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Université de Toulouse; CNRS

UPS IMT, F-31062 Toulouse Cedex 9
France

e-mail: philippe.berthet@math.univ-toulouse.fr

Dept. of Econometrics and OR and CentER
Tilburg University

PO Box 90153, 5000 LE Tilburg
The Netherlands

e-mail: j.h.j.einmahl@uvt.nl

Abstract:
Given n independent random vectors with common density f on Rd, we

study the weak convergence of three empirical-measure based estimators of
the convex λ-level set Lλ of f , namely the excess mass set, the minimum
volume set and the maximum probability set, all selected from a class of
convex sets A that contains Lλ. Since these set-valued estimators approach
Lλ, even the formulation of their weak convergence is non-standard. We
identify the joint limiting distribution of the symmetric difference of Lλ and
each of the three estimators, at rate n−1/3. It turns out that the minimum
volume set and the maximum probability set estimators are asymptotically
indistinguishable, whereas the excess mass set estimator exhibits “richer”
limit behavior. Arguments rely on the boundary local empirical process, its
cylinder representation, dimension-free concentration around the boundary
of Lλ, and the set-valued argmax of a drifted Wiener process.
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1. Introduction

1.1. Three level set estimators

Let X1, . . . , Xn, n ∈ N, be independent and identically distributed random vari-
ables taking values in Rd, d ∈ N, endowed with Lebesgue measure µ and Borel
sets B(Rd). Assume that the law P of X1 is absolutely continuous with respect
to µ with continuous density f . We intend to establish novel, non-standard weak
limit theorems for three set-valued estimators of a convex level set of f , treated
as random sets rather than estimated finite-dimensional parameters.

Motivation. Several classical problems in multivariate statistics involve set-
valued estimators based on X1, . . . , Xn. For instance, in order to detect areas
having high probability P , to localize modes or clusters, to test for multimodal-
ity, to find outliers, or to test for goodness-of-fit to a family of distributions.
In particular, many approaches and procedures rely on λ-level sets Lλ of the
density f (λ > 0). The plug-in method consists of using the corresponding level
set of some density estimator. Alternatively, estimators of Lλ can be obtained
by selecting a set in a class A ⊂ B(Rd) according to some optimization criterion
applied directly to the empirical measure of X1, . . . , Xn. Here we avoid density
estimation and follow the latter approach. Note that maybe the most natural
class of sets A is the class of all closed ellipsoids. We will consider the classical
nonparametric M-estimators of Lλ based on the following three criteria:

• excess mass,
• minimum volume, and
• maximum probability.

In particular, the first two criteria have been studied in the literature extensively.
The third one is also very natural, since it is a kind of inverse of the minimum
volume approach.

Seminal papers on the excess mass approach are Müller and Sawitzki (1991),
Nolan (1991), Müller (1992), and Polonik (1995), and pioneering work on the
minimum volume approach can be found in Silverman and Titterington (1980),
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Rousseeuw (1985), Davies (1992), and Polonik (1997). For the maximum prob-
ability approach we refer to Polonik (1998). For different, early approaches to
the estimation of density level sets see Hartigan (1987) and Tsybakov (1997),
and for more recent work, see, e.g., Cadre (2006), Cai et al. (2011), and Chen
et al. (2017). Statistical/machine learning approaches to the aforementioned cri-
teria, include Clémençon et al. (2015) and Scott and Novak (2006). As far as
asymptotic theory is concerned, the results in the literature regarding empirical
estimators of the level sets study rates of convergence towards the true level
set for appropriately defined distances. Other types of results consider weak
convergence for estimators of the parameters of a parametrically defined level
set.

The main goal of this paper is to deal with the weak convergence of the three
classical, competing set-valued estimators of the level set Lλ themselves and
look for their differences or similarities, jointly. Since these estimators approach
Lλ, even the formulation of weak convergence is non-standard. Our main results
are novel central limit theorems for the aforementioned three empirical-measure
based estimators of Lλ, which reveal their interesting asymptotic behavior as
random sets and provide the distribution of their limiting sets, obtained after
cube-root-n magnification. The proofs raised various challenges as indicated in
Subsection 1.2 below.

Target level set. Fix λ > 0 throughout and assume that the level set

Lλ =
{
x ∈ Rd : f(x) ≥ λ

}
is a convex body, that is, it is convex, compact, and has non-empty interior, and
that Sλ =

{
x ∈ Rd : f(x) = λ

}
coincides with its boundary: Sλ = ∂Lλ. Note

that f > λ on Lλ \ Sλ and f < λ on Rd \ Lλ. Hence,

eλ = pλ − λvλ > 0, with pλ = P (Lλ) ∈ (0, 1) and vλ = µ(Lλ) ∈ (0, 1/λ).

We denote the Hausdorff surface measure of Sλ by sλ and have sλ ≥ cdv1−1/d
λ >

0 by the isoperimetric inequality, with cd > 0. LetA ⊂ B(Rd) be a class of closed,
convex sets with Lλ ∈ A. Then we have

Lλ = arg max
A∈A

{P (A)− λµ(A)}

= arg min
A∈A

{µ(A) : P (A) ≥ pλ}

= arg max
A∈A

{P (A) : µ(A) ≤ vλ} ,

and the maximizing/minimizing set is unique. In other words, if λ is known then
Lλ maximizes on A the excess mass function A 7→ eλ(A) = P (A) − λµ(A), if
pλ is known then Lλ minimizes on {A ∈ A : P (A) ≥ pλ} the volume function
A 7→ µ(A) and if vλ is known then Lλ maximizes on {A ∈ A : µ(A) ≤ vλ} the
probability mass function A 7→ P (A).

Empirical level sets. Let δx denote the Dirac measure at x. From the non-
parametric viewpoint it is natural to estimate P with the empirical measure
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Pn = n−1
∑n
i=1δXi in the above argmax and argmin. To motivate a joint study,

imagine that three statisticians want to estimate the level set Lλ by using the
same sample X1, ..., Xn. Assume that they all know A and that Lλ ∈ A, but that
they have their own private, auxiliary information. The first statistician knows
the level λ and therefore makes use of the set-valued excess mass estimator

L1,n ∈ arg max
A∈A

{Pn(A)− λµ(A)} . (1.1)

The second one knows pλ and then makes use of the minimum volume estimator

L2,n ∈ arg min
A∈A

{µ(A) : Pn(A) ≥ pλ} . (1.2)

The third statistician knows vλ and thus makes use of the maximum probability
estimator

L3,n ∈ arg max
A∈A

{Pn(A) : µ(A) ≤ vλ} . (1.3)

We assume that P and A are such that almost surely an L1,n and an L2,n exist
and that Pn(L2,n) = dnpλe/n. Since Pn takes at most n+1 values, an L3,n always
exists. If Lj,n, j = 1, 2, 3, are not unique, just choose any maximizer/minimizer.
It will be shown that the choice does not matter since they are indistinguishable
asymptotically.

1.2. Overview of the results

What can be put forward before introducing more precisely our geometrical and
probabilistic framework is as follows.

Convergence of random sets. In order to compare the performance of the
empirical sets Lj,n we study the joint limiting behavior of Lj,n4Lλ, j = 1, 2, 3,
where L4L′ = (L∪L′)\(L∩L′) denotes the symmetric difference. The ensuing
non-classical asymptotics for these set-valued estimators goes beyond the usual
statistical risk approach which only provides rates for the random variables
P (Lj,n 4 Lλ) or µ(Lj,n 4 Lλ), for j = 1, 2, 3. Instead we address the question
of the weak convergence of the random sets Lj,n 4 Lλ themselves. We then
have to design an appropriate setting allowing to state central limit theorems
for random sets, that is, for sets properly centered and then magnified at a
diverging scale. Our joint limit results reveal, when magnifying with n1/3, how
the three empirical sets Lj,n asymptotically differ or coincide. In particular we
find that L2,n and L3,n are asymptotically indistinguishable. Note that in the
literature these limit theorems have been considered for dimension one only,
where the sets are intervals which can be represented by two numbers, like in
the estimation of the shorth. Hence those central limit theorems can be stated
in the usual way, see, e.g., Kim and Pollard (1990).

A local empirical process approach. In order to analyze how the estimators
Lj,n oscillate around Lλ we first show that they concentrate at rate n−1/3 under
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regularity conditions that are satisfied in most of the natural settings. Then we
use an appropriate boundary empirical process, see Khmaladze (2007), Khmal-
adze and Weil (2008), and Einmahl and Khmaladze (2011) and study its weak
convergence on a “cylinder space” associated with the boundary Sλ of Lλ. The
relevant sets of A have to be close to Lλ in Hausdorff distance at scale n−1/3.
Interestingly, the local nature of the convergence makes both the rate dimension-
free and the Wiener process, appearing in the limit, distribution-free.

Organization. Section 2 is devoted to the setup of the paper, including the
relevant definitions, notation, and assumptions. In Section 3 we present and
discuss the main results and provide a few explicit, illuminating examples. The
proofs are deferred to Section 4.

2. Setup, notation and assumptions

2.1. The geometrical framework and condition H1

In order to define the appropriate limit setting the following notation and defi-
nitions are needed.

The magnification map τε. Let ‖x‖ denote the Euclidean norm of x ∈ Rd
and U = {u : ‖u‖ = 1} the unit sphere. Since Lλ is a convex body, the metric
projection Π(x) ∈ Sλ of x ∈ Rd on Sλ = ∂Lλ is unique except for so-called
skeleton points x ∈ L∗λ ⊂ Lλ with µ(L∗λ) = 0. A unit vector u ∈ U is called an
outer normal of Lλ at π ∈ Sλ if there is some x ∈ Rd \ Lλ such that π = Π(x)
and u = (x−Π(x))/||x−Π(x)||. At each π ∈ Sλ, we denote the non-empty set
of outer normals by N(π) and write S∗λ = {π ∈ Sλ : card(N(π)) > 1}. Note
that µ(Sλ) = 0 and hence µ(S∗λ) = 0. The normal bundle of Lλ is

Nor(Lλ) = {(π, u) : π ∈ Sλ, u ∈ N(π)}.

As in Khmaladze (2007) and Einmahl and Khmaladze (2011) define the magni-
fication map τε at magnitude ε > 0 to be

τε(x) =

(
Π(x), u(x),

s(x)

ε

)
∈ Nor(Lλ)× R, for x ∈ Rd \ (L∗λ ∪ S∗λ), (2.1)

where x = Π(x) + s(x)u(x), with s(x) = sgn(x − Π(x))||x − Π(x)|| the signed
distance between x and Π(x).

The cylinder space. Define Σ = Nor(Lλ) × R. Let νd−1 denote both the
Hausdorff surface measure on Sλ (putting no mass at S∗λ) and its canonical
extension to Nor(Lλ) supported by the product Borel σ-algebra Gd−1 on Sλ×U .
Thus, νd−1 on Nor(Lλ) is the so-called first support measure, and we have
0 < sλ = νd−1(Sλ) = νd−1(Nor(Lλ)) < ∞. Let µ1 be Lebesgue measure on R.
The cylinder space (Σ,F ,M, d) is defined to be Σ endowed with the product
Borel σ-algebra F = Gd−1 × B(R), the σ-finite product measure M and the
semi-metric d given by

M = νd−1 × µ1, d(B,B′) = (M(B 4B′))1/2, for B,B′ ∈ F . (2.2)
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For c > 0 denote Σc = Nor(Lλ)× [−c, c] and Fc = {B ∈ F : B ⊂ Σc}.

The sufficiently parallel sets Aε. Given ε > 0 the ε-parallel set of Sλ is
defined by Sελ = {x : ‖x−Π(x)‖ ≤ ε} and we consider the sets in A that are
“sufficiently parallel” to Lλ,

Aε = {A ∈ A : A4 Lλ ⊂ Sελ} , Cε = {A4 Lλ : A ∈ Aε} . (2.3)

Define the set-to-set mapping

τε(C) = {τε(x) : x ∈ C \ (L∗λ ∪ S∗λ)}, C ∈ B(Rd),

and the inverse τ−1
ε (B) = {x ∈ Rd : τε(x) ∈ B}, for B ∈ F . Note that

τ−1
ε (τε(C)) = C \ (L∗λ ∪ S∗λ). For B ∈ F , define ϕε(B) to be the closure of
τ−1
ε (B)4 (Lλ \ (L∗λ ∪ S∗λ)). For A ∈ A, we then have ϕε(τε(A4 Lλ)) = A.

The limiting class B. We need to magnify with ε = n−1/3. Define for c > 0

Bc,n = τn−1/3(Ccn
−1/3

) = {τn−1/3(A4 Lλ) : A ∈ Acn
−1/3

} (2.4)

and B =
⋃
c>0 Bc where

Bc =
{
B ∈ Fc : for some Bn ∈ Bc,n, lim

n→∞
d(B,Bn) = 0

}
. (2.5)

Since Lλ ∈ Acn
−1/3

we have B 6= ∅. In the language of Khmaladze (2007) each
B ∈ Bc is a derivative at 0 of the set-valued function ε 7→ τε(Acε) along the
sequence ε = n−1/3. Such limits are not uniquely determined. Actually the limit
“set” B is an equivalence class of sets having d-distance equal to 0. Out of every
equivalence class, we choose (only) one limit set B ∈ Fc. This makes d a metric
on Bc and on B. (The choices of the limit set matter. In applications we choose
B’s such that the assumptions of our theorems are satisfied.) Let us further
assume that, for any c > 0, (Bc, d) is compact and

lim
n→∞

sup
Bn∈Bc,n

inf
B∈Bc

d(Bn, B) = 0. (2.6)

Donsker classes. Define dn(A,A′) = (n1/3P (A4A′))1/2. For c > 0, let [A]c,n

and [B]c,n be the usual bracketing numbers w.r.t. dn of Ccn−1/3

and {τ−1
n−1/3(B) :

B ∈ Bc}, respectively; see Einmahl and Khmaladze (2011). We assume either
that for any c > 0 we have

lim
δ↓0

lim sup
n→∞

∫ δ

0

√
log [A]c,n (ε)dε = 0, (2.7)

n1/2 sup
A∈A
|Pn(A)− P (A)| = OP(1), n→∞, (2.8)

lim
δ↓0

lim sup
n→∞

∫ δ

0

√
log [B]c,n (ε)dε = 0, (2.9)
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or that
A and B are Vapnik-Chervonenkis (VC) classes. (2.10)

We also assume that A and B are pointwise measurable.

Nested class. Assume that for all r > 0, all A ∈ A there exists Ar ∈ A such
that

A ⊂ Ar, µ(Ar) = µ(A) + r. (2.11)

Let us denote by H1 the conditions in Subsection 2.1, in particular compact-
ness of (Bc, d), (2.6), “Donsker classes”, and (2.11).

2.2. Condition H2

We will need conditions on the behavior of f near Sλ. Let H2 denote the con-
ditions (2.12)–(2.16) below.

Define the Hausdorff distance for the Euclidean norm on Rd as

dH(A,A′) = max

(
sup
x∈A

inf
x′∈A′

‖x− x′‖ , sup
x′∈A′

inf
x∈A
‖x− x′‖

)
, for A,A′ ⊂ Rd.

Excess risk of excess mass. Consider the excess risk of excess mass

eλ − eλ(A) = P (Lλ)− P (A)− λ(µ(Lλ)− µ(A)) =

∫
Lλ4A

|f(x)− λ|dµ(x).

We require that for all δ > 0,

inf
A∈A:dH(Lλ,A)≥δ

∫
Lλ4A

|f(x)− λ|dµ(x) > 0. (2.12)

The quadratic drift measure D. We assume that for some second-order
derivatives f ′+ ≥ 0 and f ′− ≥ 0 defined on Sλ we have

lim
ε↓0

1

ε2

∫
Sελ\Lλ

∣∣f(x)− λ+ s(x)f ′+(Π(x))
∣∣ dµ(x) = 0, (2.13)

lim
ε↓0

1

ε2

∫
Sελ∩Lλ

∣∣f(x)− λ+ s(x)f ′−(Π(x))
∣∣ dµ(x) = 0. (2.14)

If f is differentiable at π ∈ Sλ \S∗λ then f ′+(π) = f ′−(π). Let us define on (Σ,M)
the quadratic drift measure D having density with respect to M given by

dD

dM
(π, u, s) = sf ′+(π)1s>0 − sf ′−(π)1s≤0.

Local excess risk of excess mass. Write g(π) = min(f ′+(π), f ′−(π)) for
π ∈ Sλ. Let assume that for some ε0 > 0, η0 > 0 and all A ∈ A such that
dH(Lλ, A) ≤ ε0, we have∫

Lλ4A
|s(x)|g(Π(x))dµ(x) ≥ η0d

2
H(Lλ, A). (2.15)
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Similarly we require that for all B ∈ B

D(B) ≥ η0c
2(B), (2.16)

where c(B) = inf{c > 0 : B ∈ Bc}.

3. Main results

3.1. Convergence of the excess mass set estimator

Since (Σ,M) is σ-finite and (B, d) is σ-compact we can define a Wiener process
W indexed by B, that is a centered Gaussian process with covariance

Cov(W (B),W (B′)) = M(B ∩B′), for B,B′ ∈ B.

The intrinsic, standard deviation metric ofW on B is defined to be (V ar(W (B)−
W (B′))1/2 = d(B,B′). The relevant limiting random set is

Z(B) = arg max
B∈B

{√
λW (B)−D(B)

}
. (3.1)

This quantity has been studied in the univariate case where the sets reduce to
numbers, see Groeneboom (1985), Dykstra and Carolan (1999), and Berthet
and El-Nouty (2006). Observe that EW 2(B) ≤ 2sλc for B ∈ Bc. We assume
that for some η1 > 0,

E
(

max
B∈Bc

W 2(B)

)
< η1c, for all c > 0. (3.2)

Proposition 3.1. Assume that H1, H2, and (3.2) hold. With probability one,
the random set Z(B) of (3.1) exists and is unique.

We are now ready to state our non-standard weak convergence result for the
sequence of random sets L1,n in (1.1).

Theorem 3.1. Assume that H1, H2, and (3.2) hold. Then on some probability
space there exists a triangular array Xn,1, . . . , Xn,n, n ∈ N, of rowwise inde-
pendent random vectors with law P on Rd together with a sequence Zn(B) of
versions of Z(B) such that for every argmax L1,n of (1.1), as n→∞,

M (τn−1/3(L1,n 4 Lλ)4 Zn(B))
P→ 0,

n1/3µ (L1,n 4 ϕn−1/3(Zn(B)))
P→ 0,

n1/3P (L1,n 4 ϕn−1/3(Zn(B)))
P→ 0.

Theorem 3.1 states that, at the scale n−1/3, the symmetric difference between
the empirical excess mass set and Lλ has as a limiting distribution that of the
argmax of a drifted Wiener process, as defined in (3.1).
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3.2. Convergence of the minimum volume set and the maximum
probability set estimators

For the second main result about L2,n and L3,n we need some more notation
and assumptions.

The limiting class B∗. Write B+ = B ∩ (Nor(Lλ)× R+) and B− = B \B+,
for B ∈ F . Now define

B∗ = {B ∈ B : M(B+) = M(B−)}, B∗c = B∗ ∩ Bc.

Note that (B∗c , d) is also compact. By replacing A in (2.3)–(2.4) with

Av = {A ∈ A : µ(A) = vλ}, Ap = {A ∈ A : P (A) = pλ}, (3.3)

respectively, we define in the same way the classes Aεv, Cεv , Aεp, Cεp and Bvc,n, Bpc,n.
We assume

lim
n→∞

sup
B∈B∗c

inf
Bn∈Bvc,n

d(B,Bn) = 0, (3.4)

lim
n→∞

sup
B∈B∗c

inf
Bn∈Bpc,n

d(B,Bn) = 0. (3.5)

Consider the Wiener process W indexed by B∗ and define

Z(B∗) = arg max
B∈B∗

{√
λW (B)−D(B)

}
.

As in Proposition 3.1, under H1, H2 and (3.2), with probability one Z(B∗) exists
and is unique.

In order to control the minimum volume set estimator we need the following
two conditions. The class A contains a “univariate” subset

Al = {As ∈ A : s ∈ (−pλ, 1− pλ), P (As) = pλ + s} (3.6)

with the properties that As ⊂ As′ for s < s′, A0 = Lλ, and for some s0 > 0, ζ >
0 and for all −s0 ≤ s ≤ s0:

eλ − eλ(As) ≤ ζs2. (3.7)

For every c > 0, we have as n→∞,

sup
A∈Acn−1/3

,P (A)=pλ

inf
Ã∈Acn−1/3

,Pn(Ã)=dnpλe/n
d(τε(A), τε(Ã))

P→ 0. (3.8)

Theorem 3.2. Assume that H1, H2, (3.2), (3.4) - (3.8) hold. Then on some
probability space there exists a triangular array Xn,1, . . . , Xn,n, n ∈ N, of row-
wise independent random vectors with law P on Rd together with a sequence
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Zn(B∗) of versions of Z(B∗) such that every argmin L2,n of (1.2) and every
argmax L3,n of (1.3) satisfy, for j = 2, 3, as n→∞,

M (τn−1/3(Lj,n 4 Lλ)4 Zn(B∗)) P→ 0,

n1/3µ (Lj,n 4 ϕn−1/3(Zn(B∗))) P→ 0,

n1/3P (Lj,n 4 ϕn−1/3(Zn(B∗))) P→ 0.

Comparing Theorems 3.1 and 3.2 we see that the limiting behavior of L2,n

and L3,n is substantially “less rich” than that of L1,n. The symmetry of the
sets in B∗ shows that for j = 2, 3 the inner and outer differences Lj,n \ Lλ and
Lλ \ Lj,n tend to compensate. Theorems 3.1 and 3.2 could be stated jointly
since they can indeed be proved with the same sequence of underlying Wiener
processes Wn. It is beyond the scope of this paper to study Z(B) and Z(B∗) in
more detail, to see which argmax is “closer” to, say, Σ0 (corresponding to Lλ),
that is, which estimator performs better. However, a small simulation study
for one-dimensional data shows that in that case L2,n and L3,n asymptotically
outperform L1,n.

From the proof of Theorem 3.2 it follows that the sequence of versions Zn(B∗)
can be chosen the same for L2,n and L3,n. Hence, we obtain, as stated in the
next result, that L2,n and L3,n are asymptotically equivalent.

Corollary 3.1. Under the assumption of Theorem 3.2, as n→∞,

M(τn−1/3(L2,n 4 L3,n))
P→ 0,

n1/3µ (L2,n 4 L3,n)
P→ 0,

n1/3P (L2,n 4 L3,n)
P→ 0.

3.3. Discussion and examples

The conditions on the class A are such that natural classes, like in particular
the class of all closed ellipsoids, are included. If the class is “small”, e.g., by
allowing not all or only a few positive values for µ(A) or for P (A) we can obtain
pathological and/or degenerate behavior of the set-valued estimators. E.g., if A
contains Lλ and further only sets with µ(A) > vλ, then L3,n = Lλ.

The assumptions in (2.13) and (2.14) consider the “most regular” behavior
of the density f near Sλ. They lead to the cube root asymptotics in this paper.
Faster or slower convergence rates are also possible, see, e.g., Polonik (1995).
This would lead to W drifted by a non-quadratic measure on the cylinder space,
generalizing W drifted by a convex power function used in Berthet and El-Nouty
(2006) to control the estimation of the shorth, the minimum volume convex
set on the real line. It is the goal of the present paper, however, to reveal the
asymptotic theory in the most regular setup, and not to present the most general
results under the weakest assumptions.
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We now present some specific examples of classes of sets and probability
distributions where the three level set estimators can be used.

Ellipsoids. The natural and most studied example is the case where A is the
class of all closed ellipsoids with non-empty interior and P is an elliptical proba-
bility distribution. More, relevant details about this class of sets for the bivariate
case when Lλ is the unit disc are given in Example 1a in Einmahl and Khmal-
adze (2011). In particular Bc is determined therein. A more restricted class is
the class of all closed balls.

Convex polytopes. Another natural choice for A is the class of all closed,
convex polytopes. In particular in dimension 2, the class of all closed, convex
quadrangles can be considered. In this case we could take a density f such that
Lλ is a rectangle. An interesting difference with the previous example is that
Lλ is non-smooth here, resulting, e.g., in a non-empty skeleton L∗λ.

Planar convex sets. For dimension two, we can let A be the class of all closed,
convex sets. Since this class is much larger than those in the previous examples,
the restriction on f that Lλ is a convex body is much weaker now. For this and
the previous example, see again Einmahl and Khmaladze (2011), Example 2,
for more details; in particular Bc is determined therein in case Lλ is the unit
square.

It might be difficult to determine L1,n, L2,n and L3,n and therefore some
more flexibility in their definitions could be convenient. Consider for instance the
following “relaxed” maximizers/minimizers: given any sequence δn of positive
numbers converging to 0, choose random sets R1,n, R2,n, and R3,n in A such
that Pn(R2,n) ≥ pλ, µ(R3,n) ≤ vλ, and

Pn(R1,n)− λµ(R1,n) ≥ sup{Pn(A)− λµ(A) : A ∈ A} − δnn−2/3,

µ(R2,n) ≤ inf{µ(A) : A ∈ A, Pn(A) ≥ pλ}+ δnn
−2/3,

Pn(R3,n) ≥ sup{Pn(A) : A ∈ A, µ(A) ≤ vλ} − δnn−2/3.

Our approach and convergence results naturally extend to Rj,n, j = 1, 2, 3, but
their detailed analysis is beyond the scope of this paper. Whenever δn is chosen
not too small (i.e., δnn

1/3 → ∞) more flexible algorithms for the computation
of Rj,n could be used.

4. Proofs

We first collect various lemmas for the proof of the theorems. From now on we
write εn = n−1/3.

4.1. Distances, measures and drift

For j = 1, ..., d, let νd−j(·) denote the j-th support measure of Lλ on Nor(Lλ),
see Schneider (1993) and Schneider and Weil (2008). These finite measures carry
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the geometrical information about Lλ. The local inner reach at π ∈ Sλ is the
largest radius r(π) of a ball included in Lλ that has π as a boundary point.
Theorem 1 in Khmaladze and Weil (2008) states a general Steiner formula for
convex bodies: for any g ∈ L1(µ),∫

Rd
g(x)dµ(x) =

d∑
j=1

(
d− 1

j − 1

)
Θd−j(g), where (4.1)

Θd−j(g) =

∫
Nor(Lλ)

∫ ∞
−r(π)

sj−1g(π + su)dµ1(s)dνd−j(π, u). (4.2)

It follows from (2.13)-(2.14) and this Steiner formula with g = f1Sελ , for small
ε > 0, that ∫

Nor(Lλ)

f ′±(π)νd−j(π, u) <∞, for j = 1, ..., d. (4.3)

Define
Bp,+c,n = {τεn(A4 Lλ) : A ∈ Acεn , |P (A)− pλ| ≤ n−2/5}. (4.4)

Lemma 4.1. Let c > 0. We have, as n→∞,

sup
Bn∈Bvc,n

∣∣M(B+
n )−M(B−n )

∣∣ = O(εn) (4.5)

and, if (2.13) - (2.14) hold, then

sup
Bn∈Bp,+c,n

∣∣M(B+
n )−M(B−n )

∣∣→ 0. (4.6)

Proof. For An ∈ Acεn and Bn = τεn(An 4 Lλ) ∈ Bc,n, we have B+
n = τεn(An \

Lλ) and B−n = τεn(Lλ \An). Consider

g+(x) = ε−1
n 1An\Lλ(x) = ε−1

n 1B+
n

(Π(x), u(x), s(x)/εn)

in (4.1). Then

Θd−j(g
+) = εj−1

n

∫
Nor(Sλ)

∫ c

0

sj−11B+
n

(π, u, s)dµ1(s)dνd−j(π, u).

Thus by (2.2), Θd−1(g+) = M(B+
n ) and Θd−j(g

+) = O(εj−1
n ) uniformly over

Acεn , for j = 2, . . . , d. Since ε−1
n µ(An \ Lλ) =

∫
Rd g

+(x)dµ(x) we see that (4.1)
implies

sup
A∈Acεn

∣∣∣∣ 1

εn
µ(A \ Lλ)−M(τεn(A \ Lλ))

∣∣∣∣ = O(εn). (4.7)

Similarly we obtain

sup
A∈Acεn

∣∣∣∣ 1

εn
µ(Lλ \A)−M(τεn(Lλ \A))

∣∣∣∣ = O(εn). (4.8)
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For A ∈ Acεnv , µ(A) = vλ and hence µ(Lλ \ A) = µ(A \ Lλ). By (4.7) and
(4.8), we obtain (4.5) by definition of Bvc,n.

Define
Acεn,+p = {A ∈ Acεn : |P (A)− pλ| ≤ n−2/5}.

For An ∈ Acεn,+p we thus have∣∣∣∣∣
∫
An\Lλ

f(x)dµ(x)−
∫
Lλ\An

f(x)dµ(x)

∣∣∣∣∣ ≤ n−2/5,

and, by (2.13) and (2.14), uniformly over Acεn,+p ,

λµ(An \ Lλ)−
∫
An\Lλ

s(x)f ′+(Π(x))dµ(x) (4.9)

= λµ(Lλ \An)−
∫
Lλ\An

s(x)f ′−(Π(x))dµ(x) + o(ε2
n) +O(n−2/5).

Now consider g̃+(x) = ε−1
n 1An\Lλ(x)s(x)f ′+(Π(x)). Then by (4.1)-(4.3) we find

that uniformly over Acεn,+p , ε−1
n

∫
An\Lλ s(x)f ′+(Π(x))dµ(x) = O(εn). We can

deal similarly with the integral on Lλ \ An. Using this in (4.9) in combination
with (4.7) and (4.8) yields (4.6).

Observe that (4.7) and (4.8) immediately yield

sup
A∈Acεn

∣∣ε−1
n µ(A4 Lλ)−M((τεn(A4 Lλ)))

∣∣ = O(εn). (4.10)

Lemma 4.2. If H1 and H2 hold, then

lim
n→∞

sup
Bn∈Bvc,n

inf
B∈B∗c

d(Bn, B) = 0, (4.11)

lim
n→∞

sup
Bn∈Bpc,n

inf
B∈B∗c

d(Bn, B) = 0, (4.12)

lim
n→∞

sup
Bn∈Bp,+c,n

inf
B∈B∗c

d(Bn, B) = 0. (4.13)

Proof. If (4.11) is false, then for some δ > 0 and some subsequence nk we
can find sets B̃nk ∈ Bvc,nk such that infB̃∈B∗c

d(B̃nk , B̃) > δ. But because of

(2.6) and the compactness of (Bc, d) one can extract a further subsequence
nkj and sets Bj converging w.r.t. d to some B ∈ Bc. Lemma 4.1 yields that

|M(B+
j )−M(B−j )| → 0 which implies B ∈ B∗c and hence the contradictory fact

that d(Bj , B)→ 0.
The proof of (4.13) follows similarly. Clearly (4.13) implies (4.12).

For c > 0 consider C ∈ Ccεn . Write C+ = C \ Lλ and C− = C ∩ Lλ. Define

Dn(τεn(C)) = n2/3
(
eλ(C−)− eλ(C+)

)
and observe that eλ(C−) ≥ 0 and eλ(C+) ≤ 0.
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Lemma 4.3. If (2.13) - (2.14) hold, then, as n→∞,

sup
C∈Ccεn

|D(τεn(C))−Dn(τεn(C))| → 0.

Proof. Write f ′(π, s) = 1s>0f
′
+(π)+1s≤0f

′
−(π). From the Steiner formula (4.1)-

(4.2) and from (2.13) - (2.14) we obtain by a straightforward calculation that,
uniformly for C ∈ Ccεn ,

Dn(τεn(C))

=
1

ε2
n

∫
Nor(Lλ)

∫ cεn

−(r(π)∧cεn)

sf ′(π, s)(1C+(π + su)− 1C−(π + su))dsdνd−1(π, u)

+

d∑
j=2

(
d− 1

j − 1

)
1

ε2
n

∫
Nor(Lλ)

∫ cεn

−(r(π)∧cεn)

sjf ′(π, s)(1C+(π + su)− 1C−(π + su))dsdνd−j(π, u)

+o(1)

=: T1,n(C) +

d∑
j=2

(
d− 1

j − 1

)
Tj,n(C) + o(1).

Now by a change of variables it follows that T1,n(C) = D(τεn(C)). Hence it

remains to show that supC∈Ccεn
∑d
j=2

(
d−1
j−1

)
|Tj,n(C)| → 0, but this follows from

supC∈Ccεn |Tj,n(C)| = O(εj−1
n ), which we obtain from (4.3).

The following lemma is immediate from basic measure theory, more precisely
the fact that an M -small set has a small integral.

Lemma 4.4. Assuming (2.13)-(2.14) we have, as n→∞,

sup
Bn∈Bc,n,B∈Bc, d(Bn,B)≤γc,n

|D(Bn)−D(B)| → 0.

4.2. Concentration lemmas

Lemma 4.5. Let ε > 0 fixed and A ∈ A with dH(A,Lλ) ≤ ε, then A4Lλ ⊂ Sελ.

Proof. Assume dH(A,Lλ) ≤ ε and x ∈ A \ Lλ. Then ‖x−Π(x)‖ ≤ ε. Hence
x ∈ Sελ. Now assume dH(A,Lλ) ≤ ε and x ∈ Lλ \A. Assume x /∈ Sελ. Let ΠA(x)
be the orthogonal projection of x on ∂A, that is unique since x /∈ A and A is
convex. There exists an y ∈ Sλ such that ΠA(y) = ΠA(x). To see this consider
the tangent space of A at ΠA(x) that is orthogonal to the outer normal of ∂A at
ΠA(x) driven by (x−ΠA(x)) and take y as the intersection of that line with Sλ.
Then ‖y −ΠA(x)‖ > ‖y − x‖ ≥ ‖Π(x)− x‖ > ε. This implies dH({y}, A) > ε
and hence dH(A,Lλ) > ε. Contradiction. Hence we have x ∈ Sελ.

Consider the following variant of L3,n:

L4,n ∈ arg max
A∈A

{Pn(A) : µ(A) = vλ} . (4.14)
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Lemma 4.6. Under the assumptions of Theorems 3.1 or 3.2, respectively, for
every δ > 0, there exists a c > 1, and an n0, such that, for j = 1 and for
j = 2, 4, and n ≥ n0,

P(dH(Lj,n, Lλ) ≥ cεn) ≤ δ.
Proof. Consider

L1,n ∈ arg max
A∈A

{Pn(A)− λµ(A)}

= arg max
A∈A

{Pn(A)− P (A)− Pn(Lλ) + P (Lλ) + eλ(A)− eλ} .

Observe that the expression of which the latter argmax is taken is equal to 0 in
case A = Lλ.

First assume that A is a VC class. We begin with showing that for n large
enough

P(dH(L1,n, Lλ) ≥ δ) ≤ 1

2
δ.

We obtain from (2.12) that there exists an η > 0, such that dH(Lλ, A)) ≥ δ
implies eλ − eλ(A) ≥ 2η. The Glivenko-Cantelli theorem on A yields that for
the above η for large n

P( sup
A∈A
|Pn(A)− P (A)− Pn(Lλ) + P (Lλ)| ≤ η) ≥ 1− 1

2
δ.

Hence

P(dH(L1,n, Lλ) < δ) ≥ 1− 1

2
δ.

Define, for c > 1,

pc = P(cεn ≤ dH(L1,n, Lλ) ≤ min(c2εn, δ)).

and A1 = {A ∈ A : cεn ≤ dH(Lλ, A) ≤ min(c2εn, δ)}. From (2.15) we obtain
for large n,

eλ − eλ(A) >
1

2
η0d

2
H(Lλ, A), for small dH(Lλ, A).

Hence for large n

inf
A∈A1

eλ − eλ(A) ≥ 1

2
η0 inf

A∈A1

d2
H(Lλ, A) ≥ 1

2
η0c

2ε2
n.

This yields

pc ≤ P
(

sup
A∈A1

Pn(A)− P (A)− Pn(Lλ) + P (Lλ) ≥ inf
A∈A1

eλ − eλ(A)

)
≤ P

(
sup
A∈A1

Pn(A)− P (A)− Pn(Lλ) + P (Lλ) ≥ 1

2
η0c

2ε2
n

)
≤ P

(
2 sup
D∈Dn

|Pn(D)− P (D)| ≥ 1

2
η0c

2ε2
n

)
,
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where
Dn = {A \ Lλ : A ∈ A1} ∪ {Lλ \A : A ∈ A1}.

Now, very similar as in the proof of Theorem 2 in Einmahl and Khmaladze
(2011), we obtain, using Lemma 4.5, that the latter probability is bounded by

c1 exp(−c2η2
0c

2),

for some constants c1, c2 > 0.
Using this bound on pc with c replaced by c2

m

, m = 0, 1, 2, . . ., we obtain
that for large n

P(dH(L1,n, Lλ) ≥ cεn)

≤ P(dH(L1,n, Lλ) ≥ δ) +

∞∑
m=0

P(c2
m

εn ≤ dH(L1,n, Lλ) ≤ min(c2
m+1

εn, δ))

≤ 1

2
δ + c1

∞∑
m=0

exp(−c2η2
0c

2m+1

) ≤ δ,

if c is large enough.
In case (2.7) and (2.8) hold, the proof for L1,n follows the same lines, but

now the arguments in the proof of Theorem 1 in Einmahl and Khmaladze (2011)
should be used, in particular the application of Lemma 19.34 in van der Vaart
(1998).

Next we consider L4,n. We have

L4,n ∈ arg max
A∈A,µ(A)=vλ

{Pn(A)− P (A)− Pn(Lλ) + P (Lλ) + eλ(A)− eλ} .

This expression is very similar to the one for L1,n. The only difference is that A
there is replaced by its subset {A ∈ A : µ(A) = vλ}. Since the arguments above
- dealing with suprema and infima - hold for the entire class A, they remain to
hold for this subset.

Finally consider L2,n. We have, almost surely,

L2,n ∈ arg min
A∈A,nPn(A)=dnpλe

{µ(A)}

= arg max
A∈A,nPn(A)=dnpλe

{Pn(A)− λµ(A)}

= arg max
A∈A,nPn(A)=dnpλe

{Pn(A)− P (A)− Pn(Lλ) + P (Lλ) + eλ(A)− eλ} .

This expression looks similar to the ones for L1,n and L4,n, but the difference is
that the supremum of the expression of which the latter argmax is taken is not
guaranteed to be non-negative since the choice A = Lλ, as before, is not allowed.
However, it follows from (3.6) that, almost surely, there exists an Aŝ ∈ Al such
that nPn(Aŝ) = dnpλe. Then, using P (Aŝ) = pλ + OP(1/

√
n), we obtain from

(3.7) and the behavior of the oscillation modulus of the univariate, uniform

imsart-generic ver. 2014/10/16 file: output.tex date: June 2, 2020



P. Berthet and J.H.J. Einmahl/Weak convergence for estimated level sets 17

empirical process, that with arbitrarily high probability for large n that the just
mentioned supremum is larger than −n−17/24 (instead of being non-negative).
Since n−17/24/ε2

n → 0 as n → ∞, the proof for L1,n can be easily adapted,
replacing A by its (random) subset {A ∈ A : nPn(A) = dnpλe}.

4.3. Processes on the cylinder space

Here we describe more precisely the local objects, magnified into the cylinder
space, namely the empirical process, the drift induced by the local variation of
the density, and then the limiting drifted Gaussian process.

Since for all c > 0, (Bc, d) is totally bounded, we have

sup
B∈Bc

inf
Bn∈Bc,n

d(Bn, B)→ 0.

Combining this with (2.6), we have in terms of Hausdorff distance between
classes of sets that for any c > 0, as n→∞,

γc,n := max

(
sup

Bn∈Bc,n
inf
B∈Bc

d(Bn, B), sup
B∈Bc

inf
Bn∈Bc,n

d(Bn, B)

)
→ 0.

Define
Λn(C) = n2/3(Pn(C)− P (C)), C ∈ B(Rd),

and
wn(B) = Λn(τ−1

εn (B+))− Λn(τ−1
εn (B−)), B ∈ Fc .

Lemma 4.7. Assume that H1, and H2 hold. Let c > 0. Then on some probability
space there exists a triangular array Xn,1, . . . , Xn,n, n ∈ N, of rowwise indepen-
dent random vectors with law P on Rd together with a bounded, d-continuous
version of W on Bc such that, as n→∞,

sup
Bn∈Bc,n,B∈Bc,d(Bn,B)≤γc,n

|wn(Bn)− wn(B)| P→ 0, (4.15)

and, with probability 1,

sup
B∈Bc

|wn(B)−
√
λW (B)| → 0. (4.16)

Proof. Note that the assumptions of Theorems 1 and 2 in Einmahl and Khmal-
adze (2011) are satisfied. Hence, using these theorems, including a Skorohod
construction as on page 554 therein, yields (4.15) and (4.16). Note that the gen-
eralization from c = 1 therein to arbitrary c > 0 here, is straightforward. Also
the fact that here wn is a difference of two terms can be easily dealt with.

For a compact subset B̌ of B, define

Z(B̌) = arg max
B∈B̌

{√
λW (B)−D(B)

}
.
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Recall that
√
λW −D is d-continuous on Bc, whereas V ar(W (B)−W (B′)) = 0

implies B′ = B by our equivalence class convention. Now note that both Z(Bc)
and Z(B∗c ) exist and, by Lemma 2.6 in Kim and Pollard (1990), are almost
surely unique on the compact set Bc, respectively B∗c . Proposition 3.1 and a
similar statement for Z(B∗) are consequences of (the above and) the following
lemma.

Lemma 4.8. Assume that H1, H2, and (3.2) hold. For B̃ = B,B∗ we have

P

(⋃
c>0

{Z(B̃ ∩ Bc) = Z(B̃ ∩ Bc̃), for all c̃ > c}

)
= 1.

Hence Z(B̃) almost surely exists and is unique; it is the “set limit” of
Z(B̃ ∩ Bm):

Z(B̃) =

∞⋂
k=1

∞⋃
m=k

Z(B̃ ∩ Bm).

Proof. We have, using (2.16),

P

(
sup

B∈B̃:c(B)≥c

√
λW (B)−D(B) ≥ 0

)

≤
∞∑
m=0

P

(
sup

B∈B̃:c2m≤c(B)<c2m+1

√
λW (B)−D(B) ≥ 0

)

≤
∞∑
m=0

P

(
sup

B∈B̃:c2m≤c(B)<c2m+1

√
λW (B)− η0c

2(B) ≥ 0

)

≤
∞∑
m=0

P

(
sup

B∈B̃:c2m≤c(B)<c2m+1

√
λW (B) ≥ η0c

2m+1

)
,

which is by (3.2), bounded from above by

√
η1λ

η0

∞∑
m=0

c−2m ,

which is, for arbitrary η > 0, bounded by η, for c large enough.
Hence, since Lλ ∈ A, for c large enough,

P(Z(B̃ ∩ Bc) = Z(B̃ ∩ Bc̃), for all c̃ > c) ≥ 1− η.

If this event is denoted by Ωc, then P(∪c>0Ωc) = 1.
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4.4. Proof of Theorem 3.1

We work in the setting of Lemma 4.7. For c > 0 we have

arg max
A∈Acεn

{Pn(A)− λµ(A)}

= arg max
A∈Acεn

{
P (A)− λµ(A)− P (Lλ) + λµ(Lλ) + n−2/3(Λn(A)− Λn(Lλ))

}
= arg max

A∈Acεn

{
n2/3(eλ(A)− eλ) + Λn(A)− Λn(Lλ)

}
= ϕεn

{
arg max
B∈Bc,n

{wn(B)−Dn(B)}

}
.

Consider the events

ΞΛ
c,n = {L1,n 4 Lλ ⊂ Scεnλ } , ΞWc = {Z(Bc) = Z(B)} ,

where Z(Bc) and Z(B) are defined in terms of a Wiener process W satisfying
(4.16) in Lemma 4.7. Clearly, Lemmas 4.5, 4.6 and 4.8 imply that for any δ > 0
there exists a c = c(δ) > 0 such that we have P

(
ΞΛ
c,n ∩ ΞWc

)
> 1 − δ for all n

large enough. Now define

mc,n = sup
B∈Bc,n

{wn(B)−Dn(B)} , mc = max
B∈Bc

{√
λW (B)−D(B)

}
and observe that Lemmas 4.7, 4.3 and 4.4 imply

mc,n
P→ mc, as n→∞. (4.17)

We have for any ε > 0 fixed, every argmax L1,n, and all large enough n

P
(
M(τεn(L1,n 4 Lλ)4 Z(B)) > δ2

)
≤ P

({
M(τεn(L1,n 4 Lλ)4 Z(B)) > δ2

}
∩ ΞΛ

c,n ∩ ΞWc
)

+ δ

≤ P

(
d

(
arg max
B∈Bc,n

{wn(B)−Dn(B)} , Z(Bc)

)
> δ

)
+ δ

≤ P

(
sup

B∈Bc,n:d(B,Z(Bc))>δ
{wn(B)−Dn(B)} ≥ mc,n

)
+ δ

≤ P

(
sup

B∈Bc,n:d(B,Z(Bc))>δ
{wn(B)−D(B)} ≥ mc,n − ε

)
+ δ

which is by (4.17)

≤ P

(
sup

B∈Bc,n:d(B,Z(Bc))>δ
{wn(B)−D(B)} ≥ mc − 2ε

)
+ 2δ
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which by (4.15) and Lemma 4.4 is in turn

≤ P

(
sup

B∈Bc:d(B,Z(Bc))≥δ/2
{wn(B)−D(B)} ≥ mc − 3ε

)
+ 3δ

and this is by (4.16) and then by Lemma 2.6 in Kim and Pollard (1990)

≤ P
(

max
B∈Bc:d(B,Z(Bc))≥δ/2

{√
λW (B)−D(B)

}
≥ mc − 4ε

)
+ 4δ ≤ 5δ,

provided that we choose a small enough ε with respect to δ.
Note that Z(B) depends on δ through c = c(δ). We can avoid this, but make it

instead depend on n as in the statement of the theorem, by a diagonal selection
argument.

The second and third statement in Theorem 3.1 follow directly from the
just established first one and the Steiner formula (4.1)-(4.2), since M can be
approximated by ε−1

n µ after transforming back by τ−1
εn (see (4.10)), and then λµ

can be approximated by P near Sλ. �

4.5. Proof of Theorem 3.2

The proof of Theorem 3.2 with L3,n replaced by L4,n from (4.14) is similar to
that of Theorem 3.1, only A has to be replaced by Av and B by B∗.

Now take an argmax L3,n with µ(L3,n) < vλ. Then, using (2.11), for some
L4,n we have L3,n ⊂ L4,n. Now, since n1/2(Pn − P ) = OP(1) uniformly on A,
we have with probability tending to 1,

P (L3,n) ≥ Pn(L3,n)− 1

2
n−2/5 ≥ Pn(Lλ)− 1

2
n−2/5 ≥ pλ − n−2/5.

Since P (L3,n)− λµ(L3,n) ≤ pλ − λvλ we get µ(L3,n) ≥ vλ − 1
λn
−2/5 thus

µ(L3,n4L4,n) = µ(L4,n)− µ(L3,n) ≤ 1

λ
n−2/5 = o(εn).

This also implies that M(τεn(L3,n4L4,n)) ≤ εn(µ(L4,n)−µ(L3,n))
P→ 0 and the

statements of Theorem 3.2 for j = 3 follow from those for j = 4.
Finally we consider L2,n. We follow again the line of reasoning and the no-

tation in the proof of Theorem 3.1. Define

B̂c,n = {τεn(A4 Lλ) : A ∈ Acεn , Pn(A) = dnpλe/n}.

imsart-generic ver. 2014/10/16 file: output.tex date: June 2, 2020



P. Berthet and J.H.J. Einmahl/Weak convergence for estimated level sets 21

We have for c > 0

arg min
A∈Acεn ,nPn(A)=dnpλe

{µ(A)}

= arg max
A∈Acεn ,nPn(A)=dnpλe

{Pn(A)− λµ(A)}

= arg max
A∈Acεn ,nPn(A)=dnpλe

{
P (A)− λµ(A)− P (Lλ) + λµ(Lλ) + n−2/3(Λn(A)− Λn(Lλ))

}
= arg max
A∈Acεn ,nPn(A)=dnpλe

{
n2/3(eλ(A)− eλ) + Λn(A)− Λn(Lλ)

}
= ϕεn

(
arg max
B∈B̂c,n

{wn(B)−Dn(B)}

)
.

Consider the events

ΞΛ,∗
c,n = {L2,n4Lλ ⊂ Scεnλ } , ΞW,∗c = {Z(B∗c ) = Z(B∗)} .

Again, Lemmas 4.6 and 4.8 imply that for any δ > 0 there exists a c = c(δ) > 0
such that we have P

(
ΞΛ,∗
c,n ∩ ΞW,∗c

)
> 1− δ for all n large enough. Now define

m̂c,n = sup
B∈B̂c,n

{wn(B)−Dn(B)} , mp
c,n = sup

B∈Bpc,n
{wn(B)−D(B)} ,

m∗c = max
B∈B∗c

{√
λW (B)−D(B)

}
and note that by (3.8), the asymptotic equicontinuity of wn (as in the proof
of Lemma 4.7 given in Einmahl and Khmaladze (2011)), and Lemma 4.3, for
ε > 0,

P(mp
c,n ≤ m̂c,n + ε)→ 0, as n→∞, (4.18)

and that by (3.5), (4.12) and Lemma 4.7 (possibly with a larger γc,n → 0),

mp
c,n

P→ m∗c , as n→∞. (4.19)

Recall the definition of Bp,+c,n in (4.4). We have for ε > 0, every argmin L2,n,
and all large enough n

P
(
M(τεn(L2,n 4 Lλ)4 Z(B∗)) > δ2

)
≤ P

({
M(τεn(L2,n 4 Lλ)4 Z(B∗)) > δ2

}
∩ ΞΛ,∗

c,n ∩ ΞW,∗c

)
+ δ

≤ P

(
d

(
arg max
B∈B̂c,n

{wn(B)−Dn(B)} , Z(B∗c )

)
> δ

)
+ δ
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≤ P

(
sup

B∈B̂c,n:d(B,Z(B∗c )>δ

{wn(B)−Dn(B)} ≥ m̂c,n

)
+ δ

≤ P

(
sup

B∈B̂c,n:d(B,Z(B∗c ))>δ

{wn(B)−D(B)} ≥ m̂c,n − ε

)
+ δ

≤ P

(
sup

B∈Bp,+c,n :d(B,Z(B∗c ))>δ

{wn(B)−D(B)} ≥ m̂c,n − ε

)
+ 2δ

which is by (4.18)

≤ P

(
sup

B∈Bp,+c,n :d(B,Z(B∗c ))>δ

{wn(B)−D(B)} ≥ mp
c,n − 2ε

)
+ 3δ

which is by (4.19)

≤ P

(
sup

B∈Bp,+c,n :d(B,Z(B∗c ))>δ

{wn(B)−D(B)} ≥ m∗c − 3ε

)
+ 4δ

which by (4.15), Lemma 4.4, and (4.13), is in turn

≤ P

(
sup

B∈B∗c :d(B,Z(B∗c ))>δ/2

{wn(B)−D(B)} ≥ m∗c − 4ε

)
+ 5δ

and this is by (4.16) and then by again Lemma 2.6 in Kim and Pollard (1990)

≤ P
(

max
B∈B∗c :d(B,Z(B∗c ))>δ/2

{√
λW (B)−D(B)

}
≥ m∗c − 5ε

)
+ 6δ ≤ 7δ,

provided ε is chosen small enough. The last two paragraphs of the proof of
Theorem 3.1 now yield the stated results. �
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