Granularity Exploration for Logic in Memory

<u>I. O'Connor</u>, M. Cantan, L. Mozzone C. Marchand, A. Bosio, D. Deleruyelle Lyon Institute of Nanotechnology – University of Lyon <u>ian.oconnor@ec-lyon.fr</u>

Phase Change Workshop Villars sur Ollon (CH) 14th January 2020

© {2018} 3ɛFERRO - Energy Efficient Embedded Non-volatile Memory & Logic based on Ferroelectric Hf(Zr)O2 This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 780302. All Rights Reserved.

Tomorrow's IoT

- Ever-smarter "things" capable of specific (limited) processing on data to
 - extract and transmit meaningful information to computing resources in the cloud
 - make fast, location-aware and secure decisions

Energy-efficient edge computing

- Critical issues when energy is constrained:
 - Leakage (static) current
 - Processor-memory communication energy
- Non-volatile memory (NVM) is key to
 - Shut down computing resources as much as possible (normally-off computing)
 - Enable limited computation at the data source (logic in memory / in-memory computing)
- Conventional solution: eFlash
 - + high density, manufacturable, low-cost
 - low read/write speed, high power requirements, extra masks, vulnerability to radiation
- Many NVM candidates emerging

on Institute of Nanotechnology – CNRS JRU 5270

Agenda

- Von Neumann limits
 - Processor-memory communication costs
- New memory-logic paradigms
 - In-Memory-Computing
 - Function configuration (NV-LUT cells, NV-FPGA)
 - Coefficient programming (NV-logic cells, FGLiM)
 - Arithmetic table functions (memory cells, CGLiM)
- Benchmarking platform (work in progress)
 - Circuit level optimization
 - Architectural Design Space Exploration

Lyon Institute of Nanotechnology – CNRS JRU 5270

Lyon Institute of Nanotechnology – CNRS JRU 5270

yon Institute of Nanotechnology – CNRS JRU 5270

Lyon Institute of Nanotechnology – CNRS JRU 5270

Lyon Institute of Nanotechnology – CNRS JRU 5270

- Separates processing (compute operations) from memory (data and instructions) and relies heavily on intensive communication
- Simple multiplication operation requires 10 address transfers + 10 data transfers
 - Latency (10 cycles) can be improved by increasing processor-memory bandwidth
 - Energy is the main issue typical figures:
 - 1pJ/bit/mm for communication
 - 1-10aJ/bit for computing
 - 640pJ/mm per 32-bit multiplication just for communication

• 95% total energy consumption for comunication typical to IoT nodes! Lyon Institute of Nanotechnology - CNRS JRU 5270 typical 15

Agenda

- Von Neumann limits
 - Processor memory transfer costs
- New memory-logic paradigms
 - In-Memory-Computing
 - Function configuration (NV-LUT cells, NV-FPGA)
 - Coefficient programming (NV-logic cells, FGLiM)
 - Arithmetic table functions (memory cells, CGLiM)
- Benchmarking platform (work in progress)
 - Circuit level optimization
 - Architectural Design Space Exploration

New memory-logic paradigms

Conventional computing Von Neumann to manycore

IMC – In Memory Computing INside modified MEMORY add elementary COMPUTING functionality

PiM – Processing In Memory PROCESSING functionality INside modified MEMORY

LiM – Logic in Memory read LOGIC operation results from existing MEMORY resources

IMC – In Memory Computing

 INside modified MEMORY add elementary **COMPUTING** functionality

– Logic / arithmetic function

indicates:

 Writeback / no-writeback Institute of Nanotechnology - CNRS JRU 5270

Maha Kooli et al., DATE 2018

Reconfigurable In Memory Computing

- By using reconfigurable logic, resources can implement any function
- NVM is desirable to enable power-down schemes (and avoid superfluous reprogramming)
 NVM is desirable to enable power-down SL
 E. Breyer et al., ESSDERC 2019 Out = A.S₁.S₀ + B.S₁.S₀ + C.S₁.S₀ + D.S₁.S₀

of Nanotechnology – CNRS JRU 5270

http://inl.cnrs.fr

19

Data-programmable logic

- NV-programming of coefficients in dataintensive applications e.g. convolutional filters / neural networks
 - Non-volatile (programmable) logic input A stored in polarization state of the FeFET by applying write pulse (to gate)
 - Volatile (data) logic input B applied as readout voltage (also to gate)

Reconfigurable and data-programmable

• In the previous slides:

- Volatile data, reconfigurable function, OR
- Volatile and non-volatile data, fixed function
- Calculating the stored state as a function of the non-volatile data enables combination of reconfigurability and data-programmability

LiM: Arithmetic table functions

- read LOGIC operation results from existing MEMORY resources
 - Example: n-bit multiplication (unsigned integers)
 - Computation requires n² AND gates, (n-1)² 1bit full adders

- Lookup table (LUT)

requires n² 2n-bit memory cells, or fewer with bilinear interpolator

Lyo

Exact LUT

Approximate LUT

Approximate and sampled LUT

yon Institute of Nanotechnology – CNRS JRU 5270

http://inl.cnrs.fr

Bilinear interpolation

$$f(x,y) = \frac{y_2 - y}{y_2 - y_1} \left(\frac{x_2 - x}{x_2 - x_1} f(Q_{11}) + \frac{x - x_1}{x_2 - x_1} f(Q_{21}) \right) + \frac{y - y_1}{y_2 - y_1} \left(\frac{x_2 - x}{x_2 - x_1} f(Q_{12}) + \frac{x - x_1}{x_2 - x_1} f(Q_{22}) \right)$$

- 4 (n-m)-bit subtractions
 - (y₂-y), (y-y₁)
 - $-(x_2-x), (x-x_1)$
- 4 2^k bit right-shifts
 - divide (y_2-y) , $(y-y_1)$ by $(y_2-y_1)=2^k$
 - divide (x_2-x) , $(x-x_1)$ by $(x_2-x_1)=2^k$
- 6 ((n-m)*(n-k))-bit multiplications
- Tradeoff to be found between LUT sampling and interpolation hardware in terms of hardware cost, energy consumption and accuracy

Agenda

- Von Neumann limits
 - Processor memory transfer costs
- New memory-logic paradigms
 - In-Memory-Computing
 - Function configuration (NV-LUT cells, NV-FPGA)
 - Coefficient programming (NV-logic cells, FGLiM)
 - Arithmetic table functions (memory cells, CGLiM)
- Benchmarking platform (work in progress)
 - Circuit level optimization
 - Architectural Design Space Exploration

Benchmarking overview

Preliminary results

Parameter	Value
0 read energy	1nJ
1 read energy	2.5nJ
0->0 write energy	0.5nJ
1->0 write energy	0.5nJ
0->1 write energy	2nJ
1->1 write energy	0.5nJ
0 storage power	0.1mW
1 storage power	0.1mW
Restart energy	5nJ
Read latency	20ns
Write latency	20ns
Shutdown latency	200ns
Retention time	inf

Relative error distribution Vs. Memory word size with 8 bit input data

Challenges

- Large-scale technology proof-of-concept
 - Memory matrix performance and capacity
 - Integration strategy
 - Overall energy efficiency
- Programming model and compilers
 - Application oriented hardware configuration
 - Agile instruction sets
 - Clear metrics and figures of merit
- Additional paradigms
 - Security
 - Approximate computing
 - Deep learning

