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This study revises the non-local macroscopic pedestrian flow model proposed in [R. M. Colombo, M. Garavello, and M. Lécureux-Mercier. A class of nonlocal models for pedestrian tra

Introduction

Problem statement

This paper contributes to the macroscopic modelling of crowd movements. We consider the following initial-boundary value problem for a non-local scalar conservation law that describes the evolution of the local density ⇢ of pedestrians as a function of time t and position x = (x 1 , x 2 ) on a crowd evolution domain ⌦ ⇢ R 2 :

8 > > > > > < > > > > > : @ t ⇢ + div ⇣ ⇢v(⇢)⌫ x, I[⇢(t)](x) ⌘ = 0, x 2 ⌦, t 0, ⇢(0, x) = ⇢ 0 (x),
x 2 ⌦, ⇢(t, x) = 0, x 2 @⌦.

(1.1)

Here ⌫ = (⌫ 1 , ⌫ 2 ) is a vector field that (with slight abuse of notation) is defined as

⌫(t, x) := ⌫ x, I[⇢(t)](x) = µ(x) + I[⇢(t)](x), (1.2) 
where µ is the (normalized) fixed smooth vector field of preferred directions (e.g. given by the regularized solution of an eikonal equation), and I[⇢(t)] is a non-local correction term that depends on the current density distribution. This notation indicates a functional dependence, i.e., I depends on the function ⇢(t) := ⇢(t, •) as a whole.

We assume that pedestrians move in a space surrounded by walls, and that the vector field ⌫ points inward along the boundary @⌦ of ⌦, that is ⌫(t, x) • n(x)  0 for all x 2 @⌦, t 0, where n is the outward normal to ⌦. (Of course, we may assume µ(x) • n(x)  0 for all x 2 @⌦, then it is enough to ensure that also I[⇢(t)](x) • n(x)  0 for all x 2 @⌦.) In this case, the condition ⇢(t, x) = 0 on @⌦ corresponds to a zero-flux condition. If, for simulation reasons, we need to consider smaller domains and to add adsorbing conditions on the part of the boundary not corresponding to walls (and where the vector field points outwards), suitable modifications of the model are needed.

If supp(⇢ 0 ) ⇢ ⌦ and ⌫(t, x) • n(x)  0 for all x 2 @⌦ and t > 0, then problem (1.1) is equivalent to the Cauchy problem 8 > > < > > :

@ t ⇢ + div ⇣ ⇢v(⇢)⌫ x, I[⇢(t)](x) ⌘ = 0, x 2 R 2 , t 0, ⇢(0, x) = ⇢ 0 (x),
x 2 R 2 .

(1.3)

Following Colombo et al. [11], we consider a non-local interaction term of the form

I[⇢(t)](x) = " r(⌘ ⇤ w ⇢(t))(x) q 1 + kr(⌘ ⇤ w ⇢(t))(x)k 2 , ">0, (1.4) 
where ⌘ is a smooth non-negative kernel with compact support such that ! R 2 ⌘(x) dx = 1 and " < 1 is a model parameter. The term (1.4) models how pedestrians account for other pedestrian distribution close to them to correct their path. To better account for the reaction of pedestrians to densities ahead of them, one may consider anisotropic kernels ⌘, see e.g. [11] and [START_REF] Mimault | Lois de conservation pour la modélisation des mouvements de foule[END_REF]Appendix D]. To account for the presence of boundaries, and walls (or obstacles) into boundaries, unlike [13, 14], we modify the usual convolution product as follows:

⌘ ⇤ w ⇢(t) (x) = " R 2 ⇢ w (t, y)⌘(x y) dy, (1.5) 
where ⇢ w : R 2 ! R + is defined as

⇢ w (t, x) := 8 > > > > > < > > > > > : ⇢(t, x) if x 2 ⌦, R w if x 2 B(⌦, d(supp ⌘)) \ ⌦, 0 elsewhere, (1.6) 
with R w R big enough so that ⌫(t, x) • n(x)  0 for x 2 @⌦ and t 0. Here we denote by

d(A) = sup |x y| : x, y 2 A
the diameter of a set A ⇢ R 2 and by

B(⌦, `) = ( x 2 R 2 : inf y2⌦ |x y|  `)
the "ball" of radius `around ⌦. Furthermore, we define

M := " R 2 B(⌦,d(supp ⌘)) (y) dy, (1.7) 
which is finite if ⌦ is bounded ( denotes the characteristic function).

The presence of high density values at the wall and obstacle locations included in (1.5) and (1.6) is intended to mimic their e↵ect on the pedestrian dynamics. Indeed, in this way the non-local correction term (1.4) "sees" the presence of the wall and deviates the movement from the desired trajectory, thus acting as a discomfort term expressing the tendency of pedestrians to stay away from obstacles.

Remark 1. An explicit condition ensuring r(⌘ ⇤ w ⇢(t))(x) • n(x) 0 for all x 2 @⌦ (and thus ⌫(t, x)

• n(x)  0) is the following: R w " ⌦ c r⌘(x y) • n(x) dy R " ⌦ r⌘(x y) • n(x) dy for all x 2 @⌦,
where f (x) := max{ f (x), 0} = min{ f (x), 0} denotes the negative part of a function f . Indeed we have

r ⌘ ⇤ w ⇢(t) (x) • n(x) = n(x) • " R 2 ⇢(t, y)r⌘(x y) dy = " R 2 ⇢(t, y)r⌘(x y) • n(x) dy = " ⌦ c R w r⌘(x y) • n(x) dy + " ⌦ ⇢(t, y)r⌘(x y) • n(x) dy R w " ⌦ c r⌘(x y) • n(x) dy R " ⌦ (r⌘(x y) • n(x)) dy.

Related works

Macroscopic models of (vehicular and pedestrian) tra c flow are based on balance laws describing the spatio-temporal evolution of averaged quantities such as density and mean velocity. In analogy to

Mathematical Biosciences and Engineering Volume x, Issue x, xxx-xxx vehicular tra c models, macroscopic crowd motion models were introduced starting from the beginning of this century based on scalar conservation laws [15,[START_REF] Hughes | A continuum theory for the flow of pedestrians[END_REF], gas dynamics equations [START_REF] Bellomo | On the modelling crowd dynamics from scaling to hyperbolic macroscopic models[END_REF][START_REF] Jiang | A higher-order macroscopic model for pedestrian flows[END_REF], gradient flow methods [START_REF] Bürger | Implicit-explicit methods for a class of nonlinear nonlocal gradient flow equations modelling collective behaviour[END_REF][START_REF] Maury | A macroscopic crowd motion model of gradient flow type[END_REF] and time evolving measures [START_REF] Piccoli | Pedestrian flows in bounded domains with obstacles[END_REF].

More recently, models consisting in non-local conservation laws in two-space dimension were proposed by di↵erent authors [5-7, 11-14, 21]. Conservation laws with non-local flux function arise in a large variety of applications, such as tra c flow [START_REF] Blandin | Well-posedness of a conservation law with non-local flux arising in tra c flow modeling[END_REF][START_REF] Kurganov | Non-oscillatory central schemes for tra c flow models with arrhenius look-ahead dynamics[END_REF][START_REF] Sopasakis | Stochastic modelling and simulation of tra c flow: asymmetric single exclusion process with arrhenius look-ahead dynamics[END_REF], sedimentation [START_REF] Betancourt | On nonlocal conservation laws modelling sedimentation[END_REF][START_REF] Zumbrun | On a nonlocal dispersive equation modeling particle suspensions[END_REF], and material flows on conveyor belts [START_REF] Göttlich | Modeling, simulation and validation of material flow on conveyor belts[END_REF]. The computation of numerical solutions for these models is challenging due to the high non-linearity of the system and the dependence of the flux function on the convolution product.

In order to overcome the computational bottleneck, high order schemes have been developed for scalar equation [START_REF] Chalons | High-order numerical schemes for one-dimensional nonlocal conservation laws[END_REF] and systems [10] in one space dimension. For crowd dynamics models, first order finite volume approximations based on the Lax-Friedrichs scheme have been used in [11,13,14], aiming at demonstrating convergence properties for existence results. Here, we will consider the finite di↵erence weighted essentially non-oscillatory (WENO) schemes developed in [START_REF] Inzunza | Métodos Implicitos-Explicitos para Problemas de Convección-Difusión-Reacción no Lineales y no Locales[END_REF] to achieve high-resolution spatial accuracy. WENO schemes [START_REF] Jiang | E cient implementation of weighted ENO schemes[END_REF][START_REF] Liu | Weighted essentially non-oscillatory schemes[END_REF][START_REF] Shu | High order weighted essentially nonoscillatory schemes for convection dominated problems[END_REF] are widely employed for the simulation of complex flow fields due to their high order accuracy and good shock-capturing properties.

Outline of the paper

The remainder of this paper is organized as follows. In Section 2, we deal with the well-posedness of problem (1.3). Section 3 describes the WENO scheme used to compute approximate solutions and Section 4 collects three di↵erent numerical tests investigating the model characteristics. Conclusions and perspectives are elaborated in Section 5.

Well-posedness

We suppose that the domain ⌦ and the functions ⌫, µ and ⌘ satisfy the the following assumptions:

(I1) The domain ⌦ ✓ R 2 is a non-empty compact bounded open set with smooth boundary @⌦, so that the outward normal n(x) is uniquely defined for all x 2 @⌦.

(I2) The hindrance function v 2 C 2 (R; R) is non-increasing, v(0) = V and v(R) = 0 for some V, R > 0. (I3) The vector field of preferred directions µ 2 (C 2 \ W 1,1 )(R 2 ; R 2 ) is such that div µ 2 (W 1,1 \ W 1,1 )(R 2 ; R). (I4) The kernel function ⌘ 2 C 3 c (R 2 ; R + ) satisfies ! R 2 ⌘(x) dx = 1.
Solutions of problem (1.3) are intended in the following sense.

Definition 1. [11, Def. 2.1] For any T > 0 and 

⇢ 0 2 L 1 (R 2 , [0, R]) such that supp ⇢ 0 ⇢ ⌦, a function ⇢ 2 C 0 ([0, T ], L 1 (R 2 ; [0, R]) is
@ t ⇢ + div (⇢v(⇢)⌫(t, x)) = 0 in R 2 , ⇢(0, x) = ⇢ 0 (x) in R 2 , (2.1) 
i.e. for all  2 R and all test functions 2 C 1 c (] 1, T [ ⇥R 2 ; R + ) there holds

Z T 0 Z R 2 n |⇢ |@ t + sgn(⇢ ) ⇢v(⇢) v() ⌫(t, x) • r o dx dt Z T 0 Z R 2 v() div ⌫(t, x) sgn(⇢ ) dx dt + Z R 2 |⇢ 0 (x) | (0, x) dx 0. (2.2)
Indeed, by mass conservation, we have that supp ⇢(t, •) ⇢ ⌦ for all t > 0, and therefore ⇢(t, x) = 0 for a.e. x 2 ⌦ c , see [11, Proposition 3.1]. Therefore, by abuse of notation, ⇢ 2 L 1 ([0, T ] ⇥ ⌦; R) can be seen as a Kružkov semi-entropy solution in the sense of [34, Def. 1]: namely, from (2.2) we have

0  Z T 0 Z ⌦ n (⇢ ) ± @ t + sgn ± (⇢ ) ⇢v(⇢) v() ⌫(t, x) • r o dx dt Z T 0 Z ⌦ v() div ⌫(t, x) sgn ± (⇢ ) dx dt + Z ⌦ ⇢ 0 (x)  ± (0, x) dx  Z T 0 Z ⌦ n (⇢ ) ± @ t + sgn ± (⇢ ) ⇢v(⇢) v() ⌫(t, x) • r o dx dt Z T 0 Z ⌦ v() div ⌫(t, x) sgn ± (⇢ ) dx dt + Z ⌦ ⇢ 0 (x)  ± (0, x) dx + k f 0 (⇢)⌫k L 1 ([0,T ]⇥⌦⇥[0,R]) Z T 0 Z @⌦ ( ) ± (t, x) dx dt,
where f (⇢) := ⇢v(⇢), s + = max{s, 0}, s = max{ s, 0}, sgn + (s) = sgn(s + ) and sgn (s) = sgn(s ).

If ⇢ 2 (L 1 \ BV)([0, T ] ⇥ ⌦; R)
, then the classical definition introduced by Bardos, Le Roux and Nédélec [START_REF] Bardos | First order quasilinear equations with boundary conditions[END_REF] holds:

Z T 0 Z ⌦ n |⇢ |@ t + sgn(⇢ ) ⇢v(⇢) v() ⌫(t, x) • r o dx dt Z T 0 Z ⌦ v() div ⌫(t, x) sgn(⇢ ) dx dt + Z ⌦ |⇢ 0 (x) | (0, x) dx + Z T 0 Z @⌦ sgn() ⇣ tr ⇢(t, x)v tr ⇢(t, x) v() ⌘ ⌫(t, x) • n(x) (t, x) dx dt 0,
where tr ⇢ denotes the trace of ⇢ at the boundary @⌦.

We refer the reader to [START_REF] Rossi | Definitions of solutions to the IBVP for multi-dimensional scalar balance laws[END_REF] for a discussion on the di↵erent notions of admissible solutions for scalar multi-dimensional initial-boundary value Problems and their equivalence.

Under hypotheses (I1)-(I4), the non-local term I defined by (1.4)-(1.5)-(1.6) satisfies the following estimates for " as in (1.4), R w as in (1.6) and M as in (1.7):

kI[⇢]k L 1  "R w kr⌘k L 1 , (2.3) kI[⇢]k L 1  "R w Mkr⌘k L 1 , (2.4) kdiv I[⇢]k L 1  "R w k ⌘k L 1 + R w kdiv ⌘k L 1 kr div ⌘k L 1 , (2.5) kdiv I[⇢]k L 1  "R w M k ⌘k L 1 + R w kdiv ⌘k L 1 kr div ⌘k L 1 , (2.6 
) Moreover, for any r 1 , r 2 2 L 1 (⌦; [0; R]) there hold

kr div I[⇢]k L 1  "R 2 w Mkr⌘k W 2,1 h 1 + R w kr⌘k L 1 ⇣ 2 + R w kr⌘k L 1 + 3R w kdiv ⌘k 2 L 1 ⌘i . ( 2 
kI[r 1 ] I(r 2 )k L 1  " ⇣ 1 + R 2 w kr⌘k 2 L 1 ⌘ kr⌘k L 1 kr 1 r 2 k L 1 , (2.8 
)

kI[r 1 ] I(r 2 )k L 1  " ⇣ 1 + R 2 w kr⌘k 2 L 1 ⌘ kr⌘k L 1 kr 1 r 2 k L 1 , (2.9 
) Recalling that f (⇢) = ⇢v(⇢) and following [11, Theorem 2.1], we have the following well-posedness result.

kdiv(I[r 1 ] I(r 2 ))k L 1  "kr 1 r 2 k L 1 kr⌘k W 1,1 ⇣ 1 + 8R 2 w kr⌘k 2 W 1,1 + 3R 4 w kr⌘k 4 W 1,1 ⌘ , ( 2 
Theorem 1. Let (I1)-(I3) hold and ⇢ 0 2 (L 1 \ BV)(R 2 ; [0, R]) with supp ⇢ 0 ⇢ ⌦.
Then there exists a unique weak entropy solution

⇢ 2 C 0 (R + ; L 1 (R 2 ; [0, R])) to (1.3) with supp ⇢(t, •) ⇢ ⌦ for t > 0.
Moreover, ⇢ satisfies the following estimates

k⇢(t, •)k L 1 = k⇢ 0 k L 1 for a.e. t > 0, TV ⇢(t, •)  TV(⇢ 0 )e Kt + ⇡te Kt k f k L 1 ([0,R]) kr div µk L 1 + C M (R w ) , (2.11) 
where we define

K := 5k f 0 k L 1 ([0,R]) krµk L 1 + "R w k ⌘k L 1 + R w kdiv ⌘k L 1 kr div ⌘k L 1 , C M (R w ) := "R 2 w Mkr⌘k W 2,1 h 1 + R w kr⌘k L 1 ⇣ 2 + R w kr⌘k L 1 + 3R w kdiv ⌘k 2 L 1
⌘i .

Stability with respect to ⇢ 0 , v and µ also holds from [11, Theorem 2.2].

Proof of Theorem 1. Following [11], we have to check that we fit the required hypotheses. First of all, given any r 2 C 0 ([0, T ]; L 1 (⌦; [0, R])), we verify that the scalar conservation law

@ t ⇢ + div ⇢v(⇢)w(t, x) = 0 in R 2 ,
with w(t, x) = µ(x) + I[r(t)](x), satisfies the assumptions of [22, Theorem 5 and Sec. 5.4], and therefore admits a weak entropy solution

⇢ 2 L 1 (R + ; L 1 (⌦; [0, R])) (see [11, Lemma 2.1]). Setting '(t, x, ⇢) = f (⇢)w(t, x), it is easy to check that ', @ ⇢ ', @ 2 x i ,⇢ ', @ 2 x i ,x j ' 2 C 0 ([0, T ] ⇥ R 2 ⇥ [0, R]), @ ⇢ ' 2 L 1 ([0, T ] ⇥ R 2 ⇥ [0, R]) and div ' 2 L 1 ([0, T ] ⇥ R 2 ⇥ [0, R]
), thanks to (I2), (I3) and (I4). Moreover, by (2.6), we have that

kdiv w(t, •)k L 1  kdiv µk L 1 + "R w M k ⌘k L 1 + R w kdiv ⌘k L 1 kr div ⌘k L 1 < +1, which guarantees that ⇢ 2 C 0 (R + ; L 1 (⌦; [0, R])). Moreover, by (2.5), r@ ⇢ ' L 1  k f 0 k L 1 ([0,R]) krµk L 1 + "R w k ⌘k L 1 + R w kdiv ⌘k L 1 kr div ⌘k L 1 ,
and by (2.7)

kr div(µ + I[r(t)])k L 1  kr div µk L 1 + C M (R w ).
Therefore, by [ 

: [0, 1[ ⇥⌦ ! [0, R] and f = f t, x, ⇢, (⌘ ⇤ w ⇢) := ⇢v(⇢)⌫ x, I[⇢(t)](x)
the solution and the flux function of problem (1.1)-(1.3). We use a uniform Cartesian grid with nodes

(x i 1 , x j 2 ), i = 1, . . . , M 1 and j = 1, . . . , M 2 such that x i 1 = (i 1/2)h, x j 2 = ( j 1/2)h, h = (x max 1 x min 1 )/M 1 = (x max 2 x min 2 )/M 2 . This corresponds to M 1 ⇥ M 2 grid points x i := (x i 1 , x j 2 )
, where i = (i, j) 2

M := {1, . . . , M 1 } ⇥ {1, . . . , M 2 } ⇢ N 2 ,
and as in [START_REF] Bürger | Implicit-explicit methods for a class of nonlinear nonlocal gradient flow equations modelling collective behaviour[END_REF] we utilize two-dimensional unit vectors e 1 := (1, 0) and e 2 := (0, 1) to address neighbouring grid points

x i+e 1 = (x i+1 1 , x j 2 ) and x i+e 2 = (x i 1 , x j+1 2 ).
We define u : [0, 1) ! R M 1 ⇥M 2 as a solution computed at an instant t in the grid points where

u i (t) = ⇢(t, x i ), f i = f ⇣ t, x i , ⇢(t, x i ), ⌘ ⇤ w ⇢(t) (x i ) ⌘ for i 2 M.
In Section 3.2 we will discuss the discretization of the convolution product. Using this notation, we may approximate the solution of (1.1)-(1.3) in semi-discrete form (that is, discrete in space but continuous in time) by a system of ODEs

du dt = C(u) (3.1) 
where C(u) represents the spatial discretization of the convective term with entries given by

C(u) = (C(u) i ) i2M with C(u) i = 2 X l=1 1 h ⇣ fi+ 1 2 e l fi 1 2 e l ⌘ , (3.2) 
where fi+ 1 2 e 1 and fi+ 1 2 e 2 are the numerical fluxes, which in this paper will be a fifth-order version. To this end, we require the summands for l = 1 and l = 2 in (3.2) to be of the same order of approximation to @ f /@x 1 and @ f /@x 2 , respectively, at x = x i . For upwinding and stability, a flux function f (⇢) is split as follows:

f (⇢) = f + (⇢) + f (⇢), with d f + (⇢) d⇢ 0 and d f (⇢) d⇢  0. (3.3)
Then each component is approximated separately using its own "wind direction" with respect to e l . The simple Lax-Friedrichs flux splitting

f ± (⇢) = 1 2 f (⇢) ± ↵⇢
with a suitable viscosity coe cient ↵ > 0 is used in this paper. We herein use

↵ k = max ⇢ @ ⇢ ⇢v(⇢) sup x2⌦ |⌫ k (x)|, k = 1, 2,
in direction e k , k = 1, 2. The numerical fluxes are split accordingly, i.e.,

fi+ 1 2 e k = R + f + i+( r:r)e k + R f i+( r+1:r+1)e k , k = 1, 2, (3.4) 
Mathematical Biosciences and Engineering Volume x, Issue x, xxx-xxx where R ± denotes (2r 1)th-order WENO upwind biased reconstructions for r = 2, 3, 4, see [START_REF] Jiang | E cient implementation of weighted ENO schemes[END_REF][START_REF] Liu | Weighted essentially non-oscillatory schemes[END_REF][START_REF] Shu | High order weighted essentially nonoscillatory schemes for convection dominated problems[END_REF].

Ghost cells are needed to compute numerical fluxes near the boundary. To handle these cases we use the boundary condition in (1.1) and set u i = 0 if i < M and as the vector field ⌫ points inward along @⌦, i.e. ⌫ • n(x)  0 for x 2 @⌦, we set

fi+ 1 2 e l = 8 > > < > > : R + f i+( r:r)e l if x i 2 {x min 1 } ⇥ [x min 2 , x max 2 ] [ [x min 1 , x max 2 ] ⇥ {x min 2 }, R f i+( r:r)e l if x i 2 {x max 1 } ⇥ [x max 2 , x max 2 ] [ [x min 1 , x max 1 ] ⇥ {x max 2 }. (3.5) 
For evacuation problems, to not deal with extended domains, we have to handle a vector field ⌫ which points outward at the exit door D ⇢ @⌦, i.e. ⌫ • n(x) > 0 for x 2 D. In this case, we set fi+ 1 2 e l = R + f i+( r:r)e l for x i 2 D. For more details about the implementation of high-order finite di↵erence WENO schemes for crowd dynamics see [START_REF] Bürger | Implicit-explicit methods for a class of nonlinear nonlocal gradient flow equations modelling collective behaviour[END_REF][START_REF] Inzunza | Métodos Implicitos-Explicitos para Problemas de Convección-Difusión-Reacción no Lineales y no Locales[END_REF].

Discretization of the convolution term

In order to evaluate the non-local term in (1.4), we take into account that r(⌘ ⇤ w ⇢) = r⌘ ⇤ w ⇢, where the convolution term ⇤ w is defined by (1.5). The corresponding convolutions (@⌘/@x 1 ) ⇤ w ⇢ and (@⌘/@x 2 ) ⇤ w ⇢ are calculated approximately on the discrete grid via a quadrature formula, in our cases a composite Simpson rule. Since supp(⌘) ⇢ [ rh, rh] ⇥ [ rh, rh], for any r 2 N, any convolution product is given by

⌘ ⇤ ⇢(t) (x i ) ⇡ r X p= r r X q= r h 2 c p c q ⇢(t, x i p )⌘(x p ),
where c p and c q are the coe cients in the quadrature rule and p = (p, q). This formula for u = (u i ) 2 R M x ⇥M y and for the convolution product (1.5) can be written as

(⌘ ⇤ w u)(x i ) = r X p= r r X q= r h 2 c p c q u w,i p ⌘(x p ), (3.6) 
where u w,i is a discrete version of the function (1.6) defined by

u w,i = 8 > > > > > < > > > > > : u i if i 2 M, R w if x i 2 B(⌦, d(supp ⌘)) \ ⌦, 0 elsewhere. 
(3.7)

Clearly, the discrete convolution (3.7) causes a computational bottleneck. This is a classical problem in scientific computing that is e↵ectively handled by fast convolution algorithms, mainly based on Fast

Fourier Transforms [START_REF] Zur Gathen | Modern Computer Algebra[END_REF] (see also [START_REF] Bürger | Numerical solution of a spatiotemporal gender-structured model for hantavirus infection in rodents[END_REF][START_REF] Bürger | Numerical solution of a spatiotemporal predator-prey model with infected prey[END_REF]).

Time discretization

Finally, the semi-discrete scheme (3.1) is discretized by a third-order TVD Runge-Kutta time discretization method [START_REF] Liu | Weighted essentially non-oscillatory schemes[END_REF] that can be specified as follows. Assume that u n is the vector of approximate solutions at t = t n . Then the approximate values u n+1 associated with t n+1 = t n + t are calculated by ) ), 2) ).

u (1) = u n + t C(u n ), u (2) = 3 4 u n + 1 4 u (1) + 1 4 t C(u ( 1 
u n+1 = 1 3 u n + 2 3 u (2) + 2 3 t C(u ( 
(3.8)

The combined space and time discretizations define a fully discrete scheme.

Numerical simulations

We aim at investigating the e↵ects of the non-local operator (1.4)-(1.6) form the crowd dynamics modelling point of view. To this end, in the following numerical examples, we solve numerically (1.3)-(1.6) for t 2 [0, T ] and x 2 ⌦ by using the high-resolution numerical scheme described in Section 3. In particular, we consider FD-WENO5 with fifth-order of accuracy. For each iteration, the time step t in (3.8) is determined by the formula

t h max{↵ 1 , ↵ 2 } = 1 2 C cfl .
In all numerical test we have used C cfl = 0.2. We remark that the model in [13, 14] also displays non-locality in the speed, but this prevents a global maximum principle from holding. Therefore, here we keep the speed dependence on the density local. where [0,l] (x) denotes the characteristic function. The fixed vector field µ(x) is given by the unit vector tangent to the geodesic from x to the exit door, see Figure 1(a). Since the non-local term defined by (4.1) does not guarantee that the resulting direction of motion points inside the domain (⌫(t, x) • n(x)  0 for x 2 @⌦, t 0), we need to add to µ a (fixed) discomfort vector field with maximal intensity along the walls as in [13, 14], resulting in the vector field showed in Figure 1 We display numerical approximations computed with FD-WENO5 scheme with h = 1/80 at times T = 1, 3 and 6 for two kernel supports (l = 0.45 in Figure 2 and l = 0.9 in Figure 3). We observe that the non-local correction term (1.4) allows pedestrians to "see" the presence of the wall and obstacles, and to deviate the movement from the desired trajectory. For l = 0.45, we can observe that pedestrians can pass between the obstacles and the wall, as in the Colombo-Rossi model, however this e↵ect is less remarkable for larger kernel supports like l = 0.9. Indeed, comparing Figures 2 and3, we can see that a larger kernel support corresponds to a wider discomfort e↵ect, impacting the velocity vector field on larger portions of the walkable domain. More generally, qualitative di↵erences between the two models depend on the parameter choices of R w and the discomfort vector field. Nevertheless, we remark that our definition of the convolution (1.5)-(1.6) qualitatively captures the discomfort due to the presence of walls and obstacles delimiting the walking domain.

(⌘ ⇤ ⌦ ⇢(t))(x) = 1 z(x)
Figure 4 shows the impact of the magnitude of the convolution radius l on the evacuation time for both models. We can observe that our model is much sensible to changes in the convolution support since, as previously mentioned, this a↵ects heavily the resulting velocity field near obstacles and walls.
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Example 2: Comparison between isotropic and anisotropic kernels (lane formation).

In this section, we consider that pedestrians have a limited vision field oriented in a given direction. We study a simple example of evacuation of a rectangular room ⌦ = [0, 8] ⇥ [START_REF] Betancourt | On nonlocal conservation laws modelling sedimentation[END_REF][START_REF] Betancourt | On nonlocal conservation laws modelling sedimentation[END_REF], where the vector field µ(x) = (1, 0) is fixed constantly oriented towards the right of the domain. We investigate the influence of a conic convolution kernel on the evacuation dynamics and the pattern formation. We take the kernel function ⌘(x) given in (4.2) and cut a conic section ⌘(x) S(x,l,↵, ) (x) of angle 2↵ oriented to direction (x) which is described by the region S(x, l, ↵, ) = ( y 2 R 2 : ky xk  l, (y x) • (x) ky xkk (x)k cos ↵ ) (see Figure 5), then we smooth and normalize it. Other parameters are taken as v(⇢) = 6 min{1, max{0, (1 ⇢)}}, "= 0.6, l = 0.9, ⇢ 0 (x) = 0.9 [0.5,4]⇥[ 1,1] (x).

We compare the dynamics given by di↵erent kernel orientations and di↵erent angle amplitudes. Besides the circular symmetric kernel ⌘ (i.e. ↵ = ⇡), we consider scheme with h = 1/80 at times T = 0.1, T = 0.2 and T = 0.4. We observe that symmetric and half-circular downstream interaction kernels lead to similar patterns consisting of horizontal lanes (see Figure 6), while narrower angles ↵ lead to vertical patterns, both for forward and backward interactions (displayed in Figure 7). Finally, lateral interactions mostly lead to diagonal waves (Fig. 8).

• (x) = ( 1,

Example 3: Room evacuation with and without obstacles

In this section, we consider the problem of evacuating people in a room through a door. In particular, we are interested in studying the impact of the presence of obstacles in front of the door on the evacuation time. This problem has already been discussed by several authors, see for example [14,[START_REF] Twarogowska | Macroscopic modeling and simulations of room evacuation[END_REF] and references therein. In these works, the authors infer that, in some cases, the location and size of the obstacles may speed up the population to the exit. For this example, we consider the walking domain available to pedestrians is ⌦ = R \ C i , i = 1, 2, 3, where the room R = [0, 8] ⇥ [START_REF] Betancourt | On nonlocal conservation laws modelling sedimentation[END_REF][START_REF] Betancourt | On nonlocal conservation laws modelling sedimentation[END_REF] contains obstacles C i . The door D, the functions v and ⌘, and the parameter " and R w are the same as in (4.2). The initial condition is a linear combination of characteristic functions with values 0.9 in [0. 

C 1 = ?, C 2 = ] 7, 7.8 [ ⇥ ( ] 1.8, 1.3 [ [ ] 1.3, 1.8 [ ) , C 3 = ] 5, 6 [ ⇥ ] 0.25, 0.25 [ , l = 1. (4.3)
The numerical solutions for the three scenarios at three di↵erent times is displayed in Figure 10, where 1 we have used the FD-WENO5 scheme to computed the approximate solutions. Future research should focus on multi-population models accounting for groups with di↵erent char-9 acteristics and/or destinations, and on the theoretical analysis of the observed pattern formation. 

Conclusion

  .10) see [11, Proof of Lemma 3.1].

Figure 1 .

 1 Figure 1. Example 1: vector fields used in the simulations: (a) vector field given by unit vectors tangent to the geodesics to the exit door, used for model (1.4); (b) vector field (a) plus a discomfort vector field with maximal intensity along the walls, used for model [13, 14].

4. 1 .

 1 Example 1: Comparison with Colombo and Rossi [13, 14].In contrast to (1.5)-(1.6), the model proposed in [13, 14] uses the following definition of the convolution product in the non-local term(1.4) 

Figure 2 .

 2 Figure 2. Example 1: numerical approximation with parameters (4.2) with kernel support l = 0.45 and R w = 1.5 at (top) T = 1, (middle) T = 3 and (bottom) T = 6. The left and right columns correspond to local convolution ⌘ ⇤ w ⇢ (see (1.5)), and global convolution ⌘ ⇤ ⌦ ⇢ (see (4.1)), respectively. The color bar also applies to Figures 3, 6, 7, 8, 9, and 10.

Figure 3 .

 3 Figure 3. Example 1: numerical approximation with parameters (4.2) with kernel support l = 0.9 and R w = 1.5 at (top) T = 1, (middle) T = 3 and (bottom) T = 6. The left and right columns correspond to local convolution ⌘ ⇤ w ⇢ (see (1.5)), and global convolution ⌘ ⇤ ⌦ ⇢ (see (4.1)), respectively.

Figure 4 .

 4 Figure 4. Example 1: time evolution of the mass inside the room and evacuation time for the set of parameters (4.2) with kernel support l = 0.45, 0.9 and R w = 1.5.

Figure 5 .

 5 Figure 5. Example 2: anisotropic kernels ⌘ S(x,l,↵, ) for di↵erent interaction orientations: (a) symmetric, (b) wide forward, (c) narrow forward, (d) backward, (e) left, (d) forward left.

Figure 6 .

 6 Figure 6. Example 2: evacuation dynamics and vector field for (left) the angle 2↵ with ↵ = ⇡ (see Figure 5 (a)), (right) ↵ = ⇡/2 and the kernel orientation (x) = ( 1, 0) (as in Figure 5 (b)), at simulated times (top) T = 0.1, (middle) T = 0.2 and (bottom) T = 0.4.

2 Figure 11 Figure 7 .

 2117 Figure11shows the time evolution of the mass inside the room. We observe that in case C 1 the

1

  In this work, we have proposed and studied a non-local macroscopic pedestrian flow model account-2 ing for the presence of walls and obstacles limiting the walking domain. In particular, the proposed

3 6

 6 model is able to capture pedestrians' discomfort near obstacles and walls. Under suitable regularity 4 assumptions, the model turns out to be well-posed. Moreover, we analyzed the impact of di↵erent 5 anisotropic kernels on the formation of patterns in the solutions.High resolution numerical schemes of WENO type allow to perform accurate simulations, bypassing 7 the computational bottleneck given by the dependence of the flux function on integral terms.

8

 8 

Figure 8 .

 8 Figure 8. Example 2: evacuation dynamics and vector field for angle 2↵ for ↵ = ⇡/4 and the kernel orientation (left) (x) = (0, 1) (see Figure 5 (e)), (right) (x) = ( 1, 1) (see Figure 5 (f)), at simulated times (top) T = 0.1, (middle) T = 0.2 and (bottom) T = 0.4.

Figure 9 .Figure 10 .

 910 Figure 9. Example 3: initial condition.

3 11.

 3 R. M. Colombo, M. Garavello and M. Lécureux-Mercier, A class of nonlocal models for pedestrian 4 tra c, Math. Models Methods Appl. Sci., 22 (2012), 1150023, 34, URL https://doi.org/10.

  

  5, 2] ⇥ [ 2.2, 0], 0.6 in [0.5, 2.2] ⇥ [0, 2.2], 0.5 in [2, 4] ⇥ [ 2.2, 0] and 0.8 in [2.2, 4] ⇥ [0, 2.2] (see Fig.9).
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