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Cube root weak convergence of empirical estimators of a density level set

Introduction

Three level set estimators

Let X 1 , . . . , X n , n ∈ N, be independent and identically distributed random variables taking values in R d , d ∈ N, endowed with Lebesgue measure µ and Borel sets B(R d ). Assume that the law P of X 1 is absolutely continuous with respect to µ with continuous density f . We intend to establish novel, non-standard weak limit theorems for three set-valued estimators of a convex level set of f , treated as random sets rather than random vectors estimating the parameters of a set in a parametric class.

Motivation. Several classical problems in multivariate statistics involve setvalued estimators based on X 1 , . . . , X n . For instance, in order to detect areas having high probability P , to localize modes or clusters, to test for multimodality, to find outliers, or to test for goodness-of-fit to a family of distributions. In particular, many approaches and procedures rely on λ-level sets L λ of the density f (λ > 0). The plug-in method consists of using the corresponding level set of some density estimator. Alternatively, estimators of L λ can be obtained by selecting a set in a class A ⊂ B(R d ) according to some optimization criterion applied directly to the empirical measure of X 1 , . . . , X n . Here we avoid density estimation and follow the latter approach. Note that maybe the most natural class of sets A is the class of all closed ellipsoids. We will consider the classical nonparametric M-estimators of L λ based on the following three criteria:

• excess mass, • minimum volume, and • maximum probability.

In particular, the first two criteria have been studied in the literature extensively. The third one is also very natural, since it is a kind of inverse of the minimum volume approach.

Seminal papers on the excess mass approach are [START_REF] Müller | Excess mass estimates and tests for multimodality[END_REF], [START_REF] Nolan | The excess mass ellipsoid[END_REF], [START_REF] Müller | The Excess Mass Approach in Statistics[END_REF], and [START_REF] Polonik | Measuring mass concentrations and estimating density contour clusters -an excess mass approach[END_REF], and pioneering work on the minimum volume approach can be found in [START_REF] Silverman | Minimum covering ellipses[END_REF], [START_REF] Rousseeuw | Multivariate estimation with high breakdown point[END_REF], [START_REF] Davies | The asymptotics of Rousseeuw's minimum volume ellipsoid estimator[END_REF], and [START_REF] Polonik | Minimum volume sets and generalized quantile processes[END_REF]. For the maximum probability approach we refer to [START_REF] Polonik | The silhouette, concentration functions and ML-density estimation under order restrictions[END_REF]. For different, early approaches to the estimation of density level sets see [START_REF] Hartigan | Estimation of a convex density contour in two dimensions[END_REF] and [START_REF] Tsybakov | On nonparametric estimation of density level sets[END_REF], and for more recent work, see, e.g., [START_REF] Cadre | Kernel estimation of density level sets[END_REF], [START_REF] Cai | Estimation of extreme risk regions under multivariate regular variation[END_REF], [START_REF] Chen | Density level sets: asymptotics, inference, and visualization[END_REF], [START_REF] Brunel | Methods for estimation of convex sets[END_REF], [START_REF] Rodríguez-Casal | Minimax Hausdorff estimation of density level sets[END_REF], and [START_REF] Xu | High-dimensional nonparametric density estimation via symmetry and shape constraints[END_REF]. Statistical/machine learning approaches to the aforementioned criteria, include Clémençon, [START_REF] Clémenc ¸on | On anomaly ranking and excess-mass curves[END_REF] and [START_REF] Scott | Learning minimum volume sets[END_REF]. As far as asymptotic theory is concerned, the results in the literature regarding empirical estimators of the level sets study rates of convergence towards the true level set for appropriately defined distances. Other types of results consider weak convergence for estimators of the parameters of a parametrically defined level set.

The main goal of this paper is to deal with the weak convergence of the three classical, competing set-valued estimators of the level set L λ themselves and look for their differences or similarities, jointly. Since these estimators approach L λ , even the formulation of weak convergence is non-standard. Our main results are novel central limit theorems for the aforementioned three empirical-measure based estimators of L λ , which reveal their interesting asymptotic behavior as random sets and provide the distribution of their limiting sets, obtained after imsart-generic ver. 2020/08/06 file: output.tex date: October 28, 2023 cube-root-n magnification. The proofs raised various challenges as indicated in Subsection 1.2 below.

Target level set. Fix λ > 0 throughout and assume that the level set

L λ = x ∈ R d : f (x) ≥ λ
is a convex body, that is, it is convex, compact, and has non-empty interior, and that S λ = x ∈ R d : f (x) = λ coincides with its boundary: S λ = ∂L λ . Note that f > λ on L λ \ S λ and f < λ on R d \ L λ . Hence, e λ = p λ -λv λ > 0, with p λ = P (L λ ) ∈ (0, 1) and v λ = µ(L λ ) ∈ (0, 1/λ).

We denote the Hausdorff surface measure of S λ by s λ and have s λ ≥ c d v and the maximizing/minimizing set is unique. In other words, if λ is known then L λ maximizes on A the excess mass function A → e λ (A) = P (A) -λµ(A), if p λ is known then L λ minimizes on {A ∈ A : P (A) ≥ p λ } the volume function A → µ(A) and if v λ is known then L λ maximizes on {A ∈ A : µ(A) ≤ v λ } the probability mass function A → P (A).

Empirical level sets. Let δ x denote the Dirac measure at x. From the nonparametric viewpoint it is natural to estimate P with the empirical measure P n = n -1 n i=1 δ Xi in the above argmax and argmin. To motivate a joint study, imagine that three statisticians want to estimate the level set L λ by using the same sample X 1 , ..., X n . Assume that they all know A and that L λ ∈ A, but that they have their own private, auxiliary information. The first statistician knows the level λ and therefore makes use of the set-valued excess mass estimator

L 1,n ∈ arg max A∈A {P n (A) -λµ(A)} .
(1.1)

The second one knows p λ and then makes use of the minimum volume estimator

L 2,n ∈ arg min A∈A {µ(A) : P n (A) ≥ p λ } . (1.2)
The third statistician knows v λ and thus makes use of the maximum probability estimator

L 3,n ∈ arg max A∈A {P n (A) : µ(A) ≤ v λ } . (1.3)
We assume that P and A are such that almost surely an L 1,n and an L 2,n exist and that P n (L 2,n ) = ⌈np λ ⌉/n. Since P n takes at most n+1 values, an L 3,n always imsart-generic ver. 2020/08/06 file: output.tex date: October 28, 2023

exists. If L j,n , j = 1, 2, 3, are not unique, just choose any maximizer/minimizer. This choice does not matter since it will be shown that all versions of L j,n are indistinguishable asymptotically.

Overview of the results

What can be put forward before introducing more precisely our geometrical and probabilistic framework is as follows.

Convergence of random sets. In order to compare the performance of the empirical sets L j,n we study the joint limiting behavior of L j,n △ L λ , j = 1, 2, 3, where

L △ L ′ = (L ∪ L ′ ) \ (L ∩ L ′ )
denotes the symmetric difference. The ensuing non-classical asymptotics for these set-valued estimators goes beyond the usual statistical risk approach which only provides rates for the random variables P (L j,n △ L λ ) or µ(L j,n △ L λ ), for j = 1, 2, 3. Instead we address the question of the weak convergence of the random sets L j,n △ L λ themselves. We then have to design an appropriate setting allowing to state central limit theorems for random sets, that is, for sets properly centered and then magnified at a diverging scale.

Our joint limit results reveal, when magnifying with n 1/3 as explained below, how the three empirical sets L j,n asymptotically differ or coincide. In particular we find that L 2,n and L 3,n are asymptotically indistinguishable. Note that in the literature these limit theorems have been considered for dimension d = 1 only, where the sets are intervals which can be represented by two numbers, like in the estimation of the shorth. Hence those limit theorems can be stated for real-valued random variables in the usual way. Our method for sets when d > 1 is discussed next.

A local empirical process approach and rate of convergence. In order to analyze how the estimators L j,n oscillate around L λ we first show that they concentrate at rate n -1/3 under regularity conditions that are satisfied in most of the natural settings. To see this, consider an order ε n -neighborhood of the level set L λ . If the relevant indexing class of sets on this neighborhood is such that there is weak convergence of the local empirical process, then by looking at one or finitely many sets A the rate is determined by the classical central limit theorem for the binomial distribution. Therefore, if µ(A △ L λ ) and P (A △ L λ ) are of exact order ε n the rate of P n (A) -P (A) -P n (L λ ) + P (L λ ) is ε n /n; it cannot be something else. Next we exhibit natural smoothness assumptions, see "local excess mass" in particular (2.16) below, under which the local empirical process has a "drift" of order ε 2 n . Balancing these two components by equating the rate ε n /n and the drift ε 2 n yields the cube root rate ε n = n -1/3 ; details can be found in the proof of Lemma 3.1. This rate for vectors instead of sets can be found in, e.g., [START_REF] Kim | Cube root asymptotics[END_REF]. For Vapnik-Chervonenkis classes of sets it is indicated in [START_REF] Polonik | Measuring mass concentrations and estimating density contour clusters -an excess mass approach[END_REF] although in there an additional (log n) 1/3 term is still present and hence no convergence can be considered.

As just indicated, we use an appropriate boundary empirical process, see [START_REF] Khmaladze | Differentiation of sets in measure[END_REF], [START_REF] Khmaladze | Local empirical processes near convex bodies[END_REF], and Einmahl and Khmaladze imsart-generic ver. 2020/08/06 file: output.tex date: October 28, 2023 (2011) and study its weak convergence on a "cylinder space" associated with the boundary S λ of L λ . Interestingly, the local nature of the convergence makes both the rate dimension-free, and the limiting Wiener process distribution-free (it depends on A and L λ only). Note that the convexity of L λ and the elements of A is not relevant for the rate. Instead, geometrical conditions on the class A have to be worked out to achieve the concentration rate n -1/3 and determine the drift process depending on P .

Organization. Section 2 is devoted to the setup of the paper, including the relevant definitions, notation, and assumptions. In Section 3 we present and discuss the main results and provide a few explicit, illuminating examples. The proofs are deferred to Section 4.

Setup, notation and assumptions

The geometrical framework

In order to define the appropriate limit setting the following notation and definitions are needed.

The magnification map τ ε . Let ∥x∥ denote the Euclidean norm of x ∈ R d and U = {u : ∥u∥ = 1} the unit sphere. Since L λ is a convex body, the metric projection Π(x) ∈ S λ of x ∈ R d on S λ = ∂L λ is unique except for so-called skeleton points x ∈ L * λ ⊂ L λ with µ(L * λ ) = 0. A unit vector u ∈ U is called an outer normal of L λ at π ∈ S λ if there is some x ∈ R d \ L λ such that π = Π(x) and u = (x -Π(x))/||x -Π(x)||. At each π ∈ S λ , we denote the non-empty set of outer normals by N (π) and write S * λ = {π ∈ S λ : card(N (π)) > 1}. Note that µ(S λ ) = 0 and hence µ(S * λ ) = 0. The normal bundle of L λ is

N or(L λ ) = {(π, u) : π ∈ S λ , u ∈ N (π)}.
As in [START_REF] Khmaladze | Differentiation of sets in measure[END_REF] and [START_REF] Einmahl | Central limit theorems for local empirical processes near boundaries of sets[END_REF] define the magnification map τ ε , with ε > 0, to be

τ ε (x) = Π(x), u(x), s(x) ε ∈ N or(L λ ) × R, for x ∈ R d \ (L * λ ∪ S * λ ), (2.1)
where x = Π(x) + s(x)u(x), with s(x) = sgn(x)||x -Π(x)|| the signed distance between x and Π(x); here sgn(x) = -1 if x ∈ L λ and 1 otherwise.

Example. Here we illustrate the magnification map τ ε in case u is unique on S λ and hence can be omitted. The two figures concern the case d = 2 and ε = 1 with the unit disk L λ .
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The curves around the unit circle S = S λ in the left figure are seen (in the same color) in the right figure on the cylinder S × R by assimilating (Π(x), u(x)) ∈ N or(L λ ) to Π(x) ∈ S and moving away s(x)/ε from this point in vertical direction.

The cylinder space. Define Σ = N or(L λ ) × R. Let ν d-1 denote both the Hausdorff surface measure on S λ (putting no mass at S * λ ) and its canonical extension to N or(L λ ) supported by the product Borel σ-algebra G d-1 on S λ ×U . Thus, ν d-1 on N or(L λ ) is the so-called first support measure, and we have 0

< s λ = ν d-1 (S λ ) = ν d-1 (N or(L λ )) < ∞. Let µ 1 be Lebesgue measure on R.
The cylinder space (Σ, F, M, d) is defined to be Σ endowed with the product Borel σ-algebra F = G d-1 × B(R), the σ-finite product measure M and the semi-metric d given by

M = ν d-1 × µ 1 , d(B, B ′ ) = (M (B △ B ′ )) 1/2 , for B, B ′ ∈ F.
(2.2)

Note that M plays an important role in convex analysis, see [START_REF] Schneider | Convex Bodies : The Brunn-Minkowski Theory[END_REF] and in particular (4.2) below. Near S λ , the measure µ/ε can be approximated by M , after the transformation τ ε . This is made precise in (4.10). For c > 0

denote Σ c = N or(L λ ) × [-c, c] and F c = {B ∈ F : B ⊂ Σ c }.
The sufficiently parallel sets A ε . Given ε > 0 the ε-parallel set of S λ is defined by S ε λ = {x : ∥x -Π(x)∥ ≤ ε} and we consider the sets in A that are "sufficiently parallel" to L λ ,

A ε = {A ∈ A : A △ L λ ⊂ S ε λ } , C ε = {A △ L λ : A ∈ A ε } . (2.3)
Define the set-to-set mapping

τ ε (C) = {τ ε (x) : x ∈ C \ (L * λ ∪ S * λ )}, C ∈ B(R d ),
and the inverse τ

-1 ε (B) = {x ∈ R d : τ ε (x) ∈ B}, for B ∈ F. Note that τ -1 ε (τ ε (C)) = C \ (L * λ ∪ S * λ ). For B ∈ F, define φ ε (B) to be the closure of τ -1 ε (B) △ (L λ \ (L * λ ∪ S * λ )). For A ∈ A, we then have φ ε (τ ε (A △ L λ )) = A.
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The limiting class B. As explained in Subsection 1.2, we need to magnify with 1/ε = n 1/3 . Define for c > 0

B c,n = τ n -1/3 (C cn -1/3 ) = {τ n -1/3 (A △ L λ ) : A ∈ A cn -1/3 } (2.4)
and B = c>0 B c where

B c = B ∈ F c : for some B n ∈ B c,n , lim n→∞ d(B, B n ) = 0 . (2.5) Since L λ ∈ A cn -1/3 we have B ̸ = ∅.
In the language of Khmaladze ( 2007) each B ∈ B c is a derivative at 0 of the set-valued function ε → τ ε (A cε ) along the sequence ε = n -1/3 . Such limits are not uniquely determined. Actually the limit "set" B is an equivalence class of sets having d-distance equal to 0. Out of every equivalence class, we choose (only) one limit set B ∈ F c . This makes d a metric on B c and on B. (The choices of the limit set matter. In applications we choose B's such that the assumptions of our theorems are satisfied.)

Condition H 1

In order to exploit the weak convergence of the local empirical process in a cn -1/3 -neighborhood of S λ , c > 0, at standard rate n -2/3 we borrow assumptions (2.6)-(2.11) from [START_REF] Einmahl | Central limit theorems for local empirical processes near boundaries of sets[END_REF]. Let us first assume that, for any c > 0, (B c , d) is compact and λ with d n (C(κ), C(κ)) ≤ κ such that for every set C ∈ C cn -1/3 there is a bracket such that C(κ) ⊂ C ⊂ C(κ). Denote the cardinality (the bracketing number) of such a class of brackets with minimal cardinality by [A] c,n (κ). We assume the same for {τ -1 n -1/3 (B) : B ∈ B c } (instead of C cn -1/3 ) and denote the corresponding bracketing number with [B] c,n (κ). We require either that (2.11)

lim δ↓0 lim sup n→∞ δ 0 log [A] c,n (κ)dκ = 0, for any c > 0, (2.7) lim sup n→∞ sup 1≤c≤δn 1/3 1 0 log [A] c,n (c 1/2 κ)dκ < ∞, for every small δ > 0, (2.8) n 1/2 sup A∈A |P n (A) -P (A)| = O P (1), n → ∞, ( 2 
We also assume that A and B are pointwise measurable.

As discussed in more detail below the main results, these conditions are satisfied for the classes of ellipsoids, convex polytopes with a bound on the number of faces, convex sets in dimension 2 (in case L λ is a square) and many other often-used parametric classes of sets. When the class is too massive like for instance the class of convex sets in dimension 3 or higher, they do not hold. (For this non-VC class example, condition (2.7) is not satisfied.)

Nested class. Assume that for all r > 0, all A ∈ A there exists A r ∈ A such that A ⊂ A r , µ(A r ) = µ(A) + r.
(2.12)

Let us denote by H 1 the conditions in Subsection 2.2, that is compactness of (B c , d) and (2.6), "Donsker class" (with either conditions (2.7)-(2.10) or (2.11)), and (2.12).

Condition H 2

Given the weak convergence of local empirical processes, two difficulties remain for the convergence of the set-valued estimators. First, we need to establish the dimension-free concentration rate in R d . Second, we need to determine the "statistical" drift that competes with the convergence rate of the local empirical processes. For this the behavior of f near S λ has to be specified. The formulation and in-depth analysis of this drift in relation with the local empirical processes convergence is one of the main challenges of this paper.

Define the Hausdorff distance for the Euclidean norm on R d as

d H (A, A ′ ) = max sup x∈A inf x ′ ∈A ′ ∥x -x ′ ∥ , sup x ′ ∈A ′ inf x∈A ∥x -x ′ ∥ , for A, A ′ ⊂ R d .
Excess mass. Consider the excess mass

e λ -e λ (A) = P (L λ ) -P (A) -λ(µ(L λ ) -µ(A)) = L λ △A |f (x) -λ|dµ(x).
We require that for all δ > 0, inf

A∈A:d H (L λ ,A)≥δ L λ △A |f (x) -λ|dµ(x) > 0.
(2.13)

The quadratic drift measure D. We assume that for some second-order derivatives f ′ + ≥ 0 and f ′ -≥ 0 defined on S λ we have

lim ε↓0 1 ε 2 S ε λ \L λ f (x) -λ + s(x)f ′ + (Π(x)) dµ(x) = 0, (2.14) lim ε↓0 1 ε 2 S ε λ ∩L λ f (x) -λ + s(x)f ′ -(Π(x)) dµ(x) = 0.
(2.15)
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If f is differentiable at π ∈ S λ \ S * λ then f ′ + (π) = f ′ -(π).
Let us define on (Σ, M ) the quadratic drift measure D having density with respect to M given by

dD dM (π, u, s) = sf ′ + (π)1 s>0 -sf ′ -(π)1 s≤0 . Local excess mass. Write g(π) = min(f ′ + (π), f ′ -(π)) for π ∈ S λ .
Let assume that for some ε 0 > 0, η 0 > 0 and all A ∈ A such that d H (L λ , A) ≤ ε 0 , we have

L λ △A |s(x)|g(Π(x))dµ(x) ≥ η 0 d 2 H (L λ , A).
(2.16)

Similarly we require that for all B ∈ B

D(B) ≥ η 0 c 2 (B), (2.17) where c(B) = inf{c > 0 : B ∈ B c }.
Let H 2 denote the conditions (2.13)-(2.17) above. Conditions (2.13) and (2.16) do not allow that sets that are not close to L λ in Hausdorff distance have a small excess mass, and (2.17) is a version of (2.16) in the limiting setting. These conditions exclude classes of sets that allow spiky deviations from L λ . Conditions (2.14) and (2.15) are needed to express the drift in the inward and outward derivatives of f along the boundary S λ .

To see that H 2 is rather weak, consider the second order differentiability assumptions H1-H2 imposed on f in [START_REF] Cadre | Kernel estimation of density level sets[END_REF] to control µ(L λ △ L) where L = {x : f (x) > λ} is the plug-in level set derived from a kernel estimator f . Clearly, H1 implies (2.14) and (2.15) whereas H2 implies that g = f ′ + = f ′ -is bounded away from 0 on S λ . Thus (2.13) and (2.16) hold if inf A∈A\{L λ } µ(L λ △ A)/d H (L λ , A) > 0. Note that the Hausdorff and (here second order) Nikodym distances connected by (2.16) are known to play a different, sometimes opposite, role when approximating a convex support, see [START_REF] Brunel | Methods for estimation of convex sets[END_REF] for smooth versus polyhedral supports.

Main results

Convergence of the excess mass set estimator

Since (Σ, M ) is σ-finite and (B, d) is σ-compact we can define a Wiener process W indexed by B, that is a centered Gaussian process with covariance

Cov(W (B), W (B ′ )) = M (B ∩ B ′ ), for B, B ′ ∈ B.
The intrinsic, standard deviation metric of W on B is defined to be (V ar(W (B)-

W (B ′ )) 1/2 = d(B, B ′ ). The relevant limiting random set is Z(B) = arg max B∈B √ λW (B) -D(B) . (3.1)
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This quantity has been studied in the univariate case where the sets reduce to numbers, see [START_REF] Groeneboom | Brownian motion with a parabolic drift and airy functions[END_REF], [START_REF] Dykstra | The distribution of the argmax of twosided Brownian motion with quadratic drift[END_REF][START_REF] Dykstra | The distribution of the argmax of twosided Brownian motion with quadratic drift[END_REF][START_REF] Berthet | Almost sure asymptotic behaviour of the shorth estimators[END_REF][START_REF] Berthet | Almost sure asymptotic behaviour of the shorth estimators[END_REF]. Observe that EW 2 (B) ≤ 2s λ c for B ∈ B c . We assume that for some η 1 > 0, We are now ready to state our non-standard weak convergence result for the sequence of random sets L 1,n in (1.1).

E sup B∈Bc W (B) < η 1 √ c,
Theorem 3.1. Assume that H 1 , H 2 , and (3.2) hold. Then on some probability space there exists a triangular array X n,1 , . . . , X n,n , n ∈ N, of rowwise independent random vectors with law P on R d together with a sequence Z n (B) of versions of Z(B) such that for every argmax L 1,n of (1.1), as n → ∞,

M (τ n -1/3 (L 1,n △ L λ ) △ Z n (B)) P → 0, n 1/3 µ (L 1,n △ φ n -1/3 (Z n (B))) P → 0, n 1/3 P (L 1,n △ φ n -1/3 (Z n (B))) P → 0.
To connect the first statement to the other two, recall that by the definition of φ n -1/3 we have L 1,n = φ n -1/3 (τ n -1/3 (L 1,n △ L λ )). Theorem 3.1 states that, at the scale n -1/3 , the symmetric difference between the empirical excess mass set and L λ has as a limiting distribution that of the argmax of a drifted Wiener process, as defined in (3.1).

In Theorem 3.1 f , L λ and A are fixed. Even if f is regular enough to be estimated by the usual nonparametric density estimators f n the shape of the plug-in estimator L λ (f n ) of the level set is not easy to describe geometrically and strongly depends on the smoothing parameter (instead of on A). Compared to the more classical CLT for the centered measure µ [START_REF] Mason | Asymptotic normality of plug-in level set estimates[END_REF] for f n being the kernel density estimator) we obtain the limiting distribution of the set L 1,n ∆L λ itself. Moreover, smooth transforms of L 1,n ∆L λ can be controlled by those of L λ ∆φ n -1/3 (Z(B)), which provides a new access to risks such as E (µ(L 1,n ∆L λ )).

(L λ (f n )∆L λ ) - E (µ(L λ (f n )∆L λ )) (see
To control uniformly a risk of L 1,n , Theorem 3.1 should be extended to a class of densities instead of a single density f . Now, in order to keep the n -1/3 rate, A should contain all the associated level sets, and also the entropy conditions in H 1 as well as the conditions in H 2 have to hold for each density in the class. In [START_REF] Tsybakov | On nonparametric estimation of density level sets[END_REF] minimax rates for the expected volume of the symmetric difference of level sets estimators are obtained which are sometimes (for non-VC imsart-generic ver. 2020/08/06 file: output.tex date: October 28, 2023 classes) slower than the n -1/3 rate obtained here (especially in high dimensions). The slower rates are due to the more general setup in that paper in comparison with our conditions in H 1 and H 2 , for the large A, that includes all the level sets of the class of densities, too consider. In particular, L 1,n is shown to be minimax for radially regular densities with convex level sets containing a small ball at the origin. Notice that if f is differentiable on S λ then (2.14)-(2.15) hold and if the derivative is bounded away from zero then f is radially 1-regular in [START_REF] Tsybakov | On nonparametric estimation of density level sets[END_REF], thus the main topic when considering L 1,n is studying the geometrical features of the sets in A with regard to each allowed L λ in view of the intended limiting result. Clearly for the present results, some sequences of sets may be too spiky (hence H 2 does not hold), or have too large bracketing entropy numbers (H 1 does not hold).

For similar reasons, the rates obtained for P (L j,n ∆L λ ) for non-VC classes in [START_REF] Polonik | Measuring mass concentrations and estimating density contour clusters -an excess mass approach[END_REF], for j = 1, and in [START_REF] Polonik | Minimum volume sets and generalized quantile processes[END_REF], for j = 2, are also slower than n -1/3 .

Convergence of the minimum volume set and the maximum probability set estimators

For the second main result about L 2,n and L 3,n we need some more notation and assumptions.

The limiting class

B * . Write B + = B ∩ (N or(L λ ) × R + ) and B -= B \ B + , for B ∈ F. Now define B * = {B ∈ B : M (B + ) = M (B -)}, B * c = B * ∩ B c .
Note that (B * c , d) is also compact. By replacing A in (2.3)-(2.4) with

A v = {A ∈ A : µ(A) = v λ }, A p = {A ∈ A : P (A) = p λ }, (3.3)
respectively, we define in the same way the classes

A ε v , C ε v , A ε p , C ε p and B v c,n , B p c,n .
For the excess mass estimator L 1,n the sets A ∈ A are not restricted in terms of µ or P . For the maximum probability estimator L 3,n there is a restriction in terms of µ and for the minimum volume estimator L 2,n there is a restriction in terms of P n . It turns out that the sets considered in the definition of L 3,n can be further restricted to being in A v . Somewhat similar, but more complicated, it will be shown that the sets considered in the definition of L 2,n can be replaced by those being very close to members of A p . Since P ≈ λµ near S λ , both A v and A p lead to the same limiting class B * under the conditions (3.4) and (3.5) below.

Condition H 3 . We assume As in Proposition 3.1, under H 1 , H 2 and (3.2), with probability one Z(B * ) exists and is unique.

In order to control the minimum volume set estimator we need the following two conditions. The class A contains a "univariate" subclass

A l = {A s ∈ A : s ∈ (-p λ , 1 -p λ ), P (A s ) = p λ + s} (3.6)
of nested sets with the properties that A s ⊂ A s ′ if s < s ′ , A 0 = L λ , and for some s 0 > 0, ζ > 0 and for all -s 0 ≤ s ≤ s 0 :

e λ -e λ (A s ) ≤ ζs 2 . (3.7)
For every c > 0, we have as n → ∞,

sup A∈A cn -1/3 ,P (A)=p λ inf Ã∈A cn -1/3 ,Pn( Ã)=⌈np λ ⌉/n d(τ ε (A), τ ε ( Ã)) P → 0. (3.8)
Let H 3 denote the conditions (3.4)-(3.8) above. These conditions, although technical, are rather mild and they are satisfied by many natural classes A like the ones mentioned in H 1 . This mainly follows from the fact that a given ellipsoid, say, can be continuously inflated or deflated, even when e.g. its major diameter has to stay fixed.

Theorem 3.2. Assume that H 1 , H 2 , H 3 and (3.2) hold. Then on some probability space there exists a triangular array X n,1 , . . . , X n,n , n ∈ N, of rowwise independent random vectors with law P on R d together with a sequence Z n (B * ) of versions of Z(B * ) such that every argmin L 2,n of (1.2) and every argmax L 3,n of (1.3) satisfy, for j = 2, 3, as n → ∞,

M (τ n -1/3 (L j,n △ L λ ) △ Z n (B * )) P → 0, n 1/3 µ (L j,n △ φ n -1/3 (Z n (B * ))) P → 0, n 1/3 P (L j,n △ φ n -1/3 (Z n (B * ))) P → 0.
Note that by definition the distributions of Z n (B) and Z n (B * ) do not depend on n and they are in general not degenerate (cf. the univariate case). When going back to R d , we obtain φ n -1/3 (Z n (B)) and φ n -1/3 (Z n (B * )) which are the asymptotic approximations of L 1,n and L 2,n , L 3,n respectively.

Comparing Theorems 3.1 and 3.2 we see that the limiting behavior of L 2,n and L 3,n is substantially "less rich" than that of L 1,n . The symmetry of the imsart-generic ver. 2020/08/06 file: output.tex date: October 28, 2023 sets in B * shows that for j = 2, 3 the inner and outer differences L j,n \ L λ and L λ \ L j,n tend to compensate. Theorems 3.1 and 3.2 could be stated jointly since they can indeed be proved with the same sequence of underlying Wiener processes W n .

From a statistical point of view it would be interesting to investigate which estimator performs better: L 1,n on the one hand or L 2,n and L 3,n on the other hand. Theorems 3.1 and 3.2 provide the asymptotic theory for such a comparison. Since all three estimators converge at the same rate, to answer such a question we would need to study Z(B) and Z(B * ) in order to see which argmax is "closer" to, say, Σ 0 (corresponding to L λ ). For the univariate case, simulations indicate that L 2,n and L 3,n asymptotically outperform L 1,n . However, a thorough comparison in particular in the multivariate case, even when considering a simple indexing class like the class of all closed ellipsoids and a simple density like some multivariate normal, is theoretically and computationally challenging and beyond the scope of the present paper.

In Di Bucchianico, [START_REF] Di Bucchianico | Smallest nonparametric tolerance regions[END_REF] guaranteed coverage tolerance regions and mean coverage tolerance (or prediction) regions are derived with the aid of minimum volume estimators. Although strictly speaking the guaranteed coverage tolerance regions are not contained in the setup of the present paper since p λ in (1.2) depends on n (but it converges), the mean coverage tolerance regions do fit the present setup. It is shown therein that (in our notation) EP (L 2,n ) = p λ +o(n -1/2 ), whereas Theorem 3.2 now yields the slower n -1/3 convergence rate as well as the fine limiting behavior of the mean coverage tolerance regions themselves (compared with the oracle tolerance region L λ ).

Theorems 3.1 and 3.2 suggest new tools to derive confidence regions for L λ in case the class of densities considered is not too large. First the relevant unknown quantities, in particular D, used in the limiting set Z(B) or Z(B * ) should be estimated and then in principle this approximated limiting set, can be simulated many times. Now determine c α such that the proportion of these simulated sets that has, e.g., the last coordinate on the approximated cylinder included in [-c α , c α ]. Then inverting this part of the cylinder to R d yields a (1 -α)confidence band for L λ . Alternatively we could try to take into account the behavior of f ′ -and f ′ + when taking the proportion 1 -α of the simulated sets, which would naturally lead to bands which are narrower where f ′ -or f ′ + is larger.

Many further applications of level sets estimation can be found in [START_REF] Mammen | Confidence regions for level sets[END_REF] and [START_REF] Qiao | Nonparametric confidence regions for level sets: Statistical properties and geometry[END_REF] and the references therein.

From the proof of Theorem 3.2 it follows that the sequence of versions Z n (B * ) can be chosen the same for L 2,n and L 3,n . Hence, we obtain, as stated in the next result, that L 2,n and L 3,n are asymptotically equivalent.
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M (τ n -1/3 (L 2,n △ L 3,n )) P → 0, n 1/3 µ (L 2,n △ L 3,n ) P → 0, n 1/3 P (L 2,n △ L 3,n ) P → 0.

The main concentration lemma

After all the conditions for its formulation have been introduced, we would like to highlight in this "Main results" section the following lemma which is the key to the convergence rate n -1/3 . Consider the following variant of L 3,n :

L 4,n ∈ arg max A∈A {P n (A) : µ(A) = v λ } .
(3.9)

Lemma 3.1. Under the assumptions of Theorems 3.1 or 3.2, respectively, for every δ > 0, there exists a c > 1, and an n 0 , such that, for j = 1, 2, 4, and n ≥ n 0 , P(d H (L j,n , L λ ) ≥ cn -1/3 ) ≤ δ.

Discussion and examples

This paper uses the probabilistic setting, with magnification map, cylinder space, and the weak convergence (in Lemma 4.6 below) provided by [START_REF] Einmahl | Central limit theorems for local empirical processes near boundaries of sets[END_REF]. That paper is a convenient starting point for the statistical inference here. The goal of the present paper as well as our main results and various lemmas are novel and very different, however: Einmahl and Khmaladze (2011) is about uniform weak convergence, with arbitrary intermediate rate, of a local empirical process indexed by a class of sets, whereas the present paper is about set estimation, about convergence of the random sets themselves.

Here a drift competing with the local empirical processes appears which leads to the cube root rate, lacking and irrelevant in [START_REF] Einmahl | Central limit theorems for local empirical processes near boundaries of sets[END_REF].

Technically, the main novelties of our work are the statements and proofs of Theorems 3.1 and 3.2, including the assumptions in H 2 and H 3 required to control the drift, as well as the statement of the key Lemma 3.1 below. The conditions on the class A are such that natural classes, like in particular the class of all closed ellipsoids, are included. If the class is "small", e.g., by allowing not all or only a few positive values for µ(A) or for P (A) we can obtain pathological and/or degenerate behavior of the set-valued estimators. E.g., if A contains L λ and further only sets with µ(A) > v λ , then L 3,n = L λ .

The assumptions in (2.14) and (2.15) consider the "most regular" behavior of the density f near S λ . They lead to the cube root asymptotics in this paper. Faster or slower convergence rates are also possible, see, e.g., [START_REF] Polonik | Measuring mass concentrations and estimating density contour clusters -an excess mass approach[END_REF]. This would lead to W drifted by a non-quadratic measure on the cylinder space, generalizing W drifted by a convex power function used in [START_REF] Berthet | Almost sure asymptotic behaviour of the shorth estimators[END_REF] to control the estimation of the shorth, the minimum volume convex set on the real line. It is the goal of the present paper, however, to reveal the asymptotic theory in the most regular setup, and not to present the most general results under the weakest assumptions.

We now present some specific examples of classes of sets and probability distributions where the three level set estimators can be used, see for more relevant details, including expressions for B c in some two-dimensional cases, Examples 1a, 2a and 2b in [START_REF] Einmahl | Central limit theorems for local empirical processes near boundaries of sets[END_REF].

Ellipsoids. The natural and most studied example is the case where A is the class of all closed ellipsoids with non-empty interior and P is an elliptical probability distribution. A more restricted class is, of course, the class of all closed balls.

Convex polytopes. Another natural choice for A is the class of all closed, convex polytopes with a bound on the number of faces. In particular in dimension 2, the class of all closed, convex quadrangles can be considered. In this case we could take a density f such that L λ is a rectangle. An interesting difference with the previous example is that L λ is non-smooth here, resulting, e.g., in a non-empty skeleton L * λ . Planar convex sets. For dimension two, in case L λ is a square (or rectangle), we can let A be the large class of all closed, convex sets. Although this interesting case is also considered in Example 2b in [START_REF] Einmahl | Central limit theorems for local empirical processes near boundaries of sets[END_REF], we will provide at the end of Section 4 details about why conditions (2.7) and (2.8) are satisfied. Note that the bracketing numbers bound used there also indicates that our results do not hold true for the class of closed, convex sets in dimensions exceeding 2.

It might be difficult to determine L 1,n , L 2,n and L 3,n and therefore some more flexibility in their definitions could be convenient. Consider for instance the following "relaxed" maximizers/minimizers: given any sequence δ n of positive numbers converging to 0, choose random sets R 1,n , R 2,n , and R 3,n in A such that P n (R 2,n ) ≥ p λ , µ(R 3,n ) ≤ v λ , and

P n (R 1,n ) -λµ(R 1,n ) ≥ sup{P n (A) -λµ(A) : A ∈ A} -δ n n -2/3 , µ(R 2,n ) ≤ inf{µ(A) : A ∈ A, P n (A) ≥ p λ } + δ n n -2/3 , P n (R 3,n ) ≥ sup{P n (A) : A ∈ A, µ(A) ≤ v λ } -δ n n -2/3 .
Our approach and convergence results naturally extend to R j,n , j = 1, 2, 3, but their detailed analysis is beyond the scope of this paper. Whenever δ n is chosen not too small (i.e., δ n n 1/3 → ∞) more flexible algorithms for the computation of R j,n could be used.
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Proofs

We first collect various lemmas for the proof of the theorems. From now on we write ε n = n -1/3 .

Distances, measures and drift

For j = 1, ..., d, let ν d-j (•) denote the j-th support measure of L λ on N or(L λ ). These finite measures carry the geometrical information about L λ and are a common generalization of the curvature measures and the area measures, see [START_REF] Schneider | Convex Bodies : The Brunn-Minkowski Theory[END_REF] and [START_REF] Schneider | Stochastic and Integral Geometry[END_REF]. The local inner reach at π ∈ S λ is the largest radius r(π) of a ball included in L λ that has π as a boundary point. Theorem 1 in [START_REF] Khmaladze | Local empirical processes near convex bodies[END_REF] states a general Steiner formula for convex bodies: for any g ∈ L 1 (µ),

R d g(x)dµ(x) = d j=1 d -1 j -1 Θ d-j (g), where (4.1) Θ d-j (g) = N or(L λ ) ∞ -r(π) s j-1 g(π + su)dµ 1 (s)dν d-j (π, u). (4.2)
It follows from (2.14)-(2.15) and this Steiner formula with g = f 1 S ε λ , for small ε > 0, that

N or(L λ ) f ′ ± (π)ν d-j (π, u) < ∞, for j = 1, ..., d. (4.3) Define B p,+ c,n = {τ εn (A △ L λ ) : A ∈ A cεn , |P (A) -p λ | ≤ n -2/5 }. (4.4) Lemma 4.1. Let c > 0. We have, as n → ∞, sup Bn∈B v c,n M (B + n ) -M (B - n ) = O(ε n ) (4.5)
and, if (2.14)-(2.15) hold, then

sup Bn∈B p,+ c,n M (B + n ) -M (B - n ) → 0. (4.6) Proof. For A n ∈ A cεn and B n = τ εn (A n △ L λ ) ∈ B c,n , we have B + n = τ εn (A n \ L λ ) and B - n = τ εn (L λ \ A n ). Consider g + (x) = ε -1 n 1 An\L λ (x) = ε -1 n 1 B + n (Π(x), u(x), s(x)/ε n ) in (4.1). Then Θ d-j (g + ) = ε j-1 n N or(S λ ) c 0 s j-1 1 B + n (π, u, s)dµ 1 (s)dν d-j (π, u).
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Thus Θ d-1 (g + ) = M (B + n ), by (2.2), and Θ d-j (g + ) = O(ε j-1 n ) uniformly over A cεn , for j = 2, . . . , d. Since ε -1 n µ(A n \ L λ ) = R d g + (x)dµ(x) we see that (4.1) implies sup A∈A cεn 1 ε n µ(A \ L λ ) -M (τ εn (A \ L λ )) = O(ε n ). (4.7)
Similarly we obtain sup

A∈A cεn 1 ε n µ(L λ \ A) -M (τ εn (L λ \ A)) = O(ε n ). (4.8) For A ∈ A cεn v , µ(A) = v λ and hence µ(L λ \ A) = µ(A \ L λ )
. By (4.7) and (4.8), we obtain (4.5) by definition of

B v c,n . Define A cεn,+ p = {A ∈ A cεn : |P (A) -p λ | ≤ n -2/5 }.
For A n ∈ A cεn,+ p we thus have and, by (2.14) and (2.15), uniformly over

An\L λ f (x)dµ(x) - L λ \An f (x)dµ(x) ≤ n -2/5 ,
A cεn,+ p , λµ(A n \ L λ ) - An\L λ s(x)f ′ + (Π(x))dµ(x) (4.9) = λµ(L λ \ A n ) - L λ \An s(x)f ′ -(Π(x))dµ(x) + o(ε 2 n ) + O(n -2/5 ). Now consider g+ (x) = ε -1 n 1 An\L λ (x)s(x)f ′ + (Π(x)).
Then by (4.1)-( 4.3) we find that uniformly over

A cεn,+ p , ε -1 n An\L λ s(x)f ′ + (Π(x))dµ(x) = O(ε n ).
We can deal similarly with the integral on L λ \ A n . Using this in (4.9) in combination with (4.7) and (4.8) yields (4.6).

Observe that (4.7) and (4.8) immediately yield sup The proof of (4.13) follows similarly. Clearly (4.13) implies (4.12).

A∈A cεn ε -1 n µ(A △ L λ ) -M ((τ εn (A △ L λ ))) = O(ε n ). ( 4 
For

c > 0 consider C ∈ C cεn . Write C + = C \ L λ and C -= C ∩ L λ . Define D n (τ εn (C)) = n 2/3 e λ (C -) -e λ (C + )
and observe that e λ (C -) ≥ 0 and e λ (C + ) ≤ 0.

Lemma 4.3. If (2.14)-(2.15) hold, then, as n → ∞, sup C∈C cεn |D(τ εn (C)) -D n (τ εn (C))| → 0. Proof. Write f ′ (π, s) = 1 s>0 f ′ + (π)+1 s≤0 f ′ -(π).
From the Steiner formula (4.1)-(4.2) and from (2.14)-( 2.15) we obtain by a straightforward calculation that, uniformly for

C ∈ C cεn , D n (τ εn (C)) = 1 ε 2 n N or(L λ ) cεn -(r(π)∧cεn) sf ′ (π, s)(1 C + (π + su) -1 C -(π + su))dsdν d-1 (π, u) + d j=2 d -1 j -1 1 ε 2 n N or(L λ ) cεn -(r(π)∧cεn) s j f ′ (π, s)(1 C + (π + su) -1 C -(π + su))dsdν d-j (π, u) +o(1) =: T 1,n (C) + d j=2 d -1 j -1 T j,n (C) + o(1).
Now by a change of variables it follows that T 1,n (C) = D(τ εn (C)). Hence it remains to show that sup C∈C cεn

d j=2 d-1 j-1 |T j,n (C)| → 0, but this follows from sup C∈C cεn |T j,n (C)| = O(ε j-1
n ), which we obtain from (4.3). The following lemma is immediate from basic measure theory, more precisely the fact that an M -small set has a small integral. 

Concentration lemmas

Lemma 4.5. Let ε > 0 fixed and

A ∈ A with d H (A, L λ ) ≤ ε, then A△L λ ⊂ S ε λ .
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Proof. Assume d H (A, L λ ) ≤ ε and x ∈ A \ L λ . Then ∥x -Π(x)∥ ≤ ε. Hence x ∈ S ε λ . Now assume d H (A, L λ ) ≤ ε and x ∈ L λ \ A. Assume x / ∈ S ε λ . Let Π A (
x) be the orthogonal projection of x on ∂A, that is unique since x / ∈ A and A is convex. There exists an y ∈ S λ such that Π A (y) = Π A (x). To see this consider the tangent space of A at Π A (x) that is orthogonal to the outer normal of ∂A at Π A (x) driven by (x -Π A (x)) and take y as the intersection of that line with S λ . Then ∥y -

Π A (x)∥ > ∥y -x∥ ≥ ∥Π(x) -x∥ > ε. This implies d H ({y}, A) > ε and hence d H (A, L λ ) > ε. Contradiction. Hence we have x ∈ S ε λ . PROOF OF LEMMA 3.1. Consider L 1,n ∈ arg max A∈A {P n (A) -λµ(A)} = arg max A∈A {P n (A) -P (A) -P n (L λ ) + P (L λ ) + e λ (A) -e λ } . (4.14)
Observe that the expression of which the latter argmax is taken is equal to 0 in case A = L λ .

VC class. First assume that A is a VC class. We begin with showing that for n large enough

P(d H (L 1,n , L λ ) ≥ δ) ≤ 1 2 δ. (4.15) 
We obtain from (2.13) that there exists an η > 0, such that d H (L λ , A)) ≥ δ implies e λ -e λ (A) ≥ 2η. The Glivenko-Cantelli theorem on A yields that for the above η for large n

P( sup A∈A |P n (A) -P (A) -P n (L λ ) + P (L λ )| ≤ η) ≥ 1 - 1 2 δ.
Hence

P(d H (L 1,n , L λ ) < δ) ≥ 1 - 1 2 δ.
Define, for c > 1 (recall ε n = n -1/3 ),

p c = P(cε n ≤ d H (L 1,n , L λ ) ≤ min(c 2 ε n , δ)). (4.16) 
and

A 1 = {A ∈ A : cε n ≤ d H (L λ , A) ≤ min(c 2 ε n , δ)}. From (2.16) we obtain e λ -e λ (A) > 1 2 η 0 d 2 H (L λ , A), for small d H (L λ , A). Hence for small δ > 0 inf A∈A1 e λ -e λ (A) ≥ 1 2 η 0 inf A∈A1 d 2 H (L λ , A) ≥ 1 2 η 0 c 2 ε 2 n .
imsart-generic ver. 2020/08/06 file: output.tex date: October 28, 2023

This yields, see (4.14) and the observation directly below it,

p c = P(L 1,n ∈ A 1 ) ≤ P sup A∈A1 P n (A) -P (A) -P n (L λ ) + P (L λ ) + e λ (A) -e λ ≥ 0 ≤ P sup A∈A1 P n (A) -P (A) -P n (L λ ) + P (L λ ) ≥ inf A∈A1 e λ -e λ (A) ≤ P sup A∈A1 P n (A) -P (A) -P n (L λ ) + P (L λ ) ≥ 1 2 η 0 c 2 ε 2 n ≤ P 2 sup D∈Dn |P n (D) -P (D)| ≥ 1 2 η 0 c 2 ε 2 n =: pc , (4.17) 
where

D n = {A \ L λ : A ∈ A 1 } ∪ {L λ \ A : A ∈ A 1 }. Denote N = nP n (S c 2 εn∧δ λ
), the number of observations in S c 2 εn∧δ λ , a n = P (S c 2 εn∧δ λ ), and k = na n , the expected number of observations in S c 2 εn∧δ λ . Then

pc = P n 1/2 a 1/2 n sup D∈Dn |P n (D) -P (D)| ≥ 1 4 η 0 c 2 ε 2 n n 1/2 a 1/2 n ≤ P n 1/2 a 1/2 n sup D∈Dn |P n (D) -P (D)| ≥ 1 5 (2λs λ ) -1/2 η 0 c , since c 2 ε n /a n ≥ ( 4 5 ) 2 (2λs λ ) -1
, for small δ > 0. (Observe that here by the choice ε n = n -1/3 the threshold in the first probability is bounded from below by a positive number not depending on n.) Hence, writing η 2 = 1 ∧ 1 5 (2λs λ ) -1/2 η 0 , we have

pc ≤ P n 1/2 a 1/2 n sup D∈Dn |P n (D) -P (D)| ≥ η 2 c = n m=0 P n k 1/2 sup D∈Dn |P n (D) -P (D)| ≥ η 2 c | N = m P(N = m) ≤ m=⌊k+(η2/3)c √ k⌋ m=⌈k-(η2/3)c √ k⌉ P sup D∈Dn 1 √ k (nP n (D) -nP (D)) ≥ η 2 c | N = m P(N = m) + P(|N -k| ≥ η 2 3 c √ k) =: T + T 3 .
Let Y j , j = 1, . . . , n, be i.i.d. random vectors taking values in S c 2 εn∧δ λ distributed according to P := P/a n . Then, using Lemma 4.5, for n ≥ n 1 (for some n 1 not imsart-generic ver. 2020/08/06 file: output.tex date: October 28, 2023 depending on c) and large c,

T ≤ m=⌊k+(η2/3)c √ k⌋ m=⌈k-(η2/3)c √ k⌉ P   sup D∈Dn 1 √ m   m j=1 1 D (Y j ) -m P (D)   ≥ √ η 2 c 2 √ 2   P(N = m) + m=⌊k+(η2/3)c √ k⌋ m=⌈k-(η2/3)c √ k⌉ P sup D∈Dn 1 √ k |m -k| P (D) ≥ η 2 2 c P(N = m) =: T 1 + T 2 .
Note that for each m in the latter sum

P sup D∈Dn 1 √ k |m -k| P (D) ≥ η 2 2 c ≤ P 1 √ k |m -k| ≥ η 2 2 c = 0.
Hence T 2 = 0. From Bennett's inequality we have

T 3 ≤ 2 exp - η 2 2 c 19 .
Using Corollary 2.9 in [START_REF] Alexander | Probability inequalities for empirical processes and a law of the iterated logarithm[END_REF] we obtain for large enough c

T 1 ≤ m=⌊k+(η2/3)c √ k⌋ m=⌈k-(η2/3)c √ k⌉ 16 exp - η 2 c 64 P(N = m) ≤ 16 exp - η 2 c 64 .
Hence

p c ≤ 18 exp - η 2 2 c 64 .
Using this bound on p c with c replaced by c 2 m , m = 0, 1, 2, . . ., we obtain that for large n

P(d H (L 1,n , L λ ) ≥ cε n ) ≤ P(d H (L 1,n , L λ ) ≥ δ) + ∞ m=0 P(c 2 m ε n ≤ d H (L 1,n , L λ ) ≤ min(c 2 m+1 ε n , δ)) ≤ 1 2 δ + 18 ∞ m=0 exp - η 2 2 c 2 m 64 ≤ δ,
for c large enough. Conditions (2.7)-(2.10). Now we assume that (2.8) and (2.9) hold. Then the proof for L 1,n follows similar lines. (Here (2.7) and (2.10) are not required, but they are crucial for the convergence statements in Lemma 4.6 below.) As above, we show that (4.15) holds, because of which now directly follows from (2.9). For the derivation of the upper bound for p c in (4.16) we first follow the same lines as below that formula, until (4.17). Now observe that

[A] c 2 ∧δ/εn,n ((P (S c 2 εn∧δ λ )/ε n ) 1/2 ) = 1.
Using this and Lemma 4.5, we now bound the final probability in (4.17) directly by Lemma 19.34 in van der Vaart (1998) and the Markov inequality. This yields for some constants c 1 , c 2 > 1,

p c ≤ 4c 1 η 0 c 2 ε 2 n n 1/2 c2(cε 1/2 n ∧δ 1/2 ) 0 log [A] c 2 ∧δ/εn,n t/ε 1/2 n dt = 4c 1 η 0 c 2 c2(c∧(δ/εn) 1/2 ) 0 log [A] c 2 ∧δ/εn,n (κ)dκ ≤ 4c 1 c 2 η 0 c 2 c∧(δ/εn) 1/2 0 log [A] c 2 ∧δ/εn,n (κ)dκ.
Using this bound on p c with c replaced by c 2 m , m = 0, 1, 2, . . ., we obtain as above

P(d H (L 1,n , L λ ) ≥ cε n ) ≤ 1 2 δ+ ∞ m=0 4c 1 c 2 η 0 c 2 m+1 c 2 m ∧(δ/εn) 1/2 0 log [A] c 2 m+1 ∧δ/εn,n (κ)dκ.
Now using (2.8) and a change of variables we find that the expression on the right is, for some c 3 > 0, bounded by

1 2 δ + ∞ m=0 4c 1 c 2 c 3 η 0 c 2 m+1 c 2 m ∧ (δ/ε n ) 1/2 ≤ 1 2 δ + 4c 1 c 2 c 3 η 0 ∞ m=0 1 c 2 m ≤ δ,
for large n and c large enough.

Next we consider L 4,n . We have

L 4,n ∈ arg max A∈A,µ(A)=v λ {P n (A) -P (A) -P n (L λ ) + P (L λ ) + e λ (A) -e λ } .
This expression is very similar to the one for L 1,n . The only difference is that A there is replaced by its subset {A ∈ A : µ(A) = v λ }. Since the arguments above -dealing with suprema and infima -hold for the entire class A, they remain to hold for this subset. Finally consider L 2,n . We have, almost surely,

L 2,n ∈ arg min A∈A,nPn(A)=⌈np λ ⌉ {µ(A)} = arg max A∈A,nPn(A)=⌈np λ ⌉ {P n (A) -λµ(A)} = arg max A∈A,nPn(A)=⌈np λ ⌉ {P n (A) -P (A) -P n (L λ ) + P (L λ ) + e λ (A) -e λ } .
This expression looks similar to the ones for L 1,n and L 4,n , but the difference is that the supremum of the expression of which the latter argmax is taken is not imsart-generic ver. 2020/08/06 file: output.tex date: October 28, 2023

guaranteed to be non-negative since the choice A = L λ , as before, is not allowed. However, it follows from (3.6) that, almost surely, there exists an A ŝ ∈ A l such that nP n (A ŝ) = ⌈np λ ⌉. Then, using P (A ŝ) = p λ + O P (1/ √ n), we obtain from (3.7) and the behavior of the oscillation modulus of the univariate, uniform empirical process, that with arbitrarily high probability for large n that the just mentioned supremum is larger than -n -17/24 (instead of being non-negative). Since n -17/24 /ε 2 n → 0 as n → ∞, the proof for L 1,n can be easily adapted, replacing A by its (random) subset {A ∈ A : nP n (A) = ⌈np λ ⌉}. □

Processes on the cylinder space

Here we describe more precisely the local objects, magnified into the cylinder space, namely the empirical process, the drift induced by the local variation of the density, and then the limiting drifted Gaussian process. Since for all c > 0, (B c , d) is totally bounded, we have Proof. Note that the assumptions of Theorems 1 and 2 in Einmahl and Khmaladze (2011) are satisfied. In particular (2.7) and (2.10) or the VC class assumption are crucial, while (2.14) and (2.15) are a bit stronger than needed here, but required for the main proofs. Hence, using these theorems, including a Skorohod construction as on page 554 therein, yields (4.18) and (4.19). Note that the generalization from c = 1 therein to arbitrary c > 0 here, is straightforward. Also the fact that here w n is a difference of two terms can be easily dealt with.
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For a compact subset B of B, define

Z( B) = arg max B∈ B √ λW (B) -D(B) .
Recall that √ λW -D is d-continuous on B c , whereas V ar(W (B) -W (B ′ )) = 0 implies B ′ = B by our equivalence class convention. Now note that both Z(B c ) and Z(B * c ) exist and, by Lemma 2.6 in [START_REF] Kim | Cube root asymptotics[END_REF], are almost surely unique on the compact set B c , respectively B * c . Proposition 3.1 and a similar statement for Z(B * ) are consequences of (the above and) the following lemma.

Lemma 4.7. Assume that H 1 , H 2 , and (3.2) hold. For B = B, B * we have

P c>0 {Z( B ∩ B c ) = Z( B ∩ B c), for all c > c} = 1.
Hence Z( B) almost surely exists and is unique; it is the "set limit" of Z( B ∩ B m ):

Z( B) = ∞ k=1 ∞ m=k Z( B ∩ B m ).
Proof. We have, using (2.17) and c(B) defined there,

P sup B∈ B:c(B)≥c √ λW (B) -D(B) ≥ 0 ≤ ∞ m=0 P sup B∈ B:c 2 m ≤c(B)<c 2 m+1 √ λW (B) -D(B) ≥ 0 ≤ ∞ m=0 P sup B∈ B:c 2 m ≤c(B)<c 2 m+1 √ λW (B) -η 0 c 2 (B) ≥ 0 ≤ ∞ m=0 P sup B∈ B:c 2 m ≤c(B)<c 2 m+1 √ λW (B) ≥ η 0 c 2 m+1 ,
which is by (3.2), bounded from above by

η 1 √ λ η 0 ∞ m=0 c -2 m ,
which is, for arbitrary η > 0, bounded by η, for c large enough. Hence, since L λ ∈ A, for c large enough,

P(Z( B ∩ B c ) = Z( B ∩ B c), for all c > c) ≥ 1 -η.
If this event is denoted by Ω c , then P(∪ c>0 Ω c ) = 1.
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We work in the setting of Lemma 4.6. For c > 0 we have arg max

A∈A cεn {P n (A) -λµ(A)} = arg max A∈A cεn P (A) -λµ(A) -P (L λ ) + λµ(L λ ) + n -2/3 (Λ n (A) -Λ n (L λ )) = arg max A∈A cεn n 2/3 (e λ (A) -e λ ) + Λ n (A) -Λ n (L λ ) = φ εn arg max B∈Bc,n {w n (B) -D n (B)} .
Consider the events

Ξ Λ c,n = {L 1,n △ L λ ⊂ S cεn λ } , Ξ W c = {Z(B c ) = Z(B)} ,
where Z(B c ) and Z(B) are defined in terms of a Wiener process W satisfying (4.19) in Lemma 4.6. Clearly, Lemmas 4.5, 3.1 and 4.7 imply that for any δ > 0 there exists a c = c(δ) > 0 such that we have We have for any ε > 0 fixed, every argmax L 1,n , and all large enough n 

P Ξ Λ c,n ∩ Ξ W c > 1 -δ for all n large enough. Now define m c,n = sup B∈Bc,n {w n (B) -D n (B)} , m c = max B∈Bc √ λW ( 
P M (τ εn (L 1,n △ L λ ) △ Z(B)) > δ 2 ≤ P M (τ εn (L 1,n △ L λ ) △ Z(B)) > δ 2 ∩ Ξ Λ c,n ∩ Ξ W c + δ ≤ P d arg max B∈Bc,n {w n (B) -D n (B)} , Z(B c ) > δ + δ ≤ P sup B∈Bc,n:d(B,Z(Bc))>δ {w n (B) -D n (B)} ≥ m c,n + δ ≤ P sup B∈Bc,n:d(B,Z(Bc))>δ {w n (B) -D(B)} ≥ m c,n -ε + δ which is by (4.20) ≤ P sup B∈Bc,n:d(B,Z(Bc))>δ {w n (B) -D(B)} ≥ m c -2ε + 2δ
≤ P max B∈Bc:d(B,Z(Bc))≥δ/2 √ λW (B) -D(B) ≥ m c -4ε + 4δ ≤ 5δ,
provided that we choose a small enough ε with respect to δ.

Note that Z(B) depends on δ through c = c(δ). We can avoid this, but make it instead depend on n as in the statement of the theorem, by a diagonal selection argument.

The second and third statement in Theorem 3.1 follow directly from the just established first one and the Steiner formula (4.1)-(4.2), since M can be approximated by ε -1 n µ after transforming back by τ -1 εn (see (4.10)), and then λµ can be approximated by P near S λ . □ 4.5. Proof of Theorem 3.2

The proof of Theorem 3.2 with L 3,n replaced by L 4,n from (3.9) is similar to that of Theorem 3.1, only A has to be replaced by A v and B by B * . Now take an argmax L 3,n with µ(L 3,n ) < v λ . Then, using (2.12), for some L 4,n we have L 3,n ⊂ L 4,n . Now, since n 1/2 (P n -P ) = O P (1) uniformly on A, we have with probability tending to 1,

P (L 3,n ) ≥ P n (L 3,n ) - 1 2 n -2/5 ≥ P n (L λ ) - 1 2 n -2/5 ≥ p λ -n -2/5 . Since P (L 3,n ) -λµ(L 3,n ) ≤ p λ -λv λ we get µ(L 3,n ) ≥ v λ -1 λ n -2/5 thus µ(L 3,n △L 4,n ) = µ(L 4,n ) -µ(L 3,n ) ≤ 1 λ n -2/5 = o(ε n ). This also implies that M (τ εn (L 3,n △L 4,n )) ≤ ε n (µ(L 4,n ) -µ(L 3,n )) P → 0 
and the statements of Theorem 3.2 for j = 3 follow from those for j = 4.

Finally we consider L 2,n . We follow again the line of reasoning and the notation in the proof of Theorem 3. Details planar convex sets. In dimension two, let A be the class of all closed, convex sets and let f be such that L λ is a square, for convenience of presentation the unit square. Let δ > 0 be fixed and small (so that on S δ λ the density f is "sufficiently close" to λ). Now consider, for c ∈ [1, δn 1/3 ], the subset S cn -1/3 λ . This set is the difference of a "square with circular corners", with length of the side 1 + 2cn -1/3 , and a smaller square, with length of the side 1 -2cn -1/3 . We cover this set by 8 convex subsets: 4 rectangles R 1 , . . . , R 4 and 4 quarter circles Q 1 , . . . , Q 4 . R 1 is the rectangle with vertices (0, 1+cn -1/3 ), (1, 1+cn -1/3 ), (1, 1cn -1/3 ), and (0, 1 -cn -1/3 ); R 2 , R 3 , R 4 are defined similarly. Q 1 = S cn -1/3 λ ∩ ((-∞, 0]×[1, ∞)); Q 2 , Q 3 , Q 4 are defined similarly. For these 8 subsets we denote the respective bracketing numbers (similarly as above (2.7)) with [A] In Corollary 2.7.9 in van der [START_REF] Van Der Vaart | Weak Convergence and Empirical Processes, With Applications to Statistics[END_REF], it is derived that the log of the usual "global" L 2 (P ) bracketing number for closed, convex sets contained in a given subset of S δ λ is bounded by some constant K times 1 κ . Now take, for example, j = 1 and consider the rectangle R 5 ⊂ S δ λ with vertices (0, 1+ δ), (1, 1 + δ), (1, 1 -δ) and (0, 1 -δ). This rectangle can be obtained from R 1 by a multiplication in vertical direction (from the line segment from (0, 1) to (1, 1)) with factor δn 1/3 /c. In this way every set of the form (A△L λ )∩R 1 , A ∈ A cn -1/3 , has an image C ′ , say, contained in R 5 , and (C ′ △L λ ) ∩ R 5 is a closed, convex set. Brackets in R 1 can be obtained accordingly via the inverse multiplication. By this scaling property, for c ∈ [1, δn 1/3 ], the aforementioned bound for global bracketing numbers can be translated into a bound, not depending on n, for the local bracketing numbers [A] (1) c,n :

log [A] (1) c,n (c 1/2 κ) ≤ 2 K √ δ 1 κ , (4.24)
and the same bound holds for j = 2, 3, 4. Now take, for example, j = 5 and define Q 5 = S δ λ ∩ ((-∞, 0] × [1, ∞)). Again we can obtain Q 5 from Q 1 by a multiplication with factor δn -1/3 /c, but now the multiplication has to be applied in both directions (from the point (0, 1)). Therefore we obtain by the scaling property, for c ∈ [1, δn 1/3 ], the (initially sharper) bound log [A] (5)

c,n (c 1/2 κ) ≤ 2 K δ c 1/2 n -1/6 1 κ ≤ 2 K √ δ 1 κ , (4.25) 
and the same bound holds for for j = 6, 7, 8. Finally (4.24) and (4.25) in conjunction with (4.23), imply (2.7) and (2.8).

  isoperimetric inequality, with c d > 0. Let A ⊂ B(R d ) be a class of closed, convex sets with L λ ∈ A. Then we have L λ = arg max A∈A {P (A) -λµ(A)} = arg min A∈A {µ(A) : P (A) ≥ p λ } = arg max A∈A {P (A) : µ(A) ≤ v λ } ,

  Donsker classes. We require standard conditions on the size of the class A. Let c > 0. Define d n (C, C ′ ) = (n 1/3 P (C△C ′ )) 1/2 . Assume for every κ > 0 there exists a finite collection of brackets [C(κ), C(κ)] of Borel sets in S cn -1/3

  c,n (κ)dκ = 0, for any c > 0, (2.10) imsart-generic ver. 2020/08/06 file: output.tex date: October 28, 2023 or that A and B are Vapnik-Chervonenkis (VC) classes.

  imsart-generic ver. 2020/08/06 file: output.tex date: October 28, 2023Note that (3.4) or (3.5) typically do not hold if, e.g., for all sets A ∈ A \ {L λ }, µ(A) > v λ or P (A) > p λ , respectively. In those cases B * c can be large, whereasB v c,n or B p c,n contain only the one set corresponding to L λ . Consider the Wiener process W indexed by B * and define Z(B * ) = arg max B∈B * √ λW (B) -D(B) .

  imsart-generic ver. 2020/08/06 file: output.tex date: October 28, 2023Proof. If (4.11) is false, then for some δ > 0 and some subsequence n k we can find sets Bnk ∈ B v c,n k such that inf B∈B * c d( Bn k , B) > δ.But because of (2.6) and the compactness of (B c , d) one can extract a further subsequence n kj and sets B j converging w.r.t. d to some B ∈ B c . Lemma 4.1 yields that |M (B + j ) -M (B - j )| → 0 which implies B ∈ B * c and hence the contradictory fact that d(B j , B) → 0.

  Lemma 4.4. Assuming (2.14)-(2.15) we have, as n → ∞, sup Bn∈Bc,n,B∈Bc, d(Bn,B)≤γc,n |D(B n ) -D(B)| → 0.

  sup A∈A |P n (A) -P (A)| P → 0, n → ∞, imsart-generic ver. 2020/08/06 file: output.tex date: October 28, 2023

  n , B) → 0. Combining this with (2.6), we have in terms of Hausdorff distance between classes of sets that for any c > 0, as n → ∞, C) = n 2/3 (P n (C) -P (C)), C ∈ B(R d ), and w n (B) = Λ n (τ -1 εn (B + )) -Λ n (τ -1 εn (B -)), B ∈ F c . Lemma 4.6. Assume that H 1 and H 2 hold. Let c > 0. Then on some probability space there exists a triangular array X n,1 , . . . , X n,n , n ∈ N, of rowwise independent random vectors with law P on R d together with a bounded, d-continuous version of W on B c such that, as n → ∞, sup Bn∈Bc,n,B∈Bc,d(Bn,B)≤γc,n |w n (B n ) -w n (B)| P

  1. DefineBc,n = {τ εn (A △ L λ ) : A ∈ A cεn , P n (A) = ⌈np λ ⌉/n}. imsart-generic ver. 2020/08/06 file: output.tex date: October 28, 2023We have for c > 0 arg minA∈Acε n ,nPn(A)=⌈np λ ⌉ {µ(A)} = arg max A∈Acε n ,nPn(A)=⌈np λ ⌉ {P n (A) -λµ(A)} = arg max A∈Acε n ,nPn(A)=⌈np λ ⌉ P (A) -λµ(A) -P (L λ ) + λµ(L λ ) + n -2/3 (Λ n (A) -Λ n (L λ )) = arg max A∈Acε n ,nPn(A)=⌈np λ ⌉ n 2/3 (e λ (A) -e λ ) + Λ n (A) -Λ n (L λ ) = φ εn arg max B∈ Bc,n {w n (B) -D n (B)} .Consider the eventsΞ Λ, * c,n = {L 2,n △L λ ⊂ S cεn λ } , Ξ W, * c = {Z(B * c ) = Z(B * )} .Again, Lemmas 4.5, 3.1 and 4.7 imply that for any δ > 0 there exists a c = c(δ) > 0 such that we haveP Ξ Λ, * c,n ∩ Ξ W, * c > 1 -δ for all n large enough. Now define mc,n = sup B∈ Bc,n {w n (B) -D n (B)} ,m p cby (3.8), the asymptotic equicontinuity of w n (as in the proof of Lemma 4.6 given in Einmahl and Khmaladze (2011)), and Lemma 4.3, for ε > 0, P(m p c,n ≤ mc,n + ε) → 0, as n → ∞, (4.21)and that by (3.5), (4.12) and Lemma 4.6 (possibly with a larger γ c,n → 0), of B p,+ c,n in (4.4). We have for ε > 0, every argmin L 2,n , and all large enough nP M (τ εn (L 2,n △ L λ ) △ Z(B * )) > δ 2 ≤ P M (τ εn (L 2,n △ L λ ) △ Z(B * )) > δ 2 ∩ Ξ Λ, * c,n ∩ Ξ W, * c + δ ≤ P d arg max B∈ Bc,n {w n (B) -D n (B)} , Z(B * c ) > δ + δ imsart-generic ver. 2020/08/06 file: output.tex date: October 28, 2023 ≤ P sup B∈ Bc,n:d(B,Z(B * c )>δ{w n (B) -D n (B)} ≥ mc,n + δ ≤ P sup B∈ Bc,n:d(B,Z(B * c ))>δ {w n (B) -D(B)} ≥ mc,n -ε + δ ≤ P sup B∈B p,+ c,n :d(B,Z(B * c ))>δ {w n (B) -D(B)} ≥ mc,n -ε + 2δwhich is by (4.21)≤ P sup B∈B p,+ c,n :d(B,Z(B * c ))>δ {w n (B) -D(B)} ≥ m p c,n -2ε + 3δwhich is by (4.22)≤ P sup B∈B p,+ c,n :d(B,Z(B * c ))>δ {w n (B) -D(B)} ≥ m * c -3ε + 4δwhich by (4.18), Lemma 4.4, and (4.13), is in turn≤ P sup B∈B * c :d(B,Z(B * c ))>δ/2 {w n (B) -D(B)} ≥ m * c 4ε + 5δand this is by (4.19) and then by again Lemma 2.6 in[START_REF] Kim | Cube root asymptotics[END_REF] ≤ P max B∈B * c :d(B,Z(B * c ))>cn -1/3 /2 √ λW (B) -D(B) ≥ m * c -5ε + 6δ ≤ 7δ, provided ε is chosen small enough. The last two paragraphs of the proof of Theorem 3.1 now yield the stated results. □
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  For many classes A, including those mentioned in H 1 , it holds that B c = {cB : B ∈ B 1 }, where cB = {(π, u, cs) : (π, u, s) ∈ B}. This readily yields the "scaling" with c in (3.2). Assume that H 1 , H 2 , and (3.2) hold. With probability one, the random set Z(B) of (3.1) exists and is unique.

	for all c > 0.	(3.2)
	Proposition 3.1.	

imsart-generic ver. 2020/08/06 file: output.tex date: October 28, 2023

Acknowledgment. We thank the Editor, the Associate Editor, and two Referees for many useful comments that greatly improved the paper.