
HAL Id: hal-02732982
https://hal.science/hal-02732982v2

Submitted on 28 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cube root weak convergence of empirical estimators of a
density level set

Philippe Berthet, John H.J. Einmahl

To cite this version:
Philippe Berthet, John H.J. Einmahl. Cube root weak convergence of empirical estimators of a density
level set. Annals of Statistics, 2022, 50 (3), pp.1423-1446. �hal-02732982v2�

https://hal.science/hal-02732982v2
https://hal.archives-ouvertes.fr


Cube root weak convergence of

empirical estimators of a density level

set

Philippe Berthet and John H.J. Einmahl ∗
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Abstract:
Given n independent random vectors with common density f on Rd, we

study the weak convergence of three empirical-measure based estimators of
the convex λ-level set Lλ of f , namely the excess mass set, the minimum
volume set and the maximum probability set, all selected from a class of
convex sets A that contains Lλ. Since these set-valued estimators approach
Lλ, even the formulation of their weak convergence is non-standard. We
identify the joint limiting distribution of the symmetric difference of Lλ and
each of the three estimators, at rate n−1/3. It turns out that the minimum
volume set and the maximum probability set estimators are asymptotically
indistinguishable, whereas the excess mass set estimator exhibits “richer”
limit behavior. Arguments rely on the boundary local empirical process, its
cylinder representation, dimension-free concentration around the boundary
of Lλ, and the set-valued argmax of a drifted Wiener process.

MSC2020 subject classifications: Primary 62G05, 62G20; secondary
60F05, 60F17.
Keywords and phrases:Argmax driftedWiener process, cube root asymp-
totics, density level set, excess mass, local empirical process, minimum vol-
ume set, set-valued estimator.

1. Introduction

1.1. Three level set estimators

Let X1, . . . , Xn, n ∈ N, be independent and identically distributed random vari-
ables taking values in Rd, d ∈ N, endowed with Lebesgue measure µ and Borel
sets B(Rd). Assume that the law P of X1 is absolutely continuous with respect
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corresponding research support.
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to µ with continuous density f . We intend to establish novel, non-standard weak
limit theorems for three set-valued estimators of a convex level set of f , treated
as random sets rather than random vectors estimating the parameters of a set
in a parametric class.

Motivation. Several classical problems in multivariate statistics involve set-
valued estimators based on X1, . . . , Xn. For instance, in order to detect areas
having high probability P , to localize modes or clusters, to test for multimodal-
ity, to find outliers, or to test for goodness-of-fit to a family of distributions.
In particular, many approaches and procedures rely on λ-level sets Lλ of the
density f (λ > 0). The plug-in method consists of using the corresponding level
set of some density estimator. Alternatively, estimators of Lλ can be obtained
by selecting a set in a class A ⊂ B(Rd) according to some optimization criterion
applied directly to the empirical measure of X1, . . . , Xn. Here we avoid density
estimation and follow the latter approach. Note that maybe the most natural
class of sets A is the class of all closed ellipsoids. We will consider the classical
nonparametric M-estimators of Lλ based on the following three criteria:

• excess mass,
• minimum volume, and
• maximum probability.

In particular, the first two criteria have been studied in the literature extensively.
The third one is also very natural, since it is a kind of inverse of the minimum
volume approach.

Seminal papers on the excess mass approach are Müller and Sawitzki (1991),
Nolan (1991), Müller (1992), and Polonik (1995), and pioneering work on the
minimum volume approach can be found in Silverman and Titterington (1980),
Rousseeuw (1985), Davies (1992), and Polonik (1997). For the maximum prob-
ability approach we refer to Polonik (1998). For different, early approaches to
the estimation of density level sets see Hartigan (1987) and Tsybakov (1997),
and for more recent work, see, e.g., Cadre (2006), Cai, Einmahl and de Haan
(2011), Chen, Genovese and Wasserman (2017), Brunel (2018), Rodŕıguez-Casal
and Saavedra-Nieves (2019), and Xu and Samworth (2019). Statistical/machine
learning approaches to the aforementioned criteria, include Clémençon, Goix
and Sabourin (2015) and Scott and Novak (2006). As far as asymptotic theory
is concerned, the results in the literature regarding empirical estimators of the
level sets study rates of convergence towards the true level set for appropri-
ately defined distances. Other types of results consider weak convergence for
estimators of the parameters of a parametrically defined level set.

The main goal of this paper is to deal with the weak convergence of the three
classical, competing set-valued estimators of the level set Lλ themselves and
look for their differences or similarities, jointly. Since these estimators approach
Lλ, even the formulation of weak convergence is non-standard. Our main results
are novel central limit theorems for the aforementioned three empirical-measure
based estimators of Lλ, which reveal their interesting asymptotic behavior as
random sets and provide the distribution of their limiting sets, obtained after
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cube-root-n magnification. The proofs raised various challenges as indicated in
Subsection 1.2 below.

Target level set. Fix λ > 0 throughout and assume that the level set

Lλ =
{
x ∈ Rd : f(x) ≥ λ

}
is a convex body, that is, it is convex, compact, and has non-empty interior, and
that Sλ =

{
x ∈ Rd : f(x) = λ

}
coincides with its boundary: Sλ = ∂Lλ. Note

that f > λ on Lλ \ Sλ and f < λ on Rd \ Lλ. Hence,

eλ = pλ − λvλ > 0, with pλ = P (Lλ) ∈ (0, 1) and vλ = µ(Lλ) ∈ (0, 1/λ).

We denote the Hausdorff surface measure of Sλ by sλ and have sλ ≥ cdv
1−1/d
λ >

0 by the isoperimetric inequality, with cd > 0. LetA ⊂ B(Rd) be a class of closed,
convex sets with Lλ ∈ A. Then we have

Lλ = argmax
A∈A

{P (A)− λµ(A)}

= argmin
A∈A

{µ(A) : P (A) ≥ pλ}

= argmax
A∈A

{P (A) : µ(A) ≤ vλ} ,

and the maximizing/minimizing set is unique. In other words, if λ is known then
Lλ maximizes on A the excess mass function A 7→ eλ(A) = P (A) − λµ(A), if
pλ is known then Lλ minimizes on {A ∈ A : P (A) ≥ pλ} the volume function
A 7→ µ(A) and if vλ is known then Lλ maximizes on {A ∈ A : µ(A) ≤ vλ} the
probability mass function A 7→ P (A).

Empirical level sets. Let δx denote the Dirac measure at x. From the non-
parametric viewpoint it is natural to estimate P with the empirical measure
Pn = n−1

∑n
i=1δXi

in the above argmax and argmin. To motivate a joint study,
imagine that three statisticians want to estimate the level set Lλ by using the
same sampleX1, ..., Xn. Assume that they all know A and that Lλ ∈ A, but that
they have their own private, auxiliary information. The first statistician knows
the level λ and therefore makes use of the set-valued excess mass estimator

L1,n ∈ argmax
A∈A

{Pn(A)− λµ(A)} . (1.1)

The second one knows pλ and then makes use of the minimum volume estimator

L2,n ∈ argmin
A∈A

{µ(A) : Pn(A) ≥ pλ} . (1.2)

The third statistician knows vλ and thus makes use of the maximum probability
estimator

L3,n ∈ argmax
A∈A

{Pn(A) : µ(A) ≤ vλ} . (1.3)

We assume that P and A are such that almost surely an L1,n and an L2,n exist
and that Pn(L2,n) = ⌈npλ⌉/n. Since Pn takes at most n+1 values, an L3,n always
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exists. If Lj,n, j = 1, 2, 3, are not unique, just choose any maximizer/minimizer.
This choice does not matter since it will be shown that all versions of Lj,n are
indistinguishable asymptotically.

1.2. Overview of the results

What can be put forward before introducing more precisely our geometrical and
probabilistic framework is as follows.

Convergence of random sets. In order to compare the performance of the
empirical sets Lj,n we study the joint limiting behavior of Lj,n△Lλ, j = 1, 2, 3,
where L△L′ = (L∪L′)\(L∩L′) denotes the symmetric difference. The ensuing
non-classical asymptotics for these set-valued estimators goes beyond the usual
statistical risk approach which only provides rates for the random variables
P (Lj,n△Lλ) or µ(Lj,n△Lλ), for j = 1, 2, 3. Instead we address the question of
the weak convergence of the random sets Lj,n△Lλ themselves. We then have to
design an appropriate setting allowing to state central limit theorems for random
sets, that is, for sets properly centered and then magnified at a diverging scale.
Our joint limit results reveal, when magnifying with n1/3 as explained below,
how the three empirical sets Lj,n asymptotically differ or coincide. In particular
we find that L2,n and L3,n are asymptotically indistinguishable. Note that in
the literature these limit theorems have been considered for dimension d = 1
only, where the sets are intervals which can be represented by two numbers, like
in the estimation of the shorth. Hence those limit theorems can be stated for
real-valued random variables in the usual way. Our method for sets when d > 1
is discussed next.

A local empirical process approach and rate of convergence. In order
to analyze how the estimators Lj,n oscillate around Lλ we first show that they
concentrate at rate n−1/3 under regularity conditions that are satisfied in most
of the natural settings. To see this, consider an order εn-neighborhood of the
level set Lλ. If the relevant indexing class of sets on this neighborhood is such
that there is weak convergence of the local empirical process, then by looking at
one or finitely many sets A the rate is determined by the classical central limit
theorem for the binomial distribution. Therefore, if µ(A△ Lλ) and P (A△ Lλ)
are of exact order εn the rate of Pn(A)− P (A)− Pn(Lλ) + P (Lλ) is

√
εn/n; it

cannot be something else. Next we exhibit natural smoothness assumptions, see
“local excess mass” in particular (2.16) below, under which the local empirical
process has a “drift” of order ε2n. Balancing these two components by equating
the rate

√
εn/n and the drift ε2n yields the cube root rate εn = n−1/3; details

can be found in the proof of Lemma 3.1. This rate for vectors instead of sets can
be found in, e.g., Kim and Pollard (1990). For Vapnik-Chervonenkis classes of
sets it is indicated in Polonik (1995) although in there an additional (log n)1/3

term is still present and hence no convergence can be considered.
As just indicated, we use an appropriate boundary empirical process, see

Khmaladze (2007), Khmaladze and Weil (2008), and Einmahl and Khmaladze
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(2011) and study its weak convergence on a “cylinder space” associated with
the boundary Sλ of Lλ. Interestingly, the local nature of the convergence makes
both the rate dimension-free, and the limiting Wiener process distribution-free
(it depends on A and Lλ only). Note that the convexity of Lλ and the elements
of A is not relevant for the rate. Instead, geometrical conditions on the class A
have to be worked out to achieve the concentration rate n−1/3 and determine
the drift process depending on P .

Organization. Section 2 is devoted to the setup of the paper, including the
relevant definitions, notation, and assumptions. In Section 3 we present and
discuss the main results and provide a few explicit, illuminating examples. The
proofs are deferred to Section 4.

2. Setup, notation and assumptions

2.1. The geometrical framework

In order to define the appropriate limit setting the following notation and defi-
nitions are needed.

The magnification map τε. Let ∥x∥ denote the Euclidean norm of x ∈ Rd

and U = {u : ∥u∥ = 1} the unit sphere. Since Lλ is a convex body, the metric
projection Π(x) ∈ Sλ of x ∈ Rd on Sλ = ∂Lλ is unique except for so-called
skeleton points x ∈ L∗

λ ⊂ Lλ with µ(L∗
λ) = 0. A unit vector u ∈ U is called an

outer normal of Lλ at π ∈ Sλ if there is some x ∈ Rd \ Lλ such that π = Π(x)
and u = (x−Π(x))/||x−Π(x)||. At each π ∈ Sλ, we denote the non-empty set
of outer normals by N(π) and write S∗

λ = {π ∈ Sλ : card(N(π)) > 1}. Note
that µ(Sλ) = 0 and hence µ(S∗

λ) = 0. The normal bundle of Lλ is

Nor(Lλ) = {(π, u) : π ∈ Sλ, u ∈ N(π)}.

As in Khmaladze (2007) and Einmahl and Khmaladze (2011) define the magni-
fication map τε, with ε > 0, to be

τε(x) =

(
Π(x), u(x),

s(x)

ε

)
∈ Nor(Lλ)× R, for x ∈ Rd \ (L∗

λ ∪ S∗
λ), (2.1)

where x = Π(x) + s(x)u(x), with s(x) = sgn(x)||x− Π(x)|| the signed distance
between x and Π(x); here sgn(x) = −1 if x ∈ Lλ and 1 otherwise.

Example. Here we illustrate the magnification map τε in case u is unique on
Sλ and hence can be omitted. The two figures concern the case d = 2 and ε = 1
with the unit disk Lλ.
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The curves around the unit circle S = Sλ in the left figure are seen (in the same
color) in the right figure on the cylinder S × R by assimilating (Π(x), u(x)) ∈
Nor(Lλ) to Π(x) ∈ S and moving away s(x)/ε from this point in vertical
direction.

The cylinder space. Define Σ = Nor(Lλ) × R. Let νd−1 denote both the
Hausdorff surface measure on Sλ (putting no mass at S∗

λ) and its canonical
extension to Nor(Lλ) supported by the product Borel σ-algebra Gd−1 on Sλ×U .
Thus, νd−1 on Nor(Lλ) is the so-called first support measure, and we have
0 < sλ = νd−1(Sλ) = νd−1(Nor(Lλ)) < ∞. Let µ1 be Lebesgue measure on R.
The cylinder space (Σ,F ,M, d) is defined to be Σ endowed with the product
Borel σ-algebra F = Gd−1 × B(R), the σ-finite product measure M and the
semi-metric d given by

M = νd−1 × µ1, d(B,B′) = (M(B △B′))1/2, for B,B′ ∈ F . (2.2)

Note that M plays an important role in convex analysis, see Schneider (1993)
and in particular (4.2) below. Near Sλ, the measure µ/ε can be approximated
by M , after the transformation τε. This is made precise in (4.10). For c > 0
denote Σc = Nor(Lλ)× [−c, c] and Fc = {B ∈ F : B ⊂ Σc}.

The sufficiently parallel sets Aε. Given ε > 0 the ε-parallel set of Sλ is
defined by Sε

λ = {x : ∥x−Π(x)∥ ≤ ε} and we consider the sets in A that are
“sufficiently parallel” to Lλ,

Aε = {A ∈ A : A△ Lλ ⊂ Sε
λ} , Cε = {A△ Lλ : A ∈ Aε} . (2.3)

Define the set-to-set mapping

τε(C) = {τε(x) : x ∈ C \ (L∗
λ ∪ S∗

λ)}, C ∈ B(Rd),

and the inverse τ−1
ε (B) = {x ∈ Rd : τε(x) ∈ B}, for B ∈ F . Note that

τ−1
ε (τε(C)) = C \ (L∗

λ ∪ S∗
λ). For B ∈ F , define φε(B) to be the closure of

τ−1
ε (B)△ (Lλ \ (L∗

λ ∪ S∗
λ)). For A ∈ A, we then have φε(τε(A△ Lλ)) = A.
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The limiting class B. As explained in Subsection 1.2, we need to magnify
with 1/ε = n1/3. Define for c > 0

Bc,n = τn−1/3(Ccn−1/3

) = {τn−1/3(A△ Lλ) : A ∈ Acn−1/3

} (2.4)

and B =
⋃

c>0 Bc where

Bc =
{
B ∈ Fc : for some Bn ∈ Bc,n, lim

n→∞
d(B,Bn) = 0

}
. (2.5)

Since Lλ ∈ Acn−1/3

we have B ̸= ∅. In the language of Khmaladze (2007) each
B ∈ Bc is a derivative at 0 of the set-valued function ε 7→ τε(Acε) along the
sequence ε = n−1/3. Such limits are not uniquely determined. Actually the limit
“set” B is an equivalence class of sets having d-distance equal to 0. Out of every
equivalence class, we choose (only) one limit set B ∈ Fc. This makes d a metric
on Bc and on B. (The choices of the limit set matter. In applications we choose
B’s such that the assumptions of our theorems are satisfied.)

2.2. Condition H1

In order to exploit the weak convergence of the local empirical process in a
cn−1/3-neighborhood of Sλ, c > 0, at standard rate n−2/3 we borrow assump-
tions (2.6)–(2.11) from Einmahl and Khmaladze (2011). Let us first assume that,
for any c > 0, (Bc, d) is compact and

lim
n→∞

sup
Bn∈Bc,n

inf
B∈Bc

d(Bn, B) = 0. (2.6)

Donsker classes. We require standard conditions on the size of the class A.
Let c > 0. Define dn(C,C

′) = (n1/3P (C△C ′))1/2. Assume for every κ > 0 there

exists a finite collection of brackets [C(κ), C(κ)] of Borel sets in Scn−1/3

λ with

dn(C(κ), C(κ)) ≤ κ such that for every set C ∈ Ccn−1/3

there is a bracket such
that C(κ) ⊂ C ⊂ C(κ). Denote the cardinality (the bracketing number) of such
a class of brackets with minimal cardinality by [A]c,n (κ). We assume the same

for {τ−1
n−1/3(B) : B ∈ Bc} (instead of Ccn−1/3

) and denote the corresponding
bracketing number with [B]c,n (κ). We require either that

lim
δ̃↓0

lim sup
n→∞

∫ δ̃

0

√
log [A]c,n (κ)dκ = 0, for any c > 0, (2.7)

lim sup
n→∞

sup
1≤c≤δn1/3

∫ 1

0

√
log [A]c,n (c

1/2κ)dκ < ∞, for every small δ > 0,(2.8)

n1/2 sup
A∈A

|Pn(A)− P (A)| = OP(1), n → ∞, (2.9)

lim
δ̃↓0

lim sup
n→∞

∫ δ̃

0

√
log [B]c,n (κ)dκ = 0, for any c > 0, (2.10)
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or that
A and B are Vapnik-Chervonenkis (VC) classes. (2.11)

We also assume that A and B are pointwise measurable.
As discussed in more detail below the main results, these conditions are

satisfied for the classes of ellipsoids, convex polytopes with a bound on the
number of faces, convex sets in dimension 2 (in case Lλ is a square) and many
other often-used parametric classes of sets. When the class is too massive like
for instance the class of convex sets in dimension 3 or higher, they do not hold.
(For this non-VC class example, condition (2.7) is not satisfied.)

Nested class. Assume that for all r > 0, all A ∈ A there exists Ar ∈ A such
that

A ⊂ Ar, µ(Ar) = µ(A) + r. (2.12)

Let us denote by H1 the conditions in Subsection 2.2, that is compactness of
(Bc, d) and (2.6), “Donsker class” (with either conditions (2.7)–(2.10) or (2.11)),
and (2.12).

2.3. Condition H2

Given the weak convergence of local empirical processes, two difficulties remain
for the convergence of the set-valued estimators. First, we need to establish
the dimension-free concentration rate in Rd. Second, we need to determine the
“statistical” drift that competes with the convergence rate of the local empirical
processes. For this the behavior of f near Sλ has to be specified. The formulation
and in-depth analysis of this drift in relation with the local empirical processes
convergence is one of the main challenges of this paper.

Define the Hausdorff distance for the Euclidean norm on Rd as

dH(A,A′) = max

(
sup
x∈A

inf
x′∈A′

∥x− x′∥ , sup
x′∈A′

inf
x∈A

∥x− x′∥
)
, for A,A′ ⊂ Rd.

Excess mass. Consider the excess mass

eλ − eλ(A) = P (Lλ)− P (A)− λ(µ(Lλ)− µ(A)) =

∫
Lλ△A

|f(x)− λ|dµ(x).

We require that for all δ > 0,

inf
A∈A:dH(Lλ,A)≥δ

∫
Lλ△A

|f(x)− λ|dµ(x) > 0. (2.13)

The quadratic drift measure D. We assume that for some second-order
derivatives f ′

+ ≥ 0 and f ′
− ≥ 0 defined on Sλ we have

lim
ε↓0

1

ε2

∫
Sε
λ\Lλ

∣∣f(x)− λ+ s(x)f ′
+(Π(x))

∣∣ dµ(x) = 0, (2.14)

lim
ε↓0

1

ε2

∫
Sε
λ∩Lλ

∣∣f(x)− λ+ s(x)f ′
−(Π(x))

∣∣ dµ(x) = 0. (2.15)
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If f is differentiable at π ∈ Sλ \S∗
λ then f ′

+(π) = f ′
−(π). Let us define on (Σ,M)

the quadratic drift measure D having density with respect to M given by

dD

dM
(π, u, s) = sf ′

+(π)1s>0 − sf ′
−(π)1s≤0.

Local excess mass. Write g(π) = min(f ′
+(π), f

′
−(π)) for π ∈ Sλ. Let assume

that for some ε0 > 0, η0 > 0 and all A ∈ A such that dH(Lλ, A) ≤ ε0, we have∫
Lλ△A

|s(x)|g(Π(x))dµ(x) ≥ η0d
2
H(Lλ, A). (2.16)

Similarly we require that for all B ∈ B

D(B) ≥ η0c
2(B), (2.17)

where c(B) = inf{c > 0 : B ∈ Bc}.

Let H2 denote the conditions (2.13)–(2.17) above. Conditions (2.13) and
(2.16) do not allow that sets that are not close to Lλ in Hausdorff distance
have a small excess mass, and (2.17) is a version of (2.16) in the limiting set-
ting. These conditions exclude classes of sets that allow spiky deviations from
Lλ. Conditions (2.14) and (2.15) are needed to express the drift in the inward
and outward derivatives of f along the boundary Sλ.

To see that H2 is rather weak, consider the second order differentiability
assumptions H1-H2 imposed on f in Cadre (2006) to control µ(Lλ △ L̂) where

L̂ = {x : f̂(x) > λ} is the plug-in level set derived from a kernel estimator f̂ .
Clearly, H1 implies (2.14) and (2.15) whereas H2 implies that g = f ′

+ = f ′
− is

bounded away from 0 on Sλ. Thus (2.13) and (2.16) hold if infA∈A\{Lλ} µ(Lλ△
A)/dH(Lλ, A) > 0. Note that the Hausdorff and (here second order) Nikodym
distances connected by (2.16) are known to play a different, sometimes opposite,
role when approximating a convex support, see Brunel (2018) for smooth versus
polyhedral supports.

3. Main results

3.1. Convergence of the excess mass set estimator

Since (Σ,M) is σ-finite and (B, d) is σ-compact we can define a Wiener process
W indexed by B, that is a centered Gaussian process with covariance

Cov(W (B),W (B′)) = M(B ∩B′), for B,B′ ∈ B.

The intrinsic, standard deviation metric ofW on B is defined to be (V ar(W (B)−
W (B′))1/2 = d(B,B′). The relevant limiting random set is

Z(B) = argmax
B∈B

{√
λW (B)−D(B)

}
. (3.1)
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This quantity has been studied in the univariate case where the sets reduce to
numbers, see Groeneboom (1985), Dykstra and Carolan (1999), and Berthet
and El-Nouty (2006). Observe that EW 2(B) ≤ 2sλc for B ∈ Bc. We assume
that for some η1 > 0,

E sup
B∈Bc

W (B) < η1
√
c, for all c > 0. (3.2)

For many classes A, including those mentioned in H1, it holds that Bc = {cB :
B ∈ B1}, where cB = {(π, u, cs) : (π, u, s) ∈ B}. This readily yields the “scal-
ing” with c in (3.2).

Proposition 3.1. Assume that H1, H2, and (3.2) hold. With probability one,
the random set Z(B) of (3.1) exists and is unique.

We are now ready to state our non-standard weak convergence result for the
sequence of random sets L1,n in (1.1).

Theorem 3.1. Assume that H1, H2, and (3.2) hold. Then on some probability
space there exists a triangular array Xn,1, . . . , Xn,n, n ∈ N, of rowwise inde-
pendent random vectors with law P on Rd together with a sequence Zn(B) of
versions of Z(B) such that for every argmax L1,n of (1.1), as n → ∞,

M (τn−1/3(L1,n △ Lλ)△ Zn(B))
P→ 0,

n1/3µ (L1,n △ φn−1/3(Zn(B)))
P→ 0,

n1/3P (L1,n △ φn−1/3(Zn(B)))
P→ 0.

To connect the first statement to the other two, recall that by the definition
of φn−1/3 we have L1,n = φn−1/3(τn−1/3(L1,n △ Lλ)). Theorem 3.1 states that,
at the scale n−1/3, the symmetric difference between the empirical excess mass
set and Lλ has as a limiting distribution that of the argmax of a drifted Wiener
process, as defined in (3.1).

In Theorem 3.1 f , Lλ and A are fixed. Even if f is regular enough to be
estimated by the usual nonparametric density estimators fn the shape of the
plug-in estimator Lλ(fn) of the level set is not easy to describe geometrically
and strongly depends on the smoothing parameter (instead of on A). Com-
pared to the more classical CLT for the centered measure µ(Lλ(fn)∆Lλ) −
E (µ(Lλ(fn)∆Lλ)) (see Mason and Polonik (2009) for fn being the kernel density
estimator) we obtain the limiting distribution of the set L1,n∆Lλ itself. More-
over, smooth transforms of L1,n∆Lλ can be controlled by those of Lλ∆φn−1/3(Z(B)),
which provides a new access to risks such as E (µ(L1,n∆Lλ)).

To control uniformly a risk of L1,n, Theorem 3.1 should be extended to a class
of densities instead of a single density f . Now, in order to keep the n−1/3 rate,
A should contain all the associated level sets, and also the entropy conditions
in H1 as well as the conditions in H2 have to hold for each density in the class.
In Tsybakov (1997) minimax rates for the expected volume of the symmetric
difference of level sets estimators are obtained which are sometimes (for non-VC
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classes) slower than the n−1/3 rate obtained here (especially in high dimensions).
The slower rates are due to the more general setup in that paper in comparison
with our conditions in H1 and H2, for the large A, that includes all the level
sets of the class of densities, too consider. In particular, L1,n is shown to be
minimax for radially regular densities with convex level sets containing a small
ball at the origin. Notice that if f is differentiable on Sλ then (2.14)–(2.15) hold
and if the derivative is bounded away from zero then f is radially 1-regular in
Tsybakov (1997), thus the main topic when considering L1,n is studying the
geometrical features of the sets in A with regard to each allowed Lλ in view of
the intended limiting result. Clearly for the present results, some sequences of
sets may be too spiky (hence H2 does not hold), or have too large bracketing
entropy numbers (H1 does not hold).

For similar reasons, the rates obtained for P (Lj,n∆Lλ) for non-VC classes in
Polonik (1995), for j = 1, and in Polonik (1997), for j = 2, are also slower than
n−1/3.

3.2. Convergence of the minimum volume set and the maximum
probability set estimators

For the second main result about L2,n and L3,n we need some more notation
and assumptions.

The limiting class B∗. Write B+ = B ∩ (Nor(Lλ)× R+) and B− = B \B+,
for B ∈ F . Now define

B∗ = {B ∈ B : M(B+) = M(B−)}, B∗
c = B∗ ∩ Bc.

Note that (B∗
c , d) is also compact. By replacing A in (2.3)–(2.4) with

Av = {A ∈ A : µ(A) = vλ}, Ap = {A ∈ A : P (A) = pλ}, (3.3)

respectively, we define in the same way the classes Aε
v, Cε

v , Aε
p, Cε

p and Bv
c,n, Bp

c,n.
For the excess mass estimator L1,n the sets A ∈ A are not restricted in terms

of µ or P . For the maximum probability estimator L3,n there is a restriction in
terms of µ and for the minimum volume estimator L2,n there is a restriction in
terms of Pn. It turns out that the sets considered in the definition of L3,n can be
further restricted to being in Av. Somewhat similar, but more complicated, it
will be shown that the sets considered in the definition of L2,n can be replaced
by those being very close to members of Ap. Since P ≈ λµ near Sλ, both Av

and Ap lead to the same limiting class B∗ under the conditions (3.4) and (3.5)
below.

Condition H3. We assume

lim
n→∞

sup
B∈B∗

c

inf
Bn∈Bv

c,n

d(B,Bn) = 0, (3.4)

lim
n→∞

sup
B∈B∗

c

inf
Bn∈Bp

c,n

d(B,Bn) = 0. (3.5)
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Note that (3.4) or (3.5) typically do not hold if, e.g., for all sets A ∈ A \ {Lλ},
µ(A) > vλ or P (A) > pλ, respectively. In those cases B∗

c can be large, whereas
Bv
c,n or Bp

c,n contain only the one set corresponding to Lλ.
Consider the Wiener process W indexed by B∗ and define

Z(B∗) = argmax
B∈B∗

{√
λW (B)−D(B)

}
.

As in Proposition 3.1, under H1, H2 and (3.2), with probability one Z(B∗) exists
and is unique.

In order to control the minimum volume set estimator we need the following
two conditions. The class A contains a “univariate” subclass

Al = {As ∈ A : s ∈ (−pλ, 1− pλ), P (As) = pλ + s} (3.6)

of nested sets with the properties that As ⊂ As′ if s < s′, A0 = Lλ, and for
some s0 > 0, ζ > 0 and for all −s0 ≤ s ≤ s0:

eλ − eλ(As) ≤ ζs2. (3.7)

For every c > 0, we have as n → ∞,

sup
A∈Acn−1/3

,P (A)=pλ

inf
Ã∈Acn−1/3

,Pn(Ã)=⌈npλ⌉/n
d(τε(A), τε(Ã))

P→ 0. (3.8)

Let H3 denote the conditions (3.4)–(3.8) above. These conditions, although
technical, are rather mild and they are satisfied by many natural classes A
like the ones mentioned in H1. This mainly follows from the fact that a given
ellipsoid, say, can be continuously inflated or deflated, even when e.g. its major
diameter has to stay fixed.

Theorem 3.2. Assume that H1, H2, H3 and (3.2) hold. Then on some prob-
ability space there exists a triangular array Xn,1, . . . , Xn,n, n ∈ N, of rowwise
independent random vectors with law P on Rd together with a sequence Zn(B∗)
of versions of Z(B∗) such that every argmin L2,n of (1.2) and every argmax
L3,n of (1.3) satisfy, for j = 2, 3, as n → ∞,

M (τn−1/3(Lj,n △ Lλ)△ Zn(B∗))
P→ 0,

n1/3µ (Lj,n △ φn−1/3(Zn(B∗)))
P→ 0,

n1/3P (Lj,n △ φn−1/3(Zn(B∗)))
P→ 0.

Note that by definition the distributions of Zn(B) and Zn(B∗) do not depend
on n and they are in general not degenerate (cf. the univariate case). When
going back to Rd, we obtain φn−1/3(Zn(B)) and φn−1/3(Zn(B∗)) which are the
asymptotic approximations of L1,n and L2,n, L3,n respectively.

Comparing Theorems 3.1 and 3.2 we see that the limiting behavior of L2,n

and L3,n is substantially “less rich” than that of L1,n. The symmetry of the
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sets in B∗ shows that for j = 2, 3 the inner and outer differences Lj,n \ Lλ and
Lλ \ Lj,n tend to compensate. Theorems 3.1 and 3.2 could be stated jointly
since they can indeed be proved with the same sequence of underlying Wiener
processes Wn.

From a statistical point of view it would be interesting to investigate which
estimator performs better: L1,n on the one hand or L2,n and L3,n on the other
hand. Theorems 3.1 and 3.2 provide the asymptotic theory for such a compar-
ison. Since all three estimators converge at the same rate, to answer such a
question we would need to study Z(B) and Z(B∗) in order to see which argmax
is “closer” to, say, Σ0 (corresponding to Lλ). For the univariate case, simulations
indicate that L2,n and L3,n asymptotically outperform L1,n. However, a thor-
ough comparison in particular in the multivariate case, even when considering
a simple indexing class like the class of all closed ellipsoids and a simple density
like some multivariate normal, is theoretically and computationally challenging
and beyond the scope of the present paper.

In Di Bucchianico, Einmahl and Mushkudiani (2001) guaranteed coverage
tolerance regions and mean coverage tolerance (or prediction) regions are de-
rived with the aid of minimum volume estimators. Although strictly speaking
the guaranteed coverage tolerance regions are not contained in the setup of the
present paper since pλ in (1.2) depends on n (but it converges), the mean cov-
erage tolerance regions do fit the present setup. It is shown therein that (in our
notation) EP (L2,n) = pλ+o(n−1/2), whereas Theorem 3.2 now yields the slower
n−1/3 convergence rate as well as the fine limiting behavior of the mean coverage
tolerance regions themselves (compared with the oracle tolerance region Lλ).

Theorems 3.1 and 3.2 suggest new tools to derive confidence regions for Lλ in
case the class of densities considered is not too large. First the relevant unknown
quantities, in particular D, used in the limiting set Z(B) or Z(B∗) should be
estimated and then in principle this approximated limiting set, can be simulated
many times. Now determine cα such that the proportion of these simulated
sets that has, e.g., the last coordinate on the approximated cylinder included
in [−cα, cα]. Then inverting this part of the cylinder to Rd yields a (1 − α)-
confidence band for Lλ. Alternatively we could try to take into account the
behavior of f ′

− and f ′
+ when taking the proportion 1− α of the simulated sets,

which would naturally lead to bands which are narrower where f ′
− or f ′

+ is
larger.

Many further applications of level sets estimation can be found in Mammen
and Polonik (2013) and Qiao and Polonik (2019) and the references therein.

From the proof of Theorem 3.2 it follows that the sequence of versions Zn(B∗)
can be chosen the same for L2,n and L3,n. Hence, we obtain, as stated in the
next result, that L2,n and L3,n are asymptotically equivalent.

imsart-generic ver. 2020/08/06 file: output.tex date: October 28, 2023



P. Berthet and J.H.J. Einmahl/Weak convergence for estimated level sets 14

Corollary 3.1. Under the assumption of Theorem 3.2, as n → ∞,

M(τn−1/3(L2,n △ L3,n))
P→ 0,

n1/3µ (L2,n △ L3,n)
P→ 0,

n1/3P (L2,n △ L3,n)
P→ 0.

3.3. The main concentration lemma

After all the conditions for its formulation have been introduced, we would like
to highlight in this “Main results” section the following lemma which is the key
to the convergence rate n−1/3.

Consider the following variant of L3,n:

L4,n ∈ argmax
A∈A

{Pn(A) : µ(A) = vλ} . (3.9)

Lemma 3.1. Under the assumptions of Theorems 3.1 or 3.2, respectively, for
every δ > 0, there exists a c > 1, and an n0, such that, for j = 1, 2, 4, and
n ≥ n0,

P(dH(Lj,n, Lλ) ≥ cn−1/3) ≤ δ.

3.4. Discussion and examples

This paper uses the probabilistic setting, with magnification map, cylinder
space, and the weak convergence (in Lemma 4.6 below) provided by Einmahl
and Khmaladze (2011). That paper is a convenient starting point for the statis-
tical inference here. The goal of the present paper as well as our main results and
various lemmas are novel and very different, however: Einmahl and Khmaladze
(2011) is about uniform weak convergence, with arbitrary intermediate rate, of
a local empirical process indexed by a class of sets, whereas the present pa-
per is about set estimation, about convergence of the random sets themselves.
Here a drift competing with the local empirical processes appears which leads
to the cube root rate, lacking and irrelevant in Einmahl and Khmaladze (2011).
Technically, the main novelties of our work are the statements and proofs of
Theorems 3.1 and 3.2, including the assumptions in H2 and H3 required to
control the drift, as well as the statement of the key Lemma 3.1 below.

The conditions on the class A are such that natural classes, like in particular
the class of all closed ellipsoids, are included. If the class is “small”, e.g., by
allowing not all or only a few positive values for µ(A) or for P (A) we can obtain
pathological and/or degenerate behavior of the set-valued estimators. E.g., if A
contains Lλ and further only sets with µ(A) > vλ, then L3,n = Lλ.

The assumptions in (2.14) and (2.15) consider the “most regular” behavior
of the density f near Sλ. They lead to the cube root asymptotics in this paper.
Faster or slower convergence rates are also possible, see, e.g., Polonik (1995).
This would lead to W drifted by a non-quadratic measure on the cylinder space,
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generalizingW drifted by a convex power function used in Berthet and El-Nouty
(2006) to control the estimation of the shorth, the minimum volume convex
set on the real line. It is the goal of the present paper, however, to reveal the
asymptotic theory in the most regular setup, and not to present the most general
results under the weakest assumptions.

We now present some specific examples of classes of sets and probability
distributions where the three level set estimators can be used, see for more
relevant details, including expressions for Bc in some two-dimensional cases,
Examples 1a, 2a and 2b in Einmahl and Khmaladze (2011).

Ellipsoids. The natural and most studied example is the case where A is the
class of all closed ellipsoids with non-empty interior and P is an elliptical prob-
ability distribution. A more restricted class is, of course, the class of all closed
balls.

Convex polytopes. Another natural choice for A is the class of all closed,
convex polytopes with a bound on the number of faces. In particular in dimen-
sion 2, the class of all closed, convex quadrangles can be considered. In this case
we could take a density f such that Lλ is a rectangle. An interesting difference
with the previous example is that Lλ is non-smooth here, resulting, e.g., in a
non-empty skeleton L∗

λ.

Planar convex sets. For dimension two, in case Lλ is a square (or rectangle),
we can letA be the large class of all closed, convex sets. Although this interesting
case is also considered in Example 2b in Einmahl and Khmaladze (2011), we will
provide at the end of Section 4 details about why conditions (2.7) and (2.8) are
satisfied. Note that the bracketing numbers bound used there also indicates that
our results do not hold true for the class of closed, convex sets in dimensions
exceeding 2.

It might be difficult to determine L1,n, L2,n and L3,n and therefore some
more flexibility in their definitions could be convenient. Consider for instance the
following “relaxed” maximizers/minimizers: given any sequence δn of positive
numbers converging to 0, choose random sets R1,n, R2,n, and R3,n in A such
that Pn(R2,n) ≥ pλ, µ(R3,n) ≤ vλ, and

Pn(R1,n)− λµ(R1,n) ≥ sup{Pn(A)− λµ(A) : A ∈ A} − δnn
−2/3,

µ(R2,n) ≤ inf{µ(A) : A ∈ A, Pn(A) ≥ pλ}+ δnn
−2/3,

Pn(R3,n) ≥ sup{Pn(A) : A ∈ A, µ(A) ≤ vλ} − δnn
−2/3.

Our approach and convergence results naturally extend to Rj,n, j = 1, 2, 3, but
their detailed analysis is beyond the scope of this paper. Whenever δn is chosen
not too small (i.e., δnn

1/3 → ∞) more flexible algorithms for the computation
of Rj,n could be used.
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4. Proofs

We first collect various lemmas for the proof of the theorems. From now on we
write εn = n−1/3.

4.1. Distances, measures and drift

For j = 1, ..., d, let νd−j(·) denote the j-th support measure of Lλ on Nor(Lλ).
These finite measures carry the geometrical information about Lλ and are a
common generalization of the curvature measures and the area measures, see
Schneider (1993) and Schneider and Weil (2008). The local inner reach at π ∈ Sλ

is the largest radius r(π) of a ball included in Lλ that has π as a boundary point.
Theorem 1 in Khmaladze and Weil (2008) states a general Steiner formula for
convex bodies: for any g ∈ L1(µ),∫

Rd

g(x)dµ(x) =

d∑
j=1

(
d− 1

j − 1

)
Θd−j(g), where (4.1)

Θd−j(g) =

∫
Nor(Lλ)

∫ ∞

−r(π)

sj−1g(π + su)dµ1(s)dνd−j(π, u). (4.2)

It follows from (2.14)–(2.15) and this Steiner formula with g = f1Sε
λ
, for small

ε > 0, that ∫
Nor(Lλ)

f ′
±(π)νd−j(π, u) < ∞, for j = 1, ..., d. (4.3)

Define
Bp,+
c,n = {τεn(A△ Lλ) : A ∈ Acεn , |P (A)− pλ| ≤ n−2/5}. (4.4)

Lemma 4.1. Let c > 0. We have, as n → ∞,

sup
Bn∈Bv

c,n

∣∣M(B+
n )−M(B−

n )
∣∣ = O(εn) (4.5)

and, if (2.14)–(2.15) hold, then

sup
Bn∈Bp,+

c,n

∣∣M(B+
n )−M(B−

n )
∣∣→ 0. (4.6)

Proof. For An ∈ Acεn and Bn = τεn(An △ Lλ) ∈ Bc,n, we have B+
n = τεn(An \

Lλ) and B−
n = τεn(Lλ \An). Consider

g+(x) = ε−1
n 1An\Lλ

(x) = ε−1
n 1B+

n
(Π(x), u(x), s(x)/εn)

in (4.1). Then

Θd−j(g
+) = εj−1

n

∫
Nor(Sλ)

∫ c

0

sj−11B+
n
(π, u, s)dµ1(s)dνd−j(π, u).
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Thus Θd−1(g
+) = M(B+

n ), by (2.2), and Θd−j(g
+) = O(εj−1

n ) uniformly over
Acεn , for j = 2, . . . , d. Since ε−1

n µ(An \ Lλ) =
∫
Rd g

+(x)dµ(x) we see that (4.1)
implies

sup
A∈Acεn

∣∣∣∣ 1εnµ(A \ Lλ)−M(τεn(A \ Lλ))

∣∣∣∣ = O(εn). (4.7)

Similarly we obtain

sup
A∈Acεn

∣∣∣∣ 1εnµ(Lλ \A)−M(τεn(Lλ \A))

∣∣∣∣ = O(εn). (4.8)

For A ∈ Acεn
v , µ(A) = vλ and hence µ(Lλ \ A) = µ(A \ Lλ). By (4.7) and

(4.8), we obtain (4.5) by definition of Bv
c,n.

Define
Acεn,+

p = {A ∈ Acεn : |P (A)− pλ| ≤ n−2/5}.

For An ∈ Acεn,+
p we thus have∣∣∣∣∣

∫
An\Lλ

f(x)dµ(x)−
∫
Lλ\An

f(x)dµ(x)

∣∣∣∣∣ ≤ n−2/5,

and, by (2.14) and (2.15), uniformly over Acεn,+
p ,

λµ(An \ Lλ)−
∫
An\Lλ

s(x)f ′
+(Π(x))dµ(x) (4.9)

= λµ(Lλ \An)−
∫
Lλ\An

s(x)f ′
−(Π(x))dµ(x) + o(ε2n) +O(n−2/5).

Now consider g̃+(x) = ε−1
n 1An\Lλ

(x)s(x)f ′
+(Π(x)). Then by (4.1)–(4.3) we find

that uniformly over Acεn,+
p , ε−1

n

∫
An\Lλ

s(x)f ′
+(Π(x))dµ(x) = O(εn). We can

deal similarly with the integral on Lλ \ An. Using this in (4.9) in combination
with (4.7) and (4.8) yields (4.6).

Observe that (4.7) and (4.8) immediately yield

sup
A∈Acεn

∣∣ε−1
n µ(A△ Lλ)−M((τεn(A△ Lλ)))

∣∣ = O(εn). (4.10)

Lemma 4.2. If H1 and H2 hold, then

lim
n→∞

sup
Bn∈Bv

c,n

inf
B∈B∗

c

d(Bn, B) = 0, (4.11)

lim
n→∞

sup
Bn∈Bp

c,n

inf
B∈B∗

c

d(Bn, B) = 0, (4.12)

lim
n→∞

sup
Bn∈Bp,+

c,n

inf
B∈B∗

c

d(Bn, B) = 0. (4.13)
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Proof. If (4.11) is false, then for some δ > 0 and some subsequence nk we
can find sets B̃nk

∈ Bv
c,nk

such that infB̃∈B∗
c
d(B̃nk

, B̃) > δ. But because of

(2.6) and the compactness of (Bc, d) one can extract a further subsequence
nkj

and sets Bj converging w.r.t. d to some B ∈ Bc. Lemma 4.1 yields that

|M(B+
j )−M(B−

j )| → 0 which implies B ∈ B∗
c and hence the contradictory fact

that d(Bj , B) → 0.
The proof of (4.13) follows similarly. Clearly (4.13) implies (4.12).

For c > 0 consider C ∈ Ccεn . Write C+ = C \ Lλ and C− = C ∩ Lλ. Define

Dn(τεn(C)) = n2/3
(
eλ(C

−)− eλ(C
+)
)

and observe that eλ(C
−) ≥ 0 and eλ(C

+) ≤ 0.

Lemma 4.3. If (2.14)–(2.15) hold, then, as n → ∞,

sup
C∈Ccεn

|D(τεn(C))−Dn(τεn(C))| → 0.

Proof. Write f ′(π, s) = 1s>0f
′
+(π)+1s≤0f

′
−(π). From the Steiner formula (4.1)–

(4.2) and from (2.14)–(2.15) we obtain by a straightforward calculation that,
uniformly for C ∈ Ccεn ,

Dn(τεn(C))

=
1

ε2n

∫
Nor(Lλ)

∫ cεn

−(r(π)∧cεn)

sf ′(π, s)(1C+(π + su)− 1C−(π + su))dsdνd−1(π, u)

+

d∑
j=2

(
d− 1

j − 1

)
1

ε2n

∫
Nor(Lλ)

∫ cεn

−(r(π)∧cεn)

sjf ′(π, s)(1C+(π + su)− 1C−(π + su))dsdνd−j(π, u)

+o(1)

=: T1,n(C) +

d∑
j=2

(
d− 1

j − 1

)
Tj,n(C) + o(1).

Now by a change of variables it follows that T1,n(C) = D(τεn(C)). Hence it

remains to show that supC∈Ccεn

∑d
j=2

(
d−1
j−1

)
|Tj,n(C)| → 0, but this follows from

supC∈Ccεn |Tj,n(C)| = O(εj−1
n ), which we obtain from (4.3).

The following lemma is immediate from basic measure theory, more precisely
the fact that an M -small set has a small integral.

Lemma 4.4. Assuming (2.14)–(2.15) we have, as n → ∞,

sup
Bn∈Bc,n,B∈Bc, d(Bn,B)≤γc,n

|D(Bn)−D(B)| → 0.

4.2. Concentration lemmas

Lemma 4.5. Let ε > 0 fixed and A ∈ A with dH(A,Lλ) ≤ ε, then A△Lλ ⊂ Sε
λ.
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Proof. Assume dH(A,Lλ) ≤ ε and x ∈ A \ Lλ. Then ∥x−Π(x)∥ ≤ ε. Hence
x ∈ Sε

λ. Now assume dH(A,Lλ) ≤ ε and x ∈ Lλ \A. Assume x /∈ Sε
λ. Let ΠA(x)

be the orthogonal projection of x on ∂A, that is unique since x /∈ A and A is
convex. There exists an y ∈ Sλ such that ΠA(y) = ΠA(x). To see this consider
the tangent space of A at ΠA(x) that is orthogonal to the outer normal of ∂A at
ΠA(x) driven by (x−ΠA(x)) and take y as the intersection of that line with Sλ.
Then ∥y −ΠA(x)∥ > ∥y − x∥ ≥ ∥Π(x)− x∥ > ε. This implies dH({y}, A) > ε
and hence dH(A,Lλ) > ε. Contradiction. Hence we have x ∈ Sε

λ.

PROOF OF LEMMA 3.1. Consider

L1,n ∈ argmax
A∈A

{Pn(A)− λµ(A)}

= argmax
A∈A

{Pn(A)− P (A)− Pn(Lλ) + P (Lλ) + eλ(A)− eλ} . (4.14)

Observe that the expression of which the latter argmax is taken is equal to 0 in
case A = Lλ.

VC class. First assume that A is a VC class. We begin with showing that
for n large enough

P(dH(L1,n, Lλ) ≥ δ) ≤ 1

2
δ. (4.15)

We obtain from (2.13) that there exists an η > 0, such that dH(Lλ, A)) ≥ δ
implies eλ − eλ(A) ≥ 2η. The Glivenko-Cantelli theorem on A yields that for
the above η for large n

P( sup
A∈A

|Pn(A)− P (A)− Pn(Lλ) + P (Lλ)| ≤ η) ≥ 1− 1

2
δ.

Hence

P(dH(L1,n, Lλ) < δ) ≥ 1− 1

2
δ.

Define, for c > 1 (recall εn = n−1/3),

pc = P(cεn ≤ dH(L1,n, Lλ) ≤ min(c2εn, δ)). (4.16)

and A1 = {A ∈ A : cεn ≤ dH(Lλ, A) ≤ min(c2εn, δ)}. From (2.16) we obtain

eλ − eλ(A) >
1

2
η0d

2
H(Lλ, A), for small dH(Lλ, A).

Hence for small δ > 0

inf
A∈A1

eλ − eλ(A) ≥ 1

2
η0 inf

A∈A1

d2H(Lλ, A) ≥
1

2
η0c

2ε2n.
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This yields, see (4.14) and the observation directly below it,

pc = P(L1,n ∈ A1)

≤ P
(

sup
A∈A1

Pn(A)− P (A)− Pn(Lλ) + P (Lλ) + eλ(A)− eλ ≥ 0

)
≤ P

(
sup
A∈A1

Pn(A)− P (A)− Pn(Lλ) + P (Lλ) ≥ inf
A∈A1

eλ − eλ(A)

)
≤ P

(
sup
A∈A1

Pn(A)− P (A)− Pn(Lλ) + P (Lλ) ≥
1

2
η0c

2ε2n

)
≤ P

(
2 sup
D∈Dn

|Pn(D)− P (D)| ≥ 1

2
η0c

2ε2n

)
=: p̃c, (4.17)

where
Dn = {A \ Lλ : A ∈ A1} ∪ {Lλ \A : A ∈ A1}.

Denote N = nPn(S
c2εn∧δ
λ ), the number of observations in Sc2εn∧δ

λ , an =

P (Sc2εn∧δ
λ ), and k = nan, the expected number of observations in Sc2εn∧δ

λ .
Then

p̃c = P
(
n1/2

a
1/2
n

sup
D∈Dn

|Pn(D)− P (D)| ≥ 1

4
η0c

2ε2n
n1/2

a
1/2
n

)
≤ P

(
n1/2

a
1/2
n

sup
D∈Dn

|Pn(D)− P (D)| ≥ 1

5
(2λsλ)

−1/2η0c

)
,

since c2εn/an ≥ ( 45 )
2(2λsλ)

−1, for small δ > 0. (Observe that here by the choice

εn = n−1/3 the threshold in the first probability is bounded from below by a
positive number not depending on n.) Hence, writing η2 = 1 ∧ 1

5 (2λsλ)
−1/2η0,

we have

p̃c ≤ P
(
n1/2

a
1/2
n

sup
D∈Dn

|Pn(D)− P (D)| ≥ η2c

)
=

n∑
m=0

P
(

n

k1/2
sup

D∈Dn

|Pn(D)− P (D)| ≥ η2c |N = m

)
P(N = m)

≤
m=⌊k+(η2/3)c

√
k⌋∑

m=⌈k−(η2/3)c
√
k⌉

P
(

sup
D∈Dn

∣∣∣∣ 1√
k
(nPn(D)− nP (D))

∣∣∣∣ ≥ η2c |N = m

)
P(N = m)

+P(|N − k| ≥ η2
3
c
√
k) =: T + T3.

Let Yj , j = 1, . . . , n, be i.i.d. random vectors taking values in Sc2εn∧δ
λ distributed

according to P̃ := P/an. Then, using Lemma 4.5, for n ≥ n1 (for some n1 not
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depending on c) and large c,

T ≤
m=⌊k+(η2/3)c

√
k⌋∑

m=⌈k−(η2/3)c
√
k⌉

P

 sup
D∈Dn

∣∣∣∣∣∣ 1√
m

 m∑
j=1

1D(Yj)−mP̃ (D)

∣∣∣∣∣∣ ≥
√
η2c

2
√
2

P(N = m)

+

m=⌊k+(η2/3)c
√
k⌋∑

m=⌈k−(η2/3)c
√
k⌉

P
(

sup
D∈Dn

1√
k
|m− k|P̃ (D) ≥ η2

2
c

)
P(N = m) =: T1 + T2.

Note that for each m in the latter sum

P
(

sup
D∈Dn

1√
k
|m− k|P̃ (D) ≥ η2

2
c

)
≤ P

(
1√
k
|m− k| ≥ η2

2
c

)
= 0.

Hence T2 = 0. From Bennett’s inequality we have

T3 ≤ 2 exp

(
−η22c

19

)
.

Using Corollary 2.9 in Alexander (1984) we obtain for large enough c

T1 ≤
m=⌊k+(η2/3)c

√
k⌋∑

m=⌈k−(η2/3)c
√
k⌉

16 exp
(
−η2c

64

)
P(N = m) ≤ 16 exp

(
−η2c

64

)
.

Hence

pc ≤ 18 exp

(
−η22c

64

)
.

Using this bound on pc with c replaced by c2
m

, m = 0, 1, 2, . . ., we obtain
that for large n

P(dH(L1,n, Lλ) ≥ cεn)

≤ P(dH(L1,n, Lλ) ≥ δ) +

∞∑
m=0

P(c2
m

εn ≤ dH(L1,n, Lλ) ≤ min(c2
m+1

εn, δ))

≤ 1

2
δ + 18

∞∑
m=0

exp

(
−η22c

2m

64

)
≤ δ,

for c large enough.
Conditions (2.7)–(2.10). Now we assume that (2.8) and (2.9) hold. Then

the proof for L1,n follows similar lines. (Here (2.7) and (2.10) are not required,
but they are crucial for the convergence statements in Lemma 4.6 below.) As
above, we show that (4.15) holds, because of

sup
A∈A

|Pn(A)− P (A)| P→ 0, n → ∞,

imsart-generic ver. 2020/08/06 file: output.tex date: October 28, 2023



P. Berthet and J.H.J. Einmahl/Weak convergence for estimated level sets 22

which now directly follows from (2.9). For the derivation of the upper bound for
pc in (4.16) we first follow the same lines as below that formula, until (4.17).
Now observe that

[A]c2∧δ/εn,n
((P (Sc2εn∧δ

λ )/εn)
1/2) = 1.

Using this and Lemma 4.5, we now bound the final probability in (4.17) directly
by Lemma 19.34 in van der Vaart (1998) and the Markov inequality. This yields
for some constants c1, c2 > 1,

pc ≤ 4c1
η0c2ε2nn

1/2

∫ c2(cε
1/2
n ∧δ1/2)

0

√
log [A]c2∧δ/εn,n

(
t/ε

1/2
n

)
dt

=
4c1
η0c2

∫ c2(c∧(δ/εn)
1/2)

0

√
log [A]c2∧δ/εn,n

(κ)dκ ≤ 4c1c2
η0c2

∫ c∧(δ/εn)
1/2

0

√
log [A]c2∧δ/εn,n

(κ)dκ.

Using this bound on pc with c replaced by c2
m

, m = 0, 1, 2, . . ., we obtain as
above

P(dH(L1,n, Lλ) ≥ cεn) ≤
1

2
δ+

∞∑
m=0

4c1c2
η0c2

m+1

∫ c2
m

∧(δ/εn)
1/2

0

√
log [A]c2m+1∧δ/εn,n

(κ)dκ.

Now using (2.8) and a change of variables we find that the expression on the
right is, for some c3 > 0, bounded by

1

2
δ +

∞∑
m=0

4c1c2c3
η0c2

m+1 c2
m

∧ (δ/εn)
1/2 ≤ 1

2
δ +

4c1c2c3
η0

∞∑
m=0

1

c2m
≤ δ,

for large n and c large enough.
Next we consider L4,n. We have

L4,n ∈ argmax
A∈A,µ(A)=vλ

{Pn(A)− P (A)− Pn(Lλ) + P (Lλ) + eλ(A)− eλ} .

This expression is very similar to the one for L1,n. The only difference is that A
there is replaced by its subset {A ∈ A : µ(A) = vλ}. Since the arguments above
– dealing with suprema and infima – hold for the entire class A, they remain to
hold for this subset.

Finally consider L2,n. We have, almost surely,

L2,n ∈ argmin
A∈A,nPn(A)=⌈npλ⌉

{µ(A)}

= argmax
A∈A,nPn(A)=⌈npλ⌉

{Pn(A)− λµ(A)}

= argmax
A∈A,nPn(A)=⌈npλ⌉

{Pn(A)− P (A)− Pn(Lλ) + P (Lλ) + eλ(A)− eλ} .

This expression looks similar to the ones for L1,n and L4,n, but the difference is
that the supremum of the expression of which the latter argmax is taken is not
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guaranteed to be non-negative since the choice A = Lλ, as before, is not allowed.
However, it follows from (3.6) that, almost surely, there exists an Aŝ ∈ Al such
that nPn(Aŝ) = ⌈npλ⌉. Then, using P (Aŝ) = pλ + OP(1/

√
n), we obtain from

(3.7) and the behavior of the oscillation modulus of the univariate, uniform
empirical process, that with arbitrarily high probability for large n that the just
mentioned supremum is larger than −n−17/24 (instead of being non-negative).
Since n−17/24/ε2n → 0 as n → ∞, the proof for L1,n can be easily adapted,
replacing A by its (random) subset {A ∈ A : nPn(A) = ⌈npλ⌉}. □

4.3. Processes on the cylinder space

Here we describe more precisely the local objects, magnified into the cylinder
space, namely the empirical process, the drift induced by the local variation of
the density, and then the limiting drifted Gaussian process.

Since for all c > 0, (Bc, d) is totally bounded, we have

sup
B∈Bc

inf
Bn∈Bc,n

d(Bn, B) → 0.

Combining this with (2.6), we have in terms of Hausdorff distance between
classes of sets that for any c > 0, as n → ∞,

γc,n := max

(
sup

Bn∈Bc,n

inf
B∈Bc

d(Bn, B), sup
B∈Bc

inf
Bn∈Bc,n

d(Bn, B)

)
→ 0.

Define
Λn(C) = n2/3(Pn(C)− P (C)), C ∈ B(Rd),

and
wn(B) = Λn(τ

−1
εn (B+))− Λn(τ

−1
εn (B−)), B ∈ Fc .

Lemma 4.6. Assume that H1 and H2 hold. Let c > 0. Then on some probability
space there exists a triangular array Xn,1, . . . , Xn,n, n ∈ N, of rowwise indepen-
dent random vectors with law P on Rd together with a bounded, d-continuous
version of W on Bc such that, as n → ∞,

sup
Bn∈Bc,n,B∈Bc,d(Bn,B)≤γc,n

|wn(Bn)− wn(B)| P→ 0, (4.18)

and, with probability 1,

sup
B∈Bc

|wn(B)−
√
λW (B)| → 0. (4.19)

Proof. Note that the assumptions of Theorems 1 and 2 in Einmahl and Khmal-
adze (2011) are satisfied. In particular (2.7) and (2.10) or the VC class assump-
tion are crucial, while (2.14) and (2.15) are a bit stronger than needed here, but
required for the main proofs. Hence, using these theorems, including a Skorohod
construction as on page 554 therein, yields (4.18) and (4.19). Note that the gen-
eralization from c = 1 therein to arbitrary c > 0 here, is straightforward. Also
the fact that here wn is a difference of two terms can be easily dealt with.
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For a compact subset B̌ of B, define

Z(B̌) = argmax
B∈B̌

{√
λW (B)−D(B)

}
.

Recall that
√
λW −D is d-continuous on Bc, whereas V ar(W (B)−W (B′)) = 0

implies B′ = B by our equivalence class convention. Now note that both Z(Bc)
and Z(B∗

c ) exist and, by Lemma 2.6 in Kim and Pollard (1990), are almost
surely unique on the compact set Bc, respectively B∗

c . Proposition 3.1 and a
similar statement for Z(B∗) are consequences of (the above and) the following
lemma.

Lemma 4.7. Assume that H1, H2, and (3.2) hold. For B̃ = B,B∗ we have

P

(⋃
c>0

{Z(B̃ ∩ Bc) = Z(B̃ ∩ Bc̃), for all c̃ > c}

)
= 1.

Hence Z(B̃) almost surely exists and is unique; it is the “set limit” of
Z(B̃ ∩ Bm):

Z(B̃) =
∞⋂
k=1

∞⋃
m=k

Z(B̃ ∩ Bm).

Proof. We have, using (2.17) and c(B) defined there,

P

(
sup

B∈B̃:c(B)≥c

√
λW (B)−D(B) ≥ 0

)

≤
∞∑

m=0

P

(
sup

B∈B̃:c2m≤c(B)<c2m+1

√
λW (B)−D(B) ≥ 0

)

≤
∞∑

m=0

P

(
sup

B∈B̃:c2m≤c(B)<c2m+1

√
λW (B)− η0c

2(B) ≥ 0

)

≤
∞∑

m=0

P

(
sup

B∈B̃:c2m≤c(B)<c2m+1

√
λW (B) ≥ η0c

2m+1

)
,

which is by (3.2), bounded from above by

η1
√
λ

η0

∞∑
m=0

c−2m ,

which is, for arbitrary η > 0, bounded by η, for c large enough.
Hence, since Lλ ∈ A, for c large enough,

P(Z(B̃ ∩ Bc) = Z(B̃ ∩ Bc̃), for all c̃ > c) ≥ 1− η.

If this event is denoted by Ωc, then P(∪c>0Ωc) = 1.
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4.4. Proof of Theorem 3.1

We work in the setting of Lemma 4.6. For c > 0 we have

argmax
A∈Acεn

{Pn(A)− λµ(A)}

= argmax
A∈Acεn

{
P (A)− λµ(A)− P (Lλ) + λµ(Lλ) + n−2/3(Λn(A)− Λn(Lλ))

}
= argmax

A∈Acεn

{
n2/3(eλ(A)− eλ) + Λn(A)− Λn(Lλ)

}
= φεn

{
argmax
B∈Bc,n

{wn(B)−Dn(B)}

}
.

Consider the events

ΞΛ
c,n = {L1,n △ Lλ ⊂ Scεn

λ } , ΞW
c = {Z(Bc) = Z(B)} ,

where Z(Bc) and Z(B) are defined in terms of a Wiener process W satisfying
(4.19) in Lemma 4.6. Clearly, Lemmas 4.5, 3.1 and 4.7 imply that for any δ > 0
there exists a c = c(δ) > 0 such that we have P

(
ΞΛ
c,n ∩ ΞW

c

)
> 1 − δ for all n

large enough. Now define

mc,n = sup
B∈Bc,n

{wn(B)−Dn(B)} , mc = max
B∈Bc

{√
λW (B)−D(B)

}
and observe that Lemmas 4.6, 4.3 and 4.4 imply

mc,n
P→ mc, as n → ∞. (4.20)

We have for any ε > 0 fixed, every argmax L1,n, and all large enough n

P
(
M(τεn(L1,n △ Lλ)△ Z(B)) > δ2

)
≤ P

({
M(τεn(L1,n △ Lλ)△ Z(B)) > δ2

}
∩ ΞΛ

c,n ∩ ΞW
c

)
+ δ

≤ P

(
d

(
argmax
B∈Bc,n

{wn(B)−Dn(B)} , Z(Bc)

)
> δ

)
+ δ

≤ P

(
sup

B∈Bc,n:d(B,Z(Bc))>δ

{wn(B)−Dn(B)} ≥ mc,n

)
+ δ

≤ P

(
sup

B∈Bc,n:d(B,Z(Bc))>δ

{wn(B)−D(B)} ≥ mc,n − ε

)
+ δ

which is by (4.20)

≤ P

(
sup

B∈Bc,n:d(B,Z(Bc))>δ

{wn(B)−D(B)} ≥ mc − 2ε

)
+ 2δ
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which by (4.18) and Lemma 4.4 is in turn

≤ P

(
sup

B∈Bc:d(B,Z(Bc))≥δ/2

{wn(B)−D(B)} ≥ mc − 3ε

)
+ 3δ

and this is by (4.19) and then by Lemma 2.6 in Kim and Pollard (1990)

≤ P
(

max
B∈Bc:d(B,Z(Bc))≥δ/2

{√
λW (B)−D(B)

}
≥ mc − 4ε

)
+ 4δ ≤ 5δ,

provided that we choose a small enough ε with respect to δ.
Note that Z(B) depends on δ through c = c(δ). We can avoid this, but make it

instead depend on n as in the statement of the theorem, by a diagonal selection
argument.

The second and third statement in Theorem 3.1 follow directly from the
just established first one and the Steiner formula (4.1)–(4.2), since M can be
approximated by ε−1

n µ after transforming back by τ−1
εn (see (4.10)), and then λµ

can be approximated by P near Sλ. □

4.5. Proof of Theorem 3.2

The proof of Theorem 3.2 with L3,n replaced by L4,n from (3.9) is similar to
that of Theorem 3.1, only A has to be replaced by Av and B by B∗.

Now take an argmax L3,n with µ(L3,n) < vλ. Then, using (2.12), for some
L4,n we have L3,n ⊂ L4,n. Now, since n1/2(Pn − P ) = OP(1) uniformly on A,
we have with probability tending to 1,

P (L3,n) ≥ Pn(L3,n)−
1

2
n−2/5 ≥ Pn(Lλ)−

1

2
n−2/5 ≥ pλ − n−2/5.

Since P (L3,n)− λµ(L3,n) ≤ pλ − λvλ we get µ(L3,n) ≥ vλ − 1
λn

−2/5 thus

µ(L3,n△L4,n) = µ(L4,n)− µ(L3,n) ≤
1

λ
n−2/5 = o(εn).

This also implies that M(τεn(L3,n△L4,n)) ≤ εn(µ(L4,n)−µ(L3,n))
P→ 0 and the

statements of Theorem 3.2 for j = 3 follow from those for j = 4.
Finally we consider L2,n. We follow again the line of reasoning and the no-

tation in the proof of Theorem 3.1. Define

B̂c,n = {τεn(A△ Lλ) : A ∈ Acεn , Pn(A) = ⌈npλ⌉/n}.
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We have for c > 0

argmin
A∈Acεn ,nPn(A)=⌈npλ⌉

{µ(A)}

= argmax
A∈Acεn ,nPn(A)=⌈npλ⌉

{Pn(A)− λµ(A)}

= argmax
A∈Acεn ,nPn(A)=⌈npλ⌉

{
P (A)− λµ(A)− P (Lλ) + λµ(Lλ) + n−2/3(Λn(A)− Λn(Lλ))

}
= argmax

A∈Acεn ,nPn(A)=⌈npλ⌉

{
n2/3(eλ(A)− eλ) + Λn(A)− Λn(Lλ)

}
= φεn

(
argmax
B∈B̂c,n

{wn(B)−Dn(B)}

)
.

Consider the events

ΞΛ,∗
c,n = {L2,n△Lλ ⊂ Scεn

λ } , ΞW,∗
c = {Z(B∗

c ) = Z(B∗)} .

Again, Lemmas 4.5, 3.1 and 4.7 imply that for any δ > 0 there exists a c =
c(δ) > 0 such that we have P

(
ΞΛ,∗
c,n ∩ ΞW,∗

c

)
> 1− δ for all n large enough. Now

define

m̂c,n = sup
B∈B̂c,n

{wn(B)−Dn(B)} , mp
c,n = sup

B∈Bp
c,n

{wn(B)−D(B)} ,

m∗
c = max

B∈B∗
c

{√
λW (B)−D(B)

}
and note that by (3.8), the asymptotic equicontinuity of wn (as in the proof
of Lemma 4.6 given in Einmahl and Khmaladze (2011)), and Lemma 4.3, for
ε > 0,

P(mp
c,n ≤ m̂c,n + ε) → 0, as n → ∞, (4.21)

and that by (3.5), (4.12) and Lemma 4.6 (possibly with a larger γc,n → 0),

mp
c,n

P→ m∗
c , as n → ∞. (4.22)

Recall the definition of Bp,+
c,n in (4.4). We have for ε > 0, every argmin L2,n,

and all large enough n

P
(
M(τεn(L2,n △ Lλ)△ Z(B∗)) > δ2

)
≤ P

({
M(τεn(L2,n △ Lλ)△ Z(B∗)) > δ2

}
∩ ΞΛ,∗

c,n ∩ ΞW,∗
c

)
+ δ

≤ P

(
d

(
argmax
B∈B̂c,n

{wn(B)−Dn(B)} , Z(B∗
c )

)
> δ

)
+ δ

imsart-generic ver. 2020/08/06 file: output.tex date: October 28, 2023



P. Berthet and J.H.J. Einmahl/Weak convergence for estimated level sets 28

≤ P

(
sup

B∈B̂c,n:d(B,Z(B∗
c )>δ

{wn(B)−Dn(B)} ≥ m̂c,n

)
+ δ

≤ P

(
sup

B∈B̂c,n:d(B,Z(B∗
c ))>δ

{wn(B)−D(B)} ≥ m̂c,n − ε

)
+ δ

≤ P

(
sup

B∈Bp,+
c,n :d(B,Z(B∗

c ))>δ

{wn(B)−D(B)} ≥ m̂c,n − ε

)
+ 2δ

which is by (4.21)

≤ P

(
sup

B∈Bp,+
c,n :d(B,Z(B∗

c ))>δ

{wn(B)−D(B)} ≥ mp
c,n − 2ε

)
+ 3δ

which is by (4.22)

≤ P

(
sup

B∈Bp,+
c,n :d(B,Z(B∗

c ))>δ

{wn(B)−D(B)} ≥ m∗
c − 3ε

)
+ 4δ

which by (4.18), Lemma 4.4, and (4.13), is in turn

≤ P

(
sup

B∈B∗
c :d(B,Z(B∗

c ))>δ/2

{wn(B)−D(B)} ≥ m∗
c − 4ε

)
+ 5δ

and this is by (4.19) and then by again Lemma 2.6 in Kim and Pollard (1990)

≤ P
(

max
B∈B∗

c :d(B,Z(B∗
c ))>cn−1/3/2

{√
λW (B)−D(B)

}
≥ m∗

c − 5ε

)
+ 6δ ≤ 7δ,

provided ε is chosen small enough. The last two paragraphs of the proof of
Theorem 3.1 now yield the stated results. □

Details planar convex sets. In dimension two, let A be the class of all closed,
convex sets and let f be such that Lλ is a square, for convenience of presentation
the unit square. Let δ > 0 be fixed and small (so that on Sδ

λ the density f is

“sufficiently close” to λ). Now consider, for c ∈ [1, δn1/3], the subset Scn−1/3

λ .
This set is the difference of a “square with circular corners”, with length of the
side 1 + 2cn−1/3, and a smaller square, with length of the side 1− 2cn−1/3. We
cover this set by 8 convex subsets: 4 rectangles R1, . . . , R4 and 4 quarter circles
Q1, . . . , Q4. R1 is the rectangle with vertices (0, 1+cn−1/3), (1, 1+cn−1/3), (1, 1−
cn−1/3), and (0, 1 − cn−1/3); R2, R3, R4 are defined similarly. Q1 = Scn−1/3

λ ∩
((−∞, 0]×[1,∞));Q2, Q3, Q4 are defined similarly. For these 8 subsets we denote

the respective bracketing numbers (similarly as above (2.7)) with [A]
(j)
c,n (κ),

j = 1, . . . , 8. We have

[A]c,n (κ) ≤
8∏

j=1

[A]
(j)
c,n (κ/

√
8). (4.23)
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In Corollary 2.7.9 in van der Vaart and Wellner (1996), it is derived that
the log of the usual “global” L2(P ) bracketing number for closed, convex sets
contained in a given subset of Sδ

λ is bounded by some constant K times 1
κ . Now

take, for example, j = 1 and consider the rectangle R5 ⊂ Sδ
λ with vertices (0, 1+

δ), (1, 1+ δ), (1, 1− δ) and (0, 1− δ). This rectangle can be obtained from R1 by
a multiplication in vertical direction (from the line segment from (0, 1) to (1, 1))

with factor δn1/3/c. In this way every set of the form (A△Lλ)∩R1, A ∈ Acn−1/3

,
has an image C ′, say, contained in R5, and (C ′△Lλ) ∩ R5 is a closed, convex
set. Brackets in R1 can be obtained accordingly via the inverse multiplication.
By this scaling property, for c ∈ [1, δn1/3], the aforementioned bound for global
bracketing numbers can be translated into a bound, not depending on n, for the

local bracketing numbers [A]
(1)
c,n:

log [A]
(1)
c,n (c

1/2κ) ≤ 2
K√
δ

1

κ
, (4.24)

and the same bound holds for j = 2, 3, 4. Now take, for example, j = 5 and
define Q5 = Sδ

λ ∩ ((−∞, 0] × [1,∞)). Again we can obtain Q5 from Q1 by
a multiplication with factor δn−1/3/c, but now the multiplication has to be
applied in both directions (from the point (0, 1)). Therefore we obtain by the
scaling property, for c ∈ [1, δn1/3], the (initially sharper) bound

log [A]
(5)
c,n (c

1/2κ) ≤ 2
K

δ
c1/2n−1/6 1

κ
≤ 2

K√
δ

1

κ
, (4.25)

and the same bound holds for for j = 6, 7, 8.
Finally (4.24) and (4.25) in conjunction with (4.23), imply (2.7) and (2.8).
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