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1. High P-T XRD measurements 
In-situ XRD measurements were conducted at the beamline BL10XU, SPring-8 synchrotron 
facility [9] (Table I). High P-T conditions were generated using LH-DAC techniques. We employed 
a symmetric DAC with flat 300 μm (run #1–9) or beveled 200 μm (run #10–11) culet diamond 
anvils, depending on a target pressure. Starting materials were pure iron foils (Nilaco corp., 
99.99%) with an initial thickness of 20 μm (run #1–9) or 15 μm (run #10–11). The sample was 
loaded into a hole at the center of a pre-indented rhenium gasket, together with thermal insulation 
layers of single-crystal Al2O3 sapphire. The single-crystal sapphire did not produce Debye rings in 
an XRD pattern, making data analyses easier. 

 To generate high T to melt iron and keep its molten state during XRD measurements, a single-
crystal sapphire sleeve or Al2O3 powder was placed between the sample and the side wall of the 
gasket hole for better thermal insulation. We used KCl powder for a pressure medium instead of 
Al2O3 in runs #2 and #10 and obtained results consistent with those in the other runs. Both Al2O3 
and KCl were found to be a good leak-proof container for liquid iron, which kept the molten sample 
at heating spot during collection of a diffuse scattering signal in XRD data. No chemical reaction 
was observed between these insulators and the iron sample from the microprobe analyses of 
recovered samples.  

 The sample assembly was dried in a vacuum oven at 423 K, at least for 6 hrs prior to pressurizing. 
Subsequently it was compressed to a target pressure at room temperature and then heated by a 
couple of 100 W single-mode Yb fiber lasers (SPI Lasers Co. Ltd.) from both sides. To reduce a 
radial temperature gradient, we employed beam shapers (Newport Corp.) that convert a beam with 
a Gaussian intensity distribution to the one with a flat-top distribution. The size of the laser-heated 
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spot was 40−50 μm across, which was much larger than the size of a focused incident x-ray beam 
(approximately 6 μm × 6 μm). The input powers of the two lasers were tuned so as to obtain 
temperature on both sides within less than 100 K differences.  

 Temperature was measured by a spectro-radiometric method. Thermal radiation spectra were 
collected every 0.3–1.0 sec with exposure time of 0.1–0.3 sec. Sample temperatures reported in this 
study are the average in 6 μm region, from which XRD data were collected, over entire XRD 
collection time (typically 1–2 sec). The temporal and spatial temperature variations in the 6 μm 
region were 70 K at 3000 K/40 GPa, and 300 K at 4300 K/116 GPa. The axial temperature gradient 
in the sample that was 5–10 μm thick at high pressures is estimated to be less than 100 K based on 
the thermal conductivity of liquid iron [36]. Thus, the total temperature uncertainty is estimated to 
be less than ±10 % (~170–400 K). The sample was heated only once in each run. 

 Angle-dispersive XRD patterns were collected sequentially during heating on a digital x-ray flat 
panel detector (Perkin Elmer, XRD0822 CP23, 1024 × 1024 pixels, 0.2 mm pixel pitch) with 
exposure time of 0.2 sec without interval. A series of five to ten two-dimensional XRD images 
were combined and integrated as a function of 2θ angle in order to produce a conventional one-
dimensional diffraction pattern using the IP Analyzer program [37] (Fig. S1). The intense 
monochromatic incident x-ray beam with a wavelength of 0.04141(1)–0.04154(1) nm was focused 
on a sample by using stacked compound x-ray refractive lenses (CRLs), which enabled us to collect 
a diffuse signal from a liquid within short acquisition time.  

 Pressure at high T was determined by using the EoS for fcc iron in runs #1 and #3–8 [38] or hcp 
iron in runs #10–11 [29] from their lattice volumes observed just before complete melting (Table 
SI). Its error was derived from uncertainties in both temperature and the volume of iron. For runs 
#2 and #9, we could not determine the volume of fcc iron since only intense single-crystal-like 
diffraction spots, which exhibit blown-out highlights, were observed. Therefore, the pressures for 
these experiments were obtained from the unit-cell volume of the KCl pressure medium (Table SI) 
using its thermal EoS [39]. The advantage of the use of KCl is that uncertainty in temperature hardly 
affects the pressure calculated from its EoS because the thermal expansivity of KCl is very small 
[39]. The errors in pressure from KCl are estimated from uncertainties in its volume and the sample 
temperature.  

 After high P-T experiments, samples were recovered and polished parallel to the compression 
axis using a focused Ga ion beam (FIB) (FEI, Versa3D DualBeam). Chemical analyses were made 
for their cross sections with an energy-dispersive x-ray spectrometry (EDS) attached with a field-
emission-type scanning electron microscope (FE-SEM) in the dual beam FIB system. Al, O, K, Cl, 
C and Re was not detected in quenched iron samples, indicating no chemical contamination by 
surrounding materials. 
 

2. Density of liquid Fe from diffuse scattering signal 
We determined the ρ of liquid iron from its in-situ XRD spectra by the following procedure (Table 
I). In order to obtain an x-ray scattering signal from a liquid sample I, subtraction of the background 
spectrum Ibk from the measured spectrum for a liquid Imeas is required. In this study, we measured 
Ibk just below the melting point of iron [30] and subsequently increased the sample temperature to 
100–400 K above the melting temperature and collected Imeas. Since the intensity of incident x-ray 
beam fluctuated by approximately 2–5% during the collection of each XRD spectrum, the x-ray 
scattering signal from a liquid sample I is obtained by introducing a scale factor s as; 

 𝐼ሺ𝑄ሻ ൌ 𝐼୫ୣୟୱሺ𝑄ሻ െ 𝑠𝐼ୠ୩ሺ𝑄ሻ, ሺS1ሻ 

where Q = 4π sinθ / λ is scattering momentum. It is normalized into atomic units and converted to 
structure factor S(Q) as; 
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𝑆ሺ𝑄ሻ ൌ 𝛼୒
𝐼ሺ𝑄ሻ

𝑓୊ୣ
ଶ ሺ𝑄ሻ

, ሺS2ሻ 

in which fFe(Q) is atomic form factor for iron [40] (different from f(Q) in Eq. S3 below) and αN is 
normalization factor. The S(Q) of a monoatomic liquid is related to distribution function F(r) and 
radial distribution function g(r) by the following equations (“≡” represents definition); 

𝑓ሺ𝑄ሻ ≡ 𝑄ሼ𝑆ሺ𝑄ሻ െ 1ሽ, ሺS3ሻ 

𝐹ሺ𝑟ሻ ≡ 4𝜋𝑟ሼ𝜌ሺ𝑟ሻ െ 𝜌ሽ, ሺS4ሻ 

𝑓ሺ𝑄ሻ ൌ න 𝐹ሺ𝑟ሻ sinሺ𝑄𝑟ሻ 𝑑𝑟,
ஶ

଴
ሺS5ሻ 

𝐹ሺ𝑟ሻ ൌ
2
𝜋

න 𝑓ሺ𝑄ሻ sinሺ𝑄𝑟ሻ 𝑑𝑄
ஶ

଴
, ሺS6ሻ 

𝑔ሺ𝑟ሻ ≡  
𝜌ሺ𝑟ሻ

𝜌
ൌ 1 ൅

𝐹ሺ𝑟ሻ

4𝜋𝑟𝜌
  , ሺS7ሻ 

where ρ(r) is atomic density at a radial distance r (atoms per unit volume), and ρ is average atomic 
density. While Eq. S6 requires an integration to infinite Q, we can collect experimental data only 
in a limited range of Q. A termination of experimental data at finite Q generates artificial 
oscillations in calculated F(r) and g(r). Errors in s and αN also yield large oscillations in F(r) and 
g(r) [41]. Although an iterative procedure has been widely used to eliminate these oscillations 
arising from the termination of data and the errors in s and αN [11,13], such iterative procedure 
modifies S(Q) from an experimentally observed profile, causing a partial loss of information from 
original data. 

 In this study, we have developed a new procedure, in which observed S(Q) is extended beyond 
the experimental Q range so that the resultant F(r) and g(r) behave physically reasonable, instead 
of iterative procedures used in previous studies [11,13]. Here S(Q) observed in the experimental Q 
range is never modified. Our new method described below is similar to the procedure for 
determination of g(r) proposed by Kaplow et al. [41] but is better prescribed. We describe the 
source of artificial oscillations in F(r) and g(r) in section 2-1, how to extend the observed S(Q) and 
f(Q) in section 2-2, analytical procedures to determine ρ from experimental data in section 2-3, and 
validation of the present new analytical method in section 2-4. 

 

2-1. The source of the oscillations in F(r) and g(r). In this section, we show that oscillations in 
F(r) and g(r) caused by the termination of experimental data at finite Q can be divided into two 
components. 

  If true f(Q) (= Q{S(Q) − 1}, Eq. S3) is known for the full Q range (hereafter f∞(Q)), the 
equivalent true distribution function F∞(r) and radial distribution function g∞(r) can be calculated 
by Eqs. S6 and S7 (Fig. S3A). Since no atom exists within the distance between the nearest neighbor 
atoms (rmin);  

𝑔ሺ𝑟ሻ ൌ 0  ሺ𝑟 ൏ 𝑟୫୧୬ሻ, ሺS8ሻ 

Eq. S7 yields; 

𝐹ሺ𝑟ሻ ൌ െ4𝜋𝜌𝑟  ሺ𝑟 ൏ 𝑟୫୧୬ሻ, ሺS9ሻ 

indicating that true F(r) at the r < rmin region is a linear equation of r. Density ρ can thus be obtained 
from true F(r) at r < rmin (Eq. S9).  
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 In our experiments, however, f(Q) is truncated at a finite Qmax. Hereafter fQmax(Q) represents f(Q) 
that is terminated at Qmax as; 

𝑓ொౣ౗౮
ሺ𝑄ሻ ≡ ൜

 𝑓ஶሺ𝑄ሻ ሺ𝑄 ൑ 𝑄୫ୟ୶ሻ
 0  ሺ𝑄 ൐ 𝑄୫ୟ୶ሻ

, ሺS10ሻ 

and FQmax(r) and gQmax(r) represent calculated F(r) and g(r) from fQmax(Q) as; 

𝐹ொౣ౗౮
ሺ𝑟ሻ ≡

2
𝜋

න 𝑓ொౣ౗౮
ሺ𝑄ሻ sinሺ𝑄𝑟ሻ 𝑑𝑄

ஶ

଴
, ሺS11ሻ 

𝑔ொౣ౗౮
ሺ𝑟ሻ ≡  1 ൅

𝐹ொౣ౗౮
ሺ𝑟ሻ

4𝜋𝑟𝜌
. ሺS12ሻ 

As illustrated in Fig. S3B, the truncation of f(Q) at Qmax leads to artificial oscillations in calculated 
FQmax(r) and gQmax(r).  

 In order to evaluate the effect of such truncation, we define Δf(Q), ΔF(r), and Δg(r) (Fig. S3C) 
as; 

∆𝑓ሺ𝑄ሻ ≡ 𝑓ஶሺ𝑄ሻ െ 𝑓ொౣ౗౮
ሺ𝑄ሻ, ሺS13ሻ 

∆𝐹ሺ𝑟ሻ ≡ 𝐹ஶሺ𝑟ሻ െ 𝐹ொౣ౗౮
ሺ𝑟ሻ, ሺS14ሻ 

∆𝑔ሺ𝑟ሻ ≡ 𝑔ஶሺ𝑟ሻ െ 𝑔ொౣ౗౮
ሺ𝑟ሻ. ሺS15ሻ 

Note that Δf(Q) is the Fourier transform of ΔF(r) as; 

∆𝑓ሺ𝑄ሻ ൌ න ∆𝐹ሺ𝑟ሻ sinሺ𝑄𝑟ሻ 𝑑𝑟
ஶ

଴
, ሺS16ሻ 

∆𝐹ሺ𝑟ሻ ൌ
2
𝜋

න ∆𝑓ሺ𝑄ሻ sinሺ𝑄𝑟ሻ
ஶ

଴
𝑑𝑄, ሺS17ሻ 

and Δg(r) is; 

∆𝑔ሺ𝑟ሻ ൌ
∆𝐹ሺ𝑟ሻ
4𝜋𝑟𝜌

.        ሺS18ሻ 

Next we divide ΔF(r) and Δg(r) into those at r < rmin and r  rmin regions (Fig. S4) as; 

∆𝐹ଵሺ𝑟ሻ ≡ ൜
 ∆𝐹ሺ𝑟ሻ ሺ𝑟 ൏ 𝑟୫୧୬ሻ
 0  ሺ𝑟 ൒ 𝑟୫୧୬ሻ

, ሺS19ሻ 

∆𝐹ଶሺ𝑟ሻ ≡ ൜
 0 ሺ𝑟 ൏ 𝑟୫୧୬ሻ
 ∆𝐹ሺ𝑟ሻ ሺ𝑟 ൒ 𝑟୫୧୬ሻ

, ሺS20ሻ 

∆𝑔ଵሺ𝑟ሻ ≡ ൜
 ∆𝑔ሺ𝑟ሻ ሺ𝑟 ൏ 𝑟୫୧୬ሻ
 0  ሺ𝑟 ൒ 𝑟୫୧୬ሻ

, ሺS21ሻ 

∆𝑔ଶሺ𝑟ሻ ≡ ൜
 0 ሺ𝑟 ൏ 𝑟୫୧୬ሻ
 ∆𝑔ሺ𝑟ሻ ሺ𝑟 ൒ 𝑟୫୧୬ሻ

. ሺS22ሻ 

The Fourier transforms of ΔF1(r) and ΔF2(r) are Δf1(Q) and Δf2(Q), respectively (Fig. S4); 

∆𝑓ଵሺ𝑄ሻ ≡ න ∆𝐹ଵሺ𝑟ሻ sinሺ𝑄𝑟ሻ 𝑑𝑟
ஶ

଴
, ሺS23ሻ 

∆𝑓ଶሺ𝑄ሻ ≡ න ∆𝐹ଶሺ𝑟ሻ sinሺ𝑄𝑟ሻ 𝑑𝑟
ஶ

଴
. ሺS24ሻ 
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Note that 

 ∆𝑓ଵሺ𝑄ሻ ൅ ∆𝑓ଶሺ𝑄ሻ ൌ ∆𝑓ሺ𝑄ሻ. ሺS25ሻ 

Since Δf(Q) = 0 at Q ≤ Qmax (Eq. S10, Fig. S3C), Eq. S25 indicates (Fig. S4); 

∆𝑓ଵሺ𝑄ሻ ൅ ∆𝑓ଶሺ𝑄ሻ ൌ 0     ሺ𝑄 ൑ 𝑄୫ୟ୶ሻ. ሺS26ሻ 

We further divide Δf1(Q) and Δf2 (Q) into those at Q > Qmax and Q ≤ Qmax regions (Fig. S5) as; 

∆𝑓ଵ୅ሺ𝑄ሻ ≡ ൜
 0 ሺ𝑄 ൑ 𝑄୫ୟ୶ሻ
 ∆𝑓ଵሺ𝑄ሻ ሺ𝑄 ൐ 𝑄୫ୟ୶ሻ

, ሺS27ሻ 

∆𝑓ଵ୆ሺ𝑄ሻ ≡ ൜
 ∆𝑓ଵሺ𝑄ሻ ሺ𝑄 ൑ 𝑄୫ୟ୶ሻ
 0  ሺ𝑄 ൐ 𝑄୫ୟ୶ሻ

, ሺS28ሻ 

∆𝑓ଶ୅ሺ𝑄ሻ ≡ ൜
 0 ሺ𝑄 ൑ 𝑄୫ୟ୶ሻ
 ∆𝑓ଶሺ𝑄ሻ ሺ𝑄 ൐ 𝑄୫ୟ୶ሻ

, ሺS29ሻ 

∆𝑓ଶ୆ሺ𝑄ሻ ≡ ൜
 ∆𝑓ଶሺ𝑄ሻ ሺ𝑄 ൑ 𝑄୫ୟ୶ሻ
 0  ሺ𝑄 ൐ 𝑄୫ୟ୶ሻ

. ሺS30ሻ 

Since Δf1B(Q) + Δf2B(Q) = 0 from Eqs. S26, S28, and S30, we find Δf(Q) = Δf1A(Q) + Δf2A(Q), and 
thus f∞(Q) can be expressed as; 

𝑓ஶሺ𝑄ሻ ൌ 𝑓ொౣ౗౮
ሺ𝑄ሻ ൅ ∆𝑓ଵ୅ሺ𝑄ሻ ൅ ∆𝑓ଶ୅ሺ𝑄ሻ. ሺS31ሻ 

When we define ΔF1A(r), ΔF2A(r), Δg1A(r), and Δg2A(r) as;  

∆𝐹ଵ୅ሺ𝑟ሻ ≡
2
𝜋

න ∆𝑓ଵ୅ሺ𝑄ሻ sinሺ𝑄𝑟ሻ 𝑑𝑄
ஶ

଴
, ሺS32ሻ 

∆𝐹ଶ୅ሺ𝑟ሻ ≡
2
𝜋

න ∆𝑓ଶ୅ሺ𝑄ሻ sinሺ𝑄𝑟ሻ 𝑑𝑄
ஶ

଴
, ሺS33ሻ 

∆𝑔ଵ୅ሺ𝑟ሻ ≡
∆𝐹ଵ୅ሺ𝑟ሻ

4𝜋𝑟𝜌
, ሺS34ሻ 

∆𝑔ଶ୅ሺ𝑟ሻ ≡
∆𝐹ଶ୅ሺ𝑟ሻ

4𝜋𝑟𝜌
, ሺS35ሻ 

F∞(r) and g∞(r) can also be expressed by three components (Fig. S6) as;  

𝐹ஶሺ𝑟ሻ ൌ 𝐹ொౣ౗౮
ሺ𝑟ሻ ൅ ∆𝐹ଵ୅ሺ𝑟ሻ ൅ ∆𝐹ଶ୅ሺ𝑟ሻ, ሺS36ሻ 

𝑔ஶሺ𝑟ሻ ൌ 𝑔ொౣ౗౮
ሺ𝑟ሻ ൅ ∆𝑔ଵ୅ሺ𝑟ሻ ൅ ∆𝑔ଶ୅ሺ𝑟ሻ. ሺS37ሻ 

 Note that ΔF1A(r) is a Fourier transform of Δf1A(Q), which is Δf1(Q) at Q > Qmax. The inverse 
Fourier transform of Δf1(Q) is ΔF1(r), which corresponds to the difference between true F∞(r) = 
െ4𝜋𝑟𝜌 and FQmax(r) at r < rmin. Δg1A(r) is obtained from ΔF1A(r) (Eq. S34). Thus, ΔF1A(r) can be 
calculated from observed fQmax(Q). On the other hand, we cannot estimate ΔF2A(r) and Δg2A(r) 
because we do not have any constraints on ΔF(r) and Δg(r) at r  rmin (= ΔF2(r) and Δg2(r)), but 
ΔF2A(r) and Δg2A(r) contribute little to ΔF(r) and Δg(r) as shown later (Fig. S6). In summary, the 
oscillations in F(r) and g(r) can be described by the two components, ΔF1A(r) and ΔF2A(r). ΔF1A(r) 
is a main source of the oscillations and can be calculated from experimental data. Using these 
relations, we consider the extension of f(Q) in order to reduce artificial oscillations in calculated 
F(r) and g(r) in the following section. 
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2-2. Extension of f(Q) beyond experimental limit Qmax. If true ρ and rmin are given, Δf1A(Q) (Eq. 
S27) can be calculated using the physical requirement F∞(r) = െ4𝜋𝜌𝑟 (or g∞(r) = 0) at r < rmin 
(while we cannot estimate Δf2A(Q) as mentioned in Sec. 2-1). Now, we consider the extension of 
f(Q) (Fig. S7) beyond experimental limit Qmax using Δf1A(Q) as;  

𝑓 ୶୲ୣ୬ୢሺ𝑄ሻ ≡ 𝑓ொౣ౗౮
ሺ𝑄ሻ ൅ ∆𝑓ଵ୅ሺ𝑄ሻ. ሺS38ሻ 

From Eqs. S31, S32, S34, S36 and S37, we find that; 

𝐹 ୶୲ୣ୬ୢሺ𝑟ሻ ≡ 𝐹ொౣ౗౮
ሺ𝑟ሻ ൅ ∆𝐹ଵ୅ሺ𝑟ሻ

ൌ 𝐹ஶሺ𝑟ሻ െ ∆𝐹ଶ୅ሺ𝑟ሻ, ሺS39ሻ
 

𝑔ୣ୶୲ୣ୬ୢሺ𝑟ሻ ≡ 𝑔ொౣ౗౮
ሺ𝑟ሻ ൅ ∆𝑔ଵ୅ሺ𝑟ሻ

ൌ 𝑔ஶሺ𝑟ሻ െ ∆𝑔ଶ୅ሺ𝑟ሻ, ሺS40ሻ
 

in which Fextend(r) and gextend(r) represent calculated F(r) and g(r) from fextend(Q) (Fig. S7B and S7C). 
Eqs. S39 and S40 indicate that Fextend(r) and gextend(r) still include artificial oscillations of −ΔF2A(r) 
and −Δg2A(r), respectively. However, the contribution of ΔF1A(r) to ΔF(r) is much more than that 
of ΔF2A(r) at r < rmin (Figs. S6A and S6B). Therefore, the artificial oscillation in Fextend(r) (or 
gextend(r)) is reduced largely when compared to that in FQmax(r) (Fig. S7B) (or gQmax(r), Fig. S7C). 
 

2-3. Analyses of experimental data. Next, let’s look at experimental data obtained in this study. 
An experimental f(Q), fobs(Q), is obtained from raw data using background scale factor s and 
normalization factor αN (Eqs. S1 and S2). When both s and αN are correct, fobs(Q) truncated at finite 
Qmax is equal to fQmax(Q) (= true f∞(Q) at Q ≤ Qmax). FQmax(r) and gQmax(r) are calculated from 
observed fobs(Q) (= fQmax(Q)) using Eqs. S11 and S12. If true ρ and rmin are known, true F∞(r) at r < 
rmin should be െ4𝜋𝜌𝑟 (Fig. S3A) and thus ΔF1(r) (Eq. S19) is; 

∆𝐹ଵሺ𝑟ሻ ൌ ൜
 െ4𝜋𝜌𝑟 െ 𝐹ொౣ౗౮

ሺ𝑟ሻ ሺ𝑟 ൏ 𝑟୫୧୬ሻ
 0  ሺ𝑟 ൒ 𝑟୫୧୬ሻ

. ሺS41ሻ 

Using Eqs. S11, S23, S27, S38, and S41, we can extend the observed S(Q) (and f(Q)) beyond the 
experimental Q range as described in Eq. 1 in the main text. 

  In practice, however, ρ is not known. So we first employ an input ρ which generally includes 
errors Δρ as ρinput = ρtrue + Δρ. For ρinput, the calculated ΔF1(r) is;  

∆𝐹1ሺ𝑟ሻ ൌ ቊ
 െ4𝜋൫𝜌true ൅ ∆𝜌൯𝑟 െ 𝐹𝑄max

ሺ𝑟ሻ ሺ𝑟 ൏ 𝑟minሻ
 0  ሺ𝑟 ൒ 𝑟minሻ

. ሺS42ሻ 

When fobs(Q) (= fQmax(Q)) is extended to fextend(Q) using Δf1A(Q) that is calculated from ΔF1(r), 
Fextend(r) obtained from fextend(Q) includes additional terms arising from െ4𝜋∆𝜌𝑟 in ΔF1(r), as given 
by Eq. 2 in the main text, compared to those calculated for true ρ. Thus, the input ρ is correct (in 
other word, Δρ = 0), when the difference between the calculated Fextend(r) matches the expected F(r) 
= െ4𝜋𝜌𝑟 (or the calculated gextend(r) = 0) at r < rmin. The density of liquid, ρ, is obtained in this 
manner. Similarly, the true rmin value, that defines the range where true F∞(r) = െ4𝜋𝜌𝑟, is also 
unknown. When assumed rmin is smaller than the true rmin, fextend(Q) is less complemented, resulting 
in larger oscillations in Fextend(r) and gextend(r). A large rmin also gives inappropriate fextend(Q) leading 
to larger oscillations. We therefore need to search for rmin for such oscillations to be the smallest.  

  Furthermore, both s and αN used to calculate fobs(Q) (Eqs. S1 and S2) are also not known. When 
these values are not correct, fobs(Q) is not equal to fQmax(Q), and Δf(Q) = true f∞(Q) − fobs(Q) is not 
zero even at Q ≤ Qmax, which causes further additional terms and thus oscillations in Fextend(r) and 
gextend(r) (Fig. S8). Therefore, we search also for s and αN for such oscillations to be the smallest. 
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To summarize, when true s, αN, ρ and rmin are found, the calculated gextend(r) is close to zero at r < 
rmin, which is physically expected (Fig. 1(b)). 

  In this study, we have sought for the best fextend(Q), as well as s, αN, ρ, and rmin, which makes 
gextend(r) ≅ 0 at r < rmin, minimizing a figure of merit χ2 that is given by: 

𝜒ଶሺ𝑠, 𝛼୒, 𝜌, 𝑟୫୧୬ሻ ≡ න ሼ𝑔ୣ୶୲ୣ୬ୢሺ𝑟ሻሽଶ𝑑𝑟
௥ౣ౟౤

଴
, ሺS43ሻ 

similar in a previous study [11]. The difference between the present method and the one in previous 
study [11] is that we calculate gextend(r) from extended Sextend(Q), in which S(Q) for Q ≤ Qmax is not 
modified from experimental data, while the earlier study [11] calculated g(r) from S(Q) that was 
modified by iterative procedure, potentially losing information from raw data. 

  In practice, the magnitude and shape of the oscillation in Fextend(r) and gextend(r) are also affected 
by Qmax in Eq. 1 [16,17]. This is because residual oscillations in Fextend(r) and gextend(r) are equal to 
−ΔF2A(r) and −Δg2A(r), respectively. Such −ΔF2A(r) and −Δg2A(r) vary with Qmax since, for example, 
Qmax defines fQmax(Q) from which FQmax(r) and ΔF(r) are obtained. Therefore, we look for the 
minimum χ2 with changing Qmax in Eq. 1 from the experimental limit to ~30 nm-1 (corresponding 
to the end of the first dominant peak in S(Q) at 30−35 nm-1). The calculation shows that there is a 
unique value of Qmax which minimizes χ2 for each experimental data. 

  Fig. S9 shows contour plots for χ2 in the αN–ρ and s–ρ space for run #1. In Fig. S9A, each χ2 is 
the minimum value for a given set of (αN, 𝜌) values, which is found by changing s, Qmax, and rmin. 
This is illustrated in a different way in Fig. S9C; each panel corresponds to a specific pair of (αN, 
ρ) and shows χ2 as a function of s with simultaneously changing Qmax and rmin. Similarly in Fig. 
S9B, the minimum χ2 was searched for a specific set of (s, ρ) values by varying αN, Qmax, and rmin. 
We found a unique set of parameters that minimizes χ2; s = 1.0052, Qmax = 72.0, rmin = 0.194, αN = 
4.522, and ρ = 85.26 atoms/nm3 (7.91 g/cm3), giving us the density of liquid iron at 22 GPa and 
2600 K. The structure factor S(Q) for run #1 with these parameters and the corresponding gextend(r) 
are shown in Fig. 1. gextended(r) ≅ 0 at r < rmin is physically reasonable. The uncertainty in ρ is 
estimated from the difference between calculated Fextend(r) and expected F(r) = െ4𝜋𝜌𝑟 . The 
calculated standard error in ρ from Fextend(r) is 0.73 atoms/nm3 (0.86 %) (Table I). The errors are 
less than ~1.5% for all runs.  

  While we neglected the high-frequency noises in the observed spectra (Fig. S1), it hardly affects 
density determinations, since the effect of the high-frequency component in S(Q) on calculated g(r) 
at r < rmin is limited.  
 

2-4. Validation of the present new analytical method. We have verified our new method by 
analyzing 1) the XRD data previously collected for a Ce-based metallic glass (Ce70Al10Ni10Cu10) 
and 2) a synthetic XRD pattern. 

1) We employed the XRD data for a metallic glass Ce70Al10Ni10Cu10 collected near ambient 
condition (<0.5 GPa and 300 K) (Fig. S10A) [42]. Since the background signal of this data was 
obtained by measuring a DAC containing only He pressure medium without sample, we need to 
subtract incoherent (Compton) scattering from the measured spectrum. Therefore, Eq. S1 is 
rewritten as;  

 𝐼ሺ𝑄ሻ ൌ 𝐼୫ୣୟୱሺ𝑄ሻ െ
∑ 𝐼୧୬ୡ୭୦ሺ𝑄ሻ

𝛼୒
െ 𝑠𝐼ୠ୩ሺ𝑄ሻ, ሺS44ሻ 

where ∑ 𝐼௜௡௖௢௛ሺ𝑄ሻ is the sum of the incoherent scattering signals [40] from a sample. In addition, 
instead of Eq. S2, the structure factor S(Q) for polyatomic compounds, such as the Ce-based 
metallic glass, is written as;  
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𝑆ሺ𝑄ሻ ൌ
ሼ𝛼୒𝐼ሺ𝑄ሻ െ ሺ〈𝑓ଶ〉 െ 〈𝑓〉ଶሻሽ

〈𝑓〉ଶ , ሺS45ሻ 

where 〈𝑓ଶ〉 and 〈𝑓〉ଶ are defined as; 

〈𝑓ଶ〉 ൌ ෍ 𝑋௜𝑓௜
ଶሺ𝑄ሻ

௜

, ሺS46ሻ 

〈𝑓〉ଶ ൌ ∑ ∑ 𝑋௜𝑓௜ሺ𝑄ሻ𝑋௝𝑓௝ሺ𝑄ሻ௝௜ , ሺS47ሻ
in which Xi and fi(Q), for example, are the fraction and atomic form factor [40] of atomic specie i 
in the sample (see [42] for more details). Using Eqs. S44–S47, the new analytical method described 
above was applied to the Ce-based glass data. As illustrated in Figs. S10B and S10C, the resultant 
Fextend(r) and gextend(r) were calculated from the extended structure factor Sextend(Q) with parameters 
which minimize χ2. The atomic density is found to be 36.5 ± 0.2 atoms/nm3. It is in good agreement 
with that reported in previous study (36.4 ± 2.0 atoms/nm3) [42]. More importantly, the uncertainty 
is much smaller. This value is slightly larger than that determined at ambient condition by 
Archimedean technique (35.6 atoms/nm3) [43], because the XRD data employed here was collected 
under a modest pressure between 0.2 and 0.5 GPa to keep He pressure medium in a sample chamber. 

 2) In order to show our new method is universally valid, we also analyzed a synthetic XRD 
pattern. We first made in a random manner synthetic model distribution function Fmodel(r) and radial 
distribution function gmodel(r) of a non-crystalline material with ρ = 74.4 atoms/nm3 (Fig. S11A). 
The Fmodel(r) is converted to fmodel(Q) and model structure factor Smodel (Q) (Fig. S11B). The Smodel(Q) 
is further converted to model diffuse scattering signal Imodel(Q), considering αN = 5 (Fig. S11C). 
Since measurements always include a background signal, we also prepared a model background 
signal Ibk_model(Q) (Fig. S11D). A model XRD spectrum Imeas_model(Q) was then obtained by adding 
Ibk_model(Q) to Imodel(Q) using a scale factor s = 0.9 (Fig. S11E). The observable Q range is practically 
limited to about 70–120 nm-1 in a high-pressure apparatus. Therefore, the model Imeas_model(Q) and 
Ibk_model(Q) are terminated at Qmax = 85 nm-1 (Fig. S11F) (hereafter, Imeas_Q85(Q) and Ibk_Q85(Q) 
represent Imeas_model(Q) and Ibk_model(Q) that are terminated at Q = 85 nm-1). These ρ, αN, s, and Qmax 
values do not refer to specific materials and conditions.  

We then tried to reproduce 𝜌 = 74.4 atoms/nm3 from Imeas_Q85(Q) and Ibk_Q85(Q) using our new 
method. FQmax(r) and gQmax(r) directly calculated from the Imeas_Q85(Q) and Ibk_Q85(Q) include large 
oscillations particularly at a small r region (blue profiles in Fig. S12), mainly because of the 
termination of data at Q = 85 nm-1 and uncertain parameters such as s and αN. Nevertheless, the 
present new method provided Fextend(r) and gextend(r) (red profiles in Fig. S12) from the extended 
structure factor Sextend(Q) with parameters that minimize χ2, in which the oscillations were reduced 
to a large extent at the small r region. We found ρ = 74.2 atoms/nm3 with s = 0.9014 and αN = 5.006, 
which differs from the model density only by 0.2 atoms/nm3 (0.3%). The calculated standard error 
in ρ from Fextend(r) is 0.4 atoms/nm3 (0.5%), indicating that the new method well reproduces the 
initial model F(r) at a small r region. 

In contrast to our new analytical method, previous studies have used an iterative analytical 
procedure [11] to determine densities of amorphous materials. However, the iterative procedure 
modifies measured S(Q) to reduce oscillations in F(r), causing the loss of information from raw 
measured data. As a result, the procedure sometimes works when the modification is not significant 
[12,13], but it sometimes fails [4,16]. The most serious problem of such iterative method is that one 
cannot judge whether the procedure works or not, because there is no way to quantitatively evaluate 
how much the modification of S(Q) during the iterative procedure changes a density value obtained. 
In this study, the present new analytical method has overcome this problem and successfully 
removes the oscillation in F(r) at a small r region by quantitatively extending S(Q) using Eq. 1 in 
the main text. In contrast to the iterative procedure, our new method does not modify measured 
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S(Q), not causing the loss of information from raw data. As we described here, our new analytical 
method is universally applicable for density determinations of amorphous materials. 

 

3. Inelastic x-ray scattering measurements 
Inelastic x-ray scattering (IXS) spectra were collected at the RIKEN Quantum NanoDynamics 
Beamline, BL43XU [21,44] of SPring-8 (Table I). High P-T conditions were generated by LH-
DAC techniques, similar to the XRD experiments described above. Flat 300 μm culet diamond 
anvils were used. Iron foil with 15−20 μm thickness (Nilaco corp., 99.99%) was used as a starting 
material. It was loaded into a hole in a rhenium gasket, together with 15–20 μm thick single-crystal 
Al2O3 sapphire discs that served as both thermal and chemical insulators. The sample assembly was 
dried in a vacuum oven at 423 K for at least 6 hrs and then compressed to a pressure of interest at 
room temperature. The sample was heated to a temperature comparable to or higher than the 
melting temperature of iron [30] using a couple of 200 W single-mode Yb2+-doped fiber lasers 
(YLR-200, IPG Photonics Corp.). In order to minimize the radial temperature gradient, a laser beam 
had a flat-top intensity distribution after passing through a beam shaper (GBS-NIR-H3, Newport 
Corp.). A laser heated spot size was 40–60 μm in diameter, much larger than the x-ray beam size 
of 5–12 μm (FWHM). Temperature was measured by a spectro-radiometric method, and its 
temporal and spatial variations within the area irradiated by x-rays during IXS measurements were 
less than ±10 %. During laser heating, the XRD patterns of the sample were monitored using a 2D 
flat panel detector (C9732DK, Hamamatsu Photonics K.K.) installed at the beamline. Pressure was 
determined from the lattice volume of fcc iron observed just before melting [38]. Its error was 
derived from uncertainties in both temperature and the volume of iron. 

  The sound velocity of liquid iron in a DAC was determined by high-resolution IXS spectroscopy 
[20] (Table I). A DAC was placed into a vacuum chamber to minimize the background scattering 
by air. Before and after collecting the IXS data, the molten state of an iron sample was carefully 
confirmed by the absence of its diffraction peaks (Fig. S13). We sometimes observed, depending 
on a sample volume, a diffuse scattering signal from liquid. The IXS measurements were carried 
out with ~2.8 meV energy resolution using Si (999) backscattering geometry at 17.79 keV. 
Experimental energy resolutions were obtained using the scattering from polymethyl-methacrylate 
(PMMA). The incident x-ray beam was focused to about 12 μm × 10 μm (FWHM) using compound 
focusing, or 5 μm × 5 μm using a Kirkpatrick–Baez mirror system [21]. Scattered photons were 
collected at momentum transfers (Q) between 3.0–5.7 nm-1 with a resolution of ΔQ ~ 0.4–0.6 nm-1 
(full width) that was set by slits in front of the analyzer array. A typical energy transfer range of 
±20 meV was scanned for about 30 min. 

  The IXS spectra include several components in the present scanned energy range (Fig. 3(a)); 
Stokes and anti-Stokes components of the longitudinal acoustic (LA) phonon mode from the sample 
and of the transverse acoustic (TA) mode form the diamond anvils, and a quasi-elastic contribution 
near zero energy transfer. The spectra were fitted with the damped harmonic oscillator (DHO) mode 
[45] for acoustic phonon modes and with a Lorentzian function for quasi-elastic peaks convolved 
by experimental resolution function. The DHO model function can be described as: 

𝑆DHOሺ𝑄, 𝜔ሻ ൌ ൤
1

1 െ 𝑒െℏ𝜔/𝑘B𝑇൨
𝐴Q

𝜋

4𝜔𝜔𝑄𝛾𝑄

ሺ𝜔2 െ 𝛺𝑄
2ሻ

2
൅ 4𝛾𝑄

2𝜔2
, ሺS48ሻ 

where AQ, ΓQ, ωQ, kB, and ℏ are the amplitude, width, and energy of inelastic modes, Boltzmann 
constant, and Planck constant, respectively. Temperature T is a sample temperature obtained by a 
spectroradiometric method. The peak at a finite energy transfer gives the frequency of each mode. 
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The dispersion relation of the excitation energies (E = ℏω) for the LA phonon mode as a function 
of Q was obtained at each pressure (Fig. 3(b)). 

  Compressional sound wave or P-wave velocity (VP) corresponds to the long-wavelength LA 
velocity at Q → 0 limits: 

𝑉୔ ൌ ൬
𝑑𝐸
𝑑𝑄

൰
ொ→଴

. ሺS49ሻ 

  We fitted a linear function to the data obtained at the lowest Q = 3.0 nm-1 to determine the P-
wave velocity (Table I) because positive dispersion possibly appears in liquids at the higher Q range 
[45]. The error in VP was derived from uncertainty in the energy for the longitudinal acoustic 
phonon mode at Q = 3 nm-1, which was found to be 0.4–0.6 meV (one standard deviation) based 
on the least squares fitting to raw IXS spectra. See our previous studies for further details [23,46]. 

 

4. EoS of liquid iron 
We have obtained the Mie-Grüneisen EoS for liquid iron from its P-T-ρ data and the P-T-VP data 
(Fig. 4); 

𝑃ሺ𝑥, 𝑇ሻ ൌ 𝑃
బ்
ሺ𝑥ሻ ൅ ∆𝑃୲୦ሺ𝑥, 𝑇ሻ, ሺS50ሻ 

in which total pressure P(x, T) is the sum of pressure at a reference temperature 𝑃
బ்
ሺ𝑥ሻ and thermal 

pressure ∆𝑃୲୦ሺ𝑥, 𝑇ሻ (x = ρ0 / ρ, and ρ0 is the density at zero pressure and a reference temperature 
T0). In this study, T0 is set to be 1811 K (melting point of iron at 1 bar). For the isothermal part at 
T0, we used the Vinet (Morse-Rydberg) equation; 

           𝑃
బ்
ሺ𝑥ሻ ൌ 3𝐾

బ்
𝑥ି

ଶ
ଷ ൬1 െ 𝑥

ଵ
ଷ൰ exp ൜

3
2

൫𝐾
బ்

ᇱ െ 1൯ ൬1 െ 𝑥
ଵ
ଷ൰ൠ , ሺS51ሻ 

where 𝐾
బ்
 and 𝐾′

బ்
 are isothermal bulk modulus and its pressure derivative at zero pressure and T0, 

respectively. For the thermal pressure part, the quasi-harmonic Debye model has been widely used 
[29]. However, electronic effect is not negligible in metals particularly at high temperatures of the 
Earth’s core [29,47]. A previous study [29] on the EoS of solid iron incorporated the anharmonic 
effect in addition to quasi-harmonic Debye thermal pressure, but such quasi-harmonic 
approximation is inadequate for liquids. Alternatively, since our data were collected only at 
temperatures much higher than the Debye temperature (the Duong-Petit limit), the Debye function 
approaches the constant value of 1/3, and the phonon energy can be expressed as a linear function 
of temperature. We therefore adopt a suite of EoS functions for metallic liquids recently proposed 
by Ichikawa et al. [47], assuming that internal thermal energy is simply represented by a second-
order polynomial of temperature with a volume dependent second-order coefficient as; 

𝐸୲୦ሺ𝑥, 𝑇ሻ ൌ 3𝑛𝑅ሺ𝑇 ൅ 𝑒଴𝑥௚𝑇ଶሻ , ሺS52ሻ 

where n is the number of atoms in formula unit, R is gas constant, and both e0 and g are constants. 
The first term corresponds to atomic contribution, and the second term represents electronic one. 
Using the thermal energy 𝐸୲୦ሺ𝑥, 𝑇ሻ and the Grüneisen parameter (γ), thermal pressure is expressed 
as; 

∆𝑃୲୦ሺ𝑥, 𝑇ሻ ൌ
𝛾ሺ𝑥ሻ

𝑉
∆𝐸୲୦ሺ𝑥, 𝑇ሻ ൌ

𝛾ሺ𝑥ሻ
𝑉

ሾ𝐸௧௛ሺ𝑥, 𝑇ሻ െ 𝐸௧௛ሺ𝑥, 𝑇଴ሻሿ. ሺS53ሻ 

The volume dependence of γ is considered as; 

𝛾ሺ𝑥ሻ ൌ 𝛾଴𝑥௕. ሺS54ሻ 
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Our EoS is comprised of five equations (Eqs. S50–S54), which require seven parameters (ρ0, 𝐾 బ்
, 

𝐾′
బ்
, γ0, b, e0, and g) in total. Using these equations, we can calculate the ρ and longitudinal wave 

velocity VP of liquid iron for a given P-T (or P-ρ); 

𝑉୔ ൌ ඨ
𝐾ௌ

𝜌
, ሺS55ሻ 

where 𝐾ௌ ൌ 𝐾்ሺ1 ൅ 𝛼𝛾𝑇ሻ is adiabatic bulk modulus and 𝛼 ൌ െ ቀ
ଵ

ఘ
ቁ ቀ

డఘ

డ்
ቁ

௉
 is thermal expansion 

coefficient. 

  Here we use; 1) the P–T–ρ data based on XRD data in this study up to 116 GPa, 2) the P–T–VP 
data obtained from the present IXS measurements up to 45 GPa, and 3) the P–ρ–VP–γ data from 
previous shock-wave experiments between 278 and 397 GPa (Table 2 in [8]). Based on these data, 
we have determined the seven EoS parameters so as to minimize the error-weighted sum of the 
squares of residuals between calculated and observed values. The obtained EoS parameters are as 
follows; ρ0 = 7.03 g/cm3, 𝐾

బ்
 = 82.1 GPa, 𝐾′

బ்
 =5.80, γ0 = 2.02, b = 0.63, e0 =0.68 ൈ 10-4 K-1, and 

g = −1.0 (T0 = 1811 K). Fig. 4 shows that our EoS reproduces all of these experimental data well. 

  Although Nishida et al. [5] previously reported the VP of liquid iron up to 5.8 GPa via ultrasonic 
method in a multi-anvil apparatus, we did not use their data here because of a possible structural 
change in liquid iron below 5 GPa near the δ–γ–liquid triple point [6]. Nevertheless, the present 
EoS reproduces their data (Fig. 4), indicating that the effect of such structural transformation is 
small, at least in terms of ρ and VP. Note that our EoS is also consistent with the density at ambient 
pressure. 

  The isentropic temperature profile is given by the following thermodynamic relationships;  

൬
𝜕𝑇
𝜕𝑃

൰
ௌ

ൌ
𝛼𝑉𝑇
𝐶௉

ൌ
𝛾୲୦𝑇
𝐾ௌ

, ሺS56ሻ 

in which CP represents isobaric heat capacity. Thus, an isentropic temperature profile referred to as 
geotherm is obtained by integrating Eq. S56 with the Grüneisen parameter γ for liquid iron 
determined in this study. We consider three different temperatures at the ICB; 5000 K, 5400 K 
(frequently used in the literature [3], and 5800 K, which correspond to 3710, 4000, and 4290 K, 
respectively, at the core-mantle boundary (CMB) (Fig. 4(c)). Then, density and velocity along these 
isentropic temperature profiles are calculated using the present EoS (Fig. 4(d, e) and Table SII).  

 The uncertainties in calculated density and velocity along the isentropic P–T path are evaluated 
on the basis of the Bayesian inference [48]. The results show that errors estimated from 68% and 
95% credible intervals are within approximately ±0.8–1.2% and ±1.9–2.6%, respectively, for both 
density and velocity at the core pressure range, which are small enough to discuss the outer core 
composition based on the difference of liquid iron density and velocity from seismologically-
deduced outer core density (PREM) [26]. 

 Anderson and Ahrens (1994) [8] is one of the pioneering works on the EoS of liquid iron. They 
constructed the EoS of liquid iron from shock compression data together with data at ambient 
pressure. However, the shock experiments that they used in their EoS did not measure temperature. 
Therefore, their results, in particular for the thermal terms, largely depend on theoretical studies by 
the 1990’s or earlier regarding the model of internal energy of liquid iron. Indeed, they 
overestimated the temperature by ~900 K at 278 GPa (Fig. S14). Recent theoretical studies [47,49] 
also suggested that the temperatures in Anderson and Ahrens (1994) [8] are overestimated. On the 
other hand, we measured temperatures by a spectro-radiometric method for all of our data points. 
Our EoS would serve an important reference for the property of liquid iron at high pressure. 
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FIG. S1. X-ray diffraction spectra before (blue) and on (red) melting. Red and blue lines represent 
XRD spectra from liquid and solid (face-centered cubic, fcc) iron, collected at 2600 K and 2520 
K at 21.5 GPa, respectively. The peak positions of fcc iron (red) and Al2O3 insulators (black) are 
indicated. The bottom spectrum (black) is the difference between the liquid and the solid, 
corresponding to a diffuse scattering signal from liquid iron. An intense peak at around 2-theta = 
9.5° is the diffraction peak from the single crystal Al2O3 thermal insulator. Since the peak is very 
intense and exhibits blown-out highlights, it cannot be removed by subtracting background 
signals. This was removed considering a cubic spline for data processing (dashed line). The high 
frequency noises hardly effect on the final results on the calculated g(r) in the small r region (Fig. 
1(b)). 
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FIG. S2. Comparison of observed S(Q) (dots) with fitting results assuming the hard sphere model 
(HSM), in which density is described only by two variables; the packing fraction and the hard 
sphere diameter [18] (solid lines). Although the first peaks at about 30~40 nm-1 can be well fitted 
to those of the HSM S(Q) by adjusting the HSM variables, the second peaks of the experimental 
S(Q) slightly shifts toward lower Q compared to the HSM S(Q). Similar shifts of the second peaks 
were also reported in a previous study on liquid aluminum [4]. 
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FIG. S3. f∞(Q), fQmax(Q), and Δf(Q) and their corresponding F(r) and g(r). (A) An example of true 
f∞(Q), F∞(r), and g∞(r). F∞(r) should be െ4𝜋𝜌𝑟 (red dashed line) at r ≤ rmin because g∞(r) = 0 (no 
atom exists within the distance between the nearest neighbor atoms, rmin). In order to prepare true f
∞(Q), we start with distribution function F(r) for a non-crystalline material, considering that F(r) 
is a linear function of r at r < 0.18 nm, the average inter-atomic distance is about 0.25 nm, and F(r) 
approaches 0 at r  infinity. Then, it was transformed to f∞(Q). (B) fQmax(Q) that is truncated at a 
finite Qmax (< ∞) (Eq. S10), and FQmax(r) and gQmax(r) calculated from fQmax(Q) (Eqs. S11, S12). (C) 
Δf(Q), ΔF(r), and Δg(r) (Eqs. S13–S15). Note that f∞(Q) = fQmax(Q) + Δf(Q), F∞(r) = FQmax(r) + 
ΔF(r), and g∞(r) = gQmax(r) + Δg(r). See section 2 for more details. 
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FIG. S4. Δf1(Q), Δf2(Q), and Δf(Q) and their corresponding ΔF(r) and Δg(r). (A) Δf1(Q), ΔF1(r), and 
Δg1(r). (B) Δf2(Q), ΔF2(r), and Δg2(r). (C) Δf(Q), ΔF(r), and Δg(r). Red dashed lines in (A) and (B) 
are Δf(Q), ΔF(r), and Δg(r) for comparison.  
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FIG. S5. Δf1(Q), Δf1A(Q), Δf1B(Q), Δf2(Q), Δf2A(Q), and Δf2B(Q) in Eqs. S27–S30. (A) Δf1(Q), 
Δf1A(Q), and Δf1B(Q). (B) Δf2(Q), Δf2A(Q), and Δf2B(Q).  
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FIG. S6. Δf1A(Q), Δf2A(Q), fQmax(Q), and f∞(Q) and their corresponding ΔF(r) and Δg(r). (A) Δf1A(Q), 
ΔF1A(r), and Δg1B(r). (B) Δf2A(Q), ΔF2A(r) and Δg2B(r). (C) fQmax(Q), FQmax(r) and gQmax(r). (D) f∞
(Q), F∞(r) and g∞(r). ΔF(r) (blue dashed line) and Δg(r) (green dashed line) are also shown for 
comparison in A and B. 
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FIG. S7. Comparison of extended fextend(Q) with truncated fQmax(Q) and their corresponding F(r) 
and g(r). (A) Extended fextend(Q). (B, C) Calculated Fextend(r) and gextend(r) from fextend(Q).  
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FIG. S8. Effect of errors in αN and s on F(r) and g(r). (A) Calculated fQmax(Q) from 
appropriate/incorrect (black/red) αN and s, and corresponding FQmax(r) and gQmax(r). (B) Extended 
fextend(Q) and corresponding Fextend(r) and gextend(r). If αN and s used to obtain fQmax(Q) include errors 
(red lines), any extended f(Q) at Q > Qmax does not reduce oscillations in F(r) and g(r) at r ≤ rmin.  
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FIG. S9. Contour plots of the figure of merit χ2 (Eq. S43) for run #1. (A) Normalization factor 𝛼୒–
atomic density ρ plane and (B) scale factor s–atomic density ρ plane. The unique minimum at ρ = 
85.26 atoms/nm3 gives us the density for the studied liquid. χ2 is normalized to 1 at the minimum. 
Color represents the minimum χ2 for each pair of ρ and 𝛼୒ (or s), which are obtained by searching 
the best parameter set of Qmax, rmin, and s (or 𝛼୒). (C) A part of the calculation result used for A 
and B. Lines represent figure of merit χ2 as a function of s for a certain set of ρ, 𝛼୒, Qmax and rmin. 
For each pair of ρ and 𝛼୒, χ2 is calculated with changing the other parameters (Qmax, rmin, and s). 
There is a unique set of parameters (s = 1.0052, αN = 4.522, rmin = 0.194 nm, and Qmax = 72.0 nm-1, 
giving ρ = 85.26 atoms/nm3 (7.91 g/cm3)), which minimize χ2 in the ranges of 1±0.5 for s, ±50% 
from the value obtained by the Krogh-Moe and Norman’s method [15] for αN, ±50% from the 
density of solid iron at the P-T condition of an experiment for ρ, and 0.15 to 0.30 nm for rmin (0.30 
nm is larger than the first peak position in g(r)). 
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FIG. S10. (A) XRD patterns collected between 0.2 and 0.5 GPa for a Ce-based metallic glass 
(Ce70Al10Ni10Cu10) in a He pressure medium (red) and for the He pressure medium only (black) in 
a DAC [42].  (B and C) Fextend(r) and gextend(r) obtained by the present new analytical method. We 
obtained the atomic density of 36.5 ± 0.2 atoms/nm3, consistent with the known density. 
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FIG. S11. (A) Synthetic model Fmodel(r) and gmodel(r) for an atomic density ρ = 74.4 atoms/nm3. (B–
E) Synthetic XRD signal Imeas_model(Q) and Ibk_model(Q) prepared from Fmodel(r) and gmodel(r). (F) 
Imeas_model(Q) and Ibk_model(Q) terminated at Q = 85 nm-1 (Imeas_Q85(Q) and Ibk_Q85(Q)). 
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FIG. S12. Black lines, Fmodel(r) and gmodel(r) (same with Fig. S11A). Blue dashed lines, FQmax(r) and 
gQmax(r). Red lines, Fextend(r) and gextend(r) obtained by the new method. 
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FIG. S13. X-ray diffraction spectra before and after IXS measurements at 16 GPa (run #12). They 
were collected at 1500 K (bottom) and 2200 K (middle) during heating, and at 300 K after heating 
(top). All peaks from the solid sample disappeared and the diffuse scattering signal from liquid 
(gray) was observed at 2200 K, indicating the sample was molten. The wavelength of an incident 
x-ray was 0.6968 Å. The peaks labeled with Al2O3 were from a thermal insulator of sapphire. 
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FIG. S14. Isothermal P–ρ relations calculated from our EoS for 4000 K (green), 5000 K (blue), 
6000 K (purple), 7000 K (yellow), and 8000 K (red). Red crosses are shock-compression data with 
temperatures (red numbers) estimated in Anderson and Ahrens [8]. 
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Table SI. Lattice parameters and volumes of fcc Fe, hcp Fe, and KCl used for pressure 
determination. 

      fcc Fe   hcp Fe     KCl   

run no. P (GPa) T (K) V (Å3) a (Å) V (Å3) a (Å) c (Å) V (Å3) a (Å) 

#1 21.5 2460 45.16 3.561   33.95 3.238

#2 31.3 2870        

#3 40.6 2840 41.97 3.475     

#4 40.7 2860 41.99 3.476     

#5 52.7 3080 40.49 3.434     

#6 52.8 3050 40.44 3.432     

#7 68.5 3310 38.84 3.387     

#8 69.8 3340 38.73 3.383     

#9 73.8 3630      27.66 3.024

#10 106.3 4220   17.82 2.337 3.766   

#11 116.1 4340   17.52 2.318 3.764   

#12 16.0 2200 46.04 3.584     

#13 32.7 2700 43.16 3.508     

#14 44.9 2700 41.08 3.450     
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Table SII. Isothermal P–ρ and P–VP relations of liquid iron.
   ρ (g/cm3)   VP (km/s) 

P (GPa)  2000 K 3000 K 4000 K 5000 K  2000 K 3000 K 4000 K 5000 K

0  6.90    3.93   

5  7.30    4.30 4.16   

10  7.63 7.03   4.59 4.50 4.44 

15  7.91 7.39   4.85 4.78 4.75 

20  8.15 7.69 7.08 5.07 5.02 5.00 5.06 

25  8.37 7.95 7.41 5.27 5.23 5.23 5.28 

30  8.57 8.18 7.69 7.06 5.45 5.42 5.43 5.48 

35  8.75 8.39 7.94 7.37 5.62 5.60 5.61 5.66 

40  8.93 8.58 8.16 7.64 5.78 5.76 5.78 5.83 

45  9.09 8.76 8.36 7.88 5.92 5.91 5.93 5.99 

50  9.25 8.93 8.55 8.10 6.06 6.06 6.08 6.13 

55  9.39 9.09 8.73 8.30 6.19 6.19 6.21 6.27 

60  9.53 9.24 8.89 8.48 6.32 6.32 6.34 6.40 

65  9.67 9.38 9.05 8.66 6.44 6.44 6.47 6.52 

70  9.80 9.52 9.20 8.82 6.55 6.55 6.58 6.64 

75  9.92 9.65 9.34 8.98 6.66 6.66 6.69 6.75 

80  10.04 9.78 9.48 9.13 6.76 6.77 6.80 6.86 

85  10.16 9.90 9.61 9.27 6.86 6.87 6.90 6.96 

90  10.27 10.02 9.73 9.40 6.96 6.97 7.00 7.06 

95  10.38 10.14 9.86 9.53 7.05 7.07 7.10 7.16 

100  10.48 10.25 9.97 9.66 7.15 7.16 7.19 7.25 

110  10.69 10.46 10.20 9.89 7.32 7.33 7.37 7.43 

120  10.88 10.66 10.41 10.12 7.48 7.50 7.53 7.60 

130  11.06 10.85 10.61 10.33 7.64 7.65 7.69 7.75 

140  11.24 11.04 10.80 10.53 7.79 7.80 7.84 7.90 

150  11.41 11.21 10.98 10.72 7.93 7.94 7.98 8.04 

160  11.57 11.38 11.16 10.90 8.06 8.08 8.12 8.18 

170  11.73 11.54 11.32 11.07 8.19 8.21 8.25 8.31 

180  11.88 11.70 11.49 11.24 8.31 8.33 8.37 8.44 
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Table SII. (contiuned) 

   ρ (g/cm3)  VP (km/s) 

P (GPa)  2000 K 3000 K 4000 K 5000 K  2000 K 3000 K 4000 K 5000 K

190  12.03 11.85 11.64 11.40 8.43 8.46 8.50 8.56 

200  12.18 12.00 11.79 11.56 8.55 8.57 8.61 8.67 

210  12.32 12.14 11.94 11.71 8.66 8.68 8.72 8.78 

220  12.45 12.28 12.09 11.86 8.77 8.79 8.83 8.89 

230  12.59 12.42 12.22 12.00 8.88 8.90 8.94 9.00 

240  12.72 12.55 12.36 12.14 8.98 9.00 9.04 9.10 

250  12.84 12.68 12.49 12.28 9.08 9.10 9.14 9.20 

260  12.97 12.81 12.62 12.41 9.17 9.20 9.24 9.29 

270  13.09 12.93 12.75 12.54 9.27 9.29 9.33 9.39 

280  13.21 13.05 12.87 12.66 9.36 9.38 9.42 9.48 

290  13.32 13.17 12.99 12.79 9.45 9.47 9.51 9.57 

300  13.44 13.29 13.11 12.91 9.53 9.56 9.60 9.66 

310  13.55 13.40 13.23 13.03 9.62 9.64 9.68 9.74 

320  13.66 13.51 13.34 13.14 9.70 9.72 9.77 9.82 

330  13.77 13.62 13.45 13.26 9.78 9.81 9.85 9.90 

340  13.87 13.73 13.56 13.37 9.86 9.89 9.93 9.98 

350  13.98 13.84 13.67 13.48 9.94 9.96 10.00 10.06 

360  14.08 13.94 13.77 13.59 10.01 10.04 10.08 10.14 

370  14.18 14.04 13.88 13.69  10.09 10.11 10.15 10.21 
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Table SIII. P–T–ρ–VP relations of liquid iron along isentropic temperature profiles with TICB = 5800, 5400, and 5000 K. 
 

TICB = 5800 K TICB = 5400 K TICB = 5000 K PREM†

P (GPa)  T (K) ρ (g/cm3) VP (km/s)  T (K) ρ (g/cm3) VP (km/s)  T (K) ρ (g/cm3) VP (km/s)  P (GPa) ρ (g/cm3) VP (km/s)

135.75 4293  10.64  7.79  4005 10.72  7.78  3715  10.79  7.76  135.75 9.903  8.065  

144.19 4379  10.78  7.92  4084 10.85  7.91  3788  10.93  7.89  144.19 10.029 8.199  

165.12 4581  11.10  8.22  4271 11.18  8.20  3960  11.25  8.18  165.12 10.327 8.513  

185.64 4765  11.39  8.49  4441 11.47  8.47  4117  11.55  8.45  185.64 10.602 8.796  

205.60 4933  11.66  8.73  4597 11.74  8.71  4260  11.82  8.69  205.60 10.853 9.050  

224.85 5086  11.91  8.95  4738 11.99  8.93  4390  12.07  8.90  224.85 11.083 9.279  

243.25 5225  12.13  9.15  4867 12.22  9.12  4509  12.30  9.10  243.25 11.293 9.484  

260.68 5351  12.34  9.33  4984 12.42  9.30  4617  12.50  9.28  260.68 11.483 9.669  

277.04 5465  12.52  9.49  5090 12.61  9.46  4714  12.69  9.43  277.04 11.655 9.835  

292.22 5567  12.69  9.63  5184 12.77  9.60  4801  12.86  9.58  292.22 11.809 9.986  

306.15 5658  12.84  9.76  5268 12.92  9.73  4878  13.01  9.70  306.15 11.947 10.123 

318.75 5737  12.97  9.87  5342 13.06  9.84  4947  13.14  9.81  318.75 12.069 10.250 

328.85  5800  13.07  9.95   5400 13.16  9.92   5000  13.24  9.89   328.85 12.166 10.356 

†The preliminary reference Earth model (PREM) [26] for comparison. 

 


