gT g
> λmin − 3ε
> C, a.s.,

with use of (A.3) for all n ≥ N by taking 0 < ε < 6−1λmin
and letting C = 2−1λmin. Then we have the desired inequality
(2.5).

Proof of Corollary 2.1. The uniqueness of the QMLE θ̂∗n fol-
lows from a Pfanzagl argument (See Pfanzagl (1969)). By The-
orem 2.1, we know there exists N such that

inf
θ∈B(θ0,δ0)

gT Ĥn(θ)g > CgT g, a.s.,

for all n ≥ N where B(θ0, δ0) denotes the open ball around θ0
with radius δ0 > 0. For each element θi ∈ K we make an
open ball B(θi, δi) for δi > 0 such that the union of B(θi, δi) for
all i only contains θ0 once, i.e. θ0 < B(θi, δi) for i , 0. As
K is compact and contained in the union of all B(θi, δi) then
there is a finite covering of K , i.e. K ⊆

⋃k
i=0 B(θi, δi). Let

K ′ = K \ B(θ0, δ0). As K ′ is compact then the minimum of
the continuous QL function E[l0] exists. Moreover, as E[l0] is
a unique minimum at θ0 under Assumption W1, we get

inf
θ∈K ′

E[l0(θ)] > E[l0(θ0)] a.s.

From Assumption W2, we know that ‖n−1L̂n − L0‖K ′
a.s.
−→ 0 as

n→ ∞. Hence, we have

inf
θ∈K ′

n−1L̂n(θ)
a.s.
−→ inf

θ∈K ′
L0(θ),

where infθ∈K ′ L0(θ) > E[l0(θ0)]. Thus, the B(θ0, δ0) gives us a
unique global minimum of the QL function L̂n, i.e.

inf
θ∈K

n−1L̂n(θ) ≥ E[l0(θ0)], a.s.,

where equality is only attained when θ = θ0.
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