Convergence notions

The Lax-Wendroff Theorem presented in Chapter 12 does not say anything about whether the method converges, only that if a sequence of approximations converges then the limit is a weak solution. To guarantee convergence, we need some form of stability, just as for linear problems. Unfortunately, the Lax Equivalence Theorem no longer holds and we cannot use the same approach (which relies heavily on linearity) to prove convergence.

In this chapter we consider one form of nonlinear stability that allows us to prove con vergence results for a wide class of practical methods. So far, this approach has been completely successful only for scalar problems. For general systems of equations with arbitrary initial data no numerical method has been proved to be stable or convergent, although convergence results have been obtained in some special cases (e.g. [START_REF] Diperna | Finite difference schemes for conservation laws[END_REF], [START_REF] Leveque | Stability of Godunov's method for a class of 2 x 2 systems of conservation laws[END_REF], [START_REF] Liu | The deterministic version of the Glimm scheme[END_REF]).

You may wonder why we should bother carefully studying the scalar case, since it has limited direct applicability to real-world problems. However, the fact is that many of the most successful numerical methods for systems like the Euler equations have been developed by first inventing good methods for the scalar case (where the theory provides good guidance) and then extending them in a relatively straight forward way to systems of equations. The fact that we can prove they work well for scalar equations is no guar antee that they will work at all for systems, but in practice this approach has been very successful.

One difficulty immediately presents itself when we contemplate the convergence of a numerical method for conservation laws. The global error Uk(x, t) -u (x, t) is not well defined when the weak solution u is not unique. Instead, we measure the global error in our approximation by the distance from Uk(x, t) to the set of all weak solutions W, W = {w: w(x,t) is a weak solution to the conservation law}. (15.1) To measure this distance we need a norm, for example the 1-norm over some finite time interval [0, T), denoted by ll vl h, T = lo T llv(•, t)l h dt (15.2) lo T I: lv( x, t)idxdt .

The global error is then defined by

(15.
3)

The convergence result we would now like to prove takes the following form:

If Uk is generated by a numerical method in conservation form, consistent with the conservation law, and if the method is stable in some appropriate sense, then dist(Uk, W) --+ 0 as k --+ 0.

Note that there is no guarantee that II Ukw lh, T --+ 0 as k --+ 0 for any fixed weak solution w(x, t). The computed Uk might be close to one weak solution for one value of k and close to a completely different weak solution for a slightly smaller value of the time step k. (Recall Exercise 12.4.) This is of no great concern, since in practice we typically compute only on one particular grid, not a sequence of grids with k --+ 0, and what the convergence result tells us is that by taking a fine enough grid, we can be guaranteed of being arbitrarily close to some weak solution.

Of course in situations where there is a unique physically relevant weak solution sat isfying some entropy condition, we would ultimately like to prove convergence to this particular weak solution. This issue will be discussed later, since it requires some dis crete entropy condition as well as consistency and stability, and is a stronger form of convergence than we now consider.

Compactness

In order to prove a convergence result of the type formulated above, we must define an appropriate notion of "stability". For nonlinear problems the primary tool used to prove convergence is compactness, and so we will take a slight detour to define this concept and indicate its use. There are several equivalent definitions of a compact set within some normed space. Here I will simply assert that certain classes of sets are compact without proof, since these are standard examples from real or functional analysis and a complete discussion would take us too far afield.

The most important property of compact sets, in relation to our goals of defining stability and proving convergence, is the following. The fact that compactness guarantees the existence of convergent subsequences, com bined with the Lax-Wendroff Theorem 12.1, will give us a convergence proof of the type formulated above. EXAMPLE 15.1. In the space 1R with norm given by the absolute value, any closed interval is a compact set. So, for example, any sequence of real numbers in [0, 1] contains a subsequence which converges to a number between 0 and 1. Of course there may be several different subsequences one could extract, converging perhaps to different numbers. For example, the sequence {0, 1, 0, 1, 0, 1, . . . } contains subsequences converging to 0 and subsequences converging to 1.

EXAMPLE 15.2. In the same space as the previous example, an open interval is not compact. For example, the sequence of elements lying in the open interval (0, 1) contains no subsequences convergent to an element of (0, 1). (Of course the whole sequence, and hence every subsequence, converges to 0, but this number is not in (0,1).) Also, an unbounded set, e.g.[O,oo), is not compact, since the sequence {1, 2, 3, ... } contains no convergent subsequence. In the n-dimensional space IRn with any vector norm II • II , the closed ball is a compact set.

Function spaces. Since we are interested in proving the convergence of a sequence of functions Uk(x, t), our definition of stability will require that all the functions lie within some compact set in some normed function space. Restricting our attention to the time interval [0, T], the natural function space is the space L1, T consisting of all functions of x and t for which the 1, T-norm (15.2) is finite, Ll, T={v: ll v lh.T<oo}. This is an infinite dimensional space and so it is not immediately clear what comprises a compact set in this space. Recall that the dimension of a linear space is the number of elements in a basis for the space, and that a basis is a set of linearly independent elements with the property that any element can be expressed as a linear combination of the basis elements. Any space with n linearly independent elements has dimension at least n. Unfortunately, in an infinite dimensional space, a closed and bounded set is not nec essarily compact. The difficulty here is that the support of these functions is nonoverlap ping and marches off to infinity as j -+ oo . We might try to avoid this by considering a set of the form

{v E L1: IJvlh :S Rand Supp(v) C [-M,M]}
for some R, M > 0, where Supp( v) denotes the support of the function v, i.e., Supp( v) C [-M, M) means that v(x) = 0 for l x l > M. However, this set is also not compact, as shown by the sequence of functions { v�, v2, ...

} with v • (x) = { sin(jx) lxl :S 1 J 0 lx l > 1.
Again this sequence has no convergent subsequences, now because the functions become more and more oscillatory as j -+ oo.

Total variation stability

In order to obtain a compact set in L l > we will put a bound on the total variation of the functions, a quantity already defined in (12.40) through (12.42). The set

{v E L1: TV(v) �Rand Supp(v) c [-M,M]} (15.5)
is a compact set, and any sequence of functions with uniformly bounded total variation and support must contain convergent subsequences. (Note that the 1-norm will also be uniformly bounded as a result, with l !v ll 1 �MR.)

Since our numerical approximations U k are functions of x and t, we need to bound the total variation in both space and time. We define the total variation over (0, T] by

TVr(u) = lim sup � f T j oo iu(x+f, t)-u(x,t)idxdt ,�o f lo -oo
It can be shown that the set n =O DEFINITION 15.1. We will say that a numerical method is total variation stable, or simply TV-stable, if all the approximations Uk for k < k0 lie in some fixed set of the form {15. 7) (where R and M may depend on the initial data u0 and the flux function f(u), but not on k).

1 1 T 1 oo + lim sup- iu(x, t+f)-u(x, t)idxdt.
Note that our requirement in (15.7) that Supp(u) be uniformly bounded over [O,T] is always satisfied for any explicit method if the initial data uo has compact support and k/h is constant as k -t 0. This follows from the finite speed of propagation under such a method.

The other requirement for TV-stability can be simplified considerably by noting the following theorem. This says that for the special case of functions generated by conser vative numerical methods, it suffices to insure that the one-dimensional total variation at each time t n is uniformly bounded {independent of n ). Uniform boundedness of TV r then follows.

THEOREM 15.1. Consider a conservative method with a Lipschitz continuous numer ical flux F(U; j) and suppose that for each initial data uo there exists some ko, R > 0 such that TV(Un) � R

Then the method is TV-stable.

V n, k with k < ko, nk � T.

To prove this theorem we use the following lemma. and hence 00 u un + l -un lit= k L I F(Un;j)-F(Un;j -1)1.

j=-oo {15.12)

The flux F(U;j) depends on a finite number of values U i -P > ... , Uj + q• The bound (15.10)

together with the compact support of each un easily gives

IUji � R/2 V j, n with nk � T. {15.13)
This uniform bound on Uj, together with the continuity of F(U;j) and its Lipschitz continuity, allows us to derive a bound of the form It follows that q jF (Un;j) -F (Un ; j -1 ) j $ K L I UJ' + ;-UJ' + i-11

and so (15.12) gives i=-p q 00

uun + I-u n lit$ kK L L I U j n + i-U j + i-11

i=-p j=-oo (15.14) after interchanging sums. But now the latter sum is simply TV(Un) for any value of i, and so yielding the bound (15.11). I i= -p < kK(p + q + 1)R

We are now set to prove our convergence theorem, which requires total variation stability along with consistency.

THEOREM 15.2. Suppose Uk is generated by a numerical method in conservation form with a Lipschitz continuous numerical flux, consistent with some scalar conservation law. If the method is TV-stable, i.e., if TV(Un) is uniformly bounded for all n, k with k < k0, nk $ T, then the method is convergent, i.e., dist(Uk, W) ---+ 0 as k---+ 0.

PROOF. To prove this theorem we suppose that the conclusion is false, and obtain a contradiction. If dist(Uk, W) does not converge to zero, then there must be some t > 0 and some sequence of approximations { uk,' uk2' ... } such that kj ---+ 0 as j ---+ 00 while dist(Uk;, W) > t for all j.

(15.15)

Since Uk; E K; (the compact set of (15.7)) for all j, this sequence must have a conver We have just seen that TV-stability of a consistent and conservative numerical method is enough to guarantee convergence, in the sense that dist(U.�;, W) -0 as k-0.

One easy way to ensure TV-stability is to require that the total variation be nonin creasing as time evolves, so that the total variation at any time is uniformly bounded by the total variation of the initial data. This requirement gives rise to the very important class of TVD methods. for all grid functions un.

If we compute using a TVD method, then (15.18) for all n � 0.

It can be shown that the true solution to a scalar conservation law has this TVD property, i.e., any weak solution u(x, t) satisfies (15.19) If this were not the case then it would be impossible to develop a TVD numerical method. However, since true solutions are TVD, it is reasonable to impose this requirement on the numerical solution as well, yielding a TV-stable and hence convergent method. A number of very successful numerical methods have been developed using this requirement. Several such methods will be derived in Chapter 16.

Monotonicity preserving methods

Recall that one difficulty associated with numerical approximations of discontinuous so lutions is that oscillations may appear near the discontinuity. In an attempt to eliminate this possibility, one natural requirement we might place on a numerical method is that it be monotoni.city preserving. This means that if the initial data UJ is monotone (either nonincreasing or non decreasing) as a function of j, then the solution UJ' should have the same property for all n. For example, if UJ � UJ+ I for all j then we should have that Uj � UJ+1 for all j and n (as for example in Figure 12.2). This means in particular that oscillations cannot arise near an isolated propagating discontinuity, since the Riemann initial data is monotone. For TVD methods we have this property.

THEOREM 15.3. Any TVD method is monotonicity preserving.

PROOF. This result follows from the fact that the appearance of oscillations would increase the total variation. If UJ � UJ+I for all j and TV(U0) < oo then we must have that TV(U0) = IU�oo-U� l • Clearly, by finite domain of dependence arguments, we con tinue to have u; -+ uzoo as j -+ ±oo at any later time tn. So TV(Un) � IU�oo-U� l• If the method is TVD then it must be that in fact TV(Un) = IU�oo-U�l• Any oscillations in un would give a larger total variation and cannot occur. I Another attractive feature of the TVD requirement is that it is possible to derive methods with a high order of accuracy which are TVD. By contrast, if we define "stability" by mimicing certain other properties of the true solution, we find that accuracy is limited to first order. Nonetheless, we introduce some of these other concepts because they are useful and frequently seen. This property is called L1-contraction: u-v is contracting in the 1-norm as time evolves. We can derive (15.20) from (15.22) by taking v(x, t) = 0, which is an entropy solution to any conservation law.

Note that we must restrict our attention to the unique entropy solution in order to expect that (15.22) holds. Otherwise, we could take data u(x, t t ) = v(x, tt) for which two different weak solutions u(x, t2) and v(x, t2) exist, violating (15.22).

The standard proof of (15.22) proceeds by defining a finite difference equation sat isfying a discrete analogue of (15.22) and then proving convergence (see, e.g., Theorem 16.1 in [START_REF] Smoller | Shock Waves and Reaction-Diffusion Equations[END_REF]). This suggests that a discrete analogue of (15.22) could be useful in proving convergence of difference methods.

The discrete space It• For grid functions U = { U i } (at a fixed time, for example) we define the 1-norm by

00 IIUih = h E l U i I • (15.23)

i=-oo

The space It consists of all grid functions for which the 1-norm is finite: lt={ U : IIUih <oo } .

(15.24)

Note that if we extend the grid function U to a piecewise constant function u(x) = U i for Xj-t/2 :::; X < Xj+If2, then (

Conversely, if we take a function u(x) and restrict it to a grid function U by setting Ui = ilj, the cell average (10. EXAMPLE 15.6. We will show that the upwind method is 11 -contracting and hence TVD, provided the CFL condition is satisfied. Suppose, for simplicity, that f'(Ur) > 0 and J'(Vjn) > 0 for all j. Then the method f9r U and V reduces to and VJn+I = VJn _ � [ J(Vjn) _ /(Vj� 1 ) ] .

Since the characteristic wave speed is J'(u), the CFL condition requires that for all u in the range minj ( Uj, Vjn) :=; u :=; max i ( Uj, Vjn).

Letting Wp = U i n -Vjn, we find by subtracting (15.32) from (15.31) that Since f is smooth, the mean value theorem says that Another useful property of the entropy-satisfying weak solution is the following: If we take two sets of initial data u 0 and v0, with vo(x)� uo(x) 'Vx, then the respective entropy solutions u(x, t) and v(x, t) satisfy v(x, t) � u(x, t) 'V x, t.

The numerical method Uj + 1 = 1-l(Un;j) is called a monotone method if the analo gous property holds:

� n � ur 'V j ==> v. n +l > u n +l vJ• 3 - 3 • (15.39)
To prove that a method is monotone, it suffices to check that for all i, j, U". (15.40) This means that if we increase the value of any Ui then the value of Uj+ I cannot decrease as a result. The CFL condition guarantees that 1 ± �f' (Ui) � 0 for all i and so 81-l(U";j)foUi � 0 for all i, j.

Monotone methods are a subset of /1-contracting methods, as the following theorem shows.

THEOREM 15.5. Any monotone method is 11-contracting.

Because the condition (15.40) is usually easy to check, as the example above shows, this is a useful theorem. It simplifies considerably the solution of Exercise 15.2 or Exam ple 15.6.

Proofs of Theorem 15.5 may be found in Keyfitz' appendix to [START_REF] Harten | On finite-difference approximations and entropy conditions for shocks[END_REF] or in Crandall and Majda [START_REF] Crandall | Monotone difference approximations for scalar con servation laws[END_REF]. This latter paper contains a thorough discussion of monotone methods and their properties.

To summarize the relation between the different types of methods considered above, we have: monotone =::: ::} /1-contracting =::: ::} TVD =::: ::} monotonicity preserving.

Although the monotone requirement (15.40) is often the easiest to check, the class of monotone methods is greatly restricted as the following theorem shows. THEOREM 15.6. A monotone method is at most first order accurate.

The proof of Theorem 15.6 can be found in [START_REF] Harten | On finite-difference approximations and entropy conditions for shocks[END_REF], and relies on the "modified equation" for the monotone method. As described in Chapter 11, by considering the local truncation error and expanding in Taylor series, it can be shown that the numerical solution is in fact a second order accurate approximation to the solution v(x, t) to some modified PDE a v1 + f(v)., = k ox (,B(v)v.,) (15.43) where k is the time step and {3(v) is a function of v that depends on the derivatives of and hence the error is asymptotically bounded below by (C1 -t)k for some fixed e as k --+ 0.

The notion of total-variation stability is much more useful because it is possible to derive TVD methods that have better than first order accuracy. This has been a prominent theme in the development of high resolution methods,•as we will see in the next chapter.

Numerical viscosity and the entropy condition. Note that the modified equation (15.43) contains a dissipative term k : ., (/3( v )v ., ), as in the modified equation for first order methods applied to the linear advection equation, discussed in Section 11.1.1. This is similar to the viscous term w.,., we added to our conservation law to define the "vanishing viscosity solution". The viscous term in (15.43) vanishes in the limit as k --+ 0. This suggests that we can hope for more than mere stability of monotone methods. As the grid is refined, we will in fact have convergence of any sequence of approximations to the vanishing viscosity solution of the conservation law, as the next theorem states.

THEOREM 15.7. The numerical solution computed with a consistent monotone method with k / h fixed con verges to the entropy solution as k --+ 0.

Although I have motivated this by the presence of numerical viscosity in the method, the standard proof uses the fact that only the entropy solution u is Lrcontracting in the sense that (15.44) for all smooth solutions w. This, combined with Theorem 15.5, gives the proof (see [START_REF] Crandall | Monotone difference approximations for scalar con servation laws[END_REF] or [START_REF] Harten | On finite-difference approximations and entropy conditions for shocks[END_REF]).

Note that there is no explicit reference to stability bounds on k/h in Theorem 15.7, but that the method will only be monotone for sufficiently small values of kfh (as in Example 15. 7). The monotone property is a form of stability, but one that is too stringent for most practical purposes because of Theorem 15.6. In the next chapter we begin our study of higher order, total variation stable methods.

PROPOSITION 15 . 1 .

 151 If K; is a compact set in some normed space, then any infinite sequence of elements of K;, { ��: 11 ��: 2, ��:3, ••• } , contains a subsequence which converges to an element of C This means that from the original sequence we can, by selecting certain elements from this sequence, construct a new infinite sequence which converges to some element 11: E K, as J -too.

Finite

  dimensional spaces. Generalizing the first example above, in any finite dimensional normed linear space, any closed and bounded set is compact. (In fact, these are the only compact sets.) EXAMPLE 15.3.

EXAMPLE 15 . 4 .

 154 The space of functions of x alone with finite 1-norm is denoted byL1 = {v(x): ll v lh < oo} .This space is clearly infinite dimensional since the infinite set of functions () {1 j<x<j + 1 Vj X = 0 otherwise(15.4) are linearly independent.

EXAMPLE 15 . 5 .

 155 The sequence of function {vb v2, ... } with vi defined by(15.4) all lie in the closed and bounded unit ball B1 = {v E L1: ll v lh :S 1 } , and yet this sequence has no convergent subsequences.

  ,�o f o -oo K = {u E L1, r: TVr(u) �Rand Supp(u(•, t)) C [-M,MJ Vt E (O,T]} is a compact set in Lt,T• (15.6) (15. 7)Since our functions Uk(x, t) are always piecewise constant, the definition (15.6) of TV r reduces to simply Tf k oo TVr(Un) =I: I: [k1Ui "+ 1 -Ui nl + hi Uj + I -U J'I].

  (15.8) n =O j=-oo Note that we can rewrite this in terms of the one-dimensional total variation and 1-norm asT / k TVr(Un) = E [kTV(Un) + IIUn + I-unl it ] .

LEMMA 15 . 1 .

 151 The bound (15.10) implies that there exists o > 0 such that V n, k with k < ko, nk � T. PROOF OF THEOREM 15.1. Using {15.10) and {15.11) in {15.9) gives T/k TVr{W) = L [kTV (Un) + uun+ l -un lh] n =O Tfk < l:[kR+ak] n =O < k(R +a)T/k=(R+a)T {15.10) {15.11)for all k < k0, showing that TV r( Uk) is uniformly bounded as k -+ 0. This, together with the finite speed of propagation argument outlined above, shows that all Uk lie in a set of the form (15.7) for all k < k0 and the method is TV-stable. I PROOF OF LEMMA 15.1. Recall that a method in conservation form has Uj +l -Uj = *[F(Un; j)-F(Un;j -1)]

4

 4 gent subsequence, converging to some function v E K-. Hence far enough out in this subsequence, ukj must satisfy for all j sufficiently large(15.16) for the t defined above. Moreover, since the Uk are generated by a conservative and consistent method, it follows from the Lax-Wendroff Theorem (Theorem 12.1 ) that the limit v must be a weak solution of the conservation law, i.e., v E W. But then (15.16) contradicts (15.15) and hence a sequence satisfying (15.15) cannot exist and we conclude that dist(U.�;, W) -0 as k-0. I 15.Total variation diminishing methods

DEFINITION 15 . 2 .

 152 The numerical method Ur 1 = 'H.(Un ;j) is called total variation diminishing (abbreviated TVD) if(15.

17

 17 

  )

  numerical methodsAny weak solution of a scalar conservation law satisfies(15.20) In particular, if u0 is the initial data at time t= 0, then ll u( • ,t) lh S ll u o lh Vt 2:: 0. ( 15.21) The result (15.20) is true for any weak solution to a scalar conservation law. If we restrict our attention to the entropy solution (which is unique) then (15.20) is a special case of a more general result. If u(x, t) and v(x, t) are both entropy solutions of the same scalar conservation law (but with possibly different initial data), and if u0 -v0 has compact support (so that ll u( • ,t)-v( • ,t)i h < oo for all t) then (15.22)

EXERCISE 15 . 1 .

 151 Verify (15.25} and (15.26}.In analogy to the Lt-contraction property(15.22) of the true solution operator, we say that a numerical method(15.27) is It-contracting if, for any two grid functions un and vn for which un-vn has compact support, the grid functions Un+I and vn+ t defined by(15.27) and Vj n+ t = 1i(Vn;j) satisfy(15.28) The fact that It-contracting methods are convergent follows from the next theorem and our previous results.

THEOREM 15 . 4 .

 154 Any It-contracting numerical method is TVD. PROOF. The proof depends on the following important relation between the 1-norm and total variation: Given any grid function U, define V by shifting U, Vj = Ui -t Y j. (15.29) Then 1 TV(U) = hii U-V l h• (15.30) Now suppose the method (15.27) is 11-contracting and define Vjn = UJ'-1 for all j and n. Note that the methods we are considering are translation invariant, so Vjn+I = H(Vn;j). Then by it-contraction and (15.30) we have and hence the method is TVD. I = .!.. uu n+Iy n+I l h h < .!.. uu ny n lh h = TV(Un)

J

  (Uj)-J(Vjn) = J'(O'J)(Uj-Vjn) J'(O'J)Wi n for some Oj between Uj and Vjn. Using this in(15.34) By the CFL condition (since Bj falls in the appropriate range), we see that both of the coefficients are nonnegative and so, letting ai = ( k/ h)!'( Oj), Summing over j gives the result for the 1-norm: hI: 1wr11 s hI: 1wr1h I:aj1wr1 + h I:aj-tlwr-tl• j (15.35) Since Wp = 0 for Iii sufficiently large, the last two terms cancel out, and we obtain (15.36) showing lrcontraction. (Note the similarity of this proof to the earlier proof in Exam ple 10.2 that the upwind method is stable for the linear advection equation.) EXERCISE 15.2. Show that the Lax-Friedrichs method (12.15} is 1 1 -contracting pro vided the CFL condition lkf'(u)/hl S 1 is satisfied for all u in the range min j {Uj, vT)::; u::; maxi(up, vT)• Note that if our numerical method is it-contracting, then in particular we can obtain a discrete version of (15.20) by taking � 0 = 0 (which leads to � n = 0 for any consistent method): 'Vn � 0. (15.37) If we define the piecewise constant function Uk(x, t) in the usual way, we also have that II Uk( • , t )l h S II Uk( • , O ) Ih S l l uol h by using (15.25) and (15.26).

EXAMPLE 15 . 7 .

 157 The Lax-Friedrichs method (12.15) is monotone provided the CFL condition is satisfied since satisfies a { t (1 + �f'(UJ'_1 )) if i = i-1 a ur'H (U" ; i )= t (1-�f'(U J'+ I )) if i= i+ 1

'

  H with respect to each argument. The assumption that the method is monotone can be used to show that f3(v) > 0 (except in certain trivial cases). But the equation (15.43) is an O(k) perturbation of the original conservation law and it follows that the solution vk ( x, t) differs from u( x, t) by 0( k) as well, at least for nontrivial initial data, and so v k < ko with C1 > 0. Since our numerical solution is a second order accurate approximation to the modified equation,v k < ko.It follows that it can only be first order accurate solution of the original conservation law, smce II U k -ull 2:: llu -v k ll -II U kvk ll > C1k-C 2 k 2